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Abstract. Cloud computing has leveraged new software development and provisioning approaches by changing the way
computing, storage and networking resources are purchased and consumed. The variety of cloud offerings on both technical
and business level has considerably advanced the development process and established new business models and value chains for
applications and services. However, the modernization and cloudification of legacy software so as to be offered as a service still
encounters many challenges. In this work, we present a complete methodology and a methodology instantiation framework for the
effective migration of legacy software to modern cloud environments.
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1. Introduction. Nowadays, cloud computing [4] appears as one of the most popular and mature techno-
logical and business environments for engineering, hosting and provisioning software applications. A continu-
ously increasing set of cloud-based solutions across the cloud stack layers [11] is available to application owners
and developers to tailor their applications and exploit the advanced features of this paradigm for elasticity, high
availability and performance. These solutions provide many benefits to new applications but they also intro-
duce constrains to the modernization and migration of legacy applications. We consider legacy applications as
software not developed for the Cloud and software in traditional architectural paradigms that cannot be scaled,
cannot be measured and does not share resources beyond infrastructure (e.g. database, memory). Often the
legacy applications follow monolithic architecture design approaches, implemented in technologies which may
be deprecated or cannot easily deal with the notion of ”as a Service” and are installed on owned infrastructures.

The modernization and adaptation of legacy applications to cloud environments is a great challenge for
all involved stakeholders, not only from a technical perspective, but also in business level with the need for
adaptation of the business processes and models of the application which will be deployed on the Cloud and
offered ”as a service”. In this paper, we present a novel model-driven [22] approach for the migration of legacy
applications in modern cloud environments which covers all aspects and phases of the migration process, as well
as an integrated framework that supports all migration process.

Our motivation for this work is the requirements and challenges for the effective migration of legacy software
on the Cloud as described in [9]. To this end, the proposed migration methodology considers the following
aspects:

• Unknown internal structure due to the complexity of the software and the data management
processes.

• Lack of knowledge for target environment where the application will be deployed and provisioned.
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• Multi-tenancy influence which creates a number of issues that span from security to performance
and availability.

• Variable configuration based on user preferences which poses additional customization require-
ments when the application is offered as a service.

• Various application types with different characteristics and usage of resources e.g. networking,
storage etc.

Unlike current methodologies, in this work we present an end-to-end approach developed in frame of ARTIST
EU Project [1] that covers both all migration and modernization phases and also considers both the technical
and business aspects of the application. This complete model-driven modernization and migration approach
(initially discussed in [12]) is supported by an innovative toolbox as a ”one stop shop” for the migration,
modernization and cloudification of legacy applications. ARTIST Migration Methodology introduces three
phases for the migration of legacy applications to cloud environments starting from a feasibility analysis to the
core modernization of the software and its validation and certification during the post-migration. All aspects of
the migrated software are examined in the methodology including the migration of the data and the adaptors
which may be required for the handover between the legacy data source and the modern cloud data stores.

In addition, the proposed framework includes a rich set of tools, which realize each phase, task and activity
of the methodology. The methodology and the framework provide a complete environment where all the
stakeholders involved in the migration of an application (analysts, developers, engineers etc.) can collaborate
under well defined workflows and processes that are customized and instantiated for the particular migration
project. The post-migration aspects are also considered by defining specific processes for the behavioural
equivalence (functional and non-functional parameters) and the reuse of software artefacts.

The rest of the paper is structured as follows: Section 2 highlights the related work in this field while Section
3 describes in detail the proposed migration methodology. Section 4 analyses the architecture design of the
overall framework that supports the methodology and Section 5 the implementation details of the Methodology
Process Tool, which is the core component for the customization and instantiation of the methodology. An
evaluation of the proposed solution based on an experimental application is described in Section 6. Finally in
Section 7, the conclusions of our work are presented.

2. Related Work. Prior to the definition of the various methodology elements, we examined the related
migration approaches and extracted some interesting findings, with the most important one the fact that there
is no methodology covering all migration processes/phases required in our approach.

G. Lewis et al. [10] proposed the SMART methodology which is relevant to the pre-migration phase while
trying to understand the system operation in order to be able to identify and analyse the gap between the
legacy system and the desired one. However, most of this analysis is performed manually and based on the
knowledge of the participating team. After acquiring that knowledge, SMART proposes an ad-hoc migration
strategy created for each system individually. In addition, since SMART is focused on the migration to SOA,
many relevant issues that concern the basics of SaaS architectural design are not treated.

The Butterfly method [26] guides the migration of a mission-critical legacy system to a target system and
consists of 5 phases, namely: justification, legacy system understanding, target system understanding, migration
and testing. Justification phase involves the investigation of the risk and benefits associated with the legacy
system evolution while legacy system understanding involves reverse engineering of the legacy system in order
to identify the components, recreate documentation, understand the static and dynamic behaviour of the legacy
system. Target system development involves elicitation of requirements/specifications of the target system and
choosing the most appropriate architecture and standards. The migration phase is concerned with the physical
transformation of the whole legacy system to the target system.Finally, testing is carried out throughout the
evolution process to ensure that the target system delivers the functionalities specified at the start of the
evolution.

Warren and Ransom [25] developed the Renaissance method which examines a legacy system from all
technical, business and organizational perspectives. The method guides users through assessment of these
perspectives by selecting assessment characteristics and assigning values to them. According to this approach
system assessment is used to gain an understanding of a legacy system, which is fundamental to any system
evolution exercise. System assessment should be an initial activity for evolution projects. The first important
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milestone in the Renaissance method is a viable, cost effective system evolution strategy which can be presented
to higher management. The activity of assessing the current system is supported by another activity for
modelling which is focused on increasing the level of knowledge about the system on a conceptual level.

OMG ADM (Architecture-Driven Modernization) [16] provides a set of generic metamodel specifications
that could be relevant within the context of our work. The Software Measurement Metamodel (SMM) proposed
by this methodology, could be used in the assessment of the migration process (e.g. for expressing appropriate
metrics/measures as well as representing the result of their computation), the Knowledge Discovery Metamodel
(KDM) and to a lower extent the Abstract Syntax Tree Metamodel (ASTM) can be exploited for reverse
engineering purposes (e.g. for representing the legacy source code as models in a neutral technology-independent
manner).

A. Bagnato et al. [2] implemented the XIRUP, which is considered as a general-purpose MDE-based mod-
ernization methodology, not specifically designed to address the challenges of migrating legacy applications to
cloud environments. In particular, XIRUP is a feature-driven modernization methodology, where the whole
legacy system is decomposed into features (as offered by encapsulated components) that are iteratively evalu-
ated (for migration decision support), migrated and assessed (post-migration evaluation). Nonetheless, even if
some of these method fragments are applicable to foreseen methodology phases, they need to be aligned and
extended to cope with the particularities of the migration to the Cloud.

Model Driven Reverse Engineering (MDRE) itself, as the application of Model Driven Engineering (MDE)
principles and techniques to reverse engineering problems, is a rather recent area [21]. However, there have been
really few generic and extensible MDRE approaches proposed so far. The MoDisco two-step Model Discovery
+ Model Understanding approach and corresponding framework in Eclipse [3] is one of them. As covering the
reverse engineering phase, it can be directly reused and then extended when necessary within the context of the
more global approach.

The REMICS methodology proposed by Mohagheghi and Sæther [15], while following an MDE approach,
does not take into consideration non-functional requirements (i.e. performance) inherent to SaaS applications
and neither addresses architectural issues such as multi-tenancy or scalability. REMICS relays the monitoring,
billing and security issues to the cloud provider where the application is deployed on. The business issues
(business model and processes), related to the components mentioned before (billing, monitoring) are also not
considered. In addition, REMICS executes the migration on brute force, without considering the feasibility or
convenience to migrate.

In the following table we summarize the various aspects of the migration methodologies defining the baseline
for the ARTIST Migration Methodology:

Table 2.1

Migration Methodologies Comparison

Business Technical Cloud Migration Validation &
Aspects Aspects Aspects Assessment Verification

SMART ✘ ✔ ✘ ✔ ✔

Butterfly ✔ ✔ ✘ ✔ ✔

Renaissance ✔ ✔ ✘ ✔ ✘

OMG ADM ✘ ✔ ✘ ✔ ✘

XIRUP ✔ ✔ ✘ ✔ ✔

MoDisco ✘ ✔ ✘ ✘ ✔

REMICS ✘ ✔ ✔ ✘ ✔

3. ARIST Migration Methodology.

3.1. Methodology Overview. The methodology was developed to cover all aspects of software migration
and modernization, including the business and technical requirements posed from the modern cloud ecosystems
as common target environments for the deployment and provisioning of applications. The methodology consists
of three (plus one) major phases which are analysed below:
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These three main phases are:
• Pre-migration: In this phase a study of the technical and economic feasibility will be conducted as
a prerequisite to the migration/modernization of the legacy system so as to effectively define the exact
steps and effort that will be required.

• Migration and Modernization: This phase will perform the migration process itself, by using both
reverse engineering (RE) and forward engineering (FE) techniques in order to deploy the legacy system
on the Cloud. It should be noted that based on the particular legacy application requirements and the
pre-migration analysis results, the migration processes and their flow are explicitly customized. The
business model concerns are also studied and defined in this phase. These business issues are included in
the application architecture and organizational processes to face the new situation are also (re)defined
in this phase. Finally, migration phase includes the verification and validation (V & V) of the final
system.

• Post-migration: In this phase, the modernized application components will be deployed onto the
target environment and it will be checked if both the technical and business objectives established in
the pre-migration phase have been achieved. The validation activities that are foreseen are mainly
focused on behavioural equivalence, model based testing and end-user functional and non-functional
testing. Moreover, a certification model will be created in order to increase customer confidence in the
SaaS system.

In addition to the three phases described above, another phase, named Migration Artefacts Reuse and
Evolution, was defined in order to enable the effective reuse of software artefacts and optimization of the
migration processes. This phase includes all needed application maintenance activities after migration to the
Cloud (software updates, cloud provider changes, etc.).

The complete methodology is formally described using the Eclipse Process Framework EPF [7] and
SPEM2.0 [17] specification and the generated diagrams of each phase are presented in the following sections.

3.2. Pre-Migration Phase. The pre-migration phase (Figure 3.1) is the starting point of each migration.
Migration of legacy applications is considered as a very challenging project that involves not only changing the
way companies are going to deliver their software, but also their business model, and how the company is
organized in terms of processes. Thus, software vendors need to analyse whether the targeted objectives are
actually feasible to them both technologically and economically.

Fig. 3.1. Pre-migration EPF Model

The first step in this pre-migration phase is to analyse how mature the application is in terms of technology
(i.e. architecture, programming language, database, integration with third party offerings, etc.) and business
(i.e. current business model, maintenance and upgrades procedures, etc.). It also considers how the customer
wants the application to be in those two axes (i.e. architectural design, cloud provider requirements, business
model, legal concerns, performance thresholds values, etc.) once the application is migrated. The analysis of
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both the current and ideal situations allows the users to perform a gap analysis, described in terms of a technical
feasibility analysis and a business feasibility analysis.

The technical feasibility analysis is aimed to provide a snapshot of the application’s design quality, of
its complexity and coupling, etc. This is realized thanks to reverse engineering techniques through which
the component model of the source code is obtained and an evaluation of the effort required to perform the
migration is implemented. The technical feasibility analysis provides a set of migration strategies for each
of the components identified in the legacy application and the effort required to perform that strategy. This
information is obtained by the combination of the the ideal technological maturity identified in the maturity
assessment as well as the target platform requirements, the complexity due to the migration strategy nature
and the complexity inherent to source code (the latter is calculated performing a static analysis of the source
code).

Furthermore, based on the results from the ideal situation identified in the maturity assessment and the
identification of the target platform expected characteristics, a business feasibility analysis is performed. This
business feasibility analysis aims at providing not only economic information (ROI, payback, etc.) but also
what are the main risks to be faced with the migration and the organizational processes affected by the uptake
of the new business model. The results obtained will guide decision makers to identify the most appropriate
strategy in terms of migration and selection of the target services/platforms to use.

3.3. Migration and Modernization Phase. The Migration phase is the core part of our methodology,
incorporating unique features for reverse and forwards engineering as well as for the effective target environment
specification.

3.3.1. Application Discovery and Understanding. During the technical feasibility assessment as well
as during the migration process itself, the discovery of relevant models describing the software system is first
required in order to 1) have a better understanding of it and 2) provision the other steps of the process with the
needed models. Thus, one of the main goals of Model Driven Reverse Engineering (MDRE) is to extract the
overall structure and logic of the software system (as well as some more implementation details when necessary
for the actual migration), considering different abstraction levels depending on the targeted stakeholders and
migration scenarios. In any case, such a MDRE process is generally composed of the two main tasks (Figure
3.2).

Fig. 3.2. Application Discovery and Understanding EPF Model

Model Discovery generates the minimum set of required initial ”raw” (i.e. low-level) models out of
(some of) the artefacts composing the software system. This is realized (at least semi-)automatically thanks to
dedicated software components called model discoverers. This first task notably implies analysis the different
available software artefacts to identify the ones which are actually usable and relevant to the considered migration
scenario, and also to guide the discovery process itself. This preliminary action can be performed with the help of
the Taxonomy of Legacy Artefacts, as established and developed within the time-frame of the ARTIST Project,
which allows for better classification of these artefacts according to several common dimensions (their technical
space, internal structure, nature, size, environment, etc).

Model Understanding produces the necessary ”processed” derived models from the initially discovered
models, thus filtering only the information required for the remainder of the overall process (i.e. Modernization
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notably). This is realized in order to identify and build higher-level views on the analysed software system.
This second task relies on the use of various (chains of) model-to-model transformations from the previously
obtained ”raw” (low-level) models to the final derived models to be provided as useful views and/or inputs of the
Modernization tasks (notably). These derived models may conform to different metamodels and so offer several
”viewpoints” on the software system at different levels of abstraction, according to the actual requirements of
the next tasks and corresponding architects/engineers.

3.3.2. Target Environment Specification. In the Target Environment Specification phase (Figure 3.3)
we have two independent processes taking place, one in the application domain and one in the candidate target
environment domains, that can be linked at the end for added value. In the first place, Target Environment
Benchmarking is performed in order to acquire measurements of cloud services performance in a variety of
different application types (e.g. DBs, server based apps, Java based apps etc.). This information is then
included in concrete provider models that contain also numerous functional characteristics. This is a process
that is performed ”offline” and by a suitable role (e.g. Benchmarks provider). Furthermore, in these models
we include also cost information, that can be used together with performance aspects, in order to rank services
based on their combined metrics, supporting also different ratings based on user interests that are expressed
through percentages (e.g. 70% interest on performance, 30% on cost). More information on this process can be
found in [8].

Fig. 3.3. Target Environment Specification EPF Model

The second branch of the process is related to the analysis of the performance footprint of arbitrary appli-
cation components. In this process, which is performed by the Application Developer through the use of the
respective tools, the application component’s runtime behaviour is compared and classified based on the be-
haviour of the benchmarks used in the Target Environment Benchmarking, when both are executed on the same
reference platform (of the Application Developer). In this process, the developer utilizes the Benchmarking Tool
(to install and execute the benchmarks locally) and the Profiling Tool (to acquire the execution footprint of both
the benchmarks and the application component). The final step is to feed this information in the Classification
Tool, that will perform the matchmaking. Thus, after having this classification conclusion, we can select the
cloud service that has the best score in the same benchmark category that the application component has been
classified. It is necessary to stress that this part of the process is optional for the developer. If they have already
knowledge of their application behaviour or nature, they can directly ask a question of the form ”Give me the
best offering for running my (web server) application”, along with the aforementioned percentages of interest
described in the first phase.

3.3.3. Modernization. During the migration phase, once the legacy system has been well understood and
decomposed into features and/or components, other tasks such as Model Driven Forward Engineering (MDFE)
need to be applied aiming at transforming the legacy system and deploying the migrated one into the target
Cloud. During the understanding phase, some high abstract level model views of the legacy system have been
produced. These views represent, e.g. the platform independent models (PIM) of the legacy system. Feature or
component views are useful since they enable a feature-driven iterative migration across a number of selected
features or components. For instance, persistence could be a feature to iterate on: during this iteration all data
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sources marked for migration are transformed.
In this modernization phase (Figure 3.4), some artefacts produced during early phases are taken as input:

a) the PIM models of legacy system, b) the architectural constraints (e.g. migration goals) corresponding
to the target maturity level the application and c) the models describing existing target platforms where the
application can be deployed.

Fig. 3.4. Modernization EPF Model

Models of the candidate cloud targets environments are matched against the aforementioned requirements,
using a model-enabled matchmaking algorithm. Models describing features or components tagged for migration
are optimized and transformed, by applying suitable transformation patterns, into target models. These models
represent equivalent features or components that are compatible with the selected target provider and that fully
exploit the target features and services requested by the application requirements.

These migration tasks aim at building and deploying the migrated component corresponding to selected
legacy components (e.g. implementations of application features). MDFE strongly relies on models and model
transformations e.g. model to model (M2M) and model to text (M2T) for the technical materialization of
the described MDFE tasks. The main aim for these transformations is to generate diverse models providing
different views over the migrated application, including its source code. The skeleton of the application is
generated automatically, and developers have to write manually some code to complete upgraded and newly
added functionalities.

In cloud applications, the business model is tightly intertwined to the technical solution and the method-
ology defines several tasks in order to define the business model, taking as baseline the principles by Oster-
walder [20]. Delivering a product is not the same as delivering a service in terms of organizational processes.
Existing processes need to be analysed and redefined to adapt the organization to the new structure. Also, new
processes related to the service delivery will have to be defined from scratch and to this end we have identified
several processes that are affected by the shift of business models. These are: Development Process, Updating
Process, SLA Management, Helpdesk, Incidence Management, Marketing, Accountability, Cloud Provider and
Roles Alignment.

3.4. Post-Migration Phase. The quality of the migrated system needs to be verified, considering both
behavioural (functional) and non-behavioural concerns such as performance or security. The migrated system
has to operate similarly to the legacy system and needs to perform at least equally to the old system in terms of
functionality and performance. The non-compliance of any of these requirements may cause the non-acceptance
of the migrated system by the client. For this reason a validation and certification model is being used as part
of the post-migration phase (Figure 3.5).

Once a feature or component has been migrated, its behavioural equivalence (across the legacy and migrated
components) and the fulfilment of migration goals (i.e. non-functional requirements) need to be asserted. The
first step of this validation covers the functional requirements of the system and is being performed against
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Fig. 3.5. Post-migration EPF Model

given test cases as well as provided by the end user test cases. The following step is the validation of the
non-functional requirements, in terms of scalability, security, etc.

If the assessment fails, the process rolls back to the migration phase, in order to re-evaluate the migration
requirements and the optimization/transformation strategies. Otherwise, the process moves to the next phase
with concerns to the current feature. This phase iterates until all features have been migrated. If the assessment
is successful, a certificate for the migrated project is being produced and following that the migrated artefact
is being placed into the ARTIST Repository (explained in detail in the following section).

3.5. Migration Artefacts Reuse and Evolution Phase. The purpose of this supporting phase (Figure
3.6) is twofold: On the one hand, it provides tasks to foster reuse of migration artefacts inside and across
migration projects, on the other hand it supports evolving the migrated system after a migration has been
performed.

Fig. 3.6. Artefacts Reuse and Evolution EPF Model

During a migration project, a number of artefacts that are potentially reusable across projects are produced,
such as meta-models, models, generic transformations and other information produced by the various framework
tools. By reusing previous results, expensive operations such as big model extraction runs have to be performed
only once. The artefacts are first checked for their reuse potential. Reusable artefacts are then published to the
web-based ARTIST Marketplace if they should be publicly available or to the ARTIST Repository if they should
be shared only within a controlled number of migration projects. The ARTIST Repository and Marketplace
thus provide a central place to store, archive and organize MDE artefacts which could be merchandized as
services in cloud marketplace environments [13].
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The second purpose of this phase is to support maintenance activities during and after migration. This is
achieved on the workspace level by supplying developers with information about the (modelling) artefacts in
the workspace including their types, their relationships and dependencies and their history. This information is
gathered from the workspace and from associated source code management and ticketing systems. One possible
way to exploit this data is to provide traceability between artefacts and perform change notifications and change
impact analyses.

On the artefact level, evolution is supported by a change description service. It can be triggered whenever
new versions of one or more artefacts are produced. The service captures changes, detects inconsistencies in
depending artefacts and supports the user in resolving these inconsistencies. Finally, the initial and the derived
changes need to be implemented to complete the change workflow.

4. Architecture.

4.1. Architecture Overview. The architecture design is an integrated view of the functional blocks and
components composing the ARTIST tooling, stereotyped with the main methodology block, i.e. pre-migration,
migration and post-migration, to introduce the various components in turn.

The Migration Feasibility Assessment tooling comprises the Maturity Assessment Tool, the Business Feasi-
bility Tool and the Technical Feasibility Tool. These tools interact with each other iteratively to estimate and
report about the business and technical migration feasibility. This report is used by the Methodology Process
Tool (described in next section) to tailor the particular migration process. The Migration Feasibility Assessment
tools rely on some of the MDRE features provided by the Model Discovery and Understanding tools, offering
low and high level abstraction platform-specific and independent models (PSM, PIM) of the legacy application.

The Cloud Metamodel and the model instances, describing target cloud providers and offerings, are provided
by the Target Environment Specification tooling which comprises the Benchmarking, Performance Stereotype
Classification and Profiling tools. These (meta)model artefacts are used during the modernization assessment
(e.g. to specify cloud target and migration requirements) but also during the migration phase by the MDFE
tooling (e.g. to specify requirements on the ”cloudified” application and the cloud target environment). The
MDFE Migration tooling comprises Target Specification, Optimization and Deployment tools, which supports
the entire migration phase, such as the specification of requirements for the application and the target environ-
ment, target lookup and selection, application optimization (e.g. ”cloudification”) and application building and
deployment.

The post-migration phase (Testing, Verification and Certification) is supported by a suite of Testing Tools
and the SbSp (Service based Software providers) Certification Tool. Finally, the ARTIST Marketplace and
ARTIST Repository realize the migration artefacts reuse and evolution phases and operate complementary to
the other components so as to improve the effectiveness of various processes that these components perform.

4.2. ARTIST Suite. Following the design of the architecture, a concrete implementation approach for
the ARTIST Suite, focusing on the support for the migration of both Java and .NET based applications is
described in Figure 4.2.

The ARTIST suite comprises these main blocks of tools:

• Browser-based (Web-based) ARTIST Suite, targeting mostly end-users playing a business role.
This tooling is intended to offer functionalities that require broader access to different types of users,
compared to the more technical tooling which requires more specialized tools. Examples of tools in this
block are: the Maturity Assessment Tool or the SbSp Certification Tool.

• Eclipse RCP based ARTIST Suite, targeting mostly end-users playing a technical role. Both the
Eclipse platform itself and the Eclipse Modelling Project (EMP) tools, as baseline for ARTIST suite,
are the natural choice looking to the selection of MDE techniques and OSS tools. Examples are those
addressing technical functionalities, such as the Technical Feasibility Tool, the Model Discovery and
Understanding, the Requirements Specification Tool, the Optimization Tool, the Target Generation
Tool, the Deployment Tool or the different Testing Tools.

• Sparx Enterprise Architect (EA) [23], that includes a set of add-ons developed which support the
discovery and target generation of .NET C# based applications.
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Fig. 4.1. Overall Architecture Design

The proposed suite supports the migration of both Java and .NET applications. However, Eclipse support
for .NET development is somehow limited. .NET applications can be developed using Microsoft Visual Studio
or other corresponding development environments. Our approach for the migration of .NET application relies
on the usage of Sparx EA, during certain tasks of the methodology (notably during the Model Discovery and
the Target Code Generation tasks). Thus, models of .NET applications will be obtained out of .NET projects
using EA, and the final target code will be generated out of the migrated models using EA as well.
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Fig. 4.2. ARTIST Suite Architecture - Interoperability

The remainder of the methodology tasks involving modelling are supported by Eclipse ARTIST tooling.
The migrated .NET code can be compiled and assembled for deployment using Microsoft Visual Studio or
another compatible development environment. Similarly, Java-based applications can be developed using the
Eclipse JDT or another Java development environment. The projects of these Java applications can be then
easily imported into the Eclipse workspace, ready to be managed by the tools. EA and Eclipse ARTIST tooling
exchange models (notably UML ones) using the XML Metadata Interchange (XMI) [18] serialization format.

We foresee that the interactions between the browser-based and the Eclipse-based suites will be user driven
and mediated through the Eclipse workspace and the repository. The user will save, locally on his/her workspace
or in the repository, the artefacts produced during the performing of concrete tasks of the methodology and
created using the browser-based tools. In turn, the user will import them within the Eclipse-based tools
when required. The marketplace also offers browsing and searching functionalities to the end-users. Thus,
the marketplace is the access point for users to the repository. Nevertheless, the various tools can access the
repository directly through the repository plugin to retrieve/save artefacts provided that they have got the
artefacts URIs.

Eclipse-based suite is tightly integrated within the Eclipse framework and the Eclipse Modelling Project
(EMP) tools, using the Eclipse platform API and thus contributing to the Eclipse workbench. Artefacts pro-
duced and consumed by the Eclipse-based suite will be shared with other tool suite instances through the
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repository by using the repository plugin. Alternatively, these artefacts can be stored locally in the Eclipse
workspace for personal usage.

5. ARTIST Methodology Process Tool Implementation. The methodology is a modernization and
migration solution that covers a wide range of application types, regardless of the underlying technologies,
business models, operational modes, etc. In order to practically support this methodology, a core element was
incorporated in the overall architecture: the Methodology Process Tool (MPT). This tool allows the customiza-
tion and instantiation of the methodology based on the specific application requirements.

The Methodology Process Tool, exploiting the results processed and obtained during the modernization
assessment, defines a customized modernization process, tailored to the concrete legacy application needs. The
tool shows the customized process in detail, its tasks broken down step-by-step, including hooks to invoke the
tools required to accomplish each task.

Fig. 5.1. ARTIST Methodology Process Tool Dependencies

MPT is the main component of the framework supporting the customization of the methodology at the
end of the pre-migration phase. The methodology components are those which, based on the results of the
modernization assessment (including the target specification), provide a tailored modernization blueprint. At
the end of the pre-migration phase, after a positive early assessment (e.g. migration accepted), the remaining
migration process (e.g. the rest of phases for completing the migration process) can be tailored to the specific
characteristics of the migration project (i.e. legacy application and selected migration goals) using the Method-
ology Process Tool (MPT), which creates a specific blueprint for the migration project, that is, a specialization
of the methodology process, rendered as a graphical process, showing tasks as visual elements (e.g. widgets)
and related tasks for each phase within a group widget, logically connected through the methodology workflow.
Moreover, each task widget includes links to the tools used to accomplish it, therefore selecting a task triggers
the corresponding task tool in the integrated Tool Suite (e.g. Eclipse environment).

MPT uses reports generated during the early assessment phase, since the technical and business feasibility
assessment reports, contains the required information to particularize the methodology to this concrete migration
project. MPT can programmatically launch any required tool to accomplish any of the tasks described in the
tailored methodology blueprint.

With respect to the overall architecture and methodology and the requirements posed by the objectives
of the project, several approaches have been examined for the implementation of MPT. Currently we focus
on a) a hybrid implementation for MPT, which combines features of a web-based platform and of the Eclipse
environment and b) on an implementation using the SpikesTogether platform [24]. Both implementations are
discussed in the following sections.
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5.1. Hybrid (Web+Eclipse) Implementation. The MPT hybrid tool was built to take advantage of
both the Web and the Eclipse based MPT architecture choices and combine them together to support the
customization of the methodology from both any web browser (e.g. to support non-technical users, such as
business analysts) or the Eclipse-based Tooling (e.g. to support technical users, such as modelers). In this
way, the user is able to access MPT functionality either from an external Web browser, which connects to the
web server that host the MPT, or within the Eclipse-based tooling, using the internal Eclipse Web Browser.
Besides, this also allows the usage of Eclipse cheat sheets [5] to guide the user through the entire customized
methodology and launch other Eclipse-based tools, as required by each task of that methodology.

Another challenge behind this implementation was to effectively exploit the representation of the method-
ology that was implemented using the Eclipse Process Framework, as described in the previous sections. For
this reason, the methodology description outcome, which was in the form of simple static HTML pages, was
transformed to XTML and integrated with Java Server Faces in order to achieve their dynamic customization
according to the specific case under examination.

This implementation of the MPT provides to the end user the ability to upload and share existing reports
in terms of maturity assessment, technical and business feasibility analysis, as produced from the corresponding
tools, namely the MAT (Maturity Assessment Tool), TFT (Technical Feasibility Tool) and BFT (Business
Feasibility Tool) tools respectively (see Figure 5.2).

Fig. 5.2. MPT Hybrid Tool: UPLOAD REPORTS

Once the reports have been uploaded, the user is able to select among these reports and use the appropriate
one to configure the methodology processes, according to the attached results for maturity, technical and
business feasibility assessment. It should be noted that it is also possible to access existing reports that have
been uploaded by the same user in the past for other projects as well as reports that other users are willing to
share (see Figure 5.3).

By using the Methodology Configuration option, the selected report in XML format is being parsed and
the extracted values are being stored and used against rules, the outcome of which may affect the content of
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Fig. 5.3. MPT Hybrid Tool: CONFIGURE MPT

each methodology element (phase, task, activity) at different levels or even the flow that the user should follow
in order to cloudify the project under examination.

Following the configuration of the methodology, the user can view the customized version of the EPF by
clicking on the ”View Methodology” button on the left pane. This action opens the index page of the EPF
outcome in a new tab. An example for the methodology customization is described in the evaluation section.

5.2. SpikesTogether Implementation. A SpikesTogether-based approach has also been implemented
focusing on accessibility towards business users. SpikesTogether [24] is developed on top of SharePoint [14], a well
known web-based business collaboration platform. SpikesTogether is a tool which facilitates the development
of line-of-business (LoB) solutions, extending the core functionality of SharePoint in particular key aspects.

SpikesTogether is built around two cornerstones: a) Adaptive Case Management and b) Collaborative
Workflows. In the context of this work, application migration can be seen as a case to be managed while the
migration process can be seen as a workflow. An actual application migration to the cloud typically involves
many people which are supported by the collaborative aspect in the workflows. In addition a customized
migration project is supported by the adaptive aspect in the case management.

Figure 5.4 shows a screenshot of a workflow in progress (i.e. the proposed methodology) on a particular
item or migration project (i.e. SpikesTogether Migration). Tasks of the workflow in SpikesTogether are assigned
to a user involved in a particular role. Every task has a certain outcome possibly leading to other tasks until
the workflow (and consequently the application migration) has been completed. The figure also shows that the
current migration is in the Migration phase which has not yet started while the pre-migration phase has already
been completed. The example workflow used in this process can be seen in Figure 5.5. This workflow involves
three different roles (i.e. Analyst, Modeler and Tester) each performing one particular step of the methodology
process (i.e. pre-migration, migration and post-migration).

The SpikesTogether implementation guides the different users (in different roles) throughout the complete
migration process and provides them with clear descriptions of the tasks that need to be performed using
one or more of the tools in the tool suite. Identity/access management as well as security is being provided
by the underlying SharePoint platform. Currently, the focus was around the step-by-step guidance of the
user throughout the migration process while future work in this approach includes the customization of the
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Fig. 5.4. SpikesTogether MPT Implementation

methodology (i.e. adaptation of the workflow).

6. Proof of Concept and Evaluation. In the previous sections, we described a generic but also detailed
methodology for the migration of legacy software to modern target environments, which is also supported by a
tool for its effective customization to the specific requirements of a particular migration project. In this section,
the proof of concept for the Methodology Process Tool based on an experimental migration project is discussed.
The proof of concept will show how specific steps of the generic methodology are customized for a concrete
migration project based on the pre-migration analysis results. The Evaluation of the proposed methodology
and its respective implementation, the Methodology Process Tool, was based in an experimental legacy J2EE
Application, the PetStore [19]. In the following sections we describe the steps for the business and technical
analysis of the application during the pre-migrations phase and then, based on the analysis results, we describe
the rule-based customization of the methodology through MPT.

6.1. PetStore Business Case. Our objective is to tackle the problem of software modernization under
two perspectives, the technical one and the business one. This is the reason why we need to define the
business case of the PetStore in order to evaluate and test all the tools under both perspectives:

SME-Software is an English company producing and marketing software products targeting SME Enterprises.
Their customers include Hotels, Restaurants, Stores, Chartered Accounting Firms, Employment Law specialists.
PetStore application started as a management system or ERP for stores selling pets, and evolved as a web portal
for selling pets over Internet.

Nowadays SME-Software sells its application by licensing (to be renewed each year) and offers the possibility
to customize it through consultancy services via ad-hoc projects. This customization includes the purchase of
the new infrastructure (Application server, database server, etc.), installation of the adequate application server
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Fig. 5.5. SpikesTogether MPT Usage Example

and database server software versions to fit the PetStore requirements, and customization of the interface layer.
The customers may contract these services to companies other than SME-Software. Optionally, customers can
contract maintenance support.

With the emergence of cloud computing and the SaaS business model, SME-Software managers have start
thinking about offering their Software as a Service. Many customers have shown willingness to contract the
service instead of buying the product and the infrastructure required to install it.

SME-Software’s CIO is aware of the emergence of cloud computing and he has participated in discussions
where the advantages of cloud computing have been exposed. He notices that their customers are demanding
changes in the way they sell and offer their product but he is still reluctant to change because the following
aspects are not known:

• implications to change from SaaP (Software as a Product) to SaaS
• time and costs implied from a potential migration
• which IaaS provider is the best, and which implications this could have
• which risks (market and technical) are associated to this change
• which business processes are affected and how to adapt them to the new selling model.

6.2. PetStore Software and Business Case Assessment. MPT tool will personalize the methodology
for each migration project relying on the results obtained in the pre-migration phase by the different tools
(MAT, TFT and BFT). From MAT, the migration goals and high level recommendations will be used, from
TFT, the list of migration tasks and affected components and finally, from BFT the selected business scenario.
By combining all this information, MPT will personalize the generic methodology for each specific migration
project.
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6.2.1. MAT results. The Maturity Assessment Tool results on application positioning with respect to
its cloud maturity are the following:

• Migration Goals
– Migrated programming language: J2EE
– Multitenancy level: Multitenant
– Database scalability: High scalability of data
– Interoperability requirements: Yes, ERP
– SLA requirements: System availability, performance and QoS, Outages covered, Data integrity,

business continuity
– Configuration requirements: User personalization
– Authorization requirements: ID, Password
– Cloud provider: Amazon, Public Cloud
– Elasticity: Component / self-made means to ensure its elasticity

• High level recommendations
– Model the application to have a better knowledge of the application
– Redesign the database to be multitenant
– Redesign the architecture and distribution of stateful/stateless nodes
– Integrate a module of concurrent users monitorization
– Define authentication mechanisms
– The coexistence of the two business models may bring difficulties in the support processes
– Define new SLAs taking into account the infrastructure part

6.2.2. TFT results. The Technical Feasibility Tool is aiming at estimating the efforts required to migrate
a legacy application to a selected target cloud environment, fulfilling some migration goals and requirements.
This effort estimation is broken down into each legacy component and the migration tasks required migrating
it. The effort required to accomplish each migration task is derived from the complexity of the task and
the complexity inherent to the legacy code (component complexity). TFT analysis results are summarized
in the following table. In the example shown, the different components of the PetStore have been identified
(”component” column) and the following metrics have been obtained for each of them:

• Component complexity: This is the complexity related to the legacy software. In this proof of
concept, just for the sake of simplicity, component complexity is just measured by the number of files
comprising the component: 1 XML file for J2EE resources (complexity 1.0) and 40 Java classes for
PetStore (complexity 40.0), 1 SQL file for PetStore data schema, 1 bundle file (installation) for J2EE
Server and Non-SQL Server. More elaborated complexity based on the Maintainability metric and
SW/OOP/Coupling metrics will be computed by TFT.

• Task: This is the migration task suggested by TFT (following a rule based approach) to migrate the
corresponding component.

• Task Type: Each task is been characterized by its type. Task taxonomy (including Installation and
configuration tasks, Data sources related tasks, Code refactoring tasks, Connection/Configuration tasks)
has been defined in the context of the TFT where the knowledge representation of expert judgement
with respect to the complexity of the task is embedded.

• Task Complexity: The task complexity is obtained by the TFT based on the selected task complexity
level and expert heuristics and/or historical data.

• Task Effort: This is the required effort to complete the task. The effort is computed based on the
component complexity, task complexity and expert heuristics and/or historical data.

6.2.3. BFT results. In the business feasibility analysis the following business scenarios were identified:
• PetStore In-house: This scenario represents the Business Model as-is for SME Software Co. at the
time of the assessment. PetStores buy licenses from SME Software Co. PetStores rely on external
organizations for maintenance of hardware and software and provisioning of resources (e.g. hardware,
energy). Customers buy pets from PetStores using the PetStore Software.

• PetStore on IaaS: This scenario presents the Business Model assuming that the PetStores rely on
IaaS Providers to operate the PetStore service: PetStores purchase SW License from SME Software Co.
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Table 6.1

TFT Results

Component Task
Name Compl. Name Type Compl. Effort
J2EE Server 1.0 App Server Instal-

lation & Configura-
tion

Installation
and Configu-
ration

2.0 2.0

Non-SQL
Server

1.0 Non-SQL persis-
tence framework
installation and
configuration

Installation
and Configu-
ration

2.0 2.0

PetStore
Web App

40.0 PetStore Per-
sistence Layer
re-coding based for
Non-SQL persis-
tence framework

Code Refac-
toring

5.0 40.0

PetStore
Web App

1.0 PetStore data
schema refactoring
for Non-SQL per-
sistence framework

Data Source 5.0 8.0

Non-SQL
Server

1.0 PetStore data
dump into Non-
SQL persistence
framework

Data Source 1.5 1.0

JDBC
Resource

1.0 PetStore JDBC Re-
source reconfigura-
tion

Connection-
Configuration

1.0 0.1

Connection
Pool

1.0 PetStore con-
nection pool
reconfiguration

Connection-
Configuration

1.0 0.1

Total 53.2

In this scenario, the SW is licensed at a lower price. The PetStores rely on IaaS Providers to operate
the PetStore service. In turn IaaS purchase resources (e.g. hardware, energy) from external resource
providers. Customer buys pets from PetStores using the PetStore Software. PetStores pay royalties to
SME Software Co. for each transaction completed by means of the PetStore services

• PetStore on PaaS without subscription fee: SME Software integrates the PetStore software relying
on the platform of a PaaS Provider. SME Software pays the PaaS provider to operate the PetStore
service. The IaaS buy resources (e.g. hardware, power) from external resource providers. Customer
buys pets from PetStores using the PetStore Software. PetStores pay royalties to SME Software Co.
for each transaction completed by means of the PetStore services.

• PetStore as Cloud Provider: PetStore pays a subscription to the PetStore service operated directly
by SME Software Co. using in-house infrastructure. SME Software Co. pays for both the maintenance
the infrastructure and resources acquisition. PetStore pay royalties to SME Software Co. for each
transaction completed by means of the PetStore services.

6.3. Methodology Customization and Instantiation for Proof of Concept. The MPT is developed
with a set of rules for the customization of the methodology based of the parameters of each migration scenario.
In the proof of concept, we present the following example rules which were applied to the pre-migration analysis
results of the PetStore application. These example rules are based on the technical and business migration goals
defined by the user and extracted from MAT.

Example Rule #1 (technical level): This rule examines a) the parameter databasereq which refers
to the database requirements (requirements elicitated by the application owner for the database) and b) the
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parameter targetplat which refers to the (cloud) target platform selected by the application owner (where the
application will be deployed). This rule is triggered with the value high escalability for databasereq parameter
(high scalability of database is required) and with the value AEC2 for targetplat paremeter (Amazon EC2
Infrastructure).

Listing 1

Example Rule for Customization on Technical Level

I f ( databasereq == h i g h e s c a l a b i l i t y AND t a r g e t p l a t == AEC2)
1 . EMREQ task has to be pe r s ona l i z ed as f o l l ow s :
a . Annotate PIM with AWS requirements ;
b . Annotate the backend component with the requirement

s t e r eo type ” h igh ly s c a l a b l e database ” ;
2 . OPTAPPFEA task has to be pe r s ona l i z ed as f o l l ow s :
a . Data schema r e f a c t o r i n g and opt imiza t i on to

t a r g e t NoSQL pe r s i s t e n c e frameworks ;
b . Data dump trans fo rmat ion to f i t the data

in to the t a r g e t NoSQL pe r s i s t e n c e frameworks ;
c . P e r s i s t e n c e l ay e r adaptat ion based on the

s e l e c t e d t a r g e t NoSQL pe r s i s t e n c e frameworks ;
end I f

Example Rule #2 (business level): This rule examines the parameter bil rule which refers to the billing
rule that the application owner intends to apply once the application is migrated. This rule is triggered with
the value use for this parameter that implies direct use of the application.

Listing 2

Example Rule for Customization on Business Level

I f ( b i l r u l e == use )
1 . REVE task has to be pe r s ona l i z ed as f o l l ow s :
a . S e rv i c e p r i c e d e f i n i t i o n based on use ;
b . Monitoring and b i l l i n g component to be inco rpora ted :

Link to EMREQ and OPTAPPFEA t e c hn i c a l t a sk s ;
2 . EMREQ task has to be pe r s ona l i z ed as f o l l ow s :
a . Annotate PSM with monitor ing and b i l l i n g component ;

3 . OPTAPPFEA task has to be pe r s ona l i z ed as f o l l ow s :
a . Create the monitor ing component at PSM l e v e l ;

end I f

Based on the pre-migration analysis and the rules, the methodology is customized so as to define the exact
steps that should be followed to accomplish the EMREQ (Express Migration Requirements) task for the specific
migration project. Figures 6.1 and 6.2, show the output of two different customizations that affect the way the
migration requirements are expressed, covered by the EMREQ task.

Figure 6.1 shows the default view of the page that connects to the EMREQ task. This version appears
when the user has not customized the methodology following the process described earlier, or when the reports
used for the customization do not trigger a rule that affects the specific task. On the other hand, Figure 6.2
shows a customized version of the same web page in which a rule triggered the addition of extra steps that
inform the user that the platform independent model and the backend component should be annotated with
specific requirements. In a similar way, all methodology tasks can be customized to the requirements of the
particular project so as to ease the navigation through the various tasks and activities simplifying considerably
the migration workflow.

7. Conclusions. In this paper we presented a novel software migration approach, which is capable to
empower the technical and business capabilities of legacy applications by its modernization and migration to
modern cloud environments. The ARTIST Migration Methodology and Framework, as an ”all-in-one” solution
allows the legacy applications to exploit the offerings of the cloud providers, enrich their unique characteristics
and benefit from offering them as services in a potentially global market.
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Fig. 6.1. MPT hybrid tool: Default view of the EMREQ task page (no active rule)

The added value of the proposed methodology can be summarized as follows: 1) it includes a feasibility
analysis before any investment is actually made, 2) it is focused on cloud-compliant architectural issues at both
application and infrastructure levels, 3) it includes business model issues that are strongly linked to the technical
decisions that are made, 4) it takes into account the impact of the business model shift on the organization
processes, 5) it fosters re-usability and automation, 6) it globally prepares the software for its evolution.

The methodology, covering both the technical and business aspects of the migration process, is tailored to the
needs of the specific application and guides the owners and developers in every step so as to take full advantage
of their software in an effective and productive manner. In addition, a complete set of tools is supporting each
methodology task realizing modern analysis and model-driven engineering approaches, allowing when possible
the reuse of artefacts. The core of this rich software suite is the Methodology Process Tool which is in charge of
the customization and instantiation of the generic methodology based on the pre-migration analysis results of
each migration project and the customization rules. The Methodology Process Tool is currently available in two
implementations so as to integrate smoothly to the development workflow and preferences of both the JAVA
and .NET development communities while further extensions are foreseen to further improve its capabilities
and effectiveness.
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Fig. 6.2. MPT hybrid tool: Customized view of the EMREQ task page (technical level rule active)
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