
Software Metrics for Object-Oriented Systems *

J. Chris Coppick Thomas J. Cheatham
The Mitre Corporation Middle Tennessee State University

7525 Colshire Drive Department of Computer Science
McLean, Virginia 22102 Murfreesboro, Tennessee 37132

jcoppick@mitre.org cheatham@mtsu.edu

ABSTRACT

The application of software complexity metrics within
the object-oriented paradigm is examined. Several fac-
tors affecting the complexity of an object are identified

and discussed. Halstead’s Sofiware Science metrics and

hlcCabe’s Cyclomatic Complerify metric are extended

to an object. A limit for the cyclomatic complexity of
an object is suggested.

1 INTRODUCTION

Since the mid- 1970s the pros and cons of software met-
rics have been debated. On the plus side a software met-
ric provides a numerical measure of an aspect of software
such as understandability, testability, or maintainability.

On the negative side, researchers cannot agree what fac-
tors contribute to the complexity of software or how to
measure them. One thing for certain is that software
systems have grown larger and more costly to maintain
and the best software engineering principles must con-
tinually be applied to strengthen software development.

Research into software metrics has intensified. See for
example, Waguespack [12]. It is hoped that the ability
to obtain accurate measures of software complexity will
aid in reducing that complexity and subsequently lead
to an increase in software reliability and maintainability.
This will in turn reduce software costs. In fact several
major corporations are using software metrics effectively
in system design, defect prevention, and testing (see, for
example, Mannino [7] and Ward [14]).

“This materiat is based on work supported by Wcaterm Ken-
tucky University. Continuation of this work has been supported
in part by Middle Tennease State University and The Mitre
Corporation.

Permission to copy without fee ell or part of this meterial is
granted protided that the copiee are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or epecific permission.

0 1992 ACM 089791 -472-4/92/0002/0317 $1.50

Object-oriented sojlttrare deweloprnent (OOSD) has
grown rapidly in popularity during the 80’s. Its goal is
to reduce software costs by promoting the use of sound
software engineering principles like abstraction, encap-
sulation, and reuse. Little has been done to objective y
evaluate the complexity of an object-oriented software

system (00SS). This paper discusses several factors af-

fecting the complexity of 00SS. Two popular software
metrics- Halstead’s Software Science and McCabe’s Cy-

clomatic Complexity are applied to 00SS. Each of these
approaches to software evaluation has its own individ-
ual strengths and weaknesses. However, the purpose
here is not to evaluate the merits of the method, but
rather to define and discuss its application within the
object-oriented paradigm.

Both metrics have been widely studied and applied
within the traditional software development paradigm
and each provida an example of one of the two basic
types of metrics: volume and coverage.

Interpretations of both Halstead’s and McCabe’s met-
rics were implemented in both the traditional and
object-oriented paradigm using LISP Flavors on a Texas
Instruments’ Explorer. The tools developed were used
on some 00SS of different perceived complexities to
help evaluate the tool and the metric in the object-
oriented paradigm.

The next two sections provide a brief introduction
to software metrics and object-oriented programming,
respectively. The next section discusses the character-
istics of 00SS which may affect complexity. The last

two sections discuss the application of Halstead’s and
McCabe’s work to 00SS.

2 SOFTWARE METRICS

Defined in relation to the programmer, compleriiy is
the difficulty of such tasks as coding, debugging, test-
ing, and modifying software [5]. The need to identify

317

the characteristics of software which affect complexity
has encouraged research and development of software
metrics. One of the simplest examples of a sofiware
metric is the “lines of code.” However, simply counting
instructions has proven an unrealistic measure of com-
plexity [10].

In the early 1970’s Halstead [3] introduced several

measures under the umbrella of Software Science. His
volume metric seeks to represent complexity as a mea-
sure of the size of the program. Software Science met-
rics are baaed on counts of the number of operands and
operators in a program:

nl = the number of unique operators
nz = the number of unique operands
N1 = the total number of operatora
N1 = the total number of operands

For example, the LISP statement

(+l(*AB)(+ AC))

yields:

nl = 2 (‘+’ and ‘*’ being unique
operators)

nz = 4 (‘l’, ‘A’, ‘B’, and ‘C’ being
unique operands)

N, = 3 (‘+’, ‘*’, and ‘+’)
N2 = 5 (‘l’, ‘A’ , ‘B’, ‘A’, and ‘C’)

Parentheses are not counted as tokens. Halstead defined
various meawrea baaed on these counts including:

vocabulary : VOC=nl+nz
length : LEN= N1+N2
volume : V = (Nl + N2) log2(nl + n2)
potential volume : V* = (2+ nJ)lo.g2(2+ nl)
algorithm level : L = v*/v
programming effort : E = V/L

In the potential volume formula n; represents the

number of input and output parameters for the algo-
rithm. The focus in this work is the volume which in-
creases directly with the unique operators and operands
and the programming efloti which approximates the
number of mental discriminations needed to create the
program. Empirical studies have shown Halstead’s pr~
dictors to have a high correlation to programming re-
sults [2]. A major problem with Software Science is
the difficulty of discriminating between operators and
operands [6]. In LISP, for instance, the same symbol

may be both an operand and an operator and it may be
impossible with static analysis to discriminate between
the two occurrences.

(DEFUN ROOT-TYPE (A B C)
(LET ((DISC (-(* B B) (* 4 A C)))

(RTYPE ‘COMPLEX)

)
(COND

((= DISC O) (SETF RTYPE ‘REPEATED))
((> DISC O) (SETF RTYPE ‘REAL))

)
RTYPE

)
)

Figure 1: Sample LISP Function

McCabe’s metric is baaed on the graph-theoretic n-
tion of cyclomatic complezify. His goal was to provide
a mathematically sound technique to identify modules
that will be difficult to teat and maintain [8]. He ar-
gues that testing and maintenance are heavily depen-
dent on the decision structure of the software. A sub-
routine with 20 “IF” statements will be harder to test
and maintain than a subroutine with one “IF”. To get
a handle on the number of “execution paths” through
a program, McCabe used the cyclomatic complexity of
the program’s cordrd-j?ow graph. A control-flow graph
is a graphical representation of a program in which a
group of statements executed in sequence form a node
and a branch statement determines an edge. By us-
ing the control-flow graph a program’s basic paths can
be derived and used in combination to produce every

pmsible execution path. For example, consider the

simple LISP function, shown in Figure 1, which de~er-
mines the type of roots of a non-degenerate quadratic
AZ2 + Bz + C = O. The roots are either duplicated real,
distinct real, or complex. The corresponding control-
flow graph is shown in Figure 2.

There are only three (basic) paths. Thus the McCabe
complexity is three. The McCabe metric is an example
of a couemge metric; i.e., a metric which measures aa-
pects of software like control flow or data flow. An essy
way to calculate the McCabe complexity of a subrou-

tine is to add one to the number of simple predicates
which affect the flow of execution. Empirical studies
have shown that 10 is a reasonable limit for the McCabe
complexity of a subroutine (or function). Subroutines
with a complexity larger than 10 should he examined for

further decomposition. A strong correlation haa been
found between a high cyclomatic complexity and the
occurrence of errora in a subroutine [13]. A weakness of
McCabe’s metric is that it doea not take into account
such things as nesting level of control structures [4] or

318

RTYPE = COMPLEX

I I

DISC = O DISC >0

*DISC .?

&

Figure 2: Sample Control-Flow Graph

program size [9].

Papers presenting variations on Halstead’s and Mc-

Cabe’s works are abundant. Several additions and al-
terations exist and the two techniques have even been
combined in an attempt to produce a general indica-
tor of software complexity. Other authors have pointed
out the shortcomings of either approach. This paper
will not argue the proa or cons of either technique but
rather it will examine how each may be applied in the
object-oriented paradigm.

3 OBJECT-ORIENTED PROGRAMMING

With its emphasis on encapsulation, extendibility, and
reuse, object-orr”ented programming (OOP) offers hope
to developers of today’s large, complex software sys-
tems. By decomposing a solution into “objects” which
closely resemble the real-world entities being modeled,
perhaps an advantage can be gained in understandabil-
ity, maintenance, and quality. In 00P systems the basic
unit of decomposition is an object which encapsulates

data (called instance or state variables) and the per-
missible operations (called methods). In LISP Flavors
an object is an instantiation of an object class called a
flavor. A method associated with a class is defined via
(DEFMETHOD (class-name method-name) ...).

The concept of inheritance in the object-oriented
paradigm is the ability to define and alter object classes
by combining and adding to previously defined classes.
When an object class (called the child) haa inherited an-
other class (the parent), then the child haa all the same
characteristics and operations aa the parent. The child

class may provide different versions of operations inher-
ited from the parent, aa well aa providing new operations
which were not defined in the parent. Some object-
oriented languagea only allow an object class to inherit
one other class directly (single inheritance), while other
implementations (such as LISP Flavors) provide for di-

rect inherit ante of numerous object clssses (mrdtiple in-

heritance). Inheritance is a powerful tool for abstraction
and for encouraging the reuse of software by enabling
the developer to combine “simpler” objects, that have
already been developed and tested, to form more” com-
plicated” objects.

To perform an operation provided by an object a mes-
sage is sent to the object specifying the desired oper%
tion and, if necessary, any parameters. In LISP Flavora,

a m-age

(SEND screen-object :draw-circle x-coord
y-coord radius)

would tell an object representing the screen (scmen-
object) to execute its draw-circle method using the cen-
ter (z-coord, y-coo@ and the given radius.

Object-oriented development closely links the design
and implementation phases of software engineering since
objects can be designed, implemented, and tested as
units without having to wait for the entire system to be
designed. It is thought that the use of 00S. will help
manage software complexity and enhance the usability
of some metrics [15].

4 THE COMPLEXITY OF AN OBJECT

Since an o~ject is the basic decomposition unit in 00SD,
it is desirable to develop a measure of the complexity
of an object. What is it that makea an object more
(or less) complex than some other object? Is it the size
(volume) of the object, the number of operations, the
number or complexity of the object values, the number
of object classes it inherits, or the depth of the inheri-
tance? Certainly there is the possibility of producing a

memmre baaed on some combination of these factors.

Intuitively, the more operations available for an ob
ject, the more complex it seems. Therefore it is rea-
sonable to want to limit the number of operations de
fined by any one object. At first this would seem to
limit the potential usefulness of an object by saying
that one object can only do so much. However, the
point here is to limit the number of operations defined
by an object class, not the number of operations sup-

ported by that class. If an object definition grows too
complex, then that object should be decomposed into

319

two or more objects (and potentially combined through
inheritance). In this way the complexity of an object
can be reduced without restricting its usefulness. Note

that this is equivalent to what happens in the tradi-
tional software development paradigm; that is, when a
function grows too complex it is decomposed into multi-
ple functions. An actual numerical limit on the number
of operations defined by an object will be discussed in
a later section. Whatever the limit, it should be in-
versely proportional to the sum of the complexities of
the operations. In other words, the higher the complex-
ity of an object’s operations, the smaller the number of
operations which should be defined by that object.

Intuitively an object that inherits five objects each of
which inherit several objects, etc., is more “complex”
than a base object that inherits no other objects. How-
ever, it is not wise to include the complexity of inherited

objects when measuring the complexity of another ob-

ject. To do so would limit or restrict inheritance, which
is one of the cornerstones of 00PS. For instance, if no
object should have a complexity greater than a limit of
L and an object A inherits an object B which has a
complexity of K, then the complexity of A is actually

bounded by L - h’ not L. This is not acceptable.

Since object-oriented design is data centered rather
than function centered, evaluating an object’s complex-
ity based on the data it represents and/or the number
of object values utilized is a possibility. Researchers
are studying measures of the complexity of both static
and dynamic data components. lt is considered impor-
tant to obtain estimates of data complexity as early as
possible in the design process [11], and this is certainly
applicable to the object-oriented paradigm. However,
data complexity of objects will not be addressed here.

5 APPLYING SOFTWARE SCIENCE TO

OBJECTS

A tool for computing the length, vocabulary, volume,
estimated program level, and estimated programming
effort of objects has been implemented in LISP Flavors.
Table 1 shows the results of applying the tool to the
LISP source code for a set of objects of different per-
ceived sizes and complexities. The objects themselves
are part of a simple graphics editor which is provided by
Texas Instruments as a demonstration of the Explorer’s
object-oriented and graphics capabilities. The objects
represent a fair range of diflerent characteristics, such as
amount of inheritance, number of operations, etc. The
tool’s outputs seem reasonable in that they reflect the
perceived complexities of the objects.

Since the SoftwareScience tool for objects operates
on LISP constructs which are read as data in the form
of LISP lists, paira of parentheses are not counted
as tokens. Operators follow a left parentheses as in

(+ A B). However not every token following a left
parenthesis is an operator. For example, the token A in
(LET (A B C) ...) is an operand. The LISP FUNC-
TION predicate is used to determine if a potential op-
erator should be counted as an operator or an operand.
This technique is by no means perfect, but doea provide
a workable compromise.

Shwe the volume metric is not additive [6], the vol-
ume of an object is computed relative to the entire ob-
ject rather than computing the volume of the individual
object components and summing. It w not difficult to
prove that the volume computed relative to the entire
object is always at least as large as the sum of the vol-
ume of the object’s components. Halstead’s approxima-
tion formula for the program level was used instead of

trying to determine the exact program level. It is inter-

esting to consider the program level of an object which
has no operations. Such objects, called base objects, are
not meant to be instantiated but rather to be inherified
by other objects which then possibly provide operations
on the base object’s data. Since a base object has no
function interface, its program level should remain un-
defined. In the table it is listed as N/A. Probably the
(estimated) program effort should remain undefined for
such an object, but since the tool yields results that

seem intuitively reasonable, program effort for base ob-
jects is reported in Table 1.

The example data in Table 1 implies that progmm-
ming eflort, as expected, increaaes along with the vol-
ume of the object. It is noteworthy that when the tiwo
objects, CIRCLE and GRA PHIC-C’IRCLE, that were
originally combined through inheritance were recoded
as one object, named COMBINED- CJRCL E, the esti-
mated program effort actually increased (see Table 2).
This lends support to the intuition that increased a.b
straction (and inheritance) reduces programming effort.
More work needs to be done in this area.

6 APPLYING CYCLOMATIC COMPLEX-
ITY TO OBJECTS

The set of operations (methods) of an object represent
a collection of algorithms which, as shown by McCabe
[8], has a cyclomatic complexity equal to the sum of the
complexities of each of the individual algorithms. R~
stricting the complexity of each method for an object
to the recommended limit of 10 without placing a limit
on the number of operations would not effectively limit
the complexity of the object. In a sense the object’s

320

Table 1: Software Science
Object I No. of Methods
BASIC-GRAPHICS-OBJECT I o
CIRCLE

RECTANGLE
GRAPHIC-CIRCLE

GRAPHICS-RECTANGLE
SIMPLE-COMMAND-PANE
SIMPLE-GRAPHICS-PANE
SIMPLEEPP-GRAPHICS-ED,

3

3
2

2
0
0

24

deaaurements of Various Ob “ect~

~
54

57
67

77
14
24

675

33

33
40
43
14
21

193

272.39

287.53

356.56
417.82

53.30
105.42

5124.91

Eat.Level

~
.1837

.1714

.1111

.1031
N/A
N/A

.0184

Eat. Effort
22.83

1483.05

1677.26

3209.12
4051.61

53.30
60.61

277789.63

Table 2: Effect of Abstraction on the Estimated Effort of Objects
Old Objects No. of Methods Length Vocabulary Eat. Effort ‘

CIRCLE 3 54 33 1483.05

GRAPHIC-CIRCLE 2 67 40 3209.12
Total Est. Effort 4692.17

New Object I I I I
COMBINED-CIRCLE] 41 88 I 50 I 4972.96

interface is like a decision statement baaed on the mes-
sage sent to the object. Applying a McCabe complexity
limit of 10 to the interface yields a limit of 100 for the

cyclomatic complexity of an object (10 methods times
a complexity of 10). Rather than limit the number of
operations for an object to 10, it seems more effective
to limit the sum of the complexity of the object’s oper-
ations to 100. Then an object can have more than 10
operations if the operations are leas complex and must
have less than 10 operations if some are more complex.
More empirical evidence should be collected to deter-
mine if the recommended limit is optimal. Certainly,
both the number and individual complexity of the ob-

ject’s methods must be considered. The suggested limit
of 100 for the cyclomatic complexity of an object is intu-
itively reasonable and data collected at Hewlett-Packard
[1] relating the McCabe complexity of objects with the
number of known defects in those objects lends favor-
able support to it.

7 CONCLUSIONS

During 00SD the object becomes the basic unit of de-
composition, so it is imperative that accurate complex-
ity meawres be applied to objects, and that reasonable
limits for the complexity of an object be found. The use
of 00P does not in itself provide for the management of
complexity. It does however expedite the application of
a metric in the development process since most software
metrics are applied to code and an object is often de-
signed, coded, and tested without waiting for the entire

system to be designed.

Software metrics can and should be applied within the
object-oriented paradigm. Factors affecting the com-

plexity of an object have been discussed. Halstead’s

Software Science and McCabe’s cyclomatic complexity
have been applied to objects producing intuitively rea-
sonable results.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Fiedler, Steven P., “Object-Oriented Unit Test-
ing”, Hewlett-Packard Journal, Vol. 40, No. 2,
1989, pg. 69-74.

Fitsimmons, Ann and Tom Love, “A Review and
Evaluation of Software Science”, Compnting Sur-
ueys, Vol. 10, No. 1, 1978, pg. 3-18.

Halstead, Maurice, Elements of Software Science,
Elaevier North-Holland, New York, 1977.

Harrison, Warren A. and Kenneth I. Magel, “A
Complexity Meuure Baaed on Nesting Level”,
ACM SIGPLAN Notices, Vol. 16, No. 3, 1981, pg.
63-74.

Kearney, Joseph K. and Robert L. Sedlmeyer,
William B. Thompson, Michael A. Gray, and
Michael A. Adler, “Software Complexity Measure-
ment”, Communications of the ACM, Vol. 29, No.
11, 1986, pg. 1044-1050.

Levi tin, An any, “How to Measure Software Size
and How Not to”, Proc. IEEE COMPSA C ’86,

1986, pg. 314-318.

Mannino, Phoebe and Bob Stoddard and Tammy
Sudduth, “The McCabe Software Complexity

321

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Analysis as a Design and Test Tool”, Z’ezas instru-
ments Technical Journal, Vol. 7, No. 2, 1990, pg.
41-54.

McCabe, Thomas J., “A Complexity Measure”,

IEEE lkans. Soft. Eng., Vol. SE2, No. 4, 1976,
pg. 308-320.

Ramamurthy, Bina and Austin Melton, ”A Synthe
sis of Software Science Metrics and the Cyclomatic

Number”, Proceedings IEEE COMPSAC ’86, 1986,
pg. 308-313.

Siyan, Karanjit S., “Coping with Program Com-
plexity”, Dr. Dobbs Journal, Vol. 14, No. 3, 1989,
pg. 60-69.

Tsai, W. T., and M. A. Lopez, V. Rndriguez,
and D. Volovik, “An Approach to Measuring Data
Structure Complexity”, Proceedings IEEE COMP-
SAC ’86, 1986, pg. 240-246.

Waguespack, Leslie J. and Sunil Badlani, ” Software
Complexity Assessment: An Introduction and An-
notated Bibliography”, ACM SIGSOFT: So@are
Eng. Notes, Vol. 12, No. 4, 1987, pg. 1-40.

Walsh, Thomas J., “A Software Reliability Using
a Complexity Measure”, Proceedings A FIPS Na-
tional Computer Conference, Vol. 48, 1979, pg. 76&
780

Ward, William T., “Software Defect Prevention
Using McCabe’s Complexity Metric”, Hewlett-
Packard Joumaf, Vol. 40, No. 2, 1989, pg. 64-69.

Wirfr+Brock, Rebecca and Brian Wilkeraon,
“Object-Oriented Design: A Responsibility Driven
Approach”, 00PSLA ’89 Proceedings, 1989, pg. 71-
75.

322

