
60 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

update

Participants’ backgrounds included embedded
real-time systems, medical informatics, enterprise
applications, development tools, military systems,
business process management, Web applications
and services, and desktop applications. Most had
used UML, and three had used more-formal meth-
ods in industrial settings, including executable
UML (xUML), Promela, the Software Require-
ments Engineering Methodology (SREM), the
Distributed Computing Design System (DCDS),
predicate logic, and language-based type systems
for customized analysis.

The Power of Myth
A myth isn’t simply a refutable claim; in its pur-
est form it’s a heroic narrative illuminating the
human condition. It can establish a model for
behavior and uphold social traditions. Myths
have enduring appeal—people want to believe in
them, notwithstanding contradictory evidence.
This “wish to believe” elevates a myth from a
simple, objectively testable statement to a phe-
nomenon whose appeal and persistence require
interpretation.

During our discussions it became clear that the
space of formal methods is much richer now than
when Hall identified the seven myths. So, we take
formal methods to include any methods based
on discrete symbolic systems that allow precise
specification and analysis of software. This inter-
pretation includes not only formal logics, but also
notations such as Spec#, the Java Modeling Lan-
guage (JML), the Standard Annotation Language
(SAL), and domain-specific languages (DSLs). In-
deed, certain UML diagrams can be formal meth-
ods when used for analysis as well as description.

With this broader view, four themes emerged
in our discussions:

I n spring 2009 a graduate seminar at Carnegie Mellon discussed a set of significant
software engineering papers, including many of the IEEE Software “Top Picks.”
This article summarizes our discussion of Anthony Hall’s 1990 “Seven Myths of
Formal Methods” (see Figure 1).1 The discussion group included 14 students and

faculty. Three participants had over nine years of industrial software development experi-
ence, nine had two to five years, and two had less than two years.

Ciera Jaspan, Michael Keeling, Larry Maccherone, Gabriel L. Zenarosa,
and Mary Shaw, Carnegie Mellon University Institute for Software Research

Software Mythbusters
Explore Formal Methods

2 5 t h - ann iver s ar y t op p i c ks

Anthony Hall’s “Seven Myths of Formal Methods” (Sept./Oct 1990, pp.
11–19) is the subject of the final installment of the updates on the seven
distinguished articles selected from the Software editorial boards’ 25th-
anniversary top picks list. We decided to try a different format for this
update. When Mary Shaw told me about her plan to cover Hall’s piece
in her graduate course, I asked Shaw and her students and colleagues at
Carnegie Mellon University’s Institute for Software Research to expand and
refocus their discussion with a slant to produce this update. Hall graciously
provided them with irreplaceable guidance direct from the source. Here’s
the result of that stimulating intellectual effort.
 —Hakan Erdogmus, Editor in Chief

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 17, 2009 at 19:42 from IEEE Xplore. Restrictions apply.

 November/December 2009 I E E E S O F T W A R E 61

 ■ Formal methods for both under-
standing and precision. We see for-
mal methods used in situations where
the primary benefit is for precisely
understanding and specifying require-
ments. We’ve benefited from this type
of use even without proofs or model
checking.

 ■ Formal methods embedded in tools
and languages. Industry is adopting
formal methods that are embedded in
tools or languages; developers who use
these tools don’t always recognize the
connection to formal methods.

 ■ Formal methods’ demand for mathe-
matical maturity. Embedding formal-
isms in tools or languages reduces the
need for certain mathematical skills,
but developers still need some math-
ematical maturity to effectively apply
many formal methods.

 ■ Formal methods in agile practices.
The desire for agility might appear to
conflict with formal methods, but our
experience with using them to enable
understanding, communication, and
system evolvability shows otherwise.

We discuss how each of these themes
reflects the current status—both the valid-
ity and the perception—of Hall’s myths.

Formal Methods for Both
Understanding and Precision
In our experience, emerging formal meth-
ods continue to debunk the myths of
guaranteeing software perfection and
proving total program correctness by fol-
lowing one of two philosophical paths:

 ■ They allow for more precise under-
standing of software requirements.
Our experiences continue to reaffirm
Hall’s observations—that even with-
out verification, the mere act of for-
mally specifying requirements can
make crucial distinctions early in the
process. DSLs, for instance, provide
precise formalisms that help achieve

understanding, even before automatic
verification (see the “Formality for Un-
derstanding” sidebar).

 ■ They can make strong guarantees
about narrow aspects of software.
Spec# and SAL both allow develop-
ers to prove specific, narrow classes
of assertions, but they make no claims
about other aspects of program cor-
rectness. This targeting makes the
techniques highly adoptable and
cost-effective.

Our observation of the increasing in-
dustry use of formal methods provides
growing evidence that refutes myths 1 and
2. We believe the key to successful adop-
tion of formal methods is opportunistic
application (see the “Cost-Effective Ab-
stractions” and “Formality for Under-
standing” sidebars). Which parts of the
software are most critical? Which are used
most? Where are the greatest degrees of
uncertainty?

Myths 1 and 2 seem to arise from our
desire for the simplicity of a single formal-
ism for specifying all aspects of a system
and for the reassurance that proof would
provide. Such generality adds power

but demands mathematical sophistica-
tion. Specification without verification
or narrowly focused techniques can skirt
around these myths. Thus,

Myths 1 and 2: Partially busted by continued and emerging
uses of formal methods.

Formal Methods Embedded
in Tools and Languages
We hear developers say they wouldn’t use
formal methods on a serious project, but
these same developers create UML state
diagrams or use language-based verifica-
tion such as SAL. Unlike older approaches,
these methods mask the underlying for-
mality: the formal notations are embedded
in tools, then marketed as diagramming
techniques, languages, or lightweight veri-
fiers. This maturation of the tools relieves
humans of tedious, error-prone work.

Delving into our own reactions to
myths 3 and 7, we realized that belief in
these myths stems from the term “formal
methods” itself; we don’t see formal meth-
ods’ mythic power extending to specific
tools such as Microsoft’s Static Driver Ver-
ifier and SAL. These tools hide their for-
mality behind automation and abstraction,

Myth 1: Formal methods can guarantee that software is perfect.
Myth 2: Formal methods are all about program proving.
Myth 3: Formal methods are only useful for safety-critical systems.
Myth 4: Formal methods require highly trained mathematicians.
Myth 5: Formal methods increase the cost of development.
Myth 6: Formal methods are unacceptable to users.
Myth 7: Formal methods are not used on real, large-scale software.

Figure 1. The Seven Myths. In “Seven
Myths of Formal Methods,” Anthony
Hall identified and challenged seven
myths about formal methods.1

Formality for Understanding
One class participant shared his experi-
ence using a formal method in an agile
setting:

When a change was needed in a
particularly confusing part of the
code which had previously been
written with flags, conditionals, and
loops, we created a state diagram
so we could understand what was
going on. Discussion about how to
ensure this documentation was avail-

able for future changes led to the
idea of having the code automatical-
ly consume the state machine specifi-
cation. We created a DSL to capture
our specification, which was checked
for self-consistency and completeness
upon loading. Offline checking for
unreachable states, traps, and dead-
locks was also envisioned.

This change helped both understanding
and accuracy.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 17, 2009 at 19:42 from IEEE Xplore. Restrictions apply.

62 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

which enables immediate use. This sug-
gests that although the myths persist, belief
is waning. Thus,

Myths 3 and 7: Busted by masking the formality of formal
methods.

Formal Methods’ Demand
for Mathematical Maturity
Formal methods are commonly taught in
computer science and software engineer-
ing programs, both graduate and under-
graduate. The IEEE and ACM curriculum
guidelines for software engineering recom-
mend topics in mathematics and formal
methods. At Carnegie Mellon, one of five
core courses in the Master of Software
Engineering program is devoted to formal
methods, and the computer science under-
graduate degree requires an introduction
to formal methods. These courses empha-
size selecting appropriate formal methods
for a given problem as a key to success.

On the basis of personal experience, we
believe students should study set theory,
combinatorics, elementary graph theory,
predicate logic, and state machines. Al-
though some current formal methods,

such as SAL and JML, require signifi-
cantly less mathematical sophistication
than earlier methods, selecting a method
still requires critical judgment and some
degree of mathematical maturity—some-
one who understands the choices and their
ramifications.

We still see resistance to mathematical
techniques among software developers, per-
haps because they lack appropriate mathe-
matical education, perhaps because mathe-
matics retains a special mystique. Although
the belief in Myth 4 is diminishing, it still
persists. Thus,

Myth 4: Plausible because appropriate selection requires
some mathematical maturity

Formal Methods
in Agile Practices
Agile methods are one of the more in-
teresting development philosophies to
emerge in the last 20 years. Although at
first glance, agile and formal methods
seem incompatible, we see many oppor-
tunities to combine them effectively. Most
important, formal methods enable ef-
fective communication (see the “Formal

Methods for Communication” sidebar)
and user involvement. Developers com-
monly use DSLs to specify aspects of sys-
tems in notations that closely match the
systems’ problem domain. Developers can
use these specifications for code genera-
tion or runtime configuration (see “For-
mality for Understanding” sidebar).

By promoting direct implementation
as well as developer and customer com-
prehension, these formal methods let sys-
tems evolve by simply modifying their do-
main-based descriptions, which improves
communication and reduces costs. Their
simplicity and understandability make
them palatable to developers and users
whose belief in myths 5 and 6 might per-
sist. Thus,

Myths 5 and 6: Partially busted through language support.

M yths have an enduring appeal
that resists objective evidence.
People see relationships in

data where none exist through a process
psychologists call “illusory correlation.”
These biased observations reinforce the

Cost-Effective Abstractions
Cost-effective formal methods must match notations to prob-
lems. One class participant shared the challenges he faced in
using a formal method that mostly matched the problem do-
main but lacked the ability to express a few important temporal
properties concisely and in a readable manner:

We found that predicate logic allows us to elegantly specify
most of the input validation requirements for our line of
Web applications for electronic data capture. In our speci-
fications, we list the data entry failure cases for a given set
of input fields on a form along with the corresponding error
message to display. [For example:]

When Product = Shirt AND Inseam <> NULL
 Error (“Inseam must be blank when Product is ‘Shirt.’”)
When EXISTS (PreviousOrder) WHERE
 PreviousOrder.Cust = ThisOrder.Cust AND
 PreviousOrder.ShipDate = ThisOrder.ShipDate
 Warn (“Another order ({PreviousOrder.OrderID})
 is already scheduled to ship on this date.”)

However, we found a few complex requirements difficult to
express concisely—making them equally hard to read with-

out accompanying prose. The following example describes
a date consistency check when out-of-order report submis-
sions are allowed. It states that users should be warned
whenever the report being submitted ends after a report for
a later cycle starts; the message should reference the earli-
est reporting period with the earliest start date.

When EXISTS (FutureReport) WHERE
 FutureReport.CycleNumber > ThisReport.CycleNumber AND
 FutureReport.StartDate < ThisReport.EndDate AND
 [NOT EXISTS (OtherFutureReport) WHERE
 OtherFutureReport.CycleNumber > ThisReport.CycleNumber AND
 OtherFutureReport.StartDate < FutureReport.StartDate]
 Warn (“The end date for this report is later than the start date of a future report
 ({FutureReport.StartDate} for cycle {Min(FutureReport.CycleNumber)}).”)

It took some time—perhaps longer than necessary—to
specify this requirement and for the implementer to under-
stand it. Although referencing the correct unique date and
cycle number is clarified—allowing users to more read-
ily explain or investigate the report date inconsistencies—
it could be more cost-effective if it is clearly explained in
prose.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 17, 2009 at 19:42 from IEEE Xplore. Restrictions apply.

 November/December 2009 I E E E S O F T W A R E 63

myths despite objective evidence to the
contrary.

Sometimes changing the story behind
a myth changes people’s attachment to
the myth. Consider the wolf, often cast in
myths as a fierce and aggressive animal,
much to be feared. Domesticating the wolf
gave us “man’s best friend.” This domes-
tication produced St. Bernards (moun-
tain rescue), Doberman pinschers (pro-
tection), golden retrievers (companions
and guides), and a variety of hunting and
working breeds. Both wolves and dogs are
canines, but the wolf’s mythic stature gave
way to the dramatically different image of
a companion and house pet.

We’ve seen a similar domestication of
formal methods over the past 20 years.
Formal methods that were once wild and
ferocious have been tamed for use in a va-
riety of specific ways. Some folks say that
when a formal method is automated or
embedded in a tool, it’s no longer a true
formal method; in other words, the do-
mestication of the formal method has bred
out its ferocity. Without accepting the
identification of formality with ferocity,
we note that such automation might sacri-
fice generality in favor of power for a spe-
cific task. But is our objective to preserve
the ferocity of the wild methods, or is it
to tame their complexity in the service of
software developers?

Acknowledgments
We thank Anthony Hall for his willingness
to let us comment on the “Seven Myths of
Formal Methods” and for his suggestion to
consider the nature of myths.

Reference
 1. A. Hall, “Seven Myths of Formal Methods,”

IEEE Software, vol. 7, no. 5, 1990, pp. 11–19.

For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Formal Methods for Communication
One class participant shared his experi-
ences working on a large US Depart-
ment of Defense system modeled in
xUML:

Using xUML, developers defined
a single, verified (through simula-
tion), platform-independent model
that each service branch generated
into a platform-specific implementa-
tion. Although not an agile project,
the system’s experimental nature

required time-boxed releases to en-
able close communication among
customers and developers. For sev-
eral months the model served as the
primary medium of communication
among customers and developers.
Customers, who were domain ex-
perts but neither seasoned program-
mers nor mathematicians, found it
easier to understand the model and
troubleshoot problems than code
from previous systems.

About the Authors
Ciera Jaspan is a graduate student in the Software Engineering PhD program at Carnegie
Mellon University. Her research interests include software frameworks, cost-effective specification and
program analysis systems, and software engineering education. She was previously a lead developer
at Vizolutions, working on oil borehole surveying software and content management systems. Jaspan
has a BS in software engineering from California Polytechnic State University, San Luis Obispo. She’s a
member of the ACM. Contact her at ciera@cmu.edu.

Michael Keeling is a graduate student in the software engineering MS program at Carnegie
Mellon University. His interests include the pragmatic application of software engineering methods,
software architecture and design, and the human aspects of software engineering. He was previously a
systems analyst for Black Knight Technology, where he worked on a variety of software projects includ-
ing analysis tools, real-time systems, and Web-based applications. Keeling has a BS in computer science
from the College of William and Mary. Contact him at mkeeling@neverletdown.net.

Larry Maccherone is a graduate student in the software engineering PhD program at Carnegie
Mellon University. His research interests include agile measurement, analysis, and visualization for
software and systems engineering. He was previously chief engineer and CEO of Comprehensive Com-
puter Solutions, a systems integrator for factory floor automation, and founded QualTrax, which creates
software for measurement and management for ISO-9000 and other standards compliance. Contact him
at larry@maccherone.com.

Gabriel L. Zenarosa is a graduate student in the industrial engineering PhD program at the
University of Pittsburgh. His research interests include software test automation, formal methods,
and software process improvement. He was previously a software quality assurance test engineer
at the University of Pittsburgh National Surgical Adjuvant Breast and Bowel Project, an independent
software process consultant, a client support engineer at Nyfix, and a software development consultant.
Zenarosa has an MS in software engineering from Carnegie Mellon University and an MS in computer
science from Columbia University. He’s a member of the ACM. Contact him at gzen@cs.cmu.edu.

Mary Shaw is the Alan J. Perlis Professor of Computer Science at Carnegie Mellon University. Her
research interests are value-based software engineering, everyday software, software engineering
research paradigms, and software architecture. Shaw has a PhD in computer science from Carnegie
Mellon University. She’s a fellow of the ACM, IEEE, and American Association for the Advancement of
Science. Contact her at mary.shaw@cs.cmu.edu.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 17, 2009 at 19:42 from IEEE Xplore. Restrictions apply.

