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Abstract

In this paper, we present a new framework for evaluating the performance char-
acteristics of block cipher structures composed of S-boxes and Maximum Distance
Separable (MDS) mappings. In particular, a novel performance metric is introduced
and applied to nested Substitution-Permutation Networks (SPNs) and Feistel networks
with round functions composed of S-boxes and MDS mappings. Within each cipher
structure, many cases are considered based on two types of S-boxes (4×4 and 8×8) and
parameterized MDS mappings. In our study of each case, the performance is analyzed
based on a table lookup implementation. Although this implementation method is the
typical approach used for software realization, it may also be applicable to hardware
realization in some instances. Cipher security, in the form of resistance to differential
and linear attacks, is applied as a basis which is used to normalize the performance
in the analysis. Because the discussed structures are similar to many existing ciphers
such as AES and Camellia, the analysis provides a meaningful mechanism for seeking
efficient ciphers through a wide comparison of security, performance, and implementa-
tion methods.

Keywords: encryption, cipher, cryptography, key, security, cryptanalysis, software.

1 Introduction

A block cipher is an algorithm to encrypt constant-length blocks of data (plaintext) to a

random-looking format of the same length (ciphertext) by using another block of data called

∗This work was undertaken during the first author’s graduate study at Memorial University of Newfound-
land and funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada.
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a key [1]. In a symmetric key block cipher, the same key is used for both encryption and

decryption. Since decryption is computationally difficult without knowledge of the key,

for secure communication applications, encrypted data can be protected from unwanted

eavesdropping as long as the key is kept private to only the transmitter and receiver. A

block cipher (usually referring to a symmetric key block cipher) is typically composed of

several rounds of simple cryptographic operations. The cipher key is expanded to a number

of subkeys by a key schedule and the subkeys are mixed with data blocks in different rounds

typically by bitwise eXclusive-ORs (XORs). Because of its high performance, the block

cipher is now widely used in various security applications [2] such as basic data encryption

in Internet protocols (IPsec and SSL/TLS), wireless communications, and digital rights

management.
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Figure 1: A Substitution-Permutation Network
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Figure 2: A Feistel Network

In a symmetric key block cipher, the concepts of confusion and diffusion are vital to

security [3]. The Substitution-Permutation Network (SPN)1 and the Feistel network are two

typical architectures used to achieve this [1]. During encryption using an SPN cipher, as

1For historical reasons, these ciphers are referred to as Substitution-Permutation Networks although the
permutation layer is now typically replaced by an invertible linear transformation layer to improve resistance
to differential and linear cryptanalysis [4].
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Figure 1 illustrates, typically the input data of each round is mixed with subkey bits before

entering the Substitution-boxes (S-boxes). Each S-box performs a nonlinear mapping on

small sub-blocks thus creating confusion in the data. An m×n S-box performs a mapping from

m input bits to n output bits. The outputs of S-boxes are modified by a linear transformation

whose purpose is to generate a diffusion of statistical effects in the data. The decryption is

composed of the inverse linear transformations, the inverse S-boxes, and the key mixtures

in reverse order. To maintain similar dataflow in encryption and decryption, SPNs typically

omit the linear transformation in the last round of encryption.

As the other typical architecture of block ciphers, the Feistel network has been widely

used and studied. In each round i of a Feistel network as shown in Figure 2, the right

half of the round input (denoted as Xi) goes through function F parameterized by subkey

Ki. Also called the round function, F often consists of key mixture, S-boxes, and a linear

transformation [1]. The output of F, denoted as Yi, is XORed bit-by-bit with the left half

of the round input Xi−1. The round output is then derived by swapping Xi and Xi−1 ⊕ Yi,

where “⊕” represents bitwise XOR.

As the only nonlinear component in both cipher architectures, the S-box is well de-

signed to meet many security requirements. Different S-boxes in a cipher can have different

mappings or one mapping can be used for all S-boxes in a cipher. In many recently pro-

posed block ciphers, the outputs of a layer of parallel S-boxes are passed through a linear

transformation based on a Maximum Distance Separable (MDS) code [5].

Recent initiatives in cryptography have focussed on the development of new block cipher

standards. As the successor of the Data Encryption Standard (DES) [6], the SPN cipher

Rijndael [7] was selected by the U.S. National Institute of Standards and Technology as the

Advanced Encryption Standard (AES) [8] in November 2001. As a Feistel network proposed

in [9], Camellia was included together with AES into the NESSIE2 portfolio of 128-bit block

ciphers in February 2003 [10]. Consequently, AES and Camellia are two important examples

of ciphers that are expected to be widely used in cryptographic applications of the future.

In this paper, a novel performance metric is presented which allows us to consider the

2New European Schemes for Signatures, Integrity, and Encryption
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performance of a cipher structure as the combination of security and efficiency. Many param-

eterized cases of 128-bit block ciphers are studied including cases which correspond closely

to recently proposed ciphers such as AES and Camellia. The security of each cipher case is

evaluated by considering the resistance to differential cryptanalysis [11] and linear cryptanal-

ysis [12]. The software efficiency is mainly evaluated through a table-lookup implementation,

where the number of table lookups is used as the time measure and the table size required is

the space measure. A table-lookup implementation method is selected because it is usually

efficient and such a method makes it possible to compare performance generally across differ-

ent cipher configurations and different computing platforms. The efficiencies of other imple-

mentations (e.g., bitslicing, xtime [7], and power-index exchange) are also briefly examined

in this paper. The significance and novelty of this work is that it facilitates the performance

characterization of AES, Camellia, and many other existing or prospective ciphers from a

cryptographic view. Our analysis is focused on software-oriented implementation on typical

computer systems. However, similar techniques can be applied to hardware implementations

where a table lookup method is used as the basis for the implementation.

2 Background

2.1 Block Ciphers

AES is an SPN with a block size of 128 bits. The key size can be 128, 192, and 256 bits,

which requires 10, 12, and 14 iterations of the round structure, respectively. Each round

of AES consists of a layer of 16 parallel 8×8 S-boxes, a linear transformation composed

of the shifting of bytes and MDS mappings, and key mixture using XORs. The ciphers

SHARK [13], Square [14], Anubis [15], Khazad [16], and Hierocrypt (including Type I, Type

II, and Hierocrypt-3) [17, 18] are further examples of SPNs based on 8×8 S-boxes. Serpent [19]

has a simple round structure based on small 4×4 S-boxes.

Camellia is an 18-round Feistel network for use with 128-bit keys or a 24-round Feistel

network for use with 192- or 256-bit keys. The round function of Camellia consists of key

mixture using XORs, 8 parallel 8×8 S-boxes, and a linear transformation. Camellia also
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contains input/output subkey mixtures and two logic functions every 6 rounds denoted as

FL and FL−1.

2.2 Differential and Linear Attacks

Differential cryptanalysis [11] and linear cryptanalysis [12] have been recognized as two of the

most fundamental security threats to block ciphers. Differential attacks are chosen-plaintext

attacks which exploit the statistical relation between the input difference and output differ-

ence of any two plaintext-ciphertext pairs. A difference is defined to be the bitwise XOR of

two vectors. For example, in an SPN cipher of R rounds, an attacker hopes to find a mapping

from some plaintext difference to some output difference of the (R−1)-th round, which occurs

with a significant probability p. With this mapping (called a differential), the attacker can

decrypt the corresponding ciphertexts one round with all possible key candidates of the last

round. By checking for which key candidate the output difference of the differential holds

for the calculated outputs of the (R−1)-th round most frequently, the valid key candidate

of the last round can be distinguished.

Linear attacks are known-plaintext attacks which exploit linear expressions (XOR sums)

consisting of a subset of input bits, output bits, and key bits. If all bit variables of a linear

expression are random, the probability that the linear approximation holds is 0.5 for all

plaintext-ciphertext pairs associated with the same cipher key. However, based on the cipher

structure, an attacker may find some linear approximations exist with a probability quite

different from 0.5. A possible attacking method is to find such a linear expression consisting

of bit variables of the plaintext and output of the (R−1)-th round. Then the corresponding

ciphertexts are decrypted one round with all possible candidates of the last round subkey.

By checking for which key candidate the linear expression holds true with a probability bias

significantly different than 0.5, the attacker can distinguish the valid key candidate from

others.

For differential and linear cryptanalysis, once the last subkey is distinguished, it is

straightforward for the attacker to use the same technique to determine key bits from the

(R−1)-th round, the (R−2)-th round, etc.. To thwart these two attacks, cipher designers
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construct ciphers so that there are no large differential probabilities and there are no large

biases from 0.5 for the probability that a linear expression holds. To achieve this, no highly

likely characteristics should exist in the cipher. A differential characteristic of γ rounds is a

sequence denoted as (∆Z0, ∆Z1, · · · , ∆Zi, · · · , ∆Zγ), where ∆Z0 is the input difference of the

first round, ∆Zγ is the output difference of the last round, and ∆Zi is the output difference

of the i-th round and also the input of the (i+1)-th round (0 < i < γ). Since any linear

approximation of a data block or vector can be regarded as its inner product with a masking

bit vector over GF(2), a linear characteristic is a sequence of masking values denoted as

(ΓZ0, ΓZ1, · · · , ΓZi, · · · , ΓZγ), where ΓZ0 is the masking value for the first round input,

ΓZγ is that for the last round output, and ΓZi is that for the i-th round output and also

the (i+1)-th round input. An S-box is active if it is involved in the differential (respectively,

linear) characteristic in a differential (respectively, linear) attack.

It should be noted that differential and linear cryptanalysis are practical approximations

of more powerful theoretical attacks. Also depending on the specific cipher design, it is

possible for some ciphers to be more vulnerable to other attacks, such as integral attacks [7].

2.3 Properties of S-boxes

The properties of the S-boxes in a cipher are important in the consideration of a cipher’s

security against differential and linear attacks. An m×n S-box, S, performs a mapping from

an m-bit input X to an n-bit output Y . Considering all S-boxes, {Si}, in a cipher, the

maximum differential probability ps is defined [11] as:

ps , max
i

max
∆X 6=0,∆Y

prob{Si(X) ⊕ Si(X ⊕ ∆X) = ∆Y }

where “⊕” denotes a bitwise XOR and “∆X” and “∆Y ” denote bitwise XOR differences.

The maximum linear probability3 is defined [12] as:

qs , max
i

max
ΓY 6=0,ΓX

(2×prob{X · ΓX = Si(X) · ΓY } − 1)2

where “·” denotes a bitwise inner product and ΓX and ΓY denote masking variables. In this

paper, all 4×4 S-boxes are assumed to satisfy ps, qs ≤ 2−2 and all 8×8 S-boxes are assumed to

3The terminology used here is the same as defined in [9, 20, 21] although it should be noted that it does
not represent a true probability.
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satisfy ps, qs ≤ 2−6. Many proposed ciphers such as Serpent, AES, Hierocrypt, and Camellia

have S-boxes satisfying these requirements; others such as Anubis and Khazad have slightly

higher ps and qs. The probability of a differential (respectively, linear) characteristic is

upper bounded by pna

s (respectively, qna

s ), where na is the number of active S-boxes in the

characteristic used in attacking the cipher.

Note that all S-boxes of a cipher can have the same mapping as is the case in AES.

Alternatively, different mappings can be chosen for the S-boxes in one round as in DES or

for S-boxes in different rounds as in Serpent.

2.4 MDS Mappings

A linear code over Galois field GF(2n) is denoted as a (k, m, d)-code [5], where k is the

symbol length of the encoded message, m is the symbol length of the original message, and

d is the minimal symbol distance between any two encoded messages. An (k, m, d)-code is

MDS if d = k−m+1. In particular, a (2m, m, m+1)-code with generation matrix G = [I|C]

where C is an m×m matrix and I is an identity matrix, determines an MDS mapping from

the input X to the output Y through matrix multiplication over a Galois field as follows:

fM : X 7→ Y = C · X (1)

where

X =







X0
...

Xm−1






, Y =







Y0
...

Ym−1






, C =







C0,0 . . . C0,m−1
...

. . .
...

Cm−1,0 . . . Cm−1,m−1






.

Every entry in X ,Y , and C is an element in GF(2n).

When an invertible linear transformation f : X 7→ Y is used in a cipher, the avalanche

effect which creates resistance to differential and linear attacks may be measured with its

branch number B, which is defined [22] as:

B = min
X 6=0

{H(X ) + H(Y)}

where H(X ) and H(Y) denote the number of nonzero elements in X and Y , respectively. It

is proved that an MDS mapping as defined in (1) has an optimal branch number B equal to

m + 1.
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2.5 Nested SPNs

The concept of a nested SPN was first introduced in [17]. In a nested SPN, S-boxes may be

viewed at different levels: each S-box at a higher level is actually a small SPN at the lower

level. In this paper, we examine nested SPNs which have the following properties:

• The structure contains just two levels of SPNs. A higher level S-box consists of a lower

level SPN; a lower level S-box is an actual 4×4 or 8×8 S-box.

• The linear transformation layers in both levels are based on MDS codes, denoted as

MDSH for the higher level and MDSL for the lower level.

• The subkey mixture occurs directly before each layer of actual (i.e., lower-level) S-

boxes. One additional subkey mixture is used to replace the linear transformation at

the end of the cipher structure. The subkey bits are mixed with data bits by XOR

operations.

• A “round” refers to the combination of the subkey mixture, lower-level S-box layer,

and subsequent MDSL or MDSH linear transformation.

As Figure 3 shows, MDSL is an MDS mapping from a (2m1, m1, m1 +1)-code over GF(2n1),

while MDSH is an MDS mapping from a (2m2, m2, m2+1)-code over GF(2n2). The variables

m1, m2, n1, and n2 represent parameter choices for a nested SPN.

In the most straightforward case, the output of each S-box forms one source symbol for

the MDS mapping, and each encoded symbol forms the input of a subsequent S-box at the

same level. So the size of an S-box is n1 bits at the lower level and n2 bits at the higher level.

This leads to n2 = n1m1. Thus, the block size of the SPN is n1m1m2. For example, the

128-bit block cipher Hierocrypt (Type I) [17] is described as the iteration of such a 4-round

structure where n1 = 8, n2 = 32, and m1 = m2 = 4.

At each level of a nested SPN, the branch number of the MDS layer determines the

minimum number of active S-boxes in differential or linear cryptanalysis. For 4 rounds of

a nested SPN, an active S-box at the higher level contains at least m1 + 1 active S-boxes
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Figure 3: Basic 2-level Nested SPN (4 Rounds)

at the lower level. Since there are at least m2 + 1 active S-boxes at the higher level, the

minimum number of active lower-level S-boxes is (m1 + 1)(m2 + 1). Therefore, the security

against differential and linear attacks is evaluated as the following:

Theorem 1 (deduced from [13, 14, 7, 17]): With the assumption that all S-box approxi-

mations involved in linear and differential cryptanalysis are independent, for 4r rounds of

a nested SPN the maximum differential characteristic probability (denoted by Pd) is upper

bounded by p
r(m1+1)(m2+1)
s and the maximum linear characteristic probability (denoted by Pl)

is upper bounded by q
r(m1+1)(m2+1)
s .

To attack a cipher using differential cryptanalysis, the number of chosen plaintexts is

expected to be in the order of 1/Pd. Similarly, for linear cryptanalysis, the number of known

plaintexts is expected to be in the order of 1/Pl. Hence, the upper bounds of Pd and Pl

provided in Theorem 1 indicate the lower bounds of required workload for attacking 4r+1

rounds of the cipher based on a 4r round characteristic.

The basic operations in MDS codes are multiplications and additions in finite fields.

When n2 is large, operations over GF(2n2) are inefficient and MDSH can be costly in com-

putation. An alternative method to obtain the same branch number is to concatenate several
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parallel MDS codes over a smaller finite field. The concatenated codes may be designed to

facilitate a bitslice implementation.

Theorem 2 [17]: An MDS mapping defined by a (2m, m, m+1)-code over the nl-bit symbol

set can be constructed by concatenating l mappings defined by a (2m, m, m+1)-code over the

n-bit symbol set, where l can be any positive integer.

For the example illustrated by Figure 3, the MDSH mapping is defined as a (2m2, m2, m2+

1)-code over GF(2n2) where n2 = m1n1. We refer to this as the basic MDSH layer. To im-

prove the efficiency of the MDSH layer, instead of using the basic MDSH , according to

Theorem 2 we may consider equivalent MDSH layers constructed as l parallel MDS codes

with smaller field size of the form denoted as l× (2m2, m2, m2 + 1) over GF(2n2) where

n2 is now the smaller field size such that ln2 = m1n1. Obviously, the basic MDSH layer

corresponds to l = 1. For improved efficiency, we can let l > 1 and n2 < m1n1. For ex-

ample, l = m1 and n2 = n1 is equivalent to the basic MDSH layer but is composed of l

parallel (2m2, m2, m2 + 1)-codes over the smaller fields GF(2n1). Hence, the general relation

ln2 = m1n1 can be used to determine different cases of MDSH defined by the values of the

symbol size, n2, or the number of parallel MDS mappings, l. A similar approach can also be

applied to the MDSL layer. However, restrictions on values of n and m must be considered

for designing a (2m, m, m + 1)-code over GF(2n) such that 2m ≤ 2n+1 in order that it is

possible to construct an MDS code [5].

The 128-bit ciphers Square, AES, and Anubis can be regarded as the iterations of 4-

round nested SPNs where n1 = n2 = 8 and m1 = m2 = 4. The parameters of Hierocrypt

(Type II) are selected as n1 = 8, n2 = 4, and m1 = m2 = 4.

2.6 One Class of Feistel Network

Figure 4 illustrates one particular class of round function F used for Feistel networks (as

shown in Figure 2). Such a round function can be regarded as an SPN of one round with

a size equal to half of the cipher block size. The round function includes one layer of
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key mixture with Ki (i.e., bitwise XOR of Xi and Ki), one layer of invertible4 S-boxes for

substitution, and an MDS mapping layer as a linear transformation. If the MDS mapping

layer is constructed through concatenation of several small MDS mappings, it is necessary

to include a permutation of MDS symbols in the linear transformation in order to ensure

the avalanche effect.

In a Feistel network whose round function has an invertible linear transformation ap-

pended to a layer of S-boxes, it is proved in [21] that the number of active S-boxes in any

differential or linear characteristic of 4r rounds is lower bounded by r×B + br/2c, where B

is the branch number of the linear transformation and r is an integer. Therefore, we get:

Theorem 3 (deduced from [21]): For 4r rounds of a Feistel cipher with the round function

of Figure 4, the maximum differential characteristic probability Pd and maximum linear

characteristic probability Pl are upper bounded by p
r×B+br/2c
s and q

r×B+br/2c
s , respectively.

3 Methodology, Applicability, and Limitations

It is hard to generally compare software performance among different block ciphers. The

main difficulties are: (1) each cipher has its own security margin, (2) each implementation

method represents a tradeoff between memory and speed, (3) the number of clock cycles

required by one operation is determined by the platform, and (4) one specific instruction set

4Invertible S-boxes are used so that a bijective round function can be constructed, which achieves the
given upper bounds of maximal differential and linear probabilities faster in rounds than a general round
function [23].
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may facilitate some operation combinations (e.g., DSP processors can do multiplication and

accumulation using one single instruction). Considering the above difficulties, in order to

do a general comparison, we need to select a general and efficient method to implement all

the cipher cases in this paper. Moreover, a meaningful study of the performance of ciphers

should make comparisons between ciphers in consideration of a consistent security level.

The methodology in this paper is summarized by the following points:

• Table lookup method is selected for implementation. The number of table lookups is

used to evaluate efficiency and the table size is used to evaluate memory requirement.

It is assumed that the available registers in the processor are more than enough to

store all the table base addresses. (In practice, it is possible to minimize the number

of tables by using circulant matrices for MDS codes as is done in AES [7].)

• Differential and linear cryptanalysis are used for security evaluation. More specifically,

maximum differential and linear characteristic probabilities are deduced for each cipher

case. Side-channel attacks are not considered because, as discussed in [24], table lookup

implementation is not vulnerable to timing attacks and facilitates resistance against

power attacks by software balancing of the lookup address.

• Security and efficiency are considered together for performance comparison. As defined

in Section 4.2, a performance metric is used to show the security contribution provided

by each efficiency unit in a cipher.

The applicability of this methodology includes:

• Ciphers using S-boxes and linear transformations, such as MDS mappings. A large

set of recently proposed ciphers are covered, including SHARK, Square, AES, Anubis,

Khazad, Hierocrypt, Serpent, and Camellia. Actually, although the metric in this

paper is broadly applicable to any cipher that can have its security characterized on a

per round basis, the analysis is most obviously applicable to SPNs and Feistel ciphers.

It is particularly useful to consider these 2 classes to determine the various tradeoffs

in selecting cipher parameters such as S-box size and MDS field size.
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• Typical processors such as Pentium series and Alpha machines. Since parallelism in

processors is not considered, the analysis cannot be directly applied to processors with

parallel units such as the VLIW CPUs discussed in [25]. Because of the memory

requirements of the table lookup approach, the method has limited applicability to a

memory-restricted environment such as a smart card.

• No limitation on MDS codes. The elements in the generation matrix can be freely

selected to meet the MDS property. Some MDS codes (e.g., MixColumn in AES [7])

are optimized for xtime realization, while the majority are not (e.g., Hierocrypt’s MDS

mappings [17]).

• No limitation on key schedule. However, it is assumed that the key schedule is done

beforehand and all subkeys are stored in memory. Some ciphers can expand subkeys

on the fly to save memory but require more processing time during encryption.

• No limitation on the number of rounds. Many ciphers, such as AES and Camellia,

require different numbers of rounds for encryption when key lengths are changed. Our

metric considers the security contribution provided by each lookup, which is roughly in-

dependent on the number of rounds as will be demonstrated in Section 4.2. Thus, these

ciphers can be analyzed effectively and uniformly whatever key length and number of

rounds are selected.

The limitations of this methodology are:

• Although it is general and fast, the table lookup method might not always be the fastest

for specific processors. Some CPUs can combine data processing instructions with

shifts and rotates without a penalty, which may lead to a fast implementation using

the xtime operation [7] (i.e., one-bit left shifting followed by addition with the irre-

ducible polynomial) when the processor word is small. For example, in Rijndael’s AES

proposal [7], the xtime method is recommended for 8-bit processors while the table

lookup method is recommended for 32-bit processors.
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• The discrepancy of efficiency caused by different table sizes is ignored. A large table

causes more cache misses during addressing. On the other hand, a small table needs

additional bit manipulations for index preparation and output arrangement [26]. More-

over, it is also difficult to model cache misses across platforms with different cache sizes

and structures. The experimental results listed in Section 5 show that the effects of

this limitation are tolerable on the tested platforms.

4 Comparison of Software Performance

In this section, we present a detailed discussion of the performance comparison based on

table lookup implementations.

4.1 Table Lookup Implementations

The table lookup approach incorporates the S-boxes and the linear transformation into a

table that is then accessed to perform both operations. This approach has been used for

fast implementations of DES [27], AES [7], and Camellia [28]. Using this approach, the two

cipher structures discussed in the former section can be implemented efficiently in software

through table lookups, logic operations (e.g., XORs), and rotations. This paper analyzes

the efficiency of such fast implementations so that the memory and computational cost for

a cipher case can be estimated. Independent of the targeted machine, the space complexity

is evaluated as memory used for tables and the time complexity is evaluated by the number

of table lookups.

The table lookup approach is chosen for analysis because it is normally faster and more

general than other implementation approaches. A table lookup operation involves the reading

of data from memory and also encompasses other operations necessary for indexing such as

rotation and masking. Although the number of clock cycles to implement different operations

is machine dependent, using the number of lookups and the size of the tables is suitable for

determining a rough estimate of the time and space complexity of an efficient software

implementation.
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In software, regardless of the implementation approach, the S-box layer is typically done

by table lookups. An MDS mapping based on a (2m, m, m + 1)-code conceptually performs

a matrix multiplication over a Galois field, which requires m2 modular multiplications and

m(m−1) XORs on words that are size of Galois field elements. To bypass costly multiplica-

tions, we enlarge the S-box table such that the MDS mapping work is included in the table

lookups. This is the essence of the table lookup implementation. According to the size of

the S-boxes and the type of MDS mappings, any cipher case may select appropriate methods

as follows to generate lookup tables.

4.1.1 Cases with 8×8 S-boxes

The dataflow of a round in these cases involves the keyed input entering 8×8 S-boxes followed

by l mappings based on a (2m, m, m + 1)-code over GF(28). (The case of two concatenated

mappings over GF(24) will be discussed later.) To represent the operations mathematically,

we denote the input, output, subkey, and MDS generation matrix as {Ai}, {Ei}, {Ki}, and

{Ci,j}, respectively, each containing 8-bit elements. Thus, the key mixture, S-box layer, and

MDS mapping can be expressed together as:











E0

E1
...

Em−1











=











C0,0 C0,1 . . . C0,m−1

C1,0 C1,1 . . . C1,m−1
...

...
. . .

...
Cm−1,0 Cm−1,1 . . . Cm−1,m−1











×











S(A0 ⊕ K0)
S(A1 ⊕ K1)

...
S(Am−1 ⊕ Km−1)











. (2)

Denoting the keyed input as Bi = Ai ⊕ Ki, (2) is equivalent to:











E0

E1
...

Em−1











=











C0,0

C1,0
...

Cm−1,0











× S(B0) ⊕ · · · ⊕











C0,m−1

C1,m−1
...

Cm−1,m−1











× S(Bm−1). (3)

Hence, we may generate m tables as the following:

Tj [·] =











C0,j × S(·)
C1,j × S(·)

...
Cm−1,j × S(·)











(4)

15



where 0≤j≤m−1. The output of several S-boxes followed by the MDS mapping may then

be generated using:










E0

E1
...

Em−1











= T0[B0] ⊕ · · · ⊕ Tm−1[Bm−1]. (5)

Each fetch from the table Tj [·] accepts an 8-bit input as the index and produces an

8m-bit output from the indexed entry. It takes 256m2 bytes of memory to store these m

tables. Given a processor with a word size of w bits, implementation of (5) needs md8m/we

lookups and (m−1)d8m/we XORs. In cases where the word size w is larger than the size

of a table index, the preparation of a table lookup input will generally need a rotation and

masking (bitwise AND) within a word.

When the size of an MDS field is smaller than the size of the S-boxes, we can consider an

MDS mapping layer of more than one MDS mapping (i.e., the adjacent S-box output bits may

pass through different mappings). The table Tj [·] is then established through concatenation.

Each entry of Tj [·] consists of concatenated results from different MDS mappings. The result

from one mapping corresponds to a specific subset of the table lookup output. For example,

considering 8×8 S-boxes followed by 2×(2m, m, m + 1) over GF(24), each coefficient Cij in

(2) can be regarded as concatenation of two 4-bit coefficients C
′

ij and C
′′

ij from two MDS

mappings, so that Cij = C
′

ij || C
′′

ij , where “ || ” denotes concatenation. Then we generate m

tables as:

Tj[·] =











C
′

0,j×S
′

(·) || C
′′

0,j×S
′′

(·)

C
′

1,j×S
′

(·) || C
′′

1,j×S
′′

(·)
...

C
′

m−1,j×S
′

(·) || C
′′

m−1,j×S
′′

(·)











(6)

where 0 ≤ j ≤ m −1, S
′

(·) and S
′′

(·) represent 4 output bits of an S-box, and S(·) =

S
′

(·)|| S
′′

(·). When these concatenated tables {Tj [·]} are used in (5), the size of tables and

the number of lookups and XORs are the same as for the tables required in (4).

4.1.2 Cases with 4×4 S-boxes

In constrained environments such as smart cards, cipher cases using 4×4 S-boxes cost much

less memory for table storage than those using 8×8 S-boxes. We can use the same method
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described by (3) and (5) to generate a set of small tables. Since the variables Bi and Ei in

(3) and (5) are now 4 bits, each fetch from the table Tj[·] accepts a 4-bit input as the index

and produces a 4m-bit output from the indexed entry. It takes 8m2 bytes of memory to

store these m tables since each table requires 16·m·4/8 = 8m bytes. Such an implementation

needs md4m/we lookups and (m−1)d4m/we XORs.

When memory is not constrained, a modified method can be used to reduce the number

of table lookups by a factor of 2. To implement a cipher case with 4×4 S-boxes, each table

Tj [·] in (5) has an index of 4 bits. We can combine two tables into one, represented by T ′
j ,

whose index is 8 bits. As a result, (5) is transformed to:











E0

E1
...

Em−1











= T ′
0[B0|| B1] ⊕ · · · ⊕ T ′

m

2
−1[Bm−2|| Bm−1]. (7)

where Bi and Ei are representing 4-bit values. For each 8-bit input X|| Y composed of 2

concatenated 4-bit values, X and Y , the table performs:

T ′
j[X|| Y ] = T2j [X] ⊕ T2j+1[Y ]

where 0 ≤ j ≤ m/2 − 1. It takes 64m2 bytes of memory to store these m/2 tables. The

implementation of (7) needs (m/2)d4m/we lookups and (m/2−1)d4m/we XORs.

The method expressed by (7) should also be chosen for the cases where the symbol

length of an MDS mapping is larger than the S-box size. For example, the inputs of two

adjacent 4×4 S-boxes followed by an MDS mapping over GF(28) have to be combined as an

8-bit index to a table of 256 elements.

4.2 Comparison Based on Table Lookup Implementations

4.2.1 Time Performance Metric

In software, the memory used for table storage is independent of the number of rounds. To

compare the time used for a given cipher to achieve a certain amount of security, we define

the time performance measure η(w) with respect to differential and linear attacks, where w
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is the processor word size:

η(w) =
log2 1/P

(# of rounds) × (# of table lookups per round)
. (8)

The numerator of (8) is a function of cipher structure while the denominator is a function

of both cipher structure and word size w. The value of log2 1/P indicates the security of

the cipher for a specified number of rounds, where we use a heuristic approach to determine

resistance to differential and linear cryptanalysis. For differential cryptanalysis, the number

of chosen plaintexts to attack a cipher is expected to be in the order of 1/P , where P is

the maximum differential characteristic probability Pd determined by Theorems 1 and 3; the

number of known plaintexts required by linear cryptanalysis is expected to be in the order

of 1/P , where P is the maximum linear characteristic probability Pl of the cipher. For the

nested SPNs and Feistel networks discussed in Section 2, log2 1/P is a linear function of the

number of rounds for both differential and linear cryptanalysis. Therefore, the value of η(w)

indicates how much security is expected to be obtained within a unit running time (i.e., time

for one table lookup), regardless of the number of rounds in a cipher.

Note that one table lookup has associated with it the setup of an index (e.g., one

rotation and one masking operation) and a post-lookup XOR. Among these operations, the

table lookup would normally require the most clock cycles in most processors. Hence, we

use the table lookups as a barometer of the number of operations required to implement the

cipher.

4.2.2 Comparison of Nested SPNs

A set of nested SPNs can be generated with appropriate configurations of parameterized

MDSL, MDSH , and S-boxes. As Theorem 2 illustrates, the MDS mapping defined over a

large Galois field can be simplified using several mappings in a smaller Galois field. Table 1

lists the cases of nested SPNs in 12 categories (labelled as N1 to N12) defined by the S-boxes

and MDSL. Thus, the cases within a category only differ in the simplification of MDSH .

Each case can be regarded as 4r rounds of a 128-bit cipher where r is an integer, except that

no particular key schedule has been defined. Due to the difficulty of finding optimized MDS
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Table 1: 128-bit Nested SPNs of 4r Rounds

Case S-box MDSL : MDSH : Pd, Pl

size l1×(2m1, m1, m1+1) over GF(2n1 ) l2×(2m2, m2, m2+1) over GF(2n2 )

N1-a 8×8 8×(4, 2, 3) over GF(28) 2×(16, 8, 9) over GF(28) 2−162r

N1-b 4×(16, 8, 9) over GF(24)
N2-a 8×8 16×(4, 2, 3) over GF(24) 2×(16, 8, 9) over GF(28) 2−162r

N2-b 4×(16, 8, 9) over GF(24)
N3-a 8×8 32×(4, 2, 3) over GF(22) 2×(16, 8, 9) over GF(28) 2−162r

N3-b 4×(16, 8, 9) over GF(24)
N4-a 8×8 4×(8, 4, 5) over GF(28) 4×(8, 4, 5) over GF(28) 2−150r

N4-b 8×(8, 4, 5) over GF(24)
N5-a 8×8 8×(8, 4, 5) over GF(24) 4×(8, 4, 5) over GF(28) 2−150r

N5-b 8×(8, 4, 5) over GF(24)
N6-a 8×8 2×(16, 8, 9) over GF(28) 8×(4, 2, 3) over GF(28) 2−162r

N6-b 16×(4, 2, 3) over GF(24)
N7-a 8×8 4×(16, 8, 9) over GF(24) 8×(4, 2, 3) over GF(28) 2−162r

N7-b 16×(4, 2, 3) over GF(24)
N7-c 32×(4, 2, 3) over GF(22)
N8 8×8 1×(32, 16, 17) over GF(28) same as MDSL 2−204r

N9 4×4 16×(4, 2, 3) over GF(24) 1×(32, 16, 17) over GF(28) 2−102r

N10 4×4 32×(4, 2, 3) over GF(22) 1×(32, 16, 17) over GF(28) 2−102r

N11-a 4×4 8×(8, 4, 5) over GF(24) 2×(16, 8, 9) over GF(28) 2−90r

N11-b 4×(16, 8, 9) over GF(24)
N12-a 4×4 4×(16, 8, 9) over GF(24) 4×(8, 4, 5) over GF(28) 2−90r

N12-b 8×(8, 4, 5) over GF(24)

mappings, the cases with a Galois field larger than GF(28) are not considered. The values

of Pd and Pl represent the differential and linear characteristic probabilities for 4r rounds

evaluated by Theorem 1 and used as P in (8) to determine η(w).

In relation to real ciphers, case N4-a includes Square, AES, and Anubis. Type II of

Hierocrypt belongs to case N4-b with a simplified MDSH over GF(24). Similar to SHARK

and Khazad, case N8 is a one-level SPN. However, SHARK and Khazad are 64-bit ciphers

because their MDS mappings are based on a (16, 8, 9)-code over GF(28).

Table 2 lists the table size (i.e., the sum of sizes of tables required for MDSL and MDSH

rounds) and the number of table lookups for 4 rounds for each cipher case. The table sizes

shown represent a minimum requirement and can only be achieved when an S-box does not

differ from the corresponding S-box in another MDS mapping in the same layer (although
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Table 2: Software Performance of 128-bit Nested SPNs

# of table lookups
Case Table size per 4 rounds η(8) η(32) η(64)

(KBytes) 8-bit 32-bit 64-bit

N1-a,b 17 320 96 64 0.51 1.69 2.53
N2-a,b 17 320 96 64 0.51 1.69 2.53
N3-a,b 17 320 96 64 0.51 1.69 2.53

N4-a,b 8† 256 64 64 0.59 2.34 2.34

N5-a,b 8† 256 64 64 0.59 2.34 2.34
N6-a,b 17 320 96 64 0.51 1.69 2.53
N7-a,b,c 17 320 96 64 0.51 1.69 2.53
N8 64 1024 256 128 0.20 0.80 1.59
N9 64.03125 576 192 128 0.18 0.53 0.80
N10 64.03125 576 192 128 0.18 0.53 0.80
N11-a 16.125 384 128 96 0.23 0.70 0.94
N11-b 0.625 384 128 128 0.23 0.70 0.70
N12-a 4.5 384 96 96 0.23 0.94 0.94
N12-b 0.625 384 128 128 0.23 0.70 0.70

† : By use of the same mapping in MDSL and MDSH , half of the table size can be saved.

S-boxes may be different within the domain of one MDS mapping). As a result, only one

table as in (5) is required for each of the MDSL and MDSH layers.

For each case using 4×4 S-boxes, the tables with 4-bit indices are created as shown in (5)

or (6) when the MDS mapping is chosen over GF(24) or GF(22), respectively. However, as

explained in Section 4.1.2, the performance can be improved by using 8-bit indices in the

lookup as in (7) at the expense of more memory. For example, case N11-b can be implemented

using 8-bit indices thereby doubling the efficiency but requiring 8 times the memory to store

the lookup tables for both the MDSL and MDSH rounds. When GF(28) is chosen for the

MDS mapping, the length of table indices has to be 8 bits. The number of table lookups is

used in the calculation of the denominator in (8).

The table also includes the performance η(w) for each case. The implementation perfor-

mance on three types of processors (i.e., w = 8, 32, 64) are considered. The implementation

on an 8-bit processor is suitable for smart cards, where the memory size is constrained.

The implementations on 32-bit and 64-bit processors are suitable for applications on general

purpose computers and workstations. The values of η(w) are also presented in Figure 5. By

comparing these measures, it is possible to distinguish the cases which are more efficient in
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Figure 5: Software Performance Comparison of Nested SPNs

software and the following general conclusions can be made:

• The implementation performance is improved when the word size of the processor

increases, although in some cases there is no difference in the performance on a 32-bit

or 64-bit processor.

• The cases with larger S-boxes (N1, · · ·, N8) have better performance but cost more

memory to store the lookup tables.

• The cases with the same S-box size (N1, · · ·, N8 and N9, · · ·, N12) share similar

performance although their memory requirements can vary significantly (as shown in

Table 2).

• Cases N4 and N5 have the best, or close to the best, performance for all word sizes.

4.2.3 Comparison of Feistel Networks

The Feistel network discussed in this section is limited to the class described in Section 2.4,

which has an SPN-like round function. To construct a typical 128-bit cipher, such a Feistel

network has a 64-bit round function which contains sixteen 4×4 or eight 8×8 parallel S-boxes

followed by an MDS mapping layer. As listed in Table 3, six categories (labelled as F1 to

F6) of these 128-bit Feistel networks can be generated. To ensure a good avalanche effect, an
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appropriate fixed permutation of MDS symbols after the MDS mapping is expected, which

may cost a small amount of additional processing time. The cases of the same category in

Table 3 only differ in the simplification of the MDS mapping. The performance comparison

details are given in Table 4, where table lookups use 4-bit indices when 4×4 S-boxes are used

in a cipher case. A summary of the performance measure η(w) is also illustrated in Figure 6.

The following conclusions can be drawn:

• An MDS mapping that has a large branch number (i.e., m+1) results in good perfor-

mance for implementations on computers supporting a large word size (e.g., comparing

η(8) and η(64) in cases F3-a and F3-b).

• Although they require more memory, the cases with 8×8 S-boxes demonstrate higher

performance.

• For the cases with 4×4 S-boxes, we can tradeoff memory and time requirements by

choosing the element size of the MDS mapping. Using small Galois fields for the

MDS codes, cases F4-b, F4-c, and F5-b can be used for some memory-constrained

applications. However, their performance is not as high as the counterparts using large

Galois fields (e.g., F4-a and F5-a) for a word size larger than 8.

• Compared with nested SPN networks, the Feistel networks discussed here need less

memory but result in a lower performance.

Camellia uses 8×8 S-boxes and a linear transformation which is not MDS-based with

branch number 5. (An MDS-based linear transformation would have a branch number of 9.)

Hence, a simplified Camellia structure (without FL/FL−1 functions) produces a security

level equivalent to F2-a,b in Table 3. A fast Camellia implementation using table lookups

was introduced in [28], which incorporates the linear transformation and S-boxes into several

tables with 8-bit indices and 64-bit entries. In this method, a simplified Camellia has the

equivalent number of table lookups to 18-round F3-a,b. As a result, Camellia uses tables

as large as F3-a,b, while its performance is lower than both F2-a,b and F3-a,b on 32-bit

processors and equal to F2-a,b but lower than F3-a,b on 64-bit processors.
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Table 3: 128-bit Feistel Networks of 4r Rounds

Case S-box MDS Pd, Pl

size l×(2m, m, m+1) over GF(2n)

F1-a 8×8 4×(4, 2, 3) over GF(28) 2−6(3r+b r

2
c)

F1-b 8×(4, 2, 3) over GF(24)
F1-c 8×(4, 2, 3) over GF(22)

F2-a 8×8 2×(8, 4, 5) over GF(28) 2−6(5r+b r

2
c)

F2-b 4×(8, 4, 5) over GF(24)

F3-a 8×8 1×(16, 8, 9) over GF(28) 2−6(9r+b r

2
c)

F3-b 2×(16, 8, 9) over GF(24)

F4-a 4×4 4×(4, 2, 3) over GF(28) 2−2(3r+b r

2
c)

F4-b 8×(4, 2, 3) over GF(24)
F4-c 16×(4, 2, 3) over GF(22)

F5-a 4×4 2×(8, 4, 5) over GF(28) 2−2(5r+b r

2
c)

F5-b 4×(8, 4, 5) over GF(24)

F6-a 4×4 1×(16, 8, 9) over GF(28) 2−2(9r+b r

2
c)

F6-b 2×(16, 8, 9) over GF(24)

Table 4: Software Performance of 128-bit Feistel Networks

# of table lookups
Case Table size per round η(8) η(32) η(64)

(KBytes) 8-bit 32-bit 64-bit

F1-a,b,c 1 16 8 8 0.33 0.66 0.66
F2-a,b 4 32 8 8 0.26 1.03 1.03
F3-a,b 16 64 16 8 0.22 0.89 1.78
F4-a 1 16 8 8 0.11 0.22 0.22
F4-b,c 0.03125 16 16 16 0.11 0.11 0.11
F5-a 4 32 8 8 0.09 0.34 0.34
F5-b 0.125 32 16 16 0.09 0.17 0.17
F6-a 16 64 16 8 0.07 0.30 0.59
F6-b 0.5 64 16 16 0.07 0.30 0.30

5 Experimental Results

The performance comparison above is based on the assumption that the number of lookups

is a good time measure for table lookup implementations. We implemented typical SPN

cipher cases from Table 3 in “C” and determined the throughput for each implementation

on a 933MHz Intel Pentium III computer and a 2GHz Pentium 4 computer, respectively.

The codes are compiled using the MS Visual C++ 6.0 compiler and optimized for speed

during compilation. It is expected that the throughput will vary inversely to the number of
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Figure 6: Software Performance Comparison of Feistel Networks

lookups, considering throughput to be defined as:

throughput =
block length

processing time for each block
.

To mitigate the effect of the multitasking operating system, we only calculated the clocks

used for the test process, which repeated encrypting test vectors for millions of times. During

the experiments, all unnecessary tasks were removed as much as possible.

When the table index is 8 bits, the byte permutation after the lookup operations (e.g.,

the concatenation of parallel MDS mappings discussed in Theorem 2) can be easily done

by reordering the inputs of table lookups next round. When the table index is 4 bits as in

N11-b, bit manipulation within bytes costs more processing time. This cost partly decreases

the advantage of using small tables (624 bytes), which can be easily cached during the

program runs. Compared with N11-b, N8 requires a much larger table size (64 KB), which

causes more cache misses and results in a throughput lower than expected. Even so, as

shown in Figure 7, the expected trend of throughputs evaluated by the number of lookups in

total can still be clearly observed in the implementations. The bottom two rows of Table 5

list the results of our 10-round AES implementation and reference code in ANSI C2.0 [29],

respectively. The AES implementation uses 4 tables as defined in (4).

Table 6 lists the experimental throughput results for AES and Camellia on two 64-bit
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Table 5: Experimental Results of 32-bit Implementations of Nested SPNs

Case # of Throughput (Mbps) # of lookups Comments
rounds Pentium III Pentium 4 (4 rounds)

N1-a 32 45.65 77.42 96 similar to N2, N3, N6, N7
N4-a 32 60.86 105.2 64 similar to 32-round AES
N8 32 17.02 22.83 256 with uniform round
N11-b 32 36.21 74.49 128 similar to N12-b

N4-a 10 155.9 262.5 64 10-round AES (our code)
N4-a 10 120.6 182.6 64 reference AES code
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Figure 7: Comparison of Throughputs
(C: a constant, which is set to 40,000 here)

processors. The GNU C++ compiler is used on a 600 MHz Alpha processor (COMPAQ

AlphaServer DS10, Tru64 Unix V5.1) while the SUN Workshop C++ Compiler is used on

a 500 MHz UltraSPARC IIe processor (SUN Blade 100 workstation, SUN OS V5.8). Both

computers have a similar 2-level cache architecture [30], where L1 cache is built in the

processor and divided equally for instruction and data. The AlphaServer has 128 KB L1

cache and 2 MB L2 cache; the UltraSPARC IIe has 32 KB L1 cache and 256 KB L2 cache.

All implementations are optimized during compilation using the “-O2” option5. The

32-bit implementations of AES and Camellia are tested on the two machines by using 32-bit

data type arrays to store lookup tables and 32-bit operations for XORs.

5“-O2” turns on all optimization flags specified by “-O”. Only loop unrolling and function inlining are
not included.
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Table 6: Experimental Results of Two Real Ciphers

Throughput (Mbps)
Cipher Alpha processor UltraSPARC IIe # of lookups

(128KB L1 Cache) (32KB L1 Cache)

AES 55.3 (32.7†) 69.9 (39.4†) 160
(10 rounds, 32-bit)

Simplified Camellia 72.5 (20.1†) 29.0 (14.8†) 288
(18 rounds, 32-bit)

Simplified Camellia 87.3 (35.2†) 58.2 (31.4†) 144
(18 rounds, 64-bit)

† : throughput without optimization during compilation

On the Alpha processor, the throughput and the inverse of estimated number of lookups

follow the same trend before optimization. After optimization, the 32-bit Camellia imple-

mentation is largely improved and close to its 64-bit implementation. With the smallest

number of lookups, the 64-bit simplified Camellia is still fastest after optimization. On the

UltraSPARC IIe processor, the 32-bit and 64-bit Camellia implementations follow the ex-

pected trend nicely. The L1 cache in the UltraSPARC IIe processor has a limited size of

which only half (16 KB) is used to cache data for all running processes. Therefore, the small

table size of AES (4 KB) results in a throughput higher than expected in comparison to

Camellia, which, with the larger table size of 16 KB, can be expected to experience more

cache misses.

It should be noted that the software comparison of Table 6 is purely based on software

throughput. When security is considered simultaneously as shown in Figures 5 and 6, AES

has a higher performance (as a typical SPN corresponding to N4-a) than Camellia. This

reflects that fact that the Camellia cipher has a lower security margin than the AES cipher.

6 Alternative Implementations

Besides the table lookup approach, a block cipher can be implemented in other ways based

on its structure. We briefly discuss these alternatives without a full exposé of their char-

acterization because they apply to specialized circumstances rather than having general

application.
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6.1 Bitslice Implementations

For some cipher cases, a bitslice software implementation derived from the gate level circuit

may be more efficient in parallelized applications [31]. A bitslice design is suitable for the

cases whose synthesized circuits are compact. A w-bit processor can be regarded as w

bit-processors in parallel. The gate level network circuit is described with instructions in

software. Each bit in hardware corresponds to a word in software and each word is the

concatenation of bits belonging to w separate blocks. Given enough registers in a processor,

the memory requirement is negligible since no table lookups are necessary. Typically, the

bitslice technique can be applied in three ways:

(a) Parallel blocks : This is the classic bitslice implementation. A total of w plaintext blocks

are reorganized so that the bits at the same bit positions of different original blocks are

now collected in one register. The number of registers required to store these blocks is

equal to the block size of the cipher. Then, all registers are used as signals to a gate

network deduced from a hardware implementation. The output signals, w bits each,

are converted to their original format as w ciphertext blocks. Whether a cipher case

discussed in this paper is suitable for bitslice implementation can be determined from

its space performance value ηs in hardware, which was investigated in [32]. When ηs is

high, a compact gate network can be used. The gate count of the circuit determines the

number of instructions used in the bitslice software. Thus, a high ηs indicates a small

number of clock cycles in software. For example, because of the algebraic structure of

its S-box, AES can be implemented as a very compact gate network, which enables

an efficient bitslice realization [33, 34]. Note that, except for Serpent, representation

transformation is required at the beginning and end of a bitslice realization.

(b) Bitslice cipher : Serpent is an example of an internal bitslice implementation. In Ser-

pent, each 128-bit block is expressed as four 32-bit words after a bit permutation.

S-boxes in each round can be regarded as 32 sets of parallel and identical 4×4 gate

networks. A word is the collection of 32 bit signals, each corresponding to its own set

of gate networks at the same locations. The other cipher operations can also be easily
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expressed by words. At the end of encryption, the bits of the four output words are

permuted to form a 128-bit block.

(c) Within special linear operations: It has been shown that several parallel MDS map-

pings can be concatenated into one big mapping. When the number of parallel MDS

mappings in each round, denoted by w′, is at least 8, there is a more subtle bitslice

method within the round structure, as used in Hierocrypt’s MDS mapping [17]. The

linear expression of each output bit is extended to the expression of words, whose size

is w′ bits. The input and output bit variables are replaced with word variables, each

including w′ adjacent bits. Such a method works for any concatenated linear trans-

formation with a convenient number of parallel sets. This parallel structure within a

specific operation avoids the overhead caused by the block representation transforma-

tion between the standard form and bitslice parallel form as required in (a).

It should be noted that, when a processor supports a large word size (32-bit or 64-

bit), bitslicing is not as popular and effective as the table lookup method since not all

8×8 S-boxes have AES-like algebraic structure for subfield optimization. Moreover, such an

algebraic structure has caused some concern about potential security threats as XSL attacks

show [35].

6.2 Power Implementations

Although the table lookup method is very efficient, the memory required for table storage

is usually too large for a smart card environment. It is convenient to speed up a smart card

application without requiring large tables. Because an S-box just requires a small array, the

main concern is then how to perform MDS mappings with low memory cost.

Defined as 1-bit left shift followed by bitwise XOR with an appropriate irreducible poly-

nomial in [7], the xtime operation can be used to perform multiplications for the MDS

mapping. The operation xtime has no table lookups and the matrix multiplication is easier

when all coefficients meet two requirements: (1) low Hamming weights; (2) low value. It is

easy to find an MDS mapping satisfying these two requirements. When an SPN uses this
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mapping, however, the mapping’s inverse used for decryption does not necessary satisfy the

two conditions and many more operations are therefore needed.

An alternative way to implement multiplications makes use of transformation between

power and polynomial representations over GF(2n) for an MDS code based on a primitive

polynomial. (This approach cannot be used for AES which has its MDS mapping based

on an irreducible but not primitive polynomial.) Suppose poly(·) returns the polynomial

representation of a GF(2n) element from the index of power representation and its inverse

function is denoted as pow(·). We know that

Y = C · X = poly((pow(C) + pow(X)) mod (2n−1))

when C 6= 0, X 6= 0, and where Y is in polynomial representation. If the processor records

the carry bit c for n-bit addition pow(C)+pow(X), the modulo operation can be bypassed:

Y = C · X = poly((pow(C) + pow(X)) + c) .

Using this method to perform the MDS mapping after substitution, C indicates one coeffi-

cient in MDS generation matrix C. Each coefficient C in C is constant and nonzero. Denote

pow(C) as Cpow. If X is the output of an n×n S-box S(·) with input Z, substitution S(·)

can be merged into the above operations:

Y = C · X = poly(Cpow + pow(S(Z)) + c) .

Therefore, each multiplication over Galois fields costs two additions and two table lookups.

The two tables for poly(·) and pow(S(Z)) need 2n+1 bytes in total. It can be seen that the

nature of the coefficients in generation matrix C does not affect the speed of multiplication.

If the coefficients in C are randomly selected, this method is more efficient than the xtime

method.

6.3 General Comparison of Methods

Table 7 gives a general comparison of the software implementation methods discussed in this

section.
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Table 7: Comparison of Software Methods Used in MDS Codes

MDS coefficents affect S-box/MDS
Method Speed Memory Universal ? speed memory operations

? ? merged?

Table lookups fast large yes no no yes

Bitslice parameter- none no† yes no no
dependent

Power slow small yes‡ no∗ no yes

xtime slow none yes yes no no

† : the number of parallel sets should be compatible with machine operand sizes.
‡ : the polynomial to define the finite field must be primitive.
∗ : it can make a small difference depending on how many coefficients are 1s in C (i.e., Cpow =0).

7 Conclusions

We have considered the software performance of two cipher structures composed of S-boxes

and MDS mappings. Various cipher cases are generated from these structures with different

component configurations. Table lookup implementations are used to evaluate the software

efficiency of the various cases. A performance metric is defined to capture the security and

efficiency simultaneously. Generally, cases using 8×8 S-boxes are faster than cases using

4×4 S-boxes and nested SPNs are more efficient in obtaining security than Feistel networks.

Specifically, AES and Camellia were analyzed in terms of software performance, and some

interesting performance features were noted and confirmed through experimental results.

Three other software implementation methods that are applicable in special circumstances

were also discussed and their general advantages and disadvantages were listed.

The methodology, while broad in its applicability to many modern ciphers, does not

provide a comparison that is universal for all cipher structures across all platforms. However,

it does represent a meaningful first step in better characterizing cipher efficiency for software

implementations in relation to cipher security against cryptanalytic attacks.
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