
Software Metrics in Static Program Analysis

Andreas Vogelsang1, Ansgar Fehnker2, Ralf Huuck2, and Wolfgang Reif1

1 Lehrstuhl für Softwaretechnik und Programmiersprachen, Universität Augsburg
Universtitätsstrasse 14, 86135 Augsburg, Germany

2 National ICT Australia Ltd. (NICTA)! and University of New South Wales
Locked Bag 6016, Sydney NSW 1466, Australia

Abstract Software metrics play an important role in the management
of professional software projects. Metrics are used, e.g., to track devel-
opment progress, to measure restructuring impact and to estimate code
quality. They are most beneficial if they can be computed continuously
at development time. This work presents a framework and an implement-
ation for integrating metric computations into static program analysis.
The contributions are a language and formal semantics for user-definable
metrics, an implementation and integration in the existing static analysis
tool Goanna, and a user-definable visualization approach to display met-
rics results. Moreover, we report our experiences on a case study of a
popular open source code base.

1 Introduction

The 2009 Standish Group CHAOS Report [23] states that 24% of all software
projects fail. This means they are cancelled prior to completion or delivered and
never used. One of the contributing factors is that modern software is almost
never completely developed from scratch, but is rather extended and modified
using existing code and often includes third party source code. This can lead to
poor overall maintainability, difficult extensibility and high complexity. To better
understand the impact of code changes and track complexity issues as well as
code quality software metrics are frequently used in the software development
life cycle.

Ideally, software metrics should be computed continuously during the devel-
opment process to enable the best possible tracking. Moreover, software metrics
should be definable by development teams to not only cover general factors, but
to measure company, project or team specific goals. In this work we present an
integrated and flexible approach to metric computation by embedding it into
static program analysis. As such, metrics can be computed on demand for every
compilation even long before the software is fully developed.

In particular, we present a novel metric specification language (GMSL) that
enables software developers to quickly specify their own metrics, we define the
formal syntax and semantics for GMSL, and implemented an interpreter that

! Funded through the Australian Government’s Backing Australia’s Ability initiative,
in part through the Australian Research Council.

embeds the metric calculation in our existing static analyzer Goanna. On top
of this we present a generic and user-definable visualization approach, that en-
ables quick tracking of metric results. Moreover, we report on our experiences
integrating a metric specification language into static program analysis as well
as our experiences from real world case studies.

Related to our approach are a number of tools that enable to compute met-
rics or query code for programming constructs. ODASA [21] is a commercial
software assets analyzer that adds all software artefact’s into a repository and
provides a query engine to search for bottlenecks or quality flaws. Coverity Ar-

chitecture Analysis [6] is a commercial static program analyzer for C/C++
and Java programs. It offers an architecture analysis and comes with predefined
metrics that focus on complexity. Klocwork Insight [14] is another commer-
cial source code analysis suite that includes an Integration Build Reporting and
Metrics module for a large number of predefined metrics. NDepend [20] is a
Visual Studio tool that helps the user to manage complex .NET code bases.
NDepend considers the code as a database and the user can query the database
and display the query results. SonarJ [11] is another software architecture man-
agement tool based on static analysis. Its main focus is to assure the consistency
of the logical architecture of a system and its actual implementation. Addition-
ally, SonarJ computes metrics, such as the Robert Martin’s metrics [15], and
provides a histogram chart to visualize the development over time.

All of the mentioned tools can be partitioned into two different categories:
Either offering a query language that allows the user to query his code for par-
ticular constructs or computing metric values on the source code during the
build process based on pre-defined settings. None of the tools provide a mechan-
ism that allows the user to define his or her own metrics that are subsequently
computed automatically by the analysis tool in each compilation or build. Also,
the visualizations are usually specific to the predefined metrics and measures.
In contrast, our approach enables to link user-defined metrics to user-defined
visualization.

The next section introduces software quality metrics and static analysis, espe-
cially Goanna. Section 3, and 4 cover the metric specification language GMSL,
metric computation in Goanna, and metric visualization. Section 5 discusses
application of the tool to the Audacity code base, and its performance, while
Sect. 6 concludes with an outlook on future work.

2 Integrating Software Metrics

Software metrics. Software metrics measure properties of software and are loosely
defined in the IEEE 1061 standard [13] as

“A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which software
possesses a given attribute that affects its quality. ”

This means that metrics make a statement about some quality attributes, are
quantitative, but will have to be interpreted by a human. In this work we focus on

2

so called software product metrics, which covers the aspects of size, complexity,
and quality that can be measured on the source code and its evolution over
time. Example product metrics are lines of code, cohesion, coupling or cyclomatic
complexity. We will go into more detail in Section 3.

While there has been a substantial body of work on metrics definitions and
their correlation with program faults [10,18,19] or maintainability and bugs
[7,8] we will not discuss which metrics are reasonable or particularly import-
ant. Neither will we address which metric values indicate good or poor quality.
Instead we are proposing a framework that allows to define all these metrics is
a flexible and concise manner and integrate them into the standard compilation
and source code analysis process.

Level of Abstraction. Metric can be defined on various levels of abstraction.
Common metrics such as McCabe’s cyclomatic complexity [16] are defined on
the control flow graph (CFG) of a program and can be stated as

CC = e − n + 2p, (1)

where e is the number of edges, n is the number of nodes and p is the num-
ber of strongly connected components in the CFG. Implementations, however,
are typical more language specific. The tool NDepend [20] for example defines
cyclomatic complexity as:

CC = 1 + {number of the following expressions found in a method} :

if|while|for|foreach|case|default|continue|goto|&&||||catch|?:|?? (2)

This definition enumerate the concrete code constructs that contribute to cyclo-
matic complexity. These differ from language to language and the above defini-
tion is only valid for the programming language C#.

This work introduces an approach to define metrics on a more abstract level
such as in (1). This means, the definition is closely related to its mathemat-
ical representation. This improves readability and maintainability of the metric
definition itself. However, we also provide means to associate these definitions
with elements in the abstract syntax tree (AST), such that the metric definitions
can be automatically computed for real-life source code.

Integrating Metric Computation. Metrics can be computed on their own or integ-
rated into the compiler or existing source code analysis frameworks. Integration
into existing frameworks leverages existing technology and requires fewer pro-
cess changes for software development teams. This means, metric results are an
added feature of tools that are already in frequent use.

In this work we integrate user-definable metrics in our static source code
analyzer Goanna. This tool performs deep analysis of C/C++ source code
using model-checking [5] technology. Goanna checks for bugs, memory leaks and
security vulnerabilities, is fully path-sensitive and inter-procedural, and makes
use of additional techniques such as abstract interpretation. A more detailed
overview can be found in [9].

3

properties

GXSL

C/C++ parser

AST

GXSL
engine

model
builder model model

checker

warningsGPSL
engineGPSL

annotations

Figure 1. Goanna’s model checking approach for statically analyzing C/C++ code.

Goanna provides already two specification languages for defining source
code checks. The first language is a tree-query language based on XPath [4] for
finding constructs and patterns of interest in the AST and is called Goanna
XPath Specification Language (GXSL). The second language is based on tem-
poral logic expression over paths in the CFG and is called Goanna Property
Specification Language (GPSL). GPSL allows the embedding of GXSL expres-
sion. An example is to query for malloc and free constructs in GPXL and then
use the information to define in GPSL that all paths in the program from a
malloc should lead to a free. Figure 1 shows how these languages feed into the
static analysis. More details can be found in [24].

This work uses the existing framework and introduces a metric specification
language that can reference to earlier query results, count, and compute metrics
based on arithmetic expressions. The new language will be introduced in the
next section.

3 Metric Specification Language GMSL

The Goanna Metric Specification Language (GMSL) provides a way to define
metrics on an abstract level. A prerequisite for the use of GMSL is a query engine
that returns sets of nodes of the AST for which certain syntactic properties hold.
As mentioned in Sect. 2, Goanna provides a language GXSL language to define
functions that select certain nodes of the AST of a program. The queries are
always evaluated on the entire AST but it is possible to pass parameters to the
queries to refer to particular node (or sub-trees) in the AST. The result of a
GXSL query is a set of AST nodes.

Most metrics are defined for a given scope, this means for a particular set
of nodes in the AST. For example, a metric might be defined for the scope
all_classes, which means that one metric value will be computed for each class.
And each class in the programm corresponds to a sub-tree in the AST. Other

4

metrics are defined for scopes like functions or namespaces. In GMSL the scope
of a metric is mention in its definition, and metric values will be computed for
every instance of the scope.

GMSL distinguishes between two types of variables. One ranges over nodes
(or sub-trees) of the AST, and the values are obtained by GXSL queries on the
AST or sub-trees of it. These variables will be passed as arguments to other
GSXL queries. The other type of variable represents integer and real numbers,
why either represent the cardinality of sets, results obtained from other met-
rics, the result of arithmetic expression, or the aggregated result of those. For
simplicity we assume that these numbers are reals. They can also be used to
bind results of other defined metrics, which return for an AST or a sub-tree a
real value. The actual definition of the metric is then a mathematical expression
containing variables over the reals, queries and constants.

3.1 Syntax

The grammar of GMSL, given in Extended Backus Naur Form (EBNF), is
defined in Table 1. Before we introduce the semantics, we provide first a few
example for common metrics to illustrate the language. A few functions are
used in these examples, which are provided by Goanna’s AST query library.
This library can be extended by user-defined AST queries, e.g. GXSL functions,
defined specifically to compute metrics. The following example also demonstrate
how to define a wide variety of metric found in literature.

gmsl = "METRIC" name scope [venv] definition ;
scope = ’(’ node "IN" function ’)’ ;
name = ident ;
venv = "WITH" vdecl (’,’ vdecl)* ;
vdecl = var ’=’ binding ;
definition = "DEF" expression ;
binding = function | aggregator function "OVER" setindex ;
aggregator = "SUM" | "MAX" | "MIN" | "PROD" ;
setindex = node "IN" function ;
function = ident [’(’ [ident (’,’ ident)*] ’)’] ;
expression = var | function | num | expression op expression ;
op = ’+’ | ’-’ | ’*’ | ’/’ ;
var = ’@’ ident ;
node = ident ;
num = nat | real ;
nat = (’0’ | ... | ’9’)+ ;
real = nat ’.’ nat ;
ident = (’a’ | ’b’ | ... | ’Z’ | ’_’)+ ;

Table 1. GMSL Grammar in EBNF

5

Cyclomatic Complexity Cyclomatic Complexity of a function as defined
in [20] is the number of branches in the control flow of a function plus one. If we
only consider one function, i.e. one strongly connected component, this definition
is equal to McCabe’s definition [16], which defines the cyclomatic complexity as
the number of linearly independent paths in the control flow of a function:

METRIC cc_per_f (f IN all_funs)
WITH @cn = all_cond_nodes(f)
DEF 1 + @cn

The metric will be computed for all nodes f returned by the GXSL query
all_funs. It is defined as:

fun all_funs()
<<./FunDecl>>

This function returns the corresponding AST node for every function of a given
program. The metric value of f is determined by the number of conditional nodes
in f , given by GXSL query all_cond_nodes, plus one. The query all_cond_nodes
lists all conditional nodes, similar to definition (2), for C/C++:

fun all_cond_nodes(f)
f<< .//If | .//While | .//For | .//Goto | .//Label | .//Default |

.//Op2[@op=’LogicalOr’ or @op=’LogicalAnd’] | .//Handler |

.//Op3[@op=’Cond’]>>

Efferent Coupling Efferent Coupling of a class as defined in [2] is the number
of classes that are called from a certain class:

METRIC efferent_coupling (c IN all_classes)
WITH @ce = dependencies(c)
DEF @ce

The metric will be computed for all nodes c returned by the AST query
all_classes, which returns the corresponding AST node for every class of a given
program. The metric value of c is determined by the number of dependencies
c has. The AST query dependencies(c) returns a node for all classes that are
called in class c.

Afferent Coupling Afferent Coupling of a class as defined in [1] is the number
of classes that call a certain class:

METRIC afferent_coupling (c IN all_classes)
WITH @ca = SUM dependency(g,c) OVER g IN all_classes
DEF @ca

The metric will be computed for all nodes c returned by the AST query
all_classes. The metric value of c is determined by the sum of dependency(g, c),
applied to all nodes g, returned by the AST query all_classes. The AST query
dependency(g, c) returns one node for class g, if there is a function call in class
g to class c.

6

Cohesion Cohesion of a class as defined in [3] is a measure of how strongly-
related and focused the various tasks of a class are, depending on how many
methods of a class access common fields or call common other methods:

METRIC cohesion (c IN all_classes)
WITH @N = methods_of_class(c),

@E = SUM directly_related(m) OVER m IN methods_of_class(c)
DEF @E /(@N * (@N-1))

The metric will be computed for all nodes c returned by the AST query
all_classes. The AST query directly_related(m) returns a node for all methods
of the same class that are directly related to method m (i.e. they both access a
certain common field or they are both calling another common method of the
class). If every method is directly related to all other methods, then the metric
value is equal to 1.

3.2 Semantics

The semantics of GMSL will be given as a denotational semantics which uses
environments to map syntax to semantics. There are four types of environments:

– ς ∈ GXSLLib is a GXSL environment which maps GXSL function names to
the actual GXSL functions.

– µ ∈ MEnv is a metric environment that maps metric names to their semantic
function.

– η ∈ NEnv is a node environment which maps node variables to their corres-
ponding AST node.

– ν ∈ VENV is a variable environment which maps counting variables to their
semantic value.

These environments and their product, which is denoted by Env are used to
define the semantics of GMSL.

The semantics are defined via a function M , which compiles a metric defini-
tion to an environment. All information that are necessary for applying a metric
definition to a program are contained in the metric environment.

M!−" : MDecl → GXSLLib × MEnv → MEnv (3)

M!m"(ς, µ) = µ [name(m) %→ S!m"(ς, µ, ∅, ∅)] (4)

Function S maps, given an initial environment, the environment to a function
that takes a program and maps the nodes of this program that are within the
scope of the metric to real numbers. It is defined as follows.

S!−" : MDecl → (Env → (Πp : Prog . nodes(p) ⇀ R)) (5)

S!METRIC name (scope IN f) venv definition"(ς, µ, η, ν) = (6)

λp ∈ Prog . λn ∈ G!f"(ς, η)(p) . (7)

D!definition" (updV (venv)(ς, µ, η[scope %→ n], ν)(p)) (p) (8)

7

This definition reflects that a metric encompasses a scope, a declaration of
counting variables, and an arithmetic expression over variables and applications
of GSML and GXSL functions. The set G!f"(ς, η)(p) in (7) contains all scope
instances. Function G is defined by the GXSL semantics, and returns for a given
environment a set of AST nodes. Given the variable declaration, updV in (8)
updates ν ∈ VEnv and maps counting variables to the semantics B of the as-
sociated binding. Function D associates the metric with the semantics E for the
associated arithmetic expression. We omit the formal definition of D, and updV

for brevity; E will be defined below. The semantics of the bindings are defined
as follows:

B!−" : binding → (GXSLLib × MEnv × NEnv → (Prog → R)) (9)

B!f"(ς, µ, η) = λp ∈ Prog . F!f"(ς, µ, η)(p) (10)

B!SUM f OVER node IN g"(ς, µ, η) = (11)

λp ∈ Prog .
∑

n∈G!g"(ς,η)(p)

F!f"(ς, µ, η[node %→ n])(p) (12)

The semantics of the remaining aggregators PROD, MAX, MIN are defined
analogously. A binding of a counting variable can either be a simple function or
an aggregation over a set of numbers determined by the application of a function
on the results of a node set, returned by another function. Simple functions
in this case can be a GXSL query functions from the library or the name of
another GMSL metric. The semantics of a simple function f is determined by
the semantic function F . If f is a GXSL library function, F!f"(ς, µ, η)(p) in
(10) or (12) returns the cardinality of the associated set. If f is a GMSL library
function, it returns a real number.

F!−" : function → (GXSLLib × MEnv × NEnv → (Prog → R))

F!libfun(n1, . . . , nk)"(ς, µ, η) = λp ∈ Prog . |G!libfun(n1, . . . , nk)"(ς, η)(p)|

F!metric(n)"(ς, µ, η) = λp ∈ Prog . µ(metric)(p)(η(n)(p))

The arithmetic expression is the definition in semantic function S. The se-
mantics of these arithmetic expressions are defined as follows:

E!−" : definition → (Env → (Prog → R))

E!@v"(ς, µ, η, ν) = λp ∈ Prog . ν(@v)(p)

E!n"(ς, µ, η, ν) = λp ∈ Prog . N (n)

E!exp1 + exp2"(ς, µ, η, ν) =

λp ∈ Prog . E!exp1"(ς, µ, η, ν)(p) + E!exp2"(ς, µ, η, ν)(p)

The semantics of the remaining mathematical operators −, ∗, / are defined
analogously. An expression in a definition can either be a counting variable, a
constant number or a composition of expressions. If the expression is a counting
variable, the semantics of it is just the semantics of the binding to which it is
mapped in the counting variable environment.

8

Example To illustrate the defined semantics consider the following metric defin-
itions:

METRIC avg_method_cc (c IN all_classes)
WITH @s = SUM cc_per_f(m) OVER m IN methods_of_class(c),

@n = methods_of_class(c)
DEF @s / @n

This metric avg_method_cc computes the average cyclomatic complexity of the
methods of a class. The functions all_classes and methods_of_class(c) re-
turn the set of all class nodes (sub-tree), or for a given class node (sub-tree)
the set of all method nodes (sub-trees). Function cc_per_f(m) is a call to an-
other GMSL metric that computes the cyclomatic complexity per function. This
metric was defined on page 6.

When we apply this metric definitions to the following C++ program:

class Number{
private: int n;
public: Number(int number){n=number;}

void inc();
void dec();};

void Number::inc(){ n++;}

void Number::dec(){ if (n>0) n--;}

int main(){ return 0;}

This C++ program consists of one class with two public methods and one
constructor and a main function. Since Number :: dec() has a branching condi-
tion its cyclomatic complexity is 2; the cyclomatic complexity of all other func-
tions is 1. Class Number is in the set returned by the GXSL query all_classes
(applied to the program), thus within it scope.

Variable @s has value
∑

m∈G[methods_of_class(c)] M[cc_per_f](m), i.e 4. Variable
@n has value |G[methods_of_class(c)]|, i.e 3 as there are three methods. Hence,
the expression @s/@n evaluates to an average cyclomatic complexity of 1 1

3 .

4 Metric Module

4.1 GMSL Interpreter

The Goanna GMSL interpreter is an extension to the existing Goanna ana-
lyzer. An overview of the extended architecture can be found in Figure 2. The
metrics interpreter sits on top of the existing GXSL query engine, i.e., mostly
uses existing library functions for pattern matching constructs of interest, and
interprets the metric specification written in GMSL.

9

view

GXSL

C/C++ parser

AST

GXSL
engine

GMSL
engineGMSL metric

db
visualisation
module

metric

Figure 2. Goanna’s for computing metrics.

From an implementation point of view it is interesting to note that some
metrics are incrementally computed during an analysis run with the help of a
database. The reason is as follows: Some metrics require more information than
what can be gathered from a local function or a single file. For instance, to
compute the number of method instances of a class or computing the number
of calling functions for a given callee typically requires to aggregate information
from the whole project. Therefore, we use a database to store partial information
where necessary and aggregate this information during the analysis of the whole
program.

4.2 Visualization Module

The previous sections covered the definition and computation of metrics. How-
ever, as mentioned in Sect. 2 software are meant to be interpreted by humans.
To assist the judging process and help to understand the data we define a generic
visualization model. This enables a number of different views for a given set of
data and allows the association of a metric with a specific representation.

To assist interpretations of the data, users of the metric module can specify
information which will be used in tooltip, comments, and most importantly,
to properly scale the different metrics. For the latter we implemented a user-
defined mapping of GMSL output to a fiite number of categories. For instance,
the following ranges and category were defined for cyclomatic complexity:

= 1 : No Branching
1-15 : Easy
15-30 : Hard to Maintain
> 30 : Extremely Complex

These categories can be used as the visualization domain for different views, and
aid with the interpretation of the results.

10

(a) (b)

Figure 3. (a) Histogram implementation of the time view. The histogram shows the
efferent coupling over time for different classes. (b)Bar chart implementation of the
metric view. Ranking of classes by cohesion.

In the following we describe a few sample views for metrics implemented in
Goanna. We say S = (M, t), is a snapshot of a project, where M is a set of
GMSL metrics and t is a time stamp. The visualization module supports different
types of views which can be associated with different metrics. We briefly describe
some of the views:

Time view: The time view is sequence of program snapshots ordered by their
time stamps. Given a sequence of snapshots (M0, t0), . . . , (Mn, tn) the time view
will display for each time stamp all chosen metric results per scope in Mi. This
provides a good overview of how different metric values change over time. In
the visualization module this will be displayed as a stacked bar chart as seen in
Figure 3(a).

Metric view: The metric view is the summary of one metric for all elements
in one scopes at one point in time, i.e., for a single (M, t). In Goanna the
metric view is implemented by a horizontal bar chart that lists the metric values
different elements in the scope in decreasing order. Figure 3(b) shows an example
for the ranking of classes by cohesion.

Scope view: The scope view is the summary of all metric values that are com-
puted for a certain instance of a scope at a certain time. The scope view is
implemented by a radar chart where every axis is representing a metric. An
example for the different metric values of a given class is given in Figure 4(a).

Correlation view: The correlation view is a combination of the metric view and
the scope view. It enables the user to examine how the values of a pair of metrics

11

(a) (b)

Figure 4. (a) Radar chart implementation of the scope view. All metric values for a
given class. (b) X-Y-Plot for the correlation view. This figure correlates the number of
methods of a class, with the cyclomatic complexity.

correlate over several scope instances. The correlation view is implemented in
the form of an X-Y-Plot. See Figure 4(b) for an example.

The different metrics views are configurable and can be combined in a dash-
board if desired. As such they provide a quick overview of the status of a software
project.

5 Case Study

This section reports on the application of Goanna’s metric module to the Auda-
city [22] code base. Audacity is an open source audio editor and written in C++.
the latter was essential for testing the metrics defined for classes. With about
90,000 lines of code it has a reasonable size, and is, with around 70 million total
downloads on sourceforge.net, also quite popular. The tests were performed on a
desktop PC with 4 GB RAM and an Intel Core 2 Quad CPU @ 2.66 Mhz. The
results for an implementation of the metric module based on Goanna version
1.1.

The original build process of Audacity uses Gcc to compile and link the
source code. This build process takes 1:10 minutes to complete. The runtime
of the metric module will be composed of: this compile time (because Goanna

also compiles the code), the time to extract the AST of the source file, the
parsing of the metric definitions, and the metric computation itself. To separate
the computation from the parsing steps, the module was run with an empty
metric definition. Compiling the source code and extracting the AST took 03:04
minutes.

12

Figure 5. Runtimes of Goanna version 1.1 in different modes on the Audacity code
base.

To measure and profile the performance of the metric computation, we set
up six different test cases. These test runs are combinations of using one local
metric, one non-local metric, and twelve miscellaneous metrics. Moreover, each
of these cases were run in single file mode (sfm) and multiple file mode (mfm).
A local metric is a metric that uses only queries that can be evaluated directly
on the local scope instance. For instance, the metric number_of_methods is a
local metric. A non-local metric, in contrast, iterate over sets of nodes that span
multiple files. Metric avg_method_cc is an example, since it iterates over the set
of methods of a class, which may be distributed over multiple files.

Among the twelve metric were measured were: Cyclomatic complexity [16],
Afferent coupling [1], Efferent coupling [1], and Instability [12] of classes and
functions, and Lack of cohesion in methods of a class (LCOM).

The runtimes of these tests as well as the above mentioned runtimes for Gcc

and the Goanna’s bug detection (goannac++) are shown in Figure 5.

One immediate observation is that the runtimes heavily depend on the num-
ber, kind, and complexity of the GXSL functions used. As shown by the difference
in runtime between the computation of a local metric and a non local metric,
the use of aggregations takes significantly longer. This is due to the iteration
over node sets, which may result in quadratic runtime, instead of linear in terms
of node instances. On the other hand the evaluation of GXSL queries, especially
on large AST, took the biggest proportion of time.

13

Another observation is that when running Goanna in multiple file mode
(mfm) for one metric only the runtime increased by around 15-30% in comparison
to the single file mode (sfm), the runtime for 12 metrics roughly doubled. This
overhead can be explained by three reasons: Firstly, in multiple file mode all
query results are stored in a database. Hence, every application of a query causes
some additional database operations. Secondly, an aggregation in multiple file
mode can be more expensive, because the aggregation set is typically larger. The
third reason for the overhead had to do with slow string operations that were
used for the communication with the database.

Some of the performance issues have been addressed in later version of
Goanna, but we like to point out that the current implementation is a pro-
totype and has a lot of room for improvement. What is more important is that
we were able to easily specify metrics and experimentally confirm some of the
arguments brought forward in the literature as we see next.

Notable Results. The results we obtained were compared to some claims made
by other authors. For instance, McConnell [17] classifies modules that handle all
I/O routines as logical cohesive. In his system of seven cohesion classes logical
cohesion is the second worst. Audacity has two I/O classes, named AudioIO
and FileIO. The results obtained by the metric module confirm McConnell’s
conjecture: The cohesion computed by Goanna according to Badri’s [3] formula
resulted in 0.28 for FileIO and 0.3 for AudioIO, which is on the low end of
the spectrum. The highest value of cohesion of the entire project had a class
called WrappedType, which can be identified as functional cohesive. According
to McConnell’s classification, functional cohesion is the best category.

The correlation view of some values also revealed some expected connection
between the metrics. As Figure 4(b) showed, there is a linear correlation between
cyclomatic complexity of a class with an increasing number of methods in the
Audacity code base. Of course, one simple contributing factor is that the addi-
tion of a method to a class will increase its cyclomatic complexity by at least
one. Another observation is the correlation between cohesion and LCOM, which
indicates the lack of cohesion of methods. As one might expect, an increasing
cohesion value results in a decreasing lack of cohesion. The correlation view of
these values for the Audacity code base is shown in Figure 6.

6 Conclusions

In this work we presented an approach to user-defined software metrics and
a seamless integration into static program analysis. Unlike existing approaches
the metrics are not hard coded, but interpreted at analysis time from a textual
description that can be defined by software developers and teams themselves.
The specification language GMSL is based on a formal syntax and semantics.
While we chose to integrate the interpreter in our own tool there is in principle
no restriction for using the same approach in, e.g., the standard compiler.

On top of the metric specification language we built the proof of concept
of a generic metric visualization module. This module enables the mapping of

14

Figure 6. Correlation of metric values of cohesion and LCOM (lack of cohesion of
methods) on the Audacity code base.

metrics to different views and the automatic user-defined mapping of values to
abstract categories. In practice, this has been proven useful to quickly assess the
state of a software project.

Future work has to address some of the current implementation issues, such as
relatively slow database access and optimizing the query interpretation. Moreover,
some work has to go into scaling the used visualization techniques to large soft-
ware projects. Once the user is confronted with dozens of metrics and thousands
of files it is important to have some automated visual abstraction to avoid con-
fusion and overload.

References

1. ARiSA - Applied Research in System Analysis: Afferent coupling. Website, http://
www.arisa.se/compendium/node104.html; visited on 4 February 2010

2. ARiSA - Applied Research in System Analysis: Efferent coupling. Website, http://
www.arisa.se/compendium/node108.html; visited on 4 February 2010

3. Badri, L., Badri, M.: A proposal of a new class cohesion criterion: An empirical
study. Journal of Object Technology 3(4), 145–159 (2004), http://www.jot.fm/
issues/issue_2004_04/article8.pdf

4. Clark, J., DeRose, S.: XML Path Language 1.0 (XPath). W3C (1999), http://
www.w3.org/TR/xpath

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
MA, USA (1999)

6. Coverity: Architecture analysis. Website, http://www.coverity.com/products/
architecture-analysis.html; visited on 19 February 2010

15

http://www.arisa.se/compendium/node104.html
http://www.arisa.se/compendium/node104.html
http://www.arisa.se/compendium/node108.html
http://www.arisa.se/compendium/node108.html
http://www.jot.fm/issues/issue_2004_04/article8.pdf
http://www.jot.fm/issues/issue_2004_04/article8.pdf
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.coverity.com/products/architecture-analysis.html
http://www.coverity.com/products/architecture-analysis.html

7. Curtis, B., Sheppard, S.B., Milliman, P.: Third time charm: Stronger prediction
of programmer performance by software complexity metrics. In: Proceedings of
the Fourth International Conference on Software Engineering. pp. 356–360. IEEE
Computer Society Press (1979)

8. Elshoff, J.: An analysis of some commercial PL/I programs. IEEE Transactions on
Software Engineering SE-5(2), 113–120 (1976)

9. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model Checking
Software at Compile Time. In: Proceedings of the 1st International Symposium on
Theoretical Aspects of Software Engineering. Shanghai, China (2007)

10. Ferzund, J., Ahsan, S.N., Wotawa, F.: Empirical evaluation of hunk metrics as
bug predictors. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego,
J.J., Brunekreef, J. (eds.) Software Process and Product Measurement, Interna-
tional Conferences IWSM 2009 and Mensura 2009. Lecture Notes in Computer
Science, vol. 5891, pp. 242–254. Springer (2009), http://dx.doi.org/10.1007/
978-3-642-05415-0

11. hello2morrow: Sonarj. Website, http://www.hello2morrow.com/products/
sonarj; visited on 22 February 2010

12. IBM: In pursuit of code quality: Code quality for software architects. Website,
http://www.ibm.com/developerworks/java/library/j-cq04256/; visited on 3
February 2010

13. IEEE: IEEE Standard for a Software Quality Metrics Methodology. Institute of
Electrical and Electronics Engineers (1061)

14. Klocwork: Insight. Website, http://www.klocwork.com/products/insight/; vis-
ited on 22 February 2010

15. Martin, R.C.: Agile software development: principles, patterns, and practices. Alan
Apt series, Prentice-Hall, pub-PH:adr (2003), ftp://uiarchive.cso.uiuc.edu/
pub/etext/gutenberg/;http://www.loc.gov/catdir/toc/fy035/2002070056.
html

16. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering
2(4), 308–320 (1976)

17. McConnell, S.: Code Complete: A Practical Handbook of Software Construction.
Microsoft Press (1993), iSBN: 1–55615–484–4

18. Misra, S.C., Bhavsar, V.C.: Relationships between selected software measures and
latent bug-density: Guidelines for improving quality. In: Kumar, V., Gavrilova,
M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) Computational Science and Its Applications
- ICCSA 2003. Lecture Notes in Computer Science, vol. 2667, pp. 724–732. Springer
(2003), http://dx.doi.org/10.1007/3-540-44839-X_76

19. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In:
ICSE ’06: Proceedings of the 28th international conference on Software engineering.
pp. 452–461. ACM, New York, NY, USA (2006)

20. NDepend: Metrics definitions. Website, http://www.ndepend.com/Metrics.aspx;
visited on 3 February 2010

21. Semmle: How it works. Website, http://semmle.com/technology/
how-it-works/; visited on 19 February 2010

22. development team, A.: Audacity: Free audio editor and recorder. Website, http://
audacity.sourceforge.net/; visited on 16 February 2010

23. The Standish Group: Chaos report 2009. Website, http://www1.standishgroup.
com/newsroom/chaos_2009.php; visited on 25 February 2010

24. Vistein, M., Ortmeier, F., Reif, W., Huuck, R., Fehnker, A.: An abstract specific-
ation language for static program analysis. Electr. Notes Theor. Comput. Sci 254,
181–197 (2009), http://dx.doi.org/10.1016/j.entcs.2009.09.066

16

http://dx.doi.org/10.1007/978-3-642-05415-0
http://dx.doi.org/10.1007/978-3-642-05415-0
http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj
http://www.ibm.com/developerworks/java/library/j-cq04256/
http://www.klocwork.com/products/insight/
http://dx.doi.org/10.1007/3-540-44839-X_76
http://www.ndepend.com/Metrics.aspx
http://semmle.com/technology/how-it-works/
http://semmle.com/technology/how-it-works/
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
http://www1.standishgroup.com/newsroom/chaos_2009.php
http://www1.standishgroup.com/newsroom/chaos_2009.php
http://dx.doi.org/10.1016/j.entcs.2009.09.066

	Software Metrics in Static Program Analysis

