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Abstract

Design patterns are general reusable solutions for recurrent occurring problems. When software systems become more 
complicated due to the lack of documentation of design patterns in software and the maintenance and evolution costs 
become a challenge. Design pattern detection is used to reduce the complexity and to increase the understandability of 
the design in the software. In this paper, we propose a design pattern detection approach based on tree-based machine 
learning algorithms and software metrics to study the effectiveness of software metrics in distinguishing between similar 
structural design patterns. We build our datasets using P-MARt repository by extracting the roles of design patterns and 
calculating the metrics for each role. We used parameter optimization techniques based on the Grid search algorithm to 
define the optimal parameter of each algorithm. We used two feature selection methods based on a genetic algorithm 
to find features that influence the most in the distinguishing process. Through our experimental study, we showed the 
effectiveness of machine learning and software metrics when distinguishing similar structure design patterns. Moreover, 
we extracted the essential metrics in each dataset that supported the machine learning model to take its decision. We 
presented the detection conditions for each role in the design pattern by extracting them from the decision tree model.

Keywords Design pattern detection · Classification · Feature selection · Explain predictions · Parameter optimization

1 Introduction

Design patterns are defined as the general reusable solu-
tions for the recurrent occurring problems in the soft-
ware design. Design patterns are useful for providing 
more understandability for the software by increasing 
abstraction, and that leads to improving the evolution and 
maintainability of the software [1]. Due to some reasons, 
including the lack of software documentation, the design 
pattern causes complexity in the software, and that leads 
to increased evolution and maintenance efforts [2]. From 
this perspective, the researchers started to use design 
patterns in reverse engineering, and several studies have 
been published in terms of detecting design patterns from 
software systems [3].

From the proposed studies published in the field of 
design pattern detection, we found that one of the most 
impact challenges faced the detection process is the 
similarity of the structure between design patterns [4]. 
Whereas the detection results contain some false posi-
tive instances that detected because that only shared 
the structure of another design pattern, but it is differ-
ent in the intents. The similarity of the design pattern 
structures occurs between design pattern components 
(design pattern roles) and the relationships between these 
components.

In the literature, there are several approaches pro-
posed based on machine learning. Ferenc et al. [5] pro-
posed an approach to detect design patterns. They used 
machine learning techniques in the second phase of 
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their approach for filtering the candidates that gener-
ated from the first phase-which depends on the struc-
tural matching of design patterns. They built the learn-
ing dataset from the information structural information 
collected for each design pattern. They have employed 
the neural networks with backpropagation and the 
C4.5 decision tree classifiers to classify the candidate 
as true or false. Guéhéneuc et al. [6] they proposed an 
approach based on constraints and machine learning 
algorithms. The datasets built based on P-MART reposi-
tory by extracting 13 software metrics for each class in 
the design pattern components. They applied machine 
learning algorithms in the first phase to reduce the 
search space in order to reduce the number of false-
positive instances. They employed the JRIP algorithm 
and rule-learner in their approach. Chihada et  al. [7] 
proposed an approach based on machine learning. The 
training datasets are built by calculating 45 software 
metrics for each role in the design pattern component. 
They supposed that each design pattern is a combina-
tion of four roles and the feature vector for each pattern 
is 4 * 45 = 180 features that represent the labeled dataset. 
They used Simple Logistic, C4.5, KNN, SVM to classify pat-
terns from source code. Tirkey et al. [8] proposed detec-
tion approach based on machine learning. In their study, 
they used software metrics and classification techniques 
to detect software design patterns. They build datasets 
by extracted software metrics in order to learn classifiers. 
They evaluated their work using three open source soft-
ware systems JHotDraw, QuickUML, and JUnit.

In this paper, we proposed an approach to study the 
effectiveness of using machine learning techniques and 
software metrics in order to distinguish between similar 
structural design patterns. We conducted our experiment 
using Adapter Object and Command design patterns. 
Moreover, we have explored the decision of machine 
learning models by using the explain predictions algo-
rithm and decision tree detection rules. The explanation 
for the predictions aimed to investigate the behavior 
of machine learning models in the distinction between 
similar roles in design patterns and defined the software 
metrics that supported the models to take its decisions 
in order to create a definition of the difference between 
the similar structure design pattern roles, based on the 
software metrics values.

We used three tree-based machine learning algorithms: 
decision tree algorithm, gradient boosting tree algorithm, 
and random forest algorithm. We used two feature selec-
tion methods based on genetic algorithm. We found 
the most impact features in each dataset to increase the 
performance and to increase the knowledge of the soft-
ware metrics that play a significant role in distinguishing 
between similar roles in design patterns.

We tuned the hyper-parameters for each machine 
learning algorithm by using the parameter optimization 
technique based on the Grid search algorithm. We also 
presented the detection conditions for each similar design 
pattern roles by finding the threshold values for each soft-
ware metric on which the decision tree algorithm relied to 
distinguish between those similar roles.

The paper is organized as follows: in Sect. 2, we intro-
duce related work. In Sect. 3, we proposed the research 
methodology and the proposed design pattern detection 
method. In Sect. 4, we reported the experimental results 
and discussions. In Sect. 5, we present a conclusion.

2  Related work

In the following, we introduce some of the best design pat-
tern detection approaches based on static and dynamic 
analysis proposed by different researchers working in this 
field.

Kramer et  al. [9] proposed an approach based on 
Prolog rules detection, and they used the Prolog rules 
to recover design patterns from the design information 
extracted from C++ code. This approach represents a sys-
tem as a set of Prolog predicates based on [1] definition. 
Thus, Prolog queries are applied to detect an instance of 
design patterns. They developed an approach as a tool for 
detecting design patterns-PAT. Keller et al. [10] proposed 
an approach for design pattern detection that splits the 
detection process into two phases. In the first phase, the 
UML diagram presented to the user by identifying the 
design pattern structure. In the second phase, they used 
user interaction to refine the result. Shi and Olsson [3] pro-
posed an approach for design pattern detection based 
on a structural and behavioral aspect of design patterns. 
Behavioral aspect detection conducted by analyzing the 
abstract syntax tree (AST) to produce the Control Flow 
Graph (CFG) for all elements in the source code. The struc-
tural aspect of design patterns extracted for the source 
code system to generate inter-class relationships. Finally, 
they used the analyzed information to detect design pat-
terns. Dong et al. [11] proposed an approach for detecting 
design patterns. They represented a system structure in 
matrix and weight. They used three analysis phases: struc-
tural, behavioral, and semantic. The structural aspect of 
the source code is extracted to build a matrix. The matrix 
represented all classes in the source code in its rows and 
columns; the relationships between classes represented 
as values in the matrix. Design patterns were also repre-
sented as matrices and weight. The weight value for each 
class is calculated as a number of attributes, a number of 
methods, and association, generalization, dependency, 
and aggregation relationships in a particular class. The 
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pattern candidates are detected by matching the system 
matrix and the design pattern matrices. Depending on this 
approach they developed a design pattern detection tool-
DP-MINER. Kaczor et al. [12] proposed an approach that 
formulates the design pattern detection as a combinatorial 
problem by proposing a bit-vector algorithm based solu-
tion. They expressed the pattern detection with operation 
on finite sets of bit-vectors. Design patterns and source 
code candidates are represented as string expressing 
classes and their relationships (aggregation, composition, 
inheritance, association, and instantiation). The detec-
tion process in this approach is applied by matching the 
string representation of design patterns and the analyzed 
source code. Frence et al. [5] proposed an approach based 
on machine learning to improve the results of structural 
matching methods by reducing the false positive. They 
used machine learning to refine the pattern detection 
results that returned by the matching algorithm. The 
detection process consists of the first transformation of the 
code into an Abstract Semantic Graph (ASG), then match-
ing with the definition of design patterns. Next, manual 
inspection is used to examine the source code to decide 
the true or false hits of design pattern instance candidates. 
Finally, they performed the training of a machine learning 
system. In this approach, two popular approaches in the 
field of machine learning presented (a decision tree and 
a neural network). Tsantalis et al. [13] they have proposed 
a graph-based approach for detecting design pattern. 
This approach computes the similarity scoring between 
vertices of the graph. They used a class diagram for build-
ing a direct graph that is mapped into a square matrix 
representation. A similarity scoring algorithm is used to 
match system matrix and design patterns matrices. The 
result after matched is the amount of matching between 
the system matrix and design pattern matrices. Lucia 

et al. [14] proposed an approach to detect behavioral pat-
terns which combine both static and dynamic analysis. In 
this approach, the structural aspects are captured using 
static analysis, and then a dynamic analysis is conducted 
on these candidates by tracing the cells of the methods 
at run-time. Heuzeroth et al. [15] proposed an approach 
where first analysis of the source code is done by extract-
ing an Abstract Syntax Tree (AST) from source code. Then 
static information of source code is used to produce a 
set of candidates that matched with the design pattern 
static rules. These candidates were used as an input of 
the dynamic analysis phase. The detection process in the 
dynamic analysis is performed by matching the candidate 
rules and design pattern rules. Depending on matching 
the candidates are accepted or rejected. Hayashi et al. 
[16] they have described an integrated approach based 
on static and dynamic analysis. The design facts (classes, 
methods, etc.) extracted using static analysis and repre-
sented as facts in Prolog. The detection process in this 
approach is performed by matching the facts with a set of 
conditions that satisfy design patterns. These conditions 
are defined as Prolog rules. Finally, they extract the execu-
tion record from executing the source code.

3  Research methodology and the proposed 
approach

In this approach, we build a framework to distinguishing 
between similar structural design patterns and extract the 
detection conditions based on software metrics and based 
tree machine learning algorithms. The list of steps we fol-
lowed is shown in Fig. 1. The following steps are performed 
to build the solution framework: 

Fig. 1  Proposed approach
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• Parsing P-MARt repository to extract design pattern 
roles.

• Extracting software metrics for each role to build the 
datasets.

• Applying feature selection methods to select the rel-
evant metrics in each dataset.

• Applying the parameter optimization technique to 
tune the hyperparameter for each machine learning 
algorithm.

• Training machine learning model.
• Extract the result.

3.1  Dataset description and representation

In this work, we created our datasets using PATTERN-
LIKE MICROARCHITECTURE REPOSITORY (P-MARt) [17]. 
The repository contains the list of design patterns that 
detected from nine open-source software and manually 
reviewed by experts. We extracted the design patterns by 
developing XML parser tools.

We selected two design patterns that have a similar 
structure (Adapter and Command design patterns). Soft-
ware metrics are calculated for each role in design patterns 
using JBuilder [18]. We have calculated 36 software met-
rics that cover size, cohesion, complexity, coupling, and 
inheritance for object-oriented class. The final datasets are 
created by merging similar roles in the different design 
patterns. In the case of Adapter and Command design 
patterns, there are two mains roles extracted for each 
pattern, a Receiver and the concreteCommand in case 
of Command design pattern, and Adapter and Adaptee 
roles in case of Adapter design pattern. Later we merged 
the similar structures roles in the same dataset in order 
to distinguish between them. We produced two datasets: 
Adapter/ConcreteCommand and Adaptee/Receiver data-
sets. Each example in the dataset are labelled with the role 
name, and each role consists of the feature vector of 36 
software metrics. Tables 1 and 2 presents the statistics of 
datasets and the software metrics we calculated for each 
role, respectively.

3.2  Feature selection

Feature selection is a technique that aims to find the most 
impact features in the dataset by removing the redun-
dant features in order to increase the performance and to 
increase the knowledge of the software metrics that play 
a significant role in distinguishing between similar roles in 
design patterns [19].

In this paper, we used the Genetic algorithm [20] to 
build two feature selection methods GA-Naïve Bayes and 

Table 1  Dataset statistics

Dataset Design pattern role Number of 
instances

Fraction

Adapter/concreteCom-
mand

Adapter 326 0.652

ConcreteCommand 174 0.348

Adaptee/receiver Adaptee 452 0.904

Receiver 48 0.096

Table 2  Software metrics Acronyms Full Name Acronyms Full Name

AC Attribute complexity NOA Number of attributes

AOFD Access of foreign data NOC Number of classes

AUF Average use of interface NOCC Number of child classes

CBO Coupling between objects NOCON Number of constructors

CC Cyclomatic complexity NOED Number of external dependencies

CL Class locality NOM Number of members

CM Changing methods NOO Number of operations

COC Clients of class NOOM Number of overridden methods

ChC Changing classes NOPA Number of public attributes

DAC Data abstraction coupling NORM Number of remote methods

DD Dependency dispersion RFC Response for class (RFC)

DOIH Depth of inheritance hierarchy TRAp Total reuse of ancestor percentage

EC Essential complexity TRDp Total reuse in descendants percentage

FO FanOut TRAu Total reuse of ancestor unitary

MDC Module design complexity TRDu Total reuse in descendants unitary

MIC Method invocation coupling WCM Weighted changing methods

MNOL Maximum number of levels WMPC Weighted methods per class

NAM Number of accessor methods WOC Weight of a class
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GA-CFS. The best features in those methods are selected 
based on the fitness functions we used: the degree of cor-
related features to the target class (CFS) [21] and the accu-
racy of training Naïve Bayes algorithm.

Figure 2 displays the genetic algorithm used to build 
feature selection methods. Initially, the algorithm gener-
ates an initial population with randomly selected features. 
These instances will be examined by the fitness function 
then tested the stopping criteria. If this solution not sat-
isfied, a genetic algorithm operator will be applied and 
examine again by a fitness function to generate the opti-
mal metrics for the dataset.

In the first method, Genetic algorithm based on Naïve 
Bayes (GA-Naïve Bayes), we have set the population size to 
20 individuals with the maximum number of generations 
40. We used non-dominated sorting to apply the chromo-
somes selection. We also used the one-point crossover to 

apply the cross-over operation. The cross over probability 
is set to 0.95, and the mutation probability is set to 0.1. 
The best generation of chromosomes is that they have the 
highest performance accuracy generated by training Naïve 
Bayes using tenfold cross-validation.

In the second method that is Genetic algorithm based 
CFS (GA-CFS), we have set the population size to 20 indi-
viduals with the maximum number of generations 100. 
The tournament selection method is used to apply the 
chromosomes selection. We used One-point crossover 
with probability 0.95 and mutation probability is set to 
0.1. The best generation of chromosomes is that they have 
the highest degree of correlated features in the class. The 
high degree of correlation feature returns low CFS perfor-
mance value, and a low degree of correlation returns high 
CFS performance value.

3.3  Parameter optimization

In the machine learning algorithms, there are hyper-
parameters that have to tune to ensure the improvement 
of the performance accuracy of the algorithms. In this 
paper, we used a grid-search algorithm based on param-
eter optimization technique. The grid search is an exhaus-
tive search algorithm based on a defined set of values of 
parameters by defined upper and lower bound for each 
parameter and based on the assigned number of steps the 
parameter values for each parameter are assigned. Then 
the Grid search algorithm is testing every combination of 
parameters value to calculate the best value of parameters 
for each algorithm [22. 23]. In the tree-based algorithm, 
several parameters impact the performance accuracy. 
Table 3 shows the parameters that are selected to tune 
their values and value range and number of steps for each 
parameter.

3.4  Classification Models

In this paper, we used tree-based algorithms to build a 
design pattern roles detection approach.

The Tree-based algorithm is a supervised learning 
algorithm that is considered as one of the most accurate Fig. 2  Proposed feature selection method

Table 3  Tuning algorithms 
parameters and the specified 
steps assigned for each 
parameter

Model Parameter From To Steps

Random forest Number of trees 1 100 10

maximal depth 1 100 10

Gradient boosted trees Number of trees 1 200 10

Maximal depth 1 100 10

Decision tree maximal depth 1 100 10

Criterion Gain ratio, information gain, Gini index, accu-
racy
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algorithms in the classification process. Tree-based 
algorithms map the nonlinear relationships among the 
instance features and the target classes in the dataset. 
Moreover, the algorithm provides classification rules that 
can be ease to interpret the classification models [24, 
25].

In our approach, we use three tree-based algorithms: 
Decision Tree algorithm, Gradient Boosted Trees algorithm 
(GBT), and Random Forest algorithm.

The decision tree algorithm is a supervised learning 
algorithm that consists of nodes split based on splitting 
rules for each specific feature [26]. In the decision tree, the 
data is passed from root to leaves, and the feature value is 
separated based on splitting rules in each node according 
to predictor class until it reaches the stopping criteria. The 
hyperparameters of the decision tree algorithm, maximal 
depth and split criterion, are optimized using parameter 
optimization techniques. The Random Forest algorithm 
is an ensemble technique that consists of many decision 
trees. The ensemble technique used in the random for-
est algorithm is bagging. Bagging is used to reduce the 
variance of the classifier model by combining the results 
of multiple models that are trained in different sub-set of 
the training dataset to produce strong classifier model. The 
Gradient boosted trees (GBT) is a decision tree based algo-
rithm that combines the boosting ensemble technique 
along with gradient-based optimization [27]. Boosting is 
an ensemble technique consisting of many decision trees 
that are trained sequentially by changing the weight of the 
dataset examples based on the classification error that is 
generated by the previously trained model until most of 
the examples in the dataset classified correctly.

The hyperparameters of the Gradient boosted trees 
and random forest algorithms, the number of trees and 
maximal depth of trees, are optimized using parameter 
optimization techniques.

3.5  Validation Methodology

3.5.1  Performance measures and evaluation parameters

In this study, a set of experiments we have done. In each 
experiment, five performance measuring parameters such 
as precision, recall, f-measure, AUC, and accuracy are used 
for measuring the performance of design pattern detec-
tion models. These parameters are computed using a con-
fusion matrix that contains actual and predicted classifi-
cation information identified by design pattern detection 
classifiers [28].

We give brief definitions of the performance param-
eters used for measuring the performance of the design 
pattern detection model as follows.

Accuracy is one of the performance measures for classifi-
cation. It is the percentage of correctly classified instances 
in the positive and negative class calculated as follows:

The accuracy of the design pattern detection approach 
is usually determined by the relationship between preci-
sion and Recall. Ideally, a reasonable approach should 
have good precision and recall rate, i.e., while Recall val-
ues increase the Precision values should remain high. Thus, 
we infer that a useful approach should have a high rate of 
true positives with a low rate of false positives and false 
negatives.

F-measure is defined as the harmonic mean of preci-
sion and recall, while the Precision is the positive-classified 
instances that are positive. The recall is the real-positive 
instances classified as positive. F-measure is a way of hav-
ing a single number combining the two measures calcu-
lated using the following formulas.

Area under the ROC Curve (AUC) AUC is one of the com-
mon measures of accuracy for classification models by 
computing the area under the Receiver Operating Char-
acteristic (ROC) curves. ROC curves are a way to visualize 
the tradeoffs between true positive rate and false-positive 
rate in a classifier to analyze and compare the performance 
of the classifier models through visual analytics [29].

3.5.2  Models explanation

In supervised learning, performance accuracy could not be 
enough to evaluate the algorithm, especially when deal-
ing with software engineering problems. The performance 
measures not give much comprehensive of how the model 
takes its decision and what the features that influenced in 
this decision [30].

In this paper, we used two types of explaining predic-
tion models, the decision tree rules and LIME Algorithm 
[31], to provide more understanding for the interpreta-
tion of the model results and to find how each software 
metric affects the model predictions. In the decision tree 
model, the interpretation is conducted by starting from 
root among the nodes to reach the leaf nodes through 
edges, and each edge leads to which subsets of prediction 
by following decision rules that considered the threshold 
of metrics value that decide the decision path. All edges 
that passed through to reach to the leaf are connected 
with the AND operator as the following:

Accuracy (AC) =
TP + TN

TP + TN + FP + FN

F-measure = 2 ×
Precision × Recall

Precision + Recall
%
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If metric X is [smaller/bigger] than c AND metric Y 
is [smaller/bigger] than d, then the model predicted 
W prediction. The Local interpretable model-agnostic 
explanations (LIME) [31] is used to explain the predic-
tions of black-box models by explaining why each pre-
diction was made, and what the most contributory met-
rics that effect to the decision of the prediction model. 
The LIME algorithm generates a set of data points 
around each software metric in the dataset, and train 
the model in these datasets and observing the change 
of the result to approximate the weight of software 
metric and its importance in changing the result. The 
weight of each metric is generated by calculating the 
correlation between each data point and the changing 
of the result.

4  Experimental results and discussions

In this experiment, we evaluate tree-based machine 
learning and feature selection methods using two data-
sets of similar design patterns; Adapter/concreteCom-
mand and Adaptee/Receiver datasets. A tenfold Cross-
validation is a technique used to evaluate machine 
learning models with ten times repetitions.

4.1  Machine learning algorithms results

In Table  4, we presented the set of software metrics 
selected by feature selection methods. In the Adapter/
concreteCommand dataset, the GA-CFS and GA-Naïve 
Bayes methods selected 7 and 8 metrics respectively out 
of 36 metrics. In the Adaptee/Receiver dataset, the feature 
selection methods selected 7 and 6 metrics out of 36 met-
rics by GA-CFS and GA-Naïve Bayes methods, respectively. 
The main aim of applying feature selection methods is not 
only for improving the performance accuracy of classifiers 
but also to know the relevant software metrics that con-
tribute to distinguish between particulars roles in similar 
structural design patterns.

Table 5 shows the evaluation results of machine learn-
ing algorithms in design-pattern-roles classification 
models. We evaluated the models using Adapter/con-
creteCommand and Adaptee/Receiver datasets with the 
selected features by feature selection methods and with 
all features.

As observed in Table 5 and Fig. 3, the feature selection 
methods impact the accuracy of the models by improv-
ing the accuracy of the models and by choosing the most 
influenced features that play a key role in the classification 
process.

In the Adapter/concreteCommand dataset, the Random 
Forest algorithm scored the best accuracy value by 96.86% 
when evaluated by the feature selected dataset generated 

Table 4  Metrics selected using feature selection methods

Dataset GA-Naïve 
Bayes

GA-CFS Selected metrics by GA-Naïve Bayes Selected metrics by GA-CFS

Adapter/concreteCommand 8 7 DOIH MNOL NOA NOOM TRAp TRAu WOC CL EC NOOM NORM TRAp TRAu WOC

Adaptee/receiver 6 7 AUF
AUF
CC ChC MIC MNOL WCM

AC
CM ChC DOIH NOPA TRAp WOC

Table 5  Evaluation results of machine learning algorithms

Bold indicates the best accuracy among all datasets that achieved in each model

Model Measures Adapter/concreteCommand Adaptee/receiver

All features (%) GA-Naïve 
Bayes (%)

GA-CFS (%) All features (%) GA-Naïve 
Bayes (%)

GA-CFS

Decision tree Accuracy 92.76 92.76 94.49 90.95 92.86 94.05

F-measure 94.53 94.53 95.72 92.20 93.87 94.10

AUC 87.40 87.40 85.80 87.10 90.10 92.20

Random forest Accuracy 96.03 94.42 96.86 94.29 94.29 94.29

F-measure 96.96 95.65 97.49 93.55 94.56 95.12

AUC 99.10 98.30 98.80 92.10 92.10 93.50

GBT Accuracy 96.79 94.42 95.32 94.29 95.71 95.71

F-measure 97.46 95.78 96.30 93.58 94.45 95.72

AUC 99.20 96.50 98.30 96.30 95.50 97.10
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by GA-CFS. This accuracy was achieved by optimizing the 
parameter values for the Random Forest algorithm using 
the grid search algorithm. The hyper-parameter values 
for the Random forest algorithm have set as Number of 
trees = 21 and Maximal depth = 21.

The GBT algorithm also scored good accuracy in all fea-
ture dataset by 96.79% with the best F-measure by 97.46 
and best AUC by 99.20.

We applied the explain Predictions technique using 
the Lime algorithm in the random forest models that 
are trained on Adapter/concreteCommand all-features 
dataset. We found that the most important metrics that 
support the decision of the model to classify between 
Adapter and concreteCommand roles are WOC, NOMM, 
and RFC software metrics that support the model to pre-
dict the Adapter roles. And CL and TRAp metrics that sup-
port the model to predict concreteCommand roles. We 
also observed that most of the metrics considered by the 
Lime algorithm as the supportive metrics to the model to 
classify the roles were also selected by feature selection 
method (GA-CFS) as the most relevant features, as shown 
in Table 4.

In the Adaptee/Receiver dataset, the Gradient Boosted 
Trees algorithm scored the best accuracy value by 95.71% 
when evaluated by the feature selected datasets that are 
generated by GA-CFS and GA-Naïve Bayes. This accuracy 
was achieved by optimizing the parameter values for the 
Gradient Boosted Trees algorithm using the Grid search 
algorithm. The parameter values have set for the number 
of trees = 10 and the maximal depth = 2.

By applying the Lime algorithm, we extracted the soft-
ware metrics that support the GBT model in distinguishing 
between Adaptee and Receiver design pattern roles. We 
found that the most critical features to detect the Adaptee 
roles is WOC, AC, ChC, and NOA. On the other hand, the 
most critical feature that supports the model to detect 
Receiver roles is CM and DOIH. By comparing the software 

metrics that were selected by feature selection methods 
and the metrics that have been considered by the Lime 
algorithm as supportive metrics of the classification model 
between design pattern roles, we found that the metrics 
resulted from both methods are somewhat similar.

4.2  Discussion about software metrics and their 
effectiveness in distinguishing between similar 
structure design pattern

The decision tree model provides human-readable detec-
tion rules. The detection rules consist of a set of condi-
tions. Each condition is a Boolean logical proposition that 
decides the threshold of the metric values to detect the 
design pattern roles. We have extracted the detection rules 
for the decision tree model that are trained in full feature 
datasets.

4.2.1  Adapter and concreteCommand Detection 

Conditions

Based on the detection rules, the Adapter roles in the 
Adapter design pattern were detected when achieved the 
following conditions:

TRAp ≤ 0.500 && WOC > 82
TRAp > 0.500 && NOOM > 3.500

The first combination of conditions, is that If the Total 
Reuse of Ancestor percentage (measure the degree of 
reuse of ancestor class variable) is less or equal than 0.50, 
and the Weight of a Class (measure the number of non-
accessor methods divided by the total number of interface 
method) is higher than 82 then it detects the adapter roles 
in the dataset.

The second combination of the condition is: if the Total 
Reuse of Ancestor percentage is higher than 0.50 when the 

Fig. 3  Comparison of accuracy 
of all classifiers with using 
feature selection method and 
without
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Number of Overridden Methods is greater than 3 then it 
detects the remaining adapter roles in the dataset.

The concreteCommand roles in the Command design 
pattern were detected when achieved the following 
conditions:

TRAp > 0.500 && NOOM ≤ 3.500 && WOC ≤ 
90
TRAp > 0.500 && NOOM ≤ 2.500 && WOC > 
90 && EC > 2.500 && NORM > 3.500

The first combination of conditions detects concrete-
Command roles, and it shows that concreteCommand 
roles are distinguished from Adapter roles if the Total 
Reuse of Ancestor percentage is greater than 0.50 and 
the Number of Overridden Methods is equal or less than 
3 with 90 or less Weight of Class values.

In the second combination of conditions, the concrete-
Command roles are detected if Total Reuse of Ancestor 
percentage is greater than 0.50 and the Number of Over-
ridden Methods is equal or less than 2 with greater than 
2.5 of the Essential Complexity and the class have at least 
3 Remote Methods.

4.2.2  Adaptee and receiver detection conditions

On the detection rules, that we have extracted from the 
decision tree model that trained in Adaptee/Receiver all-
feature dataset, we determined the set of combination of 
conditions to detect Adaptee and Receiver roles. Adaptee 
roles in the Adapter design pattern were detected when 
achieved the following conditions:

WOC > 74.50 && ChC ≤ 23
WOC > 74.50 && ChC > 23 && AC > 0.50
WOC ≤ 74.50 && DOIH > 1.500

In the first combination of conditions, most of the Adap-
tee roles are detected, if the Weight of a Class is greater 
than 74 and if the number of client-classes where the 
changes must be operated in result a change in the server-
class (ChC) is equal or less than 23. The second combina-
tion of conditions detected the Adaptee roles if the Weight 
of a Class is greater than 74 and the ChC is greater than 23 
if the Attribute Complexity of the class is greater than 0.5. 
The remaining Adaptee roles are detected if the Weight of 
a Class is equal or less than 74 when the Depth of Inherit-
ance Hierarchy is greater than 1.5.

Receiver roles in the Adapter design pattern were 
detected when achieved the following conditions:

WOC ≤ 74.500 && DOIH ≤ 1.500
WOC > 74.50 && ChC > 23 && AC ≤ 0.50

In the first combination of conditions, most of the 
Receiver roles are detected if the Weight of a Class is equal 
or less than 74 when the Depth of Inheritance Hierarchy 
is equal or less than 1.5. The remaining Receiver roles are 
detected when the Weight of a Class is greater than 74, the 
ChC is greater than 23 and if the Attribute Complexity of 
the class is equal or less than 0.5.

5  Conclusion

This approach aims to increase the understanding of the 
relationship between software metrics and to distinguish 
between similar structure design pattern. We build our 
datasets using P-MART design patterns repository [17] by 
extracting the similar roles in similarly structure design 
patterns (Adapter and Command) and merge the similar 
roles of the different design patterns in one dataset, and 
then we calculate the software metrics for each role.

We used two feature selection methods based on 
Genetic algorithm methods GA-Naïve Bayes and GA-
CFS that aims to remove the redundant features and to 
increase the knowledge of the software metrics that play 
a significant role in distinguishing between similar roles in 
design patterns. Feature selection methods in our experi-
ment reduced the number of features of datasets from 36 
to 7 and 8 in the Adapter/concreteCommand dataset using 
GA-CFS and GA-Naïve Bayes, respectively. Also, reduced 
from 36 to 7 and 6 features in the Adaptee/Receiver data-
set using GA-CFS and GA-Naïve Bayes, respectively. We 
evaluated and compared the classifier models with using 
feature selection method and without feature selection 
methods in the Adapter/concreteCommand and Adap-
tee/Receiver datasets. We observed that the performance 
accuracy values are increased when using feature selec-
tion methods in most of the algorithms.

In the decision tree models, the highest accuracy is 
achieved when using GA-CFS feature selection method 
by increasing from 92 to 94% and from 90 to 94% in the 
Adapter/concreteCommand and Adaptee/Receiver data-
sets, respectively. In the random forest algorithm, the 
highest accuracy is achieved when using GA-CFS feature 
selection method by 96% and 94% in the Adapter/con-
creteCommand and Adaptee/Receiver datasets respec-
tively with slightly increased value when comparing the 
accuracy of the classifier model when used full features 
datasets. In the GBT algorithm, the highest scored is 96% 
achieved in the full feature dataset of Adapter/concrete-
Command dataset. Also, 95% when using both feature 
selection methods in the Adaptee/Receiver dataset.

We applied two explain predictions methods: the deci-
sion tree roles and LIME Algorithm [31]. Moreover, we 
presented the most software metrics that influenced the 
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model results for each dataset. We listed the detection 
rules that are produced from decision tree models and 
presented the combination of conditions that the decision 
tree model followed to distinguish between the similar 
roles in the similar structural design patterns. By using the 
LIME algorithm, we found the sets of software metrics that 
support the classifier models to take its decision in the 
classification process.

In future work, we will study the relationships between 
some quality problems in software systems and the pres-
ence of the design patterns by calculating values for each 
quality metric and investigate how the presence of design 
patterns impact of this metrics.
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