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update

Participants’ backgrounds included embedded 
real-time systems, medical informatics, enterprise 
applications, development tools, military systems, 
business process management, Web applications 
and services, and desktop applications. Most had 
used UML, and three had used more-formal meth-
ods in industrial settings, including executable 
UML (xUML), Promela, the Software Require-
ments Engineering Methodology (SREM), the 
Distributed Computing Design System (DCDS), 
predicate logic, and language-based type systems 
for customized analysis.

The Power of Myth
A myth isn’t simply a refutable claim; in its pur-
est form it’s a heroic narrative illuminating the 
human condition. It can establish a model for 
behavior and uphold social traditions. Myths 
have enduring appeal—people want to believe in 
them, notwithstanding contradictory evidence. 
This “wish to believe” elevates a myth from a 
simple, objectively testable statement to a phe-
nomenon whose appeal and persistence require 
interpretation.

During our discussions it became clear that the 
space of formal methods is much richer now than 
when Hall identified the seven myths. So, we take 
formal methods to include any methods based 
on discrete symbolic systems that allow precise 
specification and analysis of software. This inter-
pretation includes not only formal logics, but also 
notations such as Spec#, the Java Modeling Lan-
guage (JML), the Standard Annotation Language 
(SAL), and domain-specific languages (DSLs). In-
deed, certain UML diagrams can be formal meth-
ods when used for analysis as well as description.

With this broader view, four themes emerged 
in our discussions:
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 ■ Formal methods for both under-
standing and precision. We see for-
mal methods used in situations where 
the primary benefit is for precisely 
understanding and specifying require-
ments. We’ve benefited from this type 
of use even without proofs or model 
checking.

 ■ Formal methods embedded in tools 
and languages. Industry is adopting 
formal methods that are embedded in 
tools or languages; developers who use 
these tools don’t always recognize the 
connection to formal methods.

 ■ Formal methods’ demand for mathe-
matical maturity. Embedding formal-
isms in tools or languages reduces the 
need for certain mathematical skills, 
but developers still need some math-
ematical maturity to effectively apply 
many formal methods.

 ■ Formal methods in agile practices. 
The desire for agility might appear to 
conflict with formal methods, but our 
experience with using them to enable 
understanding, communication, and 
system evolvability shows otherwise.

We discuss how each of these themes 
reflects the current status—both the valid-
ity and the perception—of Hall’s myths. 

Formal Methods for Both 
Understanding and Precision
In our experience, emerging formal meth-
ods continue to debunk the myths of 
guaranteeing software perfection and 
proving total program correctness by fol-
lowing one of two philosophical paths:

 ■ They allow for more precise under-
standing of software requirements. 
Our experiences continue to reaffirm 
Hall’s observations—that even with-
out verification, the mere act of for-
mally specifying requirements can 
make crucial distinctions early in the 
process. DSLs, for instance, provide 
precise formalisms that help achieve 

understanding, even before automatic 
verification (see the “Formality for Un-
derstanding” sidebar). 

 ■ They can make strong guarantees 
about narrow aspects of software. 
Spec# and SAL both allow develop-
ers to prove specific, narrow classes 
of assertions, but they make no claims 
about other aspects of program cor-
rectness. This targeting makes the 
techniques highly adoptable and 
cost-effective.

Our observation of the increasing in-
dustry use of formal methods provides 
growing evidence that refutes myths 1 and 
2. We believe the key to successful adop-
tion of formal methods is opportunistic 
application (see the “Cost-Effective Ab-
stractions” and “Formality for Under-
standing” sidebars). Which parts of the 
software are most critical? Which are used 
most? Where are the greatest degrees of 
uncertainty? 

Myths 1 and 2 seem to arise from our 
desire for the simplicity of a single formal-
ism for specifying all aspects of a system 
and for the reassurance that proof would 
provide. Such generality adds power 

but demands mathematical sophistica-
tion. Specification without verification 
or narrowly focused techniques can skirt 
around these myths. Thus,

Myths 1 and 2: Partially busted by continued and emerging 
uses of formal methods.

Formal Methods Embedded  
in Tools and Languages
We hear developers say they wouldn’t use 
formal methods on a serious project, but 
these same developers create UML state 
diagrams or use language-based verifica-
tion such as SAL. Unlike older approaches, 
these methods mask the underlying for-
mality: the formal notations are embedded 
in tools, then marketed as diagramming 
techniques, languages, or lightweight veri-
fiers. This maturation of the tools relieves 
humans of tedious, error-prone work.

Delving into our own reactions to 
myths 3 and 7, we realized that belief in 
these myths stems from the term “formal 
methods” itself; we don’t see formal meth-
ods’ mythic power extending to specific 
tools such as Microsoft’s Static Driver Ver-
ifier and SAL. These tools hide their for-
mality behind automation and abstraction, 

Myth 1: Formal methods can guarantee that software is perfect.
Myth 2: Formal methods are all about program proving.
Myth 3: Formal methods are only useful for safety-critical systems.
Myth 4: Formal methods require highly trained mathematicians.
Myth 5: Formal methods increase the cost of development.
Myth 6: Formal methods are unacceptable to users.
Myth 7: Formal methods are not used on real, large-scale software.

Figure 1. The Seven Myths. In “Seven 
Myths of Formal Methods,” Anthony 
Hall identified and challenged seven 
myths about formal methods.1

Formality for Understanding 
One class participant shared his experi-
ence using a formal method in an agile 
setting: 

When a change was needed in a 
particularly confusing part of the 
code which had previously been 
written with flags, conditionals, and 
loops, we created a state diagram 
so we could understand what was 
going on. Discussion about how to 
ensure this documentation was avail-

able for future changes led to the 
idea of having the code automatical-
ly consume the state machine specifi-
cation. We created a DSL to capture 
our specification, which was checked 
for self-consistency and completeness 
upon loading. Offline checking for 
unreachable states, traps, and dead-
locks was also envisioned.

This change helped both understanding 
and accuracy.
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which enables immediate use. This sug-
gests that although the myths persist, belief 
is waning. Thus,

Myths 3 and 7: Busted by masking the formality of formal 
methods.

Formal Methods’ Demand  
for Mathematical Maturity
Formal methods are commonly taught in 
computer science and software engineer-
ing programs, both graduate and under-
graduate. The IEEE and ACM curriculum 
guidelines for software engineering recom-
mend topics in mathematics and formal 
methods. At Carnegie Mellon, one of five 
core courses in the Master of Software 
Engineering program is devoted to formal 
methods, and the computer science under-
graduate degree requires an introduction 
to formal methods. These courses empha-
size selecting appropriate formal methods 
for a given problem as a key to success.

On the basis of personal experience, we 
believe students should study set theory, 
combinatorics, elementary graph theory, 
predicate logic, and state machines. Al-
though some current formal methods, 

such as SAL and JML, require signifi-
cantly less mathematical sophistication 
than earlier methods, selecting a method 
still requires critical judgment and some 
degree of mathematical maturity—some-
one who understands the choices and their 
ramifications.

We still see resistance to mathematical 
techniques among software developers, per-
haps because they lack appropriate mathe-
matical education, perhaps because mathe-
matics retains a special mystique. Although 
the belief in Myth 4 is diminishing, it still 
persists. Thus,

Myth 4: Plausible because appropriate selection requires 
some mathematical maturity

Formal Methods  
in Agile Practices
Agile methods are one of the more in-
teresting development philosophies to 
emerge in the last 20 years. Although at 
first glance, agile and formal methods 
seem incompatible, we see many oppor-
tunities to combine them effectively. Most 
important, formal methods enable ef-
fective communication (see the “Formal 

Methods for Communication” sidebar) 
and user involvement. Developers com-
monly use DSLs to specify aspects of sys-
tems in notations that closely match the 
systems’ problem domain. Developers can 
use these specifications for code genera-
tion or runtime configuration (see “For-
mality for Understanding” sidebar).

By promoting direct implementation 
as well as developer and customer com-
prehension, these formal methods let sys-
tems evolve by simply modifying their do-
main-based descriptions, which improves 
communication and reduces costs. Their 
simplicity and understandability make 
them palatable to developers and users 
whose belief in myths 5 and 6 might per-
sist. Thus,

Myths 5 and 6: Partially busted through language support.

M yths have an enduring appeal 
that resists objective evidence. 
People see relationships in 

data where none exist through a process 
psychologists call “illusory correlation.” 
These biased observations reinforce the 

Cost-Effective Abstractions
Cost-effective formal methods must match notations to prob-
lems. One class participant shared the challenges he faced in 
using a formal method that mostly matched the problem do-
main but lacked the ability to express a few important temporal 
properties concisely and in a readable manner: 

We found that predicate logic allows us to elegantly specify 
most of the input validation requirements for our line of 
Web applications for electronic data capture. In our speci-
fications, we list the data entry failure cases for a given set 
of input fields on a form along with the corresponding error 
message to display. [For example:]

When Product = Shirt AND Inseam <> NULL
 Error (“Inseam must be blank when Product is ‘Shirt.’”)
When EXISTS (PreviousOrder) WHERE
  PreviousOrder.Cust = ThisOrder.Cust AND
  PreviousOrder.ShipDate = ThisOrder.ShipDate
 Warn (“Another order ({PreviousOrder.OrderID}) 
  is already scheduled to ship on this date.”)

However, we found a few complex requirements difficult to 
express concisely—making them equally hard to read with-

out accompanying prose. The following example describes 
a date consistency check when out-of-order report submis-
sions are allowed. It states that users should be warned 
whenever the report being submitted ends after a report for 
a later cycle starts; the message should reference the earli-
est reporting period with the earliest start date.

When EXISTS (FutureReport) WHERE
  FutureReport.CycleNumber > ThisReport.CycleNumber AND
  FutureReport.StartDate < ThisReport.EndDate AND
  [NOT EXISTS (OtherFutureReport) WHERE
   OtherFutureReport.CycleNumber > ThisReport.CycleNumber AND 
   OtherFutureReport.StartDate < FutureReport.StartDate]
 Warn (“The end date for this report is later than the start date of a future report  
 ({FutureReport.StartDate} for cycle {Min(FutureReport.CycleNumber)}).”)

It took some time—perhaps longer than necessary—to 
specify this requirement and for the implementer to under-
stand it. Although referencing the correct unique date and 
cycle number is clarified—allowing users to more read-
ily explain or investigate the report date inconsistencies—
it could be more cost-effective if it is clearly explained in 
prose.
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myths despite objective evidence to the 
contrary.

Sometimes changing the story behind 
a myth changes people’s attachment to 
the myth. Consider the wolf, often cast in 
myths as a fierce and aggressive animal, 
much to be feared. Domesticating the wolf 
gave us “man’s best friend.” This domes-
tication produced St. Bernards (moun-
tain rescue), Doberman pinschers (pro-
tection), golden retrievers (companions 
and guides), and a variety of hunting and 
working breeds. Both wolves and dogs are 
canines, but the wolf’s mythic stature gave 
way to the dramatically different image of 
a companion and house pet.

We’ve seen a similar domestication of 
formal methods over the past 20 years. 
Formal methods that were once wild and 
ferocious have been tamed for use in a va-
riety of specific ways. Some folks say that 
when a formal method is automated or 
embedded in a tool, it’s no longer a true 
formal method; in other words, the do-
mestication of the formal method has bred 
out its ferocity. Without accepting the 
identification of formality with ferocity, 
we note that such automation might sacri-
fice generality in favor of power for a spe-
cific task. But is our objective to preserve 
the ferocity of the wild methods, or is it 
to tame their complexity in the service of 
software developers?
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Formal Methods for Communication
One class participant shared his experi-
ences working on a large US Depart-
ment of Defense system modeled in 
xUML:

Using xUML, developers defined 
a single, verified (through simula-
tion), platform-independent model 
that each service branch generated 
into a platform-specific implementa-
tion. Although not an agile project, 
the system’s experimental nature 

required time-boxed releases to en-
able close communication among 
customers and developers. For sev-
eral months the model served as the 
primary medium of communication 
among customers and developers. 
Customers, who were domain ex-
perts but neither seasoned program-
mers nor mathematicians, found it 
easier to understand the model and 
troubleshoot problems than code 
from previous systems.
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