
3

So�ware prefetching for unstructured mesh applications

IOAN HADADE∗, Oxford Thermo�uids Institute, University of Oxford, United Kingdom

TIMOTHY M. JONES∗, Computer Laboratory, University of Cambridge, United Kingdom

FENG WANG, Oxford Thermo�uids Institute, University of Oxford, United Kingdom

LUCA DI MARE, Oxford Thermo�uids Institute, University of Oxford, United Kingdom

This paper demonstrates the utility and implementation of software prefetching in an unstructured �nite

volume computational �uid dynamics code of representative size and complexity to an industrial application

and across a number of modern processors. We present the bene�ts of auto-tuning for �nding the optimal

prefetch distance values across di�erent computational kernels and architectures and demonstrate the impor-

tance of choosing the right prefetch destination across the available cache levels for best performance. We

discuss the impact of the data layout on the number of prefetch instructions required in kernels with indirect

addressing patterns and show how to best implement them in an existing large-scale computational �uid

dynamics application. Through this we show signi�cant full application speed-ups on a range of processors

and realistic test cases in both single core/tile and full socket con�gurations, such as 1.14× on the Intel Xeon

Sandy Bridge, 1.09× on the Intel Xeon Broadwell, 1.29× on the Intel Xeon Skylake, 1.99× on the in-order

Intel Xeon Phi Knights Corner coprocessor and 1.51× on the out-of-order Intel Xeon Phi Knights Landing

many-core processor.

CCS Concepts: • Computer systems organization→Multicore architectures; • Software and its engi-

neering→ Software performance; • Theory of computation→ Shared memory algorithms;

Additional Key Words and Phrases: software prefetching, unstructured mesh, irregular memory access, auto-

tuning, performance optimisation

ACM Reference Format:

Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare. 2020. Software prefetching for unstructured

mesh applications. ACM Trans. Parallel Comput. 7, 1, Article 3 (March 2020), 23 pages. https://doi.org/10.1145/

3380932

1 INTRODUCTION

The growing disparity between the speed of the processor and that of the memory system [Wulf
and McKee 1995] means that applications are dependent on their data being available in the fast
on-chip caches for high performance. Data with high temporal or spatial locality is best suited to
the cache hierarchy but even so, it is often di�cult to avoid compulsory or capacity cache misses.
The traditional mechanism for dealing with these is prefetching, where the hardware anticipates,
in the presence of common and simple access patterns, which data is likely needed by the processor
in the near future and loads it into the caches prior to consumption.

As a result, applications that exhibit regular stream/stride memory access patterns usually bene�t
transparently, thanks to the hardware’s stream and stride prefetchers [Intel Corporation 2017].

∗Corresponding authors.

Authors’ addresses: Ioan Hadade, ioan.hadade@eng.ox.ac.uk, Oxford Thermo�uids Institute, University of Oxford, Oxford,

United Kingdom; TimothyM. Jones, timothy.jones@cl.cam.ac.uk, Computer Laboratory, University of Cambridge, Cambridge,

United Kingdom; Feng Wang, feng.wang@eng.ox.ac.uk, Oxford Thermo�uids Institute, University of Oxford, Oxford, United

Kingdom; Luca di Mare, luca.dimare@eng.ox.ac.uk, Oxford Thermo�uids Institute, University of Oxford, Oxford, United

Kingdom.

© 2020 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive Version

of Record was published in ACM Transactions on Parallel Computing, https://doi.org/10.1145/3380932.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.

https://doi.org/10.1145/3380932
https://doi.org/10.1145/3380932
https://doi.org/10.1145/3380932


3:2 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

However, this is not the case for irregular applications (e.g., unstructured mesh solvers) where
the underlying irregular and indirect access patterns make prefetching more di�cult to identify
in hardware [Callahan et al. 1991; Lee et al. 2012]. A viable alternative for such applications is
for prefetching to be implemented in software, where the programmer or compiler inserts special
non-blocking load instructions into the code to bring data into the cache hierarchy early, thereby
avoiding expensive misses.
Although the concept and mechanics behind software prefetching are relatively straightfor-

ward, implementing and gaining bene�t from it can be surprisingly challenging [Vanderwiel and
Lilja 2000]. For software prefetching to be e�ective, the cost of generating the address and issu-
ing the prefetch instruction must be outweighed by the latency saved from avoiding the cache
miss [Ainsworth and Jones 2017]. This is di�cult to achieve, because the prefetch instructions
and all others required for the address calculation occupy valuable instruction slots within the
processor, increasing the work it must perform and, for out-of-order machines, limiting the amount
of non-prefetch instruction-level parallelism it can extract. In addition, the distance ahead, or
number of loads in advance, to prefetch is hard to get right. If the prefetches are executed too
far ahead, the data brought into the caches will likely be evicted before it is consumed, thereby
leading to cache pollution and an increase in tra�c across the memory hierarchy. On the other
hand, if prefetches are executed too late, the data will not be present in the cache by the time it
is required, leading to sub-optimal performance. The challenge of selecting an optimal distance
value for the prefetches is exacerbated by the fact that this might di�er across computational
kernels and processors [Mowry et al. 1992]. Consequently, although software prefetching can be
an ideal mechanism for improving the performance of unstructured mesh applications, there are
few examples in the literature where this is demonstrated in applications of signi�cant size and
complexity with positive results.

We aim to address this by demonstrating the implementation and utility of software prefetching
in an unstructured �nite volume computational �uid dynamics (CFD) code of representative size
and complexity to an industrial application and on realistic test cases. The CFD application used in
this study was previously optimised for e�cient execution on modern multicore and manycore
processors [Hadade et al. 2018b] with a limited study on software prefetching presented in Hadade
et al. [2018a].
This paper is an extension to the previous work and makes the following contributions:

• We demonstrate the use of auto-tuning for �nding the best distance values for the software
prefetches as well as their optimal target with respect to the cache hierarchy. We show how
the search space in the auto-tuning phase can be reduced signi�cantly by prefetching the
indices used in the indirect accesses at twice the distance of the referenced data and provide
a skeleton implementation for the auto-tuner.

• We empirically demonstrate the importance of prefetching both the irregular and regular
access patterns, rather than just the former, in loops that exhibit both. We observe that
prefetching only the irregular accesses in software results in marginal improvements and
attribute this to the potential interference of the software prefetches with the underlying
hardware prefetchers [Lee et al. 2012]. As a result, software prefetching should either target
all access patterns in a loop or none at all.

• We demonstrate, on processors with inclusive cache hierarchies, that best performance
is achieved by targeting either the L2/L3 caches or the L1 cache only, since overlapping
prefetches across all levels leads to a higher number of evictions in L1 therefore degrading
performance. Alternatively, our experiments show that if prefetches in L1 at a given distance

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:3

give positive results, targeting the prefetches to the L2/L3 levels at twice that distance should
perform even better.

• We show how on in-order architectures, such as the Knights Corner coprocessor, best perfor-
mance is obtained by both hyperthreading and software prefetches, although the latter on
its own can result in considerable speed-ups (1.81× and 4.10×) in loops with indirect access
patterns.

• We discuss the impact of the underlying data layout on the number of prefetch instructions
required in kernels with indirect access patterns. We demonstrate how the Array of Structures
(AoS) layout is best suited for storing indirectly accessed data provided that this is aligned,
padded and transposed accordingly so as to allow vectorisation.

• We provide examples on how we integrate the prefetch instructions in our application and
show how these can interact with other existing optimisations, such as vectorisation.

• We observe that the optimal distance values for the prefetches remain constant across
computational kernels, even though they exhibit di�erent �op per byte ratios and number of
indirect accesses, and across di�erent inputs (i.e., computational meshes). As a result, auto-
tuning could be performed on smaller micro-benchmarks rather than the full application,
although this has not been pursued in this work and is left as a mere hypothesis.

• We provide an example implementation and source code [Hadade 2018] that can be used to
reproduce the results presented in this paper.

• We report signi�cant signi�cant full application speed-ups on a range of processors and
realistic test cases in both single core/tile and full socket con�gurations, such as 1.14× on
the Intel Xeon Sandy Bridge, 1.09× on the Intel Xeon Broadwell, 1.29× on the Intel Xeon
Skylake, 1.99× on the in-order Intel Xeon Phi Knights Corner coprocessor and 1.51× on the
out-of-order Intel Xeon Phi Knights Landing many-core processor.

2 RELATED WORK

There have been a number of previous studies that demonstrated the bene�t and implementation
of software prefetching in applications that contain irregular memory access patterns similar to
those found in unstructured mesh solvers.
Lee et al. [2012] present an evaluation of software prefetching across a number of SPEC CPU

2006 benchmarks. They observe best results in those that either contain irregular access patterns or
a signi�cant number of short array streams. This is in contrast to applications with regular/stream
memory access patterns, where the addition of software prefetches has either a neutral or a negative
e�ect on performance. The authors attribute this to the fact that: (1) indirect accesses are easier to
compute in software rather than in hardware; (2) short array streams are often too short in duration
for detection by the hardware prefetchers; (3) regular memory accesses are already prefetched by
the hardware and software prefetches can interfere with the training of hardware prefetchers.
A similar study, although exclusively targeting applications with indirect access patterns, is

presented by Ainsworth and Jones [2017]. Compared to the previous paper, which relies on the
manual insertion of prefetch instructions into sections of the program, the authors implement
an automated approach via a compiler pass that automatically detects indirect accesses in the
source code and generates sequences of instructions for prefetching the index and the data. Their
implementation is evaluated across a number of benchmarks from the NAS parallel benchmark
suite [Bailey et al. 1991] and across a number of di�erent processor architectures, such as the out-of-
order Intel Xeon Haswell and ARM Cortex-A57 CPUs and the in-order ARM Cortex-A53 and Intel
Xeon Phi Knights Corner processors. Through their approach, they report positive results ranging
between 10-30% on the out-of-order processors and between 2.1-2.7× on the in-order architectures
averaged across the evaluated benchmarks. Unfortunately we could not use the compiler pass

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:4 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

developed by Ainsworth and Jones because it is only incorporated into LLVM, whereas we use a
proprietary compiler. Proprietary compilers are usually preferred for scienti�c applications that
run on high-performance computing systems since they tend to generate signi�cantly faster code
on modern processor architectures. Furthermore, they include a more mature implementation of
the OpenMP run-time and are generally more likely to be available to users on high-performance
computing systems. For example, at the time of writing, LLVM 8 did not support the OpenMP 4.0
standard on which our application relies heavily.

With regard to real applications (as opposed to benchmarks), Mudigere et al. [2015] present the
implementation of software prefetching, among a number of other shared-memory optimisations,
in FUN3D [FUN 2017], an unstructured vertex-centred �nite-volume CFD code developed at NASA.
Their approach consists of inserting prefetch instructions in edge-based loops at “carefully tuned”
distances and locations which results in a 28% speed-up in the execution of these types of kernels
on an Intel Xeon Ivy Bridge system. However, the authors provide no implementation details, which
makes it impossible to reproduce their work in other unstructured CFD applications.
A similar story is found in the work of Farhan and Keyes [2018] who also present a number of

optimisations targeting the FUN3D application, albeit on a range of more up-to-date processors.
Their implementation of software prefetching is based on exploiting the new instructions provided
by the AVX-512 ISA such as VGATHERPF0DPD and VGATHERPF1DPD to prefetch the vertex/node data
required in upcoming iterations of edge-based loops. A drawback to their approach is that the
prefetch gather instructions they use are only available on architectures that support the AVX-512PF
extensions. Furthermore, the authors provide no details regarding the actual impact that software
prefetching has on the performance of edge-based kernels as these are presented together with
other optimisations, such as vectorisation.
In conclusion, although there have been a number of studies that have investigated the utility

and implementation of software prefetching for applications that contain indirect and irregular
access patterns similar to unstructured mesh solvers, there are very few instances where this was
performed in real applications. Moreover, where real applications were used, the provided details
were scarce as the work usually focused on a broader selection of optimisations and not just software
prefetching. The work presented herein aims to address this by describing in more detail than in the
literature the steps required to implement software prefetches into an existing unstructured mesh
application of signi�cant size and complexity with positive results across multiple architectures.

3 UNSTRUCTURED FINITE-VOLUME CFD SOLVER

3.1 Overview

The test vehicle for this study is AU3X [Di Mare et al. 2011; Wang et al. 2016], a cell-centred �nite-
volume code used for solving the unsteady Favre-averaged Navier Stokes equations on unstructured
meshes in both time and frequency domains. The solver obtains steady solutions via pseudo-time
marching and time-accurate solutions by dual-time stepping. The �ow variables are stored at the
cell centres while boundary conditions are applied to ghost cells, which mirror the position of
the internal cell that is adjacent to the boundary. Inviscid and viscous �uxes are computed for
every cell-to-cell and boundary-to-cell interface, whilst �ow gradients are calculated at each cell
centre using the weighted least-square method [Mavriplis 2003]. A pictorial representation of the
�nite-volume scheme on unstructured grids is shown in �g.1.

The inviscid �uxes are computed by the upwind scheme using the approximated Riemann solver
of Roe [1981] where second-order accuracy is obtained using the Monotonic Upwind Scheme for
Conservation Laws (MUSCL) [van Leer 1979] and the van Albada limiter [Hirsch 1990]. Viscous
�uxes are computed by a central di�erencing scheme using the inverse of the distance weighting

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:5

cell centre

boundary
interface

cell interface

ghost cell

Fig. 1. Schematic of the cell-centred finite volume scheme on unstructured grids. Black-filled circles represent

cell-centres, white-filled circles ghost cells, red arrows cell-to-cell interfaces and gray arrows boundary-to-

cell interfaces. State variables are stored at the ghost and cell-centres while fluxes are computed for every

cell-to-cell and boundary-to-cell interfaces where the cell end-points are referenced indirectly.

from those evaluated at the cell centres on both sides of the interface. The solver supports a range
of turbulence closures for high and low Reynolds �ows such as mixing length, Spalart-Allmaras,
k-ϵ , k-ω and k-ω shear stress transport (SST), while convergence is reached either via Jacobi or
Generalized Minimal Residual (GMRES) iterations. In this work, turbulent viscosity is computed via
the Wilcox k − ω model [Wilcox 1988] while convergence is reached by means of Newton-Jacobi
iterations.
The application is structured as a set of C++ classes embodying di�erent types of gas and

turbulence models and makes heavy use of polymorphism to execute them at run-time, depending
on user selection. The code is optimised for both distributed and shared-memory systems and
achieves good scalability on more than 10

4 MPI ranks. The core solver is fully vectorised based
on a combination of OpenMP 4.0 [Ope 2016] directives and compiler intrinsics with support for
AVX/AVX2/AVX-512 and IMCI ISA SIMD extensions. Readers are referred to Hadade et al. [2018b]
for further details.

3.2 Computational kernels and access pa�erns

Similar to all well-tuned unstructured CFD codes [Gropp et al. 2001], our solver spends the majority
of its time per non-linear iteration (75%) in loops that iterate over the cell-to-cell interfaces (hence-
forth, faces) for computing numerical �uxes (see �g.1), gradients and limiters. These face-based
loops are structured as a sequence of gather, compute and scatter operations where values are
gathered from pairs of cells sharing a face followed by the calculation and scatter back of results to
the respective face end-points. An example of a scalar face-based loop can be seen in listing 1 where
the unknowns q (i.e., �ow variables) are gathered from the face end-points (i.e., cells) using the
indices from the indx connectivity array. These are then used together with the geometric proper-
ties of the face (e.g., normals) to compute the �ux residual f which is subsequently accumulated
and scattered back to the face-end points in the res array.
The gather and scatter operations that arise from the indirect access in q and res via the indx

connectivity array can operate across large and irregular strides in memory and are determined by
the mesh topology. As a result, the hardware prefetchers are often unable to anticipate which cells
will be referenced in upcoming iterations due to the fact that these are traversed in non-consecutive

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:6 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

1 for( ic=ics;ic<ice;ic++ )

2 {

3 // load indices

4 i1= indx [0][ic];

5 i2= indx [1][ic];

6 // gather the unknowns

7 u1= q[i1];

8 u2= q[i2];

9 // load face properties

10 wc= geo[ic];

11 // compute flux residual

12 f= wc*(u2-u1);

13 // accumulate and scatter -back

14 res[i1]-= f;

15 res[i2]+= f;

16 }

Listing 1. The anatomy of a face-based loop (scalar) on unstructured grids. The array q represents the flow

variables stored at the cell-centre while indx is the connectivity array between a face and the two cells that

share it. The array wc stores the normals to the face at iteration ic and res represents the residuals that are

sca�ered back to the face end-points.

order and are referenced indirectly. On the other hand, the memory accesses in indx and geo are
contiguous and at unit-stride and therefore most likely in the remit of the hardware prefetchers.
However, the bene�t obtained from prefetching these regular accesses in face-based loops is most
likely overwhelmed by the high cost in latency incurred from performing the gather and scatter
operations. As a result, these types of kernels are good candidates for software prefetching since the
indirect indexing arising from the gather and scatter operations can be computed and prefetched
easily in software.
The solver spends the remaining time per non-linear iteration in kernels that iterate over the

cells in the domain for computing source terms or for updating state vectors. These kernels usually
exhibit a low arithmetic intensity and contain regular and unit-stride memory-access patterns. As
a result, software prefetches for these loops would only be required in the absence of stream and
stride hardware prefetchers or in the event that hardware prefetchers are not available across the
entire cache hierarchy (e.g., in the Intel Xeon Phi Knights Corner).

3.3 Test cases

The test cases used in this study represent real-world aerospace applications such as an aero-engine
intake operating near ground and a single passage of the NASA Rotor 37.

The computational domain of the intake contains 3.2 million degrees of freedom and is based on
an unstructured mesh (�g.2) where near wall regions are discretised with hexahedra elements for
boundary layer prediction whilst the free stream domain is discretised using prismatic elements. A
numerical study using the AU3X code was previously presented by Carnevale et al. [2014, 2017]
based on experimental data provided by Murphy and MacManus [2011].
The computational domain of the NASA Rotor 37 single passage contains 2.4 million degrees

of freedom and is based on a block-structured mesh (�g.3) with hexahedra elements used in the
entire domain. The test case was designed and experimentally studied at the NASA Glenn Research
Center by Reid and Moore [1978] and is one of most popular rotor test cases for validating CFD
codes that are used in the aerodynamic design and analysis of turbomachines.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:7

Fig. 2. Unstructured mesh of aero-engine intake.

XY

Z

Fig. 3. Block-structured mesh of rotor passage.

Themain di�erence between the two test cases is that the �rst is discretised on a fully unstructured
mesh whereas the latter on a block-structured mesh. Consequently, the indirect memory accesses
present in face-based loops will exhibit larger and more irregular strides on the unstructured mesh
whereas the block-structured grid will allow for a more regular and streaming access pattern despite
the use of indirection. We therefore expect software prefetching to have a higher impact on the
unstructured test case.

4 HARDWARE SETUP

Table 1 shows the systems that were used as experimental platforms in this study and provides
details regarding their architectural characteristics and con�guration. These are the Intel Xeon
Sandy Bridge (SNB), Broadwell (BDW) and Skylake Server (SKX) multicore CPUs, the Intel Xeon
Phi Knights Corner (KNC) coprocessor and the self-hosted Intel Xeon Phi Knights Landing (KNL)
processor. With regards to KNL, this was con�gured in Quadrant clustering mode and Cache
memory mode throughout this work.

5 IMPLEMENTATION

5.1 Baseline

Listing 2 shows the structure and layout that is used for face-based kernels throughout the code.
Since face-based loops exhibit a relatively large number of �oating-point operations per byte of
data retrieved from main memory, vectorising them is crucial for extracting high performance
out of modern processors. This is achieved in our code by a combination of OpenMP 4.0 compiler
directives, compiler intrinsics and by rewriting the face-based kernels in a format that is more
suitable for exploiting vector-level parallelism. This can be observed in listing 2 where the main
loop over the faces is divided into three distinct stages that map to the underlying gather, compute
and scatter pattern and where each iteration processes a number of consecutive faces equal to the
underlying vector register width as de�ned by the VECLEN macro. In the �rst stage, cell-centred
data is gathered into local short-vector arrays declared on the stack using compiler intrinsics that
are abstracted away in vgather. The compiler intrinsics are used to load the cell-centred data
stored in an Array of Structures (AoS) layout using aligned vector loads and transpose it into the
Structure of Arrays (SoA) format for e�cient vector computations.
Since faces are accessed consecutively, face variables are stored in a SoA layout. Thus, loading

geometrical properties such as normals (line 24) is performed via the vload routine which uses

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:8 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

SNB BDW SKX KNC KNL

Version E5-2650 E5-2695 Gold 6152 7120P 7210

Year of release 2012 2016 2017 2013 2016

Execution out-of-order out-of-order out-of-order in-order out-of-order

Cores 8 18 22 61 64

Threads 2 2 2 4 4

Clock (GHz) 2.0 2.1 2.1 1.2 1.3

L1 Cache (KB) 32 32 32 32 32

L2 Cache (KB) 256 256 1024 512 1024

L3 Cache (MB) 20 35 30.25 - -

Memory (GB) 32 128 192 16 96/16

Memory type DDR3 DDR4 DDR4 GDDR5 DDR4/MCDRAM

Stream (GB/sec) 35 64 98 181 82/452

L1 HW Prefetcher Yes Yes Yes No Yes

L2 HW Prefetcher Yes Yes Yes Yes Yes

Compiler icpc 17.4 icpc 17.4 icpc 18.3 icpc 17.4 icpc 17.0

MPI Library Intel MPI 2017 Intel MPI 2017 Intel MPI 2018 Intel MPI 2017 Intel MPI 2017

Table 1. Details of the systems used as experimental platforms.

aligned vector loads that are optimised for the underlying SIMD architecture. Once all data has
been gathered or loaded, the next stage performs the actual computation via a nested loop that
iterates over the lanes of the vector registers (line 27). This loop is easily vectorised by most modern
compilers in part due to the use of the OpenMP 4.0 directive and the fact that all dependencies have
been removed and computations are carried out on stack’ed vectors of sizes known at compile time.

Lastly, the third and �nal stage performs the scatter operation using the vscatter routine where
the residuals at the cell-centre are transposed back from SoA into the AoS format and scattered to
the face-end points using aligned SIMD stores. This is possible due to: (1) the inter-structure locality
o�ered by the AoS format at the granularity of each cell where variables such as the residuals or
unknowns are stored contiguously; (2) faces have been reordered at solver initialisation so that
there are no dependencies at the end-points in groups of consecutive faces of size equal to VECLEN
[Löhner 2010].

5.2 Inserting so�ware prefetches

The vgather and vload routines present in every face-based loop are not only useful for decoupling
the movement of data from the computation but also allow for the implementation of architecture-
speci�c optimisations, such as using di�erent compiler intrinsics depending on the supported
SIMD ISA (e.g., AVX/AVX-512/IMCI). As a result, these routines are also the best place for inserting
software prefetches.
Thus, as data is gathered and transposed from the group of cells traversed in vector iteration i ,

prefetches are also issued for the data of all the cells that will be visited in the vector iteration i + d
where d is the distance parameter. Furthermore, prefetches are also executed for the indices in the
connectivity arrays that are used for referencing the cell-centred data in vgather. Otherwise, cache
misses that result from accessing the connectivity array would o�set any bene�ts obtained from
prefetching the actual data. Ainsworth and Jones [2017] demonstrated that the optimal distance for
prefetching the indices is twice that of the actual data. This is due to the fact that the amount of
work performed on each iteration of the loop is fairly constant and so prefetching the indices and

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:9

1 #if defined __MIC__

2 #define VECLEN 8

3 #elif defined __AVX512F__

4 #define VECLEN 8

5 #elif defined __AVX__

6 #define VECLEN 4

7 #else

8 #define VECLEN 1

9 #endif

10

11 #define MAXNPDE 8

12

13 double ql[MAXNPDE ][ VECLEN],qr[MAXNPDE ][ VECLEN ];

14 double rl[MAXNPDE ][ VECLEN],rr[MAXNPDE ][ VECLEN ];

15 double fl[MAXNPDE ][ VECLEN],fr[MAXNPDE ][ VECLEN],

16 double f[MAXNPDE ][ VECLEN], wc[4][ VECLEN ];

17

18 for( ic=ics;ic<ice;ic+= VECLEN )

19 {

20 // gather from face end -points

21 vgather(q,n,&indx [0][ic],&indx [1][ic],ql,qr);

22 vgather(r,n,&indx [0][ic],&indx [1][ic],rl,rr);

23 // load face normals and area

24 vload(geo ,nx+1,ic,wc);

25 // compute flux residual across all vector lanes

26 #pragma omp simd simdlen(VECLEN) safelen(VECLEN)

27 for( iv=0;iv<VECLEN;iv++ )

28 {

29 // assemble fluxes -- truncated

30 f[0][iv]= 0.5*(fr[0][iv]+fl[0][iv])*wc[3][iv];

31 // accumulate

32 rl[0][iv]-= f[0][iv];

33 rr[0][iv]+= f[0][iv];

34 }

35 // scatter -back to face end -points

36 vscatter(r,n,&indx [0][ic],&indx [1][ic],rl,rr);

37}

Listing 2. Original implementation of face-based kernels to aid vectorisation.

data will take approximately the same amount of time, assuming the loads to the indices hit in the
L1 cache.
We use the same ratio in this work and prefetch indices stored in the connectivity arrays at

twice the distance of the cell-centred data that is being referenced. Prefetches are also inserted for
the regular and contiguous access patterns in vload in order to test whether we can outperform
the hardware prefetcher as well as the claim of both Lee et al. [2012] and Ainsworth and Jones
[2017] that prefetching the irregular accesses in software can negatively impact the operation of
the stream/stride hardware prefetchers.

Listing 3 shows the implementation of routines used for prefetching the indices, cell-centred and
face data respectively. Listing 4 demonstrates how all these are implemented within the vgather
and vload primitives along with the structure of a face-based loop with software prefetching which
is followed throughout the application.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:10 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

1 // prefetch data at cell data at half the distance of the indices

2 # if defined L1_INDEX_PF

3 # define L1_CELL_DATA_PF (L1_INDEX_PF >> 1)

4 # endif

5 # if defined L2_INDEX_PF

6 # define L2_CELL_DATA_PF (L2_INDEX_PF >> 1)

7 # endif

8

9 // prefetch indices in connectivity array

10 void prefetchi(int *pos1 , int *pos2)

11 {

12 // prefetch in L2

13 # if defined L2_INDEX_PF

14 _mm_prefetch ((char *)&(pos1[L2_INDEX_PF ]),_MM_HINT_T1);

15 _mm_prefetch ((char *)&(pos2[L2_INDEX_PF ]),_MM_HINT_T1);

16 # endif

17 // prefetch in L1

18 # if defined L1_INDEX_PF

19 _mm_prefetch ((char *)&(pos1[L1_INDEX_PF ]),_MM_HINT_T0);

20 _mm_prefetch ((char *)&(pos2[L1_INDEX_PF ]),_MM_HINT_T0);

21 # endif

22 }

23

24 // prefetch cell -centred data (irregular access)

25 template < typename type >

26 void prefetchcd(type *data , int *pos1 , int *pos2)

27 {

28 # if defined L2_CELL_DATA_PF

29 for( int iv=0;iv<VECLEN;iv++ )

30 {

31 _mm_prefetch ((char *)&(data[pos1[iv+L2_CELL_DATA_PF ]]),_MM_HINT_T1);

32 _mm_prefetch ((char *)&(data[pos2[iv+L2_CELL_DATA_PF ]]),_MM_HINT_T1);

33 }

34 # endif

35 # if defined L1_CELL_DATA_PF

36 for( int iv=0;iv<VECLEN;iv++ )

37 {

38 _mm_prefetch ((char *)&(data[pos1[iv+L1_CELL_DATA_PF ]]),_MM_HINT_T0);

39 _mm_prefetch ((char *)&(data[pos2[iv+L1_CELL_DATA_PF ]]),_MM_HINT_T0);

40 }

41 # endif

42 }

43

44 // prefetch face data (regular access)

45 template < typename type >

46 void prefetchfd(type *data , int offset)

47 {

48 # if defined L2_FACE_DATA_PF

49 _mm_prefetch ((char *)&(data[offset+L2_FACE_DATA_PF],_MM_HINT_T1);

50 # endif

51 # if defined L1_FACE_DATA_PF

52 _mm_prefetch ((char*)&(data[offset+L1_FACE_DATA_PF],_MM_HINT_T0);

53 # endif

54 }

Listing 3. Routines for prefetching di�erent kinds of data.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:11

1 template < typename type >

2 void vgather(type *s, int n, int *p1, int *p2,

3 double d1[][ VECLEN], double d2[][ VECLEN ])

4 {

5 // prefetch cell data using

6 // indices in p1 and p2 (irregular)

7 prefetchcd(s,p1,p2);

8 ...

9 }

10

11 void vload(double **s, int nv, int offset ,

12 double d[][ VECLEN ])

13 {

14 // prefetch face data (regular)

15 for( int iv=0;i<nv;iv++ )

16 prefetchfd (&s[iv][0], offset);

17 ...

18 }

19

20 // face -based loop with software prefetching

21 for( ic=ics;ic<ice;ic+= VECLEN )

22 {

23 // prefetch the indices , only once

24 prefetchi (&pos1[ic],&pos2[ic]);

25 // gather (implicit prefetch of cell data)

26 vgather(q,n,&pos1[ic],&pos2[ic],ql,qr);

27 // load (implicit prefetch of face data)

28 vload(geo ,nx,ic,wc);

29 // computation

30 ...

31 }

Listing 4. Layout and structure of a face-based kernel with so�ware prefetching.

5.3 Impact of data layout

The e�ciency of the software prefetching implementation is also dependent on the choice of data
structures used for the cell-centred and face variables. A side e�ect of using the AoS data layout
for the cell-centred values is that successive variables within the structure are loaded as well at
cache line granularity. This means that compared to SoA, the AoS layout only requires a single
prefetch instruction per cell data structure since consecutive entries will be loaded in the same
cache line as long as their number is not greater than eight in double precision or sixteen in single
precision. For example, let us consider the �ow and turbulence variables stored in q. In the AoS
layout (�g.4), these are stored for each cell-centre as [u,v,w, t,p,k,ω] where u, v and w are the
velocity vector components, t is temperature, p is pressure and k and ω are the additional variables
used to compute the turbulent viscosity. In the SoA format (�g.5), each of these variables would be
stored in a separate vector of length equal to the number of cells in the domain. As a consequence,
prefetching all of the unknowns in SoA would require seven distinct prefetch instructions per
cell-centred data structure since every component is located in a di�erent array. This number
increases quickly in the context of a vector iteration where four or eight faces are processed in
parallel and where 56 or 112 prefetch instructions are required for the unknowns (seven variables
× two cells per face × four/eight faces). In contrast, the AoS layout requires a single prefetch
instruction referencing the �rst position (i.e., u) in the cell-centred data structure as all successive

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:12 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

u0 v0 w0 t0 p0 k0 ω0 u1 v1 w1 t1 p1 k1 ω1 un vn wn tn pn kn ωn

Fig. 4. Flow variables stored in an Array of Structures (AoS) layout with padding.

u0 u1 u2 u3 u4 u5 ... un

v0 v1 v2 v3 v4 v5 ... vn

w0 w1 w2 w3 w4 w5 ... wn

t0 t1 t2 t3 t4 t5 ... tn

p0 p1 p2 p3 p4 p5 ... pn

k0 k1 k2 k3 k4 k5
... kn

ω0 ω1 ω2 ω3 ω4 ω5 ... ωn

Fig. 5. Flow variables stored in a Structure of Arrays (SoA) layout.

x0 x1 x2 x3 ... xn y0 y1 y2 y3 ... yn z0 z1 z2 z3 ... zn

Fig. 6. Face normals stored in a Structure of Arrays (SoA) layout.

entries are loaded at a cache line granularity. The latter is true if the per-cell data structure is
aligned at the correct byte boundary for the underlying architecture and padded to occupy the
entire cache line if necessary. Thus, prefetching all of the unknowns in one vector iteration using
the AoS format requires either eight or sixteen prefetch instructions depending on the number of
faces processed in parallel.
The di�erence in the number of prefetch instructions required per face-based loop iteration is

important since these instructions, although non-blocking, do take up valuable instruction slots
and can therefore result in noticeable overheads with detrimental e�ects on performance.
With regard to face data structures such as normals, these are accessed using regular unit

stride loads since faces are visited in consecutive order. As a result, these variables are best stored
in the SoA layout (�g.6) as this allows for e�cient vector load/store operations even though it
requires more in-�ight memory streams. However, when prefetching these values, it is important to
remember that prefetches bring data into the cache hierarchy at cache line granularity. As a result,
the prefetches should execute such that they do not bring the data into the caches more than once
at any given time. For example, on AVX/AVX2 architectures such as Sandy Bridge and Broadwell,
the face-loops are unrolled by four since this is the number of double precision �oating-point values
that can �t on the underlying 256-bit vector registers. However, a cache-line on these architectures
can hold eight double precision variables. As a result, executing a software prefetch for the face data
in every vector iteration on these architectures is not optimal since the same can be accomplished
with a single prefetch instruction every other iteration. As earlier mentioned, minimizing the
prefetch degree as much as possible is imperative since these instructions do go through the entire
pipeline.

5.4 Auto-tuning

Finding the optimal value for the prefetch distance d across all kernels and for every distinct
architecture can only be achieved by means of auto-tuning. In this work, the auto-tuning phase is
executed once on every processor and is an automated process integrated within the build system
of the application. The auto-tuner is implemented as a shell script that compiles the application
with di�erent distance values and destinations for the prefetches (i.e., L1, L2, or L1 and L2) as
supported by the x86 ISA (table 2) and saves the combination of values that exhibit best application
performance so that it can be used subsequently by the build system for the production binary.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:13

Instruction L1 L2 L3 Macro

PREFETCHNTA No No Yes _MM_HINT_NTA

PREFETCH0 Yes Yes Yes _MM_HINT_T0

PREFETCH1 No Yes Yes _MM_HINT_T1

PREFETCH2 No Yes Yes _MM_HINT_T2

Table 2. Characteristics of prefetch instructions in the x86 ISA. The macro value is the second argument that

is passed to the _mm_prefetch compiler intrinsic.

1 # find vector register size

2 k=$(findregsize)

3 # start software prefetching

4 export ENABLE_PF =1

5 # Vary distance for L1 prefethces

6 for i in $k $((k<<1)) $((k<<2))

7 do

8 # L1

9 export L1_INDEX_PF=$i

10 unset L2_INDEX_PF

11 build

12 var[$i ,0]=$(run)

13

14 # L2 (and L3 if inclusive) only

15 unset L1_INDEX_PF

16 export L2_INDEX_PF=$i

17 build

18 var[0,$i]=$(run)

19

20 # prefetch data into L1 at distance "i"

21 # and into L2 at distance "j"

22 export L1_INDEX_PF=$i

23 for j in $((i<<1)) $((i<<2)) $((i<<3))

24 do

25 export L2_INDEX_PF=$j

26 build

27 var[$i,$j]=$(run)

28 done

29 done

Listing 5. A simplified example of a shell script for auto-tuning.

All data obtained from the parametric study for that particular architecture is also stored for later
analysis. A simpli�ed example of the auto-tuning script used in this work is illustrated in listing 5
for reference.

The search space for the auto-tuner is considerably reduced by the fact that it only has to iterate
through multiple ranges of index values across the di�erent cache levels. This is because the values
for prefetching the indirectly referenced data are automatically set to half those of the index values
as previously discussed in section 5.2.

The auto-tuner performs the �rst run executing software prefetches into the L1 cache (prefetch0)
followed by a run where prefetches target the L2 and L3 levels only (prefetch1). After that, three
more runs are performed where prefetches are executed targeting the L1 cache as well as prefetches
that target the L2 and L3 caches at a distance that is twice that of the one used for prefetching into

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:14 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

kernel runtime (%) �ops/bytes description

IFLUX 13 1.30 2nd order inviscid �uxes

VFLUX 8 0.80 2nd order viscous �uxes

DIFLUX 32 0.84 linearised inviscid �uxes

DVFLUX 30 0.80 linearised viscous �uxes

Table 3. Characteristics of the top four face-based kernels in the application based on their percentage of

overall run-time.

the L1 cache and which increases in powers of two increments. After these runs are executed, the
auto-tuner will then increase the distance value for prefetching into the L1 cache also in powers of
two increments and start the same process again.
Since the loops that we prefetch on are vectorised, the initial prefetch distance value is set to

be equal to the vector register size for that given processor (i.e., one vector iteration) increasing
afterwards in powers of two increments. Therefore, as long as cell-centred and face data structures
are aligned to the correct byte boundaries, every prefetch instruction will only bring data to the
higher cache hierarchies belonging to a given vector iteration.

6 RESULTS AND DISCUSSIONS

We present the results of our implementation across the Intel Xeon Sandy Bridge, Broadwell and
Skylake CPUs and the Intel Xeon Phi Knights Corner and Knights Landing processors. We show
results for both the whole application and also for the top four face-based kernels (table 3) where
the largest percentage of run-time is spent in order to assert whether prefetch parameters such as
distances vary between di�erent architectures as well as computational kernels. We also present the
di�erence in speed-ups when prefetches are only executed for the indirect accesses (i.e., cell-centred
data) compared to when prefetches are also executed for the streaming unit-stride accesses used to
load the face data structures. Timings have been obtained using the clock_gettime function available
on Linux. Pro�ling data such as comparisons between cache miss rates and raw accesses with
software prefetching enabled or disabled were obtained using Intel Vtune Ampli�er [Ampli�er
2019] and Perf [Perf 2019].

Sandy Bridge. On the Sandy Bridge CPU (�gs 7 and 12), software prefetching results in up to
1.43× speed-up in some kernels although shows no bene�t in others. This is due to the cache
pollution that results from overlapping prefetches at di�erent distances across multiple cache levels
and is evidenced by the fact that best results are obtained when we only target the prefetches for
either the L1 or the L2 cache rather than both. Perhaps surprisingly, we obtain better results when
we execute the application on the whole socket using 8 MPI ranks rather than on a single core.
We attribute this to the fact that on Sandy Bridge, the per core memory bandwidth is signi�cantly
smaller since it cannot saturate the entire bandwidth available per socket. With respect to the whole
application, software prefetching results in speed-ups of up to 1.09×. The di�erence in performance
improvements between the two test cases is negligible although best results are obtained for the
rotor single passage.

On Sandy Bridge, only executing prefetches for the indirectly addressed data and not for the reg-
ular streams as well can be the di�erence between obtaining any bene�ts from software prefetching
or actually slowing down the application. This might be attributed to the fact that our software

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:15

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

Sp
ee
d
-u
p

co
re

AERO-ENGINE INTAKE

Sp
ee
d
-u
p

so
ck
et

Sp
ee
d
-u
p

co
re

ROTOR SINGLE PASSAGE

Sp
ee
d
-u
p

so
ck
et

DVFLUXDIFLUXVFLUXIFLUX

L2=none
L2=23

L2=L1×21

L2=24
L2=L1×22

L2=25

Fig. 7. Results of performing so�ware prefetching in both test cases on the Intel Xeon Sandy Bridge E5-2650

CPU in face-based loops and executed on single core and full socket (8 cores) configurations. The distance

values presented for the L1 and L2 cache hierarchies are for prefetching the indices. Prefetches for the data are

executed at half the distance of the indices. The white bars represent the speed-ups obtained when so�ware

prefetches are executed for irregular accesses only and not for regular stream/stride accesses.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:16 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

Sp
ee
d
-u
p

co
re

AERO-ENGINE INTAKE

Sp
ee
d
-u
p

so
ck
et

Sp
ee
d
-u
p

co
re

ROTOR SINGLE PASSAGE

Sp
ee
d
-u
p

so
ck
et

DVFLUXDIFLUXVFLUXIFLUX

L2=none
L2=23

L2=L1×21

L2=24
L2=L1×22

L2=25

Fig. 8. Results of performing so�ware prefetching in both test cases on the Intel Xeon Broadwell E5-2695 CPU

in face-based loops and executed on single core and full socket (18 cores) configurations. The distance values

presented for the L1 and L2 cache hierarchies are for prefetching the indices. Prefetches for the data are

executed at half the distance of the indices. The white bars represent the speed-ups obtained when so�ware

prefetches are executed for irregular accesses only and not for regular stream/stride accesses.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:17

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

Sp
ee
d
-u
p

co
re

AERO-ENGINE INTAKE

Sp
ee
d
-u
p

so
ck
et

Sp
ee
d
-u
p

co
re

ROTOR SINGLE PASSAGE

Sp
ee
d
-u
p

so
ck
et

DVFLUXDIFLUXVFLUXIFLUX

L2=none
L2=23

L2=L1×21

L2=24
L2=L1×22

L2=25

Fig. 9. Results of performing so�ware prefetching in both test cases on the Intel Xeon Skylake Gold 6152 CPU

in face-based loops and executed on single core and full socket (22 cores) configurations. The distance values

presented for the L1 and L2 cache hierarchies are for prefetching the indices. Prefetches for the data are

executed at half the distance of the indices. The white bars represent the speed-ups obtained when so�ware

prefetches are executed for irregular accesses only and not for regular stream/stride accesses.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:18 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

Sp
ee
d
-u
p

1
th
re
ad

p
er

co
re

AERO-ENGINE INTAKE

Sp
ee
d
-u
p

4
th
re
ad
s
p
er

co
re

DVFLUXDIFLUXVFLUXIFLUX

L2=none L2=L1×21 L2=L1×22

Fig. 10. Results of performing so�ware prefetching in the aero-engine intake test case only on the Intel Xeon

Phi Knights Corner 7120P coprocessor. The run was performed on 60 MPI ranks with one thread/rank per

physical core (no hyper-threading) and four threads/rank per physical core (with hyper-threading) . The

distance values presented for the L1 and L2 cache hierarchies are for prefetching the indices. Prefetches for

the data are executed at half the distance of the indices. Relative to the baseline with no hyperthreading, the

version with 4 threads per core is 2.7× faster for iflux, 2.05× for vflux, 2.7× for diflx and 2.0× for dvflux.

prefetches interfere with the operation of the hardware prefetchers who would have otherwise
operated on the regular streaming accesses [Lee et al. 2012].

Broadwell. The results on the Broadwell system are similar to those on Sandy Bridge and are
presented in �gs 8 and 12. Both Sandy Bridge and Broadwell CPUs have smaller L2 caches compared
to the other processors used in this work. As a result, the risk of capacity misses is higher in these
architectures due to the large volume of data that is accessed per vector iteration in the face-based
kernels. Furthermore, if we only prefetch the indirect loads on Broadwell, software prefetching
results in almost no speed-up and can in fact be detrimental to performance. The best improvements
are obtained on the single passage rotor test case that is based on a block-structured mesh and
therefore exhibits more regular strides than the unstructured intake mesh. Among the face-based
kernels, the highest speed-up is obtained in the routine computing the viscous �uxes (1.39×) when
executing prefetches targeting the L2/L3 caches only and at distances value of 16 for the indices
and 8 for the data which translates to prefetching two vector iterations in advance. For the entire
application, software prefetching results in a maximum speed-up of 1.11×.
Similar to Sandy Bridge, good performance can also be obtained on Broadwell if prefetches

are only executed for the L1 cache although at a shorter distance of 1 vector iteration compared
to 2 vector iterations for prefetches in the L2 only. However, this approach is not as e�cient as
prefetching in L2/L3 only due to the inclusive nature of the cache hierarchy on both Broadwell

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:19

0.5

1

1.5

2

2.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.5

1

1.5

2

2.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.5

1

1.5

2

2.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.5

1

1.5

2

2.5

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

Sp
ee
d
-u
p

ti
le

AERO-ENGINE INTAKE

Sp
ee
d
-u
p

so
ck
et

Sp
ee
d
-u
p

ti
le

ROTOR SINGLE PASSAGE

Sp
ee
d
-u
p

so
ck
et

DVFLUXDIFLUXVFLUXIFLUX

L2=none
L2=23

L2=L1×21

L2=24
L2=L1×22

L2=25

Fig. 11. Results of performing so�ware prefetching in both test cases on the Intel Xeon Phi Knights Landing

7210 CPU. The run was performed on 64 MPI ranks with one thread/rank per physical core (no hyper-

threading) and on 2 MPI ranks pinned to one tile sharing an L2 cache. The distance values presented for

the L1 and L2 cache hierarchies are for prefetching the indices. Prefetches for the data are executed at half

the distance of the indices. The white bars represent the speed-ups obtained when so�ware prefetches are

executed for irregular accesses only and not for regular stream/stride accesses.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:20 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.8

1

1.2

1.4

1.6

1.8

2

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=2
6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

0.8

1

1.2

1.4

1.6

1.8

2

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

L1
=2
3

L1
=2
4

L1
=2
5

L1
=n
on
e

Sp
ee
d
-u
p

co
re
/t
il
e

AERO-ENGINE INTAKE

Sp
ee
d
-u
p

so
ck
et

Sp
ee
d
-u
p

co
re
/t
il
e

ROTOR SINGLE PASSAGE

Sp
ee
d
-u
p

so
ck
et

KNLKNCSKXBDWSNB

L2=none
L2=23

L2=L1×21

L2=24
L2=L1×22

L2=25

Fig. 12. Results of performing so�ware prefetching in both test cases on the whole application and across

all processors. The distance values presented for the L1 and L2 cache hierarchies are for prefetching the

indices. Prefetches for the data are executed at half the distance of the indices. The white bars represent the

speed-ups obtained when so�ware prefetches are executed for irregular accesses only and not for regular

stream/stride accesses.

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



So�ware prefetching for unstructured mesh applications 3:21

and Sandy Bridge architectures. In essence, any prefetches into the L1 cache will also bring data
into the L2 and L3 levels however prefetches into L2/L3 only will not bring data into the L1 as well.
We refer readers to table 2 for further information on prefetch instructions and their respective
destination.

Skylake. The impact of software prefetching on Skylake is presented in �gs 9 and 12. Compared to
the Sandy Bridge and Broadwell systems, software prefetching results in up to 1.29× full application
speed-up on the Skylake system in a single core and 1.09× at full socket concurrency. The speed-ups
obtained in the face-based loops range between 1.18× and 1.61× across both single core and full
socket runs and test cases. We attribute these to the larger L2 cache in the Skylake system, which
is four times greater than the L2 caches on the Sandy Bridge and Broadwell systems, as well as the
fact that the L3 cache on Skylake is con�gured as a victim cache (non-inclusive). This is further
evidenced by the fact that best results are obtained when prefetches are only executed for the larger
L2 cache (prefetch1). The signi�cant di�erence in performance for the whole application on Skylake
between single core and full socket runs is attributed to the large per socket core count as well as
the fact that the L3 victim cache is shared among all 22 cores which reduces the per core allocation
compared to single core runs. Furthermore, in our analysis, we also found memory bandwidth to
be a particular issue on Skylake as this quickly gets saturated once we run on more than 14 cores.
As a result, a large proportion of bene�ts derived from software prefetching disappears once we
run on the full socket (22 cores) rather than on a single core.

In contrast to Sandy Bridge and Broadwell, prefetching only the indirect accesses in face-based
loops does lead to signi�cant improvements in performance although inserting prefetches for the
regular accesses as well is by far the best approach.

Knights Corner. Software prefetching exhibits substantial speed-ups on the Knights Corner co-
processor as presented in �gs 10 and 12. This is to be expected since the in-order core design
requires either more than one thread per core or software prefetching for avoiding pipeline stalls
due as a result of a cache miss. Furthermore, the Knights Corner architecture can execute prefetch
instructions on both pipes in the VPU and does not incorporate an L1 hardware prefetcher. As a
result, our implementation leads to 1.99× speed-up for the full application (�g.12) and between
1.81× and 4.10× in the four face-based kernels (�g.10). When also running with four hyperthreads
per core, the speed-ups are not as large since both software prefetching and multithreading achieve
similar goals on the KNC architecture, that of circumventing pipeline stalls as a result of a cache
miss. Nevertheless, absolute best performance is obtained when both hyperthreading and software
prefetching are implemented. Relative to the baseline with software prefetching and no hyper-
threading, running with 4 threads per core and with software prefetching is 2.7× faster for i�ux,
2.05× for v�ux, 2.7× for di�x and 2.0× for dv�ux. However, it is perhaps important to remark that
implementing software prefetching in a large application is signi�cantly easier than exploiting
parallelism at another granularity.

Another aspect worth highlighting is that on KNC, best performance is obtained by overlapping
prefetches in the L1 with prefetches in the L2 whereas this is not the case on all the other processors
where best results are obtained by prefetching into L2/L3 only. This is to be expected due to the
aforementioned lack of an L1 hardware prefetcher on KNC which means that prefetching into L2
only will still lead to cache misses in L1 if data is not prefetched from L2.

Finally, it is important to mention that results on KNC were only obtained using the intake test
case and running in a single core (1 MPI rank) con�guration due to memory size limitations.

Knights Landing. For Knights Landing, software prefetching results in a 1.25× speed-up for the
full application when running on all 64 cores and more than 1.5× on a tile (2 cores sharing an L2

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.



3:22 Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare

cache) as shown in �g.12. In face-based loops, software prefetching obtains speed-ups between
1.54× and 2.2× (�g.11). We attribute this to the fact that the L2 cache on the KNL, although shared
by the two cores in a tile, is still twice as large as the one on Sandy Bridge and Broadwell. As a result,
executing software prefetches only in the L2 cache on KNL obtains the best performance compared
to prefetching across both the L1 and L2 caches. This is also due to the fact that the L1 prefetches
hold critical hardware resources such as Line Fill Bu�ers until the cache line �ll completes whereas
L2 prefetchers do not [Je�ers et al. 2016]. An important aspect to take into account on KNL is
that not prefetching the regular accesses in face-based loops is not as detrimental to performance
compared to all other architectures. This might be because the stream/stride hardware prefetchers
are not a�ected by the software prefetches as on the other architectures.

7 CONCLUSIONS

Although software prefetching can be an ideal mechanism for improving the performance of
applications that contain indirect and irregular memory access patterns, implementing and gaining
any performance from it in real applications can be surprisingly challenging. To address this, we
have demonstrated the utility and implementation of software prefetching in an unstructured �nite
volume CFD code of representative size and complexity to an industrial application and using two
realistic test cases popular in the aerospace community.

We have presented the importance of auto-tuning for searching and �nding the optimal prefetch
distance values across di�erent computational kernels and processors and the potential bene�t of
only executing prefetches targeting speci�c cache levels (i.e., L1 and/or L2 only). We have discussed
the impact that the data layout can have on the performance and e�ciency of software prefetching
and presented ways through which prefetches can be integrated among existing optimisations
such as vectorisation in kernels that contain indirect and irregular access patterns. Moreover, we
have demonstrated that in loops with mixed access patterns (i.e., irregular as well as regular),
it is imperative that prefetches target both, as otherwise the impact of prefetching the irregular
accesses only is reduced signi�cantly on the majority of processors. Finally, we showed signi�cant
full application speed-ups across a number of processors in both single core/tile and full socket
con�gurations, such as the Intel Xeon Sandy Bridge (1.14×), Broadwell (1.09×) and Skylake CPUs
(1.29×) as well as on the in-order Intel Xeon Phi Knights Corner architecture (1.99×) and the
out-of-order Knights Landing many-core processor (1.51×).

ACKNOWLEDGMENTS

Parts of this work were supported by the Engineering and Physical Sciences Research Council
(EPSRC) and Rolls-Royce plc through the industrial CASE award 13220161 and grant EP/K026399/1.
This work used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk)
funded by the University of Edinburgh and EPSRC (EP/P020267/1) and theARCHERKNLTesting and
Development Platform part of the UKNational Supercomputing Service (http://wwww.archer.ac.uk).
The authors are indebted to Adrian Jackson of the University of Edinburgh for providing access to
the Cirrus and KNL systems.

REFERENCES

2016. OpenMP 4.0 Speci�cations. http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf. Accessed: 15-05-2016.

2017. FUN3D. https://fun3d.larc.nasa.gov/. Accessed: 31-08-2017.

Sam Ainsworth and Timothy M. Jones. 2017. Software Prefetching for Indirect Memory Accesses. In CGO ’17. IEEE Press,

Piscataway, NJ, USA, 305–317.

Intel Vtune Ampli�er. 2019. Intel Vtune Ampli�er. https://software.intel.com/en-us/vtune.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS Parallel Benchmarks&Mdash;Summary

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.

http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://fun3d.larc.nasa.gov/
https://software.intel.com/en-us/vtune


So�ware prefetching for unstructured mesh applications 3:23

and Preliminary Results. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing ’91). ACM,

New York, NY, USA, 158–165. https://doi.org/10.1145/125826.125925

David Callahan, Ken Kennedy, and Allan Porter�eld. 1991. Software Prefetching. In ASPLOS. ACM, New York, NY, USA,

40–52.

Mauro Carnevale, Je�rey S Green, and Luca Di Mare. 2014. Numerical studies into intake �ow for fan forcing assessment. In

Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. 16–20.

Mauro Carnevale, Feng Wang, and Luca di Mare. 2017. Low Frequency Distortion in Civil Aero-engine Intake. Journal of

Engineering for Gas Turbines and Power 139, 4 (2017), 041203.

Luca Di Mare, Davendu Y Kulkarni, Feng Wang, Artyom Romanov, Pandia R Ramar, and Zacharias I Zachariadis. 2011.

Virtual gas turbines: Geometry and conceptual description. Proceedings of ASME TurboExpo, Vancouver, Canada (2011).

M. A. Al Farhan andD. Keyes. 2018. Optimizations of Unstructured Aerodynamics Computations forMany-core Architectures.

IEEE Transactions on Parallel and Distributed Systems (2018), 1–1. https://doi.org/10.1109/TPDS.2018.2826533

William D Gropp, Dinesh K Kaushik, David E Keyes, and Barry F Smith. 2001. High-performance parallel implicit CFD.

Parallel Comput. 27, 4 (2001), 337 – 362. https://doi.org/10.1016/S0167-8191(00)00075-2 Parallel computing in aerospace.

Ioan Hadade. 2018. Bitbucket. https://bitbucket.org/ioanhadade/au3x-ia3-reproduce/.

Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare. 2018a. Software prefetching for unstructured mesh

applications. In 2018 IEEE/ACM 8th Workshop on Irregular Applications: Architectures and Algorithms (IA3). 11–19.

Ioan Hadade, Feng Wang, Mauro Carnevale, and Luca di Mare. 2018b. Some useful optimisations for unstructured computa-

tional �uid dynamics codes on multicore and manycore architectures. Computer Physics Communications (2018).

Charles Hirsch. 1990. Numerical Computation of Internal and External Flows. John Wiley and Sons, Chichester, West Sussex,

UK.

Intel Corporation. 2017. Intel® 64 and IA-32 Architectures Optimization Reference Manual. Number 248966-037.

Jim Je�ers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi Processor High Performance Programming. Morgan

Kaufmann.

Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When Prefetching Works, When It Doesn’t, and Why. ACM Trans.

Archit. Code Optim. 9, 1, Article 2 (March 2012), 29 pages. https://doi.org/10.1145/2133382.2133384

Rainald Löhner. 2010. Cache-e�cient renumbering for vectorization. International Journal for Numerical Methods in

Biomedical Engineering 26, 5 (2010), 628–636. https://doi.org/10.1002/cnm.1160

D.J. Mavriplis. 2003. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes. Technical

Report NASA/CR-2003-212683. National Aeronautics and Space Administration.

Todd C. Mowry, Monica S. Lam, and Anoop Gupta. 1992. Design and Evaluation of a Compiler Algorithm for Prefetching.

SIGPLAN Not. 27, 9 (Sept. 1992), 62–73. https://doi.org/10.1145/143371.143488

D. Mudigere, S. Sridharan, A. Deshpande, J. Park, A. Heinecke, M. Smelyanskiy, B. Kaul, P. Dubey, D. Kaushik, and D. Keyes.

2015. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems.

In 2015 IEEE International Parallel and Distributed Processing Symposium. 723–732. https://doi.org/10.1109/IPDPS.2015.114

J. P. Murphy and D. G. MacManus. 2011. Ground vortex aerodynamics under crosswind conditions. Experiments in Fluids

50, 1 (01 Jan 2011), 109–124. https://doi.org/10.1007/s00348-010-0902-4

Perf. 2019. Perk Wiki. https://perf.wiki.kernel.org/index.php/Main_Page.

L. Reid and D. Moore. 1978. Design and overall performance of four highly loaded, high-speed inlet stages for an advanced

high-pressure-ratio core compressor. Technical Report TP-1337. National Aeronautics and Space Administration.

Philip L Roe. 1981. Approximate Riemann solvers, parameter vectors, and di�erence schemes. Journal of computational

physics 43, 2 (1981), 357–372.

Bram van Leer. 1979. Towards the ultimate conservative di�erence scheme. V. A second-order sequel to Godunov’s method.

J. Comput. Phys. 32, 1 (1979), 101 – 136. https://doi.org/10.1016/0021-9991(79)90145-1

Steven P. Vanderwiel and David J. Lilja. 2000. Data Prefetch Mechanisms. ACM Comput. Surv. 32, 2 (June 2000), 174–199.

Feng Wang, Mauro Carnevale, Gan Lu, Luca di Mare, and Davendu Kulkarni. 2016. Virtual Gas Turbine: Pre-Processing and

Numerical Simulations. In ASME Turbo Expo 2016. American Society of Mechanical Engineers.

D. C. Wilcox. 1988. Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal 26 (Nov.

1988), 1299–1310. https://doi.org/10.2514/3.10041

Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications of the Obvious. SIGARCH Comput. Archit.

News 23, 1 (March 1995), 20–24. https://doi.org/10.1145/216585.216588

ACM Trans. Parallel Comput., Vol. 7, No. 1, Article 3. Publication date: March 2020.

https://doi.org/10.1145/125826.125925
https://doi.org/10.1109/TPDS.2018.2826533
https://doi.org/10.1016/S0167-8191(00)00075-2
https://bitbucket.org/ioanhadade/au3x-ia3-reproduce/
https://doi.org/10.1145/2133382.2133384
https://doi.org/10.1002/cnm.1160
https://doi.org/10.1145/143371.143488
https://doi.org/10.1109/IPDPS.2015.114
https://doi.org/10.1007/s00348-010-0902-4
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.2514/3.10041
https://doi.org/10.1145/216585.216588

	Abstract
	1 Introduction
	2 Related Work
	3 Unstructured finite-volume CFD solver
	3.1 Overview
	3.2 Computational kernels and access patterns
	3.3 Test cases

	4 Hardware Setup
	5 Implementation
	5.1 Baseline
	5.2 Inserting software prefetches
	5.3 Impact of data layout
	5.4 Auto-tuning

	6 Results and Discussions
	7 Conclusions
	Acknowledgments
	References

