
Vol.:(0123456789)

SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3

Research Article

Software Metrics and tree‑based machine learning algorithms
for distinguishing and detecting similar structure design patterns

Mohammad Y. Mhawish1 · Manjari Gupta1

Received: 24 September 2019 / Accepted: 28 November 2019 / Published online: 3 December 2019
© Springer Nature Switzerland AG 2019

Abstract

Design patterns are general reusable solutions for recurrent occurring problems. When software systems become more
complicated due to the lack of documentation of design patterns in software and the maintenance and evolution costs
become a challenge. Design pattern detection is used to reduce the complexity and to increase the understandability of
the design in the software. In this paper, we propose a design pattern detection approach based on tree-based machine
learning algorithms and software metrics to study the effectiveness of software metrics in distinguishing between similar
structural design patterns. We build our datasets using P-MARt repository by extracting the roles of design patterns and
calculating the metrics for each role. We used parameter optimization techniques based on the Grid search algorithm to
define the optimal parameter of each algorithm. We used two feature selection methods based on a genetic algorithm
to find features that influence the most in the distinguishing process. Through our experimental study, we showed the
effectiveness of machine learning and software metrics when distinguishing similar structure design patterns. Moreover,
we extracted the essential metrics in each dataset that supported the machine learning model to take its decision. We
presented the detection conditions for each role in the design pattern by extracting them from the decision tree model.

Keywords Design pattern detection · Classification · Feature selection · Explain predictions · Parameter optimization

1 Introduction

Design patterns are defined as the general reusable solu-
tions for the recurrent occurring problems in the soft-
ware design. Design patterns are useful for providing
more understandability for the software by increasing
abstraction, and that leads to improving the evolution and
maintainability of the software [1]. Due to some reasons,
including the lack of software documentation, the design
pattern causes complexity in the software, and that leads
to increased evolution and maintenance efforts [2]. From
this perspective, the researchers started to use design
patterns in reverse engineering, and several studies have
been published in terms of detecting design patterns from
software systems [3].

From the proposed studies published in the field of
design pattern detection, we found that one of the most
impact challenges faced the detection process is the
similarity of the structure between design patterns [4].
Whereas the detection results contain some false posi-
tive instances that detected because that only shared
the structure of another design pattern, but it is differ-
ent in the intents. The similarity of the design pattern
structures occurs between design pattern components
(design pattern roles) and the relationships between these
components.

In the literature, there are several approaches pro-
posed based on machine learning. Ferenc et al. [5] pro-
posed an approach to detect design patterns. They used
machine learning techniques in the second phase of

 * Mohammad Y. Mhawish, bniyaseen@gmail.com; Manjari Gupta, manjari_gupta@rediffmail.com | 1DST-CIMS, Banaras Hindu University,
Varanasi, India.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1815-3&domain=pdf
http://orcid.org/0000-0001-8161-3068

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3

their approach for filtering the candidates that gener-
ated from the first phase-which depends on the struc-
tural matching of design patterns. They built the learn-
ing dataset from the information structural information
collected for each design pattern. They have employed
the neural networks with backpropagation and the
C4.5 decision tree classifiers to classify the candidate
as true or false. Guéhéneuc et al. [6] they proposed an
approach based on constraints and machine learning
algorithms. The datasets built based on P-MART reposi-
tory by extracting 13 software metrics for each class in
the design pattern components. They applied machine
learning algorithms in the first phase to reduce the
search space in order to reduce the number of false-
positive instances. They employed the JRIP algorithm
and rule-learner in their approach. Chihada et al. [7]
proposed an approach based on machine learning. The
training datasets are built by calculating 45 software
metrics for each role in the design pattern component.
They supposed that each design pattern is a combina-
tion of four roles and the feature vector for each pattern
is 4 * 45 = 180 features that represent the labeled dataset.
They used Simple Logistic, C4.5, KNN, SVM to classify pat-
terns from source code. Tirkey et al. [8] proposed detec-
tion approach based on machine learning. In their study,
they used software metrics and classification techniques
to detect software design patterns. They build datasets
by extracted software metrics in order to learn classifiers.
They evaluated their work using three open source soft-
ware systems JHotDraw, QuickUML, and JUnit.

In this paper, we proposed an approach to study the
effectiveness of using machine learning techniques and
software metrics in order to distinguish between similar
structural design patterns. We conducted our experiment
using Adapter Object and Command design patterns.
Moreover, we have explored the decision of machine
learning models by using the explain predictions algo-
rithm and decision tree detection rules. The explanation
for the predictions aimed to investigate the behavior
of machine learning models in the distinction between
similar roles in design patterns and defined the software
metrics that supported the models to take its decisions
in order to create a definition of the difference between
the similar structure design pattern roles, based on the
software metrics values.

We used three tree-based machine learning algorithms:
decision tree algorithm, gradient boosting tree algorithm,
and random forest algorithm. We used two feature selec-
tion methods based on genetic algorithm. We found
the most impact features in each dataset to increase the
performance and to increase the knowledge of the soft-
ware metrics that play a significant role in distinguishing
between similar roles in design patterns.

We tuned the hyper-parameters for each machine
learning algorithm by using the parameter optimization
technique based on the Grid search algorithm. We also
presented the detection conditions for each similar design
pattern roles by finding the threshold values for each soft-
ware metric on which the decision tree algorithm relied to
distinguish between those similar roles.

The paper is organized as follows: in Sect. 2, we intro-
duce related work. In Sect. 3, we proposed the research
methodology and the proposed design pattern detection
method. In Sect. 4, we reported the experimental results
and discussions. In Sect. 5, we present a conclusion.

2 Related work

In the following, we introduce some of the best design pat-
tern detection approaches based on static and dynamic
analysis proposed by different researchers working in this
field.

Kramer et al. [9] proposed an approach based on
Prolog rules detection, and they used the Prolog rules
to recover design patterns from the design information
extracted from C++ code. This approach represents a sys-
tem as a set of Prolog predicates based on [1] definition.
Thus, Prolog queries are applied to detect an instance of
design patterns. They developed an approach as a tool for
detecting design patterns-PAT. Keller et al. [10] proposed
an approach for design pattern detection that splits the
detection process into two phases. In the first phase, the
UML diagram presented to the user by identifying the
design pattern structure. In the second phase, they used
user interaction to refine the result. Shi and Olsson [3] pro-
posed an approach for design pattern detection based
on a structural and behavioral aspect of design patterns.
Behavioral aspect detection conducted by analyzing the
abstract syntax tree (AST) to produce the Control Flow
Graph (CFG) for all elements in the source code. The struc-
tural aspect of design patterns extracted for the source
code system to generate inter-class relationships. Finally,
they used the analyzed information to detect design pat-
terns. Dong et al. [11] proposed an approach for detecting
design patterns. They represented a system structure in
matrix and weight. They used three analysis phases: struc-
tural, behavioral, and semantic. The structural aspect of
the source code is extracted to build a matrix. The matrix
represented all classes in the source code in its rows and
columns; the relationships between classes represented
as values in the matrix. Design patterns were also repre-
sented as matrices and weight. The weight value for each
class is calculated as a number of attributes, a number of
methods, and association, generalization, dependency,
and aggregation relationships in a particular class. The

Vol.:(0123456789)

SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3 Research Article

pattern candidates are detected by matching the system
matrix and the design pattern matrices. Depending on this
approach they developed a design pattern detection tool-
DP-MINER. Kaczor et al. [12] proposed an approach that
formulates the design pattern detection as a combinatorial
problem by proposing a bit-vector algorithm based solu-
tion. They expressed the pattern detection with operation
on finite sets of bit-vectors. Design patterns and source
code candidates are represented as string expressing
classes and their relationships (aggregation, composition,
inheritance, association, and instantiation). The detec-
tion process in this approach is applied by matching the
string representation of design patterns and the analyzed
source code. Frence et al. [5] proposed an approach based
on machine learning to improve the results of structural
matching methods by reducing the false positive. They
used machine learning to refine the pattern detection
results that returned by the matching algorithm. The
detection process consists of the first transformation of the
code into an Abstract Semantic Graph (ASG), then match-
ing with the definition of design patterns. Next, manual
inspection is used to examine the source code to decide
the true or false hits of design pattern instance candidates.
Finally, they performed the training of a machine learning
system. In this approach, two popular approaches in the
field of machine learning presented (a decision tree and
a neural network). Tsantalis et al. [13] they have proposed
a graph-based approach for detecting design pattern.
This approach computes the similarity scoring between
vertices of the graph. They used a class diagram for build-
ing a direct graph that is mapped into a square matrix
representation. A similarity scoring algorithm is used to
match system matrix and design patterns matrices. The
result after matched is the amount of matching between
the system matrix and design pattern matrices. Lucia

et al. [14] proposed an approach to detect behavioral pat-
terns which combine both static and dynamic analysis. In
this approach, the structural aspects are captured using
static analysis, and then a dynamic analysis is conducted
on these candidates by tracing the cells of the methods
at run-time. Heuzeroth et al. [15] proposed an approach
where first analysis of the source code is done by extract-
ing an Abstract Syntax Tree (AST) from source code. Then
static information of source code is used to produce a
set of candidates that matched with the design pattern
static rules. These candidates were used as an input of
the dynamic analysis phase. The detection process in the
dynamic analysis is performed by matching the candidate
rules and design pattern rules. Depending on matching
the candidates are accepted or rejected. Hayashi et al.
[16] they have described an integrated approach based
on static and dynamic analysis. The design facts (classes,
methods, etc.) extracted using static analysis and repre-
sented as facts in Prolog. The detection process in this
approach is performed by matching the facts with a set of
conditions that satisfy design patterns. These conditions
are defined as Prolog rules. Finally, they extract the execu-
tion record from executing the source code.

3 Research methodology and the proposed
approach

In this approach, we build a framework to distinguishing
between similar structural design patterns and extract the
detection conditions based on software metrics and based
tree machine learning algorithms. The list of steps we fol-
lowed is shown in Fig. 1. The following steps are performed
to build the solution framework:

Fig. 1 Proposed approach

Parameter Optimization
Feature

selection

methods

Result

Evaluation
Performance

metrics

Interpretation and

Explain prediction

models

Based-tree

Machine learning Algorithms

Design
pattern role

Datasets

P-MART

repository

Software

applications

Extract

Software metrics

Extract

Detecition rules

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3

• Parsing P-MARt repository to extract design pattern
roles.

• Extracting software metrics for each role to build the
datasets.

• Applying feature selection methods to select the rel-
evant metrics in each dataset.

• Applying the parameter optimization technique to
tune the hyperparameter for each machine learning
algorithm.

• Training machine learning model.
• Extract the result.

3.1 Dataset description and representation

In this work, we created our datasets using PATTERN-
LIKE MICROARCHITECTURE REPOSITORY (P-MARt) [17].
The repository contains the list of design patterns that
detected from nine open-source software and manually
reviewed by experts. We extracted the design patterns by
developing XML parser tools.

We selected two design patterns that have a similar
structure (Adapter and Command design patterns). Soft-
ware metrics are calculated for each role in design patterns
using JBuilder [18]. We have calculated 36 software met-
rics that cover size, cohesion, complexity, coupling, and
inheritance for object-oriented class. The final datasets are
created by merging similar roles in the different design
patterns. In the case of Adapter and Command design
patterns, there are two mains roles extracted for each
pattern, a Receiver and the concreteCommand in case
of Command design pattern, and Adapter and Adaptee
roles in case of Adapter design pattern. Later we merged
the similar structures roles in the same dataset in order
to distinguish between them. We produced two datasets:
Adapter/ConcreteCommand and Adaptee/Receiver data-
sets. Each example in the dataset are labelled with the role
name, and each role consists of the feature vector of 36
software metrics. Tables 1 and 2 presents the statistics of
datasets and the software metrics we calculated for each
role, respectively.

3.2 Feature selection

Feature selection is a technique that aims to find the most
impact features in the dataset by removing the redun-
dant features in order to increase the performance and to
increase the knowledge of the software metrics that play
a significant role in distinguishing between similar roles in
design patterns [19].

In this paper, we used the Genetic algorithm [20] to
build two feature selection methods GA-Naïve Bayes and

Table 1 Dataset statistics

Dataset Design pattern role Number of
instances

Fraction

Adapter/concreteCom-
mand

Adapter 326 0.652

ConcreteCommand 174 0.348

Adaptee/receiver Adaptee 452 0.904

Receiver 48 0.096

Table 2 Software metrics Acronyms Full Name Acronyms Full Name

AC Attribute complexity NOA Number of attributes

AOFD Access of foreign data NOC Number of classes

AUF Average use of interface NOCC Number of child classes

CBO Coupling between objects NOCON Number of constructors

CC Cyclomatic complexity NOED Number of external dependencies

CL Class locality NOM Number of members

CM Changing methods NOO Number of operations

COC Clients of class NOOM Number of overridden methods

ChC Changing classes NOPA Number of public attributes

DAC Data abstraction coupling NORM Number of remote methods

DD Dependency dispersion RFC Response for class (RFC)

DOIH Depth of inheritance hierarchy TRAp Total reuse of ancestor percentage

EC Essential complexity TRDp Total reuse in descendants percentage

FO FanOut TRAu Total reuse of ancestor unitary

MDC Module design complexity TRDu Total reuse in descendants unitary

MIC Method invocation coupling WCM Weighted changing methods

MNOL Maximum number of levels WMPC Weighted methods per class

NAM Number of accessor methods WOC Weight of a class

Vol.:(0123456789)

SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3 Research Article

GA-CFS. The best features in those methods are selected
based on the fitness functions we used: the degree of cor-
related features to the target class (CFS) [21] and the accu-
racy of training Naïve Bayes algorithm.

Figure 2 displays the genetic algorithm used to build
feature selection methods. Initially, the algorithm gener-
ates an initial population with randomly selected features.
These instances will be examined by the fitness function
then tested the stopping criteria. If this solution not sat-
isfied, a genetic algorithm operator will be applied and
examine again by a fitness function to generate the opti-
mal metrics for the dataset.

In the first method, Genetic algorithm based on Naïve
Bayes (GA-Naïve Bayes), we have set the population size to
20 individuals with the maximum number of generations
40. We used non-dominated sorting to apply the chromo-
somes selection. We also used the one-point crossover to

apply the cross-over operation. The cross over probability
is set to 0.95, and the mutation probability is set to 0.1.
The best generation of chromosomes is that they have the
highest performance accuracy generated by training Naïve
Bayes using tenfold cross-validation.

In the second method that is Genetic algorithm based
CFS (GA-CFS), we have set the population size to 20 indi-
viduals with the maximum number of generations 100.
The tournament selection method is used to apply the
chromosomes selection. We used One-point crossover
with probability 0.95 and mutation probability is set to
0.1. The best generation of chromosomes is that they have
the highest degree of correlated features in the class. The
high degree of correlation feature returns low CFS perfor-
mance value, and a low degree of correlation returns high
CFS performance value.

3.3 Parameter optimization

In the machine learning algorithms, there are hyper-
parameters that have to tune to ensure the improvement
of the performance accuracy of the algorithms. In this
paper, we used a grid-search algorithm based on param-
eter optimization technique. The grid search is an exhaus-
tive search algorithm based on a defined set of values of
parameters by defined upper and lower bound for each
parameter and based on the assigned number of steps the
parameter values for each parameter are assigned. Then
the Grid search algorithm is testing every combination of
parameters value to calculate the best value of parameters
for each algorithm [22. 23]. In the tree-based algorithm,
several parameters impact the performance accuracy.
Table 3 shows the parameters that are selected to tune
their values and value range and number of steps for each
parameter.

3.4 Classification Models

In this paper, we used tree-based algorithms to build a
design pattern roles detection approach.

The Tree-based algorithm is a supervised learning
algorithm that is considered as one of the most accurate Fig. 2 Proposed feature selection method

Table 3 Tuning algorithms
parameters and the specified
steps assigned for each
parameter

Model Parameter From To Steps

Random forest Number of trees 1 100 10

maximal depth 1 100 10

Gradient boosted trees Number of trees 1 200 10

Maximal depth 1 100 10

Decision tree maximal depth 1 100 10

Criterion Gain ratio, information gain, Gini index, accu-
racy

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3

algorithms in the classification process. Tree-based
algorithms map the nonlinear relationships among the
instance features and the target classes in the dataset.
Moreover, the algorithm provides classification rules that
can be ease to interpret the classification models [24,
25].

In our approach, we use three tree-based algorithms:
Decision Tree algorithm, Gradient Boosted Trees algorithm
(GBT), and Random Forest algorithm.

The decision tree algorithm is a supervised learning
algorithm that consists of nodes split based on splitting
rules for each specific feature [26]. In the decision tree, the
data is passed from root to leaves, and the feature value is
separated based on splitting rules in each node according
to predictor class until it reaches the stopping criteria. The
hyperparameters of the decision tree algorithm, maximal
depth and split criterion, are optimized using parameter
optimization techniques. The Random Forest algorithm
is an ensemble technique that consists of many decision
trees. The ensemble technique used in the random for-
est algorithm is bagging. Bagging is used to reduce the
variance of the classifier model by combining the results
of multiple models that are trained in different sub-set of
the training dataset to produce strong classifier model. The
Gradient boosted trees (GBT) is a decision tree based algo-
rithm that combines the boosting ensemble technique
along with gradient-based optimization [27]. Boosting is
an ensemble technique consisting of many decision trees
that are trained sequentially by changing the weight of the
dataset examples based on the classification error that is
generated by the previously trained model until most of
the examples in the dataset classified correctly.

The hyperparameters of the Gradient boosted trees
and random forest algorithms, the number of trees and
maximal depth of trees, are optimized using parameter
optimization techniques.

3.5 Validation Methodology

3.5.1 Performance measures and evaluation parameters

In this study, a set of experiments we have done. In each
experiment, five performance measuring parameters such
as precision, recall, f-measure, AUC, and accuracy are used
for measuring the performance of design pattern detec-
tion models. These parameters are computed using a con-
fusion matrix that contains actual and predicted classifi-
cation information identified by design pattern detection
classifiers [28].

We give brief definitions of the performance param-
eters used for measuring the performance of the design
pattern detection model as follows.

Accuracy is one of the performance measures for classifi-
cation. It is the percentage of correctly classified instances
in the positive and negative class calculated as follows:

The accuracy of the design pattern detection approach
is usually determined by the relationship between preci-
sion and Recall. Ideally, a reasonable approach should
have good precision and recall rate, i.e., while Recall val-
ues increase the Precision values should remain high. Thus,
we infer that a useful approach should have a high rate of
true positives with a low rate of false positives and false
negatives.

F-measure is defined as the harmonic mean of preci-
sion and recall, while the Precision is the positive-classified
instances that are positive. The recall is the real-positive
instances classified as positive. F-measure is a way of hav-
ing a single number combining the two measures calcu-
lated using the following formulas.

Area under the ROC Curve (AUC) AUC is one of the com-
mon measures of accuracy for classification models by
computing the area under the Receiver Operating Char-
acteristic (ROC) curves. ROC curves are a way to visualize
the tradeoffs between true positive rate and false-positive
rate in a classifier to analyze and compare the performance
of the classifier models through visual analytics [29].

3.5.2 Models explanation

In supervised learning, performance accuracy could not be
enough to evaluate the algorithm, especially when deal-
ing with software engineering problems. The performance
measures not give much comprehensive of how the model
takes its decision and what the features that influenced in
this decision [30].

In this paper, we used two types of explaining predic-
tion models, the decision tree rules and LIME Algorithm
[31], to provide more understanding for the interpreta-
tion of the model results and to find how each software
metric affects the model predictions. In the decision tree
model, the interpretation is conducted by starting from
root among the nodes to reach the leaf nodes through
edges, and each edge leads to which subsets of prediction
by following decision rules that considered the threshold
of metrics value that decide the decision path. All edges
that passed through to reach to the leaf are connected
with the AND operator as the following:

Accuracy (AC) =
TP + TN

TP + TN + FP + FN

F-measure = 2 ×
Precision × Recall

Precision + Recall
%

Vol.:(0123456789)

SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3 Research Article

If metric X is [smaller/bigger] than c AND metric Y
is [smaller/bigger] than d, then the model predicted
W prediction. The Local interpretable model-agnostic
explanations (LIME) [31] is used to explain the predic-
tions of black-box models by explaining why each pre-
diction was made, and what the most contributory met-
rics that effect to the decision of the prediction model.
The LIME algorithm generates a set of data points
around each software metric in the dataset, and train
the model in these datasets and observing the change
of the result to approximate the weight of software
metric and its importance in changing the result. The
weight of each metric is generated by calculating the
correlation between each data point and the changing
of the result.

4 Experimental results and discussions

In this experiment, we evaluate tree-based machine
learning and feature selection methods using two data-
sets of similar design patterns; Adapter/concreteCom-
mand and Adaptee/Receiver datasets. A tenfold Cross-
validation is a technique used to evaluate machine
learning models with ten times repetitions.

4.1 Machine learning algorithms results

In Table 4, we presented the set of software metrics
selected by feature selection methods. In the Adapter/
concreteCommand dataset, the GA-CFS and GA-Naïve
Bayes methods selected 7 and 8 metrics respectively out
of 36 metrics. In the Adaptee/Receiver dataset, the feature
selection methods selected 7 and 6 metrics out of 36 met-
rics by GA-CFS and GA-Naïve Bayes methods, respectively.
The main aim of applying feature selection methods is not
only for improving the performance accuracy of classifiers
but also to know the relevant software metrics that con-
tribute to distinguish between particulars roles in similar
structural design patterns.

Table 5 shows the evaluation results of machine learn-
ing algorithms in design-pattern-roles classification
models. We evaluated the models using Adapter/con-
creteCommand and Adaptee/Receiver datasets with the
selected features by feature selection methods and with
all features.

As observed in Table 5 and Fig. 3, the feature selection
methods impact the accuracy of the models by improv-
ing the accuracy of the models and by choosing the most
influenced features that play a key role in the classification
process.

In the Adapter/concreteCommand dataset, the Random
Forest algorithm scored the best accuracy value by 96.86%
when evaluated by the feature selected dataset generated

Table 4 Metrics selected using feature selection methods

Dataset GA-Naïve
Bayes

GA-CFS Selected metrics by GA-Naïve Bayes Selected metrics by GA-CFS

Adapter/concreteCommand 8 7 DOIH MNOL NOA NOOM TRAp TRAu WOC CL EC NOOM NORM TRAp TRAu WOC

Adaptee/receiver 6 7 AUF
AUF
CC ChC MIC MNOL WCM

AC
CM ChC DOIH NOPA TRAp WOC

Table 5 Evaluation results of machine learning algorithms

Bold indicates the best accuracy among all datasets that achieved in each model

Model Measures Adapter/concreteCommand Adaptee/receiver

All features (%) GA-Naïve
Bayes (%)

GA-CFS (%) All features (%) GA-Naïve
Bayes (%)

GA-CFS

Decision tree Accuracy 92.76 92.76 94.49 90.95 92.86 94.05

F-measure 94.53 94.53 95.72 92.20 93.87 94.10

AUC 87.40 87.40 85.80 87.10 90.10 92.20

Random forest Accuracy 96.03 94.42 96.86 94.29 94.29 94.29

F-measure 96.96 95.65 97.49 93.55 94.56 95.12

AUC 99.10 98.30 98.80 92.10 92.10 93.50

GBT Accuracy 96.79 94.42 95.32 94.29 95.71 95.71

F-measure 97.46 95.78 96.30 93.58 94.45 95.72

AUC 99.20 96.50 98.30 96.30 95.50 97.10

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3

by GA-CFS. This accuracy was achieved by optimizing the
parameter values for the Random Forest algorithm using
the grid search algorithm. The hyper-parameter values
for the Random forest algorithm have set as Number of
trees = 21 and Maximal depth = 21.

The GBT algorithm also scored good accuracy in all fea-
ture dataset by 96.79% with the best F-measure by 97.46
and best AUC by 99.20.

We applied the explain Predictions technique using
the Lime algorithm in the random forest models that
are trained on Adapter/concreteCommand all-features
dataset. We found that the most important metrics that
support the decision of the model to classify between
Adapter and concreteCommand roles are WOC, NOMM,
and RFC software metrics that support the model to pre-
dict the Adapter roles. And CL and TRAp metrics that sup-
port the model to predict concreteCommand roles. We
also observed that most of the metrics considered by the
Lime algorithm as the supportive metrics to the model to
classify the roles were also selected by feature selection
method (GA-CFS) as the most relevant features, as shown
in Table 4.

In the Adaptee/Receiver dataset, the Gradient Boosted
Trees algorithm scored the best accuracy value by 95.71%
when evaluated by the feature selected datasets that are
generated by GA-CFS and GA-Naïve Bayes. This accuracy
was achieved by optimizing the parameter values for the
Gradient Boosted Trees algorithm using the Grid search
algorithm. The parameter values have set for the number
of trees = 10 and the maximal depth = 2.

By applying the Lime algorithm, we extracted the soft-
ware metrics that support the GBT model in distinguishing
between Adaptee and Receiver design pattern roles. We
found that the most critical features to detect the Adaptee
roles is WOC, AC, ChC, and NOA. On the other hand, the
most critical feature that supports the model to detect
Receiver roles is CM and DOIH. By comparing the software

metrics that were selected by feature selection methods
and the metrics that have been considered by the Lime
algorithm as supportive metrics of the classification model
between design pattern roles, we found that the metrics
resulted from both methods are somewhat similar.

4.2 Discussion about software metrics and their
effectiveness in distinguishing between similar
structure design pattern

The decision tree model provides human-readable detec-
tion rules. The detection rules consist of a set of condi-
tions. Each condition is a Boolean logical proposition that
decides the threshold of the metric values to detect the
design pattern roles. We have extracted the detection rules
for the decision tree model that are trained in full feature
datasets.

4.2.1 Adapter and concreteCommand Detection

Conditions

Based on the detection rules, the Adapter roles in the
Adapter design pattern were detected when achieved the
following conditions:

TRAp ≤ 0.500 && WOC > 82
TRAp > 0.500 && NOOM > 3.500

The first combination of conditions, is that If the Total
Reuse of Ancestor percentage (measure the degree of
reuse of ancestor class variable) is less or equal than 0.50,
and the Weight of a Class (measure the number of non-
accessor methods divided by the total number of interface
method) is higher than 82 then it detects the adapter roles
in the dataset.

The second combination of the condition is: if the Total
Reuse of Ancestor percentage is higher than 0.50 when the

Fig. 3 Comparison of accuracy
of all classifiers with using
feature selection method and
without

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

All features GA- CFS GA -Naïve Bayes

Vol.:(0123456789)

SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3 Research Article

Number of Overridden Methods is greater than 3 then it
detects the remaining adapter roles in the dataset.

The concreteCommand roles in the Command design
pattern were detected when achieved the following
conditions:

TRAp > 0.500 && NOOM ≤ 3.500 && WOC ≤
90
TRAp > 0.500 && NOOM ≤ 2.500 && WOC >
90 && EC > 2.500 && NORM > 3.500

The first combination of conditions detects concrete-
Command roles, and it shows that concreteCommand
roles are distinguished from Adapter roles if the Total
Reuse of Ancestor percentage is greater than 0.50 and
the Number of Overridden Methods is equal or less than
3 with 90 or less Weight of Class values.

In the second combination of conditions, the concrete-
Command roles are detected if Total Reuse of Ancestor
percentage is greater than 0.50 and the Number of Over-
ridden Methods is equal or less than 2 with greater than
2.5 of the Essential Complexity and the class have at least
3 Remote Methods.

4.2.2 Adaptee and receiver detection conditions

On the detection rules, that we have extracted from the
decision tree model that trained in Adaptee/Receiver all-
feature dataset, we determined the set of combination of
conditions to detect Adaptee and Receiver roles. Adaptee
roles in the Adapter design pattern were detected when
achieved the following conditions:

WOC > 74.50 && ChC ≤ 23
WOC > 74.50 && ChC > 23 && AC > 0.50
WOC ≤ 74.50 && DOIH > 1.500

In the first combination of conditions, most of the Adap-
tee roles are detected, if the Weight of a Class is greater
than 74 and if the number of client-classes where the
changes must be operated in result a change in the server-
class (ChC) is equal or less than 23. The second combina-
tion of conditions detected the Adaptee roles if the Weight
of a Class is greater than 74 and the ChC is greater than 23
if the Attribute Complexity of the class is greater than 0.5.
The remaining Adaptee roles are detected if the Weight of
a Class is equal or less than 74 when the Depth of Inherit-
ance Hierarchy is greater than 1.5.

Receiver roles in the Adapter design pattern were
detected when achieved the following conditions:

WOC ≤ 74.500 && DOIH ≤ 1.500
WOC > 74.50 && ChC > 23 && AC ≤ 0.50

In the first combination of conditions, most of the
Receiver roles are detected if the Weight of a Class is equal
or less than 74 when the Depth of Inheritance Hierarchy
is equal or less than 1.5. The remaining Receiver roles are
detected when the Weight of a Class is greater than 74, the
ChC is greater than 23 and if the Attribute Complexity of
the class is equal or less than 0.5.

5 Conclusion

This approach aims to increase the understanding of the
relationship between software metrics and to distinguish
between similar structure design pattern. We build our
datasets using P-MART design patterns repository [17] by
extracting the similar roles in similarly structure design
patterns (Adapter and Command) and merge the similar
roles of the different design patterns in one dataset, and
then we calculate the software metrics for each role.

We used two feature selection methods based on
Genetic algorithm methods GA-Naïve Bayes and GA-
CFS that aims to remove the redundant features and to
increase the knowledge of the software metrics that play
a significant role in distinguishing between similar roles in
design patterns. Feature selection methods in our experi-
ment reduced the number of features of datasets from 36
to 7 and 8 in the Adapter/concreteCommand dataset using
GA-CFS and GA-Naïve Bayes, respectively. Also, reduced
from 36 to 7 and 6 features in the Adaptee/Receiver data-
set using GA-CFS and GA-Naïve Bayes, respectively. We
evaluated and compared the classifier models with using
feature selection method and without feature selection
methods in the Adapter/concreteCommand and Adap-
tee/Receiver datasets. We observed that the performance
accuracy values are increased when using feature selec-
tion methods in most of the algorithms.

In the decision tree models, the highest accuracy is
achieved when using GA-CFS feature selection method
by increasing from 92 to 94% and from 90 to 94% in the
Adapter/concreteCommand and Adaptee/Receiver data-
sets, respectively. In the random forest algorithm, the
highest accuracy is achieved when using GA-CFS feature
selection method by 96% and 94% in the Adapter/con-
creteCommand and Adaptee/Receiver datasets respec-
tively with slightly increased value when comparing the
accuracy of the classifier model when used full features
datasets. In the GBT algorithm, the highest scored is 96%
achieved in the full feature dataset of Adapter/concrete-
Command dataset. Also, 95% when using both feature
selection methods in the Adaptee/Receiver dataset.

We applied two explain predictions methods: the deci-
sion tree roles and LIME Algorithm [31]. Moreover, we
presented the most software metrics that influenced the

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:11 | https://doi.org/10.1007/s42452-019-1815-3

model results for each dataset. We listed the detection
rules that are produced from decision tree models and
presented the combination of conditions that the decision
tree model followed to distinguish between the similar
roles in the similar structural design patterns. By using the
LIME algorithm, we found the sets of software metrics that
support the classifier models to take its decision in the
classification process.

In future work, we will study the relationships between
some quality problems in software systems and the pres-
ence of the design patterns by calculating values for each
quality metric and investigate how the presence of design
patterns impact of this metrics.

Compliance with ethical standards

Conflict of Interest The authors declare that they have no conflict of
interest.

References

 1. Gamma E, Helm R, Johnson R, Vlissides J (1998) Design patterns
CD: elements of reusable object-oriented software 47

 2. Feitosa D, Ampatzoglou A, Avgeriou P, Chatzigeorgiou A, Naka-
gawa EY (2019) What can violations of good practices tell about
the relationship between GoF patterns and run-time quality
attributes? Inf Softw Technol 105:1–16

 3. Shi N, Olsson RA (2006) Reverse engineering of design patterns
from Java Source code. In: ASE’06 21st IEEE/ACM international
conference on automated software engineering, pp 123–134

 4. Izurieta C, Griffith I, Reimanis D, Schanz T, Burlington S (XXXX)
Structural and behavioral taxonomies of design pattern grime,
pp 1–11

 5. Ferenc R, Beszedes A (2005) Design pattern mining enhanced
by machine learning, 2005 (Icsm’05)

 6. Guéhéneuc Y-G, Guyomarc’h Y-G, Sahraoui H (2010) Improving
design-pattern identification: a new approach and an explora-
tory study. Softw Qual J 18(1):145–174

 7. Chihada A, Jalili S, Hasheminejad SMH, Zangooei MH (2015)
Source code and design conformance, design pattern detection
from source code by classification approach. Appl Soft Comput
26:357–367

 8. Tirkey A, Rath SK (2018) Software design pattern mining using
classification-based techniques, pp. 1–15, 2018

 9. Krämer C, Prechelt L (1996) Design recovery by automated
search for structural design patterns in object-oriented soft-
ware. In: Proceedings of the third working conference on reverse
engineering, pp 208–215.

 10. Keller RK, Schauer R, Robitaille S, Pagé P (1999) Pattern-based
reverse-engineering of design components. In: Proceedings of
the 21st international conference on software engineering, pp
226–235

 11. Dong J, Lad DS, Zhao Y (2007) DP-miner: design pattern discov-
ery using matrix. In: 14th annual IEEE international conference
and workshop on the engineering of computer-based systems,
pp 371–380

 12. Kaczor O, Guéhéneuc YG, Hamel S (2006) Efficient identification
of design patterns with bit-vector algorithm. In: Proceedings of
the euromicro conference on software maintenance and reen-
gineering, CSMR, pp 175–184

 13. Papers R, Variation P (2010) Design pattern detection using simi-
larity scoring.

 14. De Lucia A, Deufemia V, Gravino C, Risi M (2009) Behavioral pat-
tern identification through visual language parsing and code
instrumentation. In: European conference on software mainte-
nance and reengineering, CSMR, pp 99–108

 15. Heuzeroth D, Holl T, Hogstrom G, Lowe W (2005) Automatic
design pattern detection. In: 11th IEEE international workshop
on program comprehension, pp 94–103, 2003

 16. Hayashi S, Katada J, Sakamoto R, Kobayashi T, Saeki M (2008)
Design pattern detection by using meta patterns. IEICE Trans
Inf Syst E91-D(4):933–944

 17. Guéhéneuc Y-G (2007) P-mart: pattern-like micro architecture
repository. In: 1st EuroPLoP focus group on pattern repositories,
pp 1–3

 18. Lanza M, Marinescu R (2007) Object-oriented metrics in practice:
using software metrics to characterize, evaluate, and improve
the design of object-oriented systems. Springer, Berlin

 19. Romero E, Sopena JM (2008) Performing feature selection with
multilayer perceptrons. IEEE Trans Neural Netw 19(3):431–441

 20. Subbulakshmi T, Ramamoorthi A, Shalinie SM (2010) Feature
selection and classification of intrusions using genetic algorithm
and neural network, pp 223–234

 21. Hall MA (1998) Correlation-based feature subset selection for
machine learning. Thesis Submitt. Partial fulfillment Requir.
degree Dr. Philos. Univ. Waikato

 22. Vapnik V (1998) Statistical learning theory. Wiley, New York
 23. Huang CL, Wang CJ (2006) A GA-based feature selection and

parameters optimizationfor support vector machines. Expert
Syst Appl 31(2):231–240

 24. Aha DW, Kibler D, Albert MK (1991) Instance-based learning
algorithms. Mach Learn 6(1):37–66

 25. Agrawal A, Menzies T (2020) Is AI different for SE?
 26. Rokach L, Maimon OZ (2008) Data mining with decision trees:

theory and applications, vol 69. World Scientific, Singapore
 27. Click C, Malohlava M, Candel A, Roark H, Parmar V (2017) Gra-

dient boosting machine with H2O. https ://www.H2O.Ai/Resou
rces/, no. 6, p. 30

 28. Catal C (2012) Performance evaluation metrics for software fault
prediction studies. Acta Polytech Hung 9(4):193–206

 29. Hand DJ, Till RJ (2001) A simple generalisation of the area under
the ROC curve for multiple class classification problems. Mach
Learn 45(2):171–186

 30. Chakraborty S et al (2018) Interpretability of deep learning mod-
els: A survey of results. In: 2017 IEEE SmartWorld, ubiquitous
intelligence & computing, advanced & trusted computed, scal-
able computing & communications, cloud & big data comput-
ing, internet of people and smart city innovation. SmartWorld/
SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017, pp 1–6

 31. Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you?
Explaining the predictions of any classifier

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.H2O.Ai/Resources/
https://www.H2O.Ai/Resources/

	Software Metrics and tree-based machine learning algorithms for distinguishing and detecting similar structure design patterns
	Abstract
	1 Introduction
	2 Related work
	3 Research methodology and the proposed approach
	3.1 Dataset description and representation
	3.2 Feature selection
	3.3 Parameter optimization
	3.4 Classification Models
	3.5 Validation Methodology
	3.5.1 Performance measures and evaluation parameters
	3.5.2 Models explanation

	4 Experimental results and discussions
	4.1 Machine learning algorithms results
	4.2 Discussion about software metrics and their effectiveness in distinguishing between similar structure design pattern
	4.2.1 Adapter and concreteCommand Detection Conditions
	4.2.2 Adaptee and receiver detection conditions

	5 Conclusion
	References

