
Software Process: A Roadmap
 Alfonso Fuggetta
 Politecnico di Milano
 Dipartimento di Elettronica e Informazione
 P.za Leonardo da Vinci, 32
 20133 Milano (Italy)
 Tel. +39-0223993623
 Alfonso.Fuggetta@polimi.it

ABSTRACT
Software process research deals with the methods and
technologies used to assess, support, and improve
software development activities. The field has grown up
during the 80s to address the increasing complexity and
criticality of software development activities. This paper
aims to briefly present the history and achievements of
software process research, some critical evaluation of the
results produced so far, and possible directions for future
work.

1 INTRODUCTION
During the past 20 years, software has conquered an
essential and critical role in our society. We increasingly
depend on the features and services offered through
computerized systems. Any modern product or service
embeds and/or exploits some piece of software. As an
example, companies sell (or plan to sell in the near future)
systems to automate building operations and to embed
Internet-features into home appliances.

Unfortunately, software applications are complex
products that are difficult to develop and test. Very often,
software exhibits unexpected and undesired behaviors that
may even cause severe problems and damages. Every
issue of the ACM Software Engineering Notes, a
newsletter published by the ACM SIGSOFT interest
group, contains a section that presents a comprehensive
(and also frightening) report of the problems and
accidents caused by software systems faults. For these
reasons, researchers and practitioners have been paying
increasing attention to understanding and improving the
quality of the software being developed. This is
accomplished through a number of approaches and
techniques. One of the main directions pursued by
researchers and practitioners is centered on the study and
improvement of the process through which software is

developed. The underlying assumption is that there is a
direct correlation between the quality of the process and
the quality of the developed software. The research area
that deals with these issues is referred to using the term
software process.

As an autonomous discipline, the software process area
was started in the 80s, through a series of workshops and
events (in particular, the International Software Process
Workshop). Along the years, new events and journals on
the subject have been started, such as the European
Workshop on Software Process Technology and the
Software Process – Improvement and Practice journal.
Important institutions have been created in the USA and
in Europe to study software processes: the Software
Engineering Institute (SEI, Pittsburgh, USA) and the
European Software Institute (ESI, Bilbao, Spain). Even
standardization organizations have started important
efforts centered on software processes. For example, ISO
has created two important standards such as the ISO
12207 (software lifecycle activities) and 15504 (software
process capability determination).

This paper aims to critically present and discuss the main
results that the software process research area has
achieved in the past decades. This is accomplished by
evaluating both technological and methodological aspects.
Indeed, there are other publications that offer a
comprehensive overview of the results achieved so far in
software process research (see for example [1], [2], and
[3]). For this reason, the focus of this paper is on offering
a critical evaluation of the attitude and modes of the
research work conducted so far. Accordingly, the paper is
structured in three sections.

!"Section 2 presents a quick overview of the history and
achievements of the software process research areas.

!"Section 3 presents a critical evaluation of the work
accomplished so far.

!"Section 4 summarizes some possible directions for
future work.

!"Finally, Section 5 draws some conclusions.

2 A BRIEF OVERVIEW OF SOFTWARE
PROCESS RESEARCH HISTORY AND
ACHIEVEMENTS

The notion of process
The first important contribution of the software process
research area has been the increasing awareness that
developing software is a complex process. Researchers
and practitioners have realized that developing software is
not just a matter of creating effective programming
languages and tools. Software development is a collective,
complex, and creative effort. As such, the quality of a
software product heavily depends on the people,
organization, and procedures used to create and deliver it.

This vision has its roots in the work accomplished in the
60s and 70s. In those two decades, researchers and
practitioners focused their activity on three main goals:

!"Development of structured programming languages
(e.g., Algol, Pascal, and C).

!"Development of design methods and principles (e.g.,
information hiding, top-down refinement, functional
decomposition).

!"Definition of software lifecycles (e.g., waterfall,
incremental development, prototype-based).

The third topic mentioned above (lifecycles) is directly
related with the notion of software process. A software
lifecycle defines the different stages in the lifetime of a
software product. Typically, they are requirements
analysis and specification, design, development,
verification and validation, deployment, operation,
maintenance, and retirement. Moreover, a software
lifecycle defines the principles and guidelines according
to which these different stages have to be carried out. For
instance, the waterfall model suggests that a specific
phase should be started only when the deliverables of the
previous one have been completed. Conversely, the spiral
model considers software development as the systematic
iteration of a number of activities driven by risk analysis.
In general, a software lifecycle defines the skeleton and
philosophy according to which the software process has to
be carried out. However, it does not prescribe a precise
course of actions, an organization, tools and operating
procedures, development policies and constraints. Thus a
lifecycle is certainly an important starting point to define
how software should be developed. Still, adopting a
specific lifecycle is not enough to practically guide and
control a software project.

The notion of software process builds on the notion of
lifecycle and provides a broad and comprehensive concept
to frame and organize the different factors and issues
related to software development activities. A software
process can be defined as the coherent set of policies,
organizational structures, technologies, procedures, and
artifacts that are needed to conceive, develop, deploy, and

maintain a software product. Thus, a software process
exploits a number of contributions and concepts:

1. Software development technology: technological
support used in the process. Certainly, to accomplish
software development activities we need tools,
infrastructures, and environments. We need the
proper technology that makes it possible and
economically feasible to create the complex software
products our society needs.

2. Software development methods and techniques:
guidelines on how to use technology and accomplish
software development activities. The methodological
support is essential to exploit technology effectively.

3. Organizational behavior: the science of
organizations and people. In general, software
development is carried out by teams of people that
have to be coordinated and managed within an
effective organizational structure.

4. Marketing and economy. Software development is
not a self-contained endeavor. As any other product,
software must address real customers’ needs in
specific market settings. Thus different stages of
software development (e.g., requirements
specification and development/deployment) must be
shaped in such a way to properly take into account
the context where software is supposed to be sold and
used.

Viewing software development as a process has
significantly helped identify the different dimensions of
software development and the problems that need to be
addressed in order to establish effective practices. Indeed,
addressing the problems and issues of software
development is not just a matter of introducing some
effective tool and environment. It is not sufficient to
select a reasonable lifecycle strategy either. Rather, we
must pay attention to the complex interrelation of a
number of organizational, cultural, technological, and
economic factors.

Process modeling and support
The emphasis placed on the notion of software process
has motivated a number of research initiatives. A first
area of investigation is related to the techniques and
methods to model software processes and to support their
execution (or enactment). Because software processes are
complex entities, researchers have created a number of
languages and modeling formalisms (often called Process
Modeling Languages or PMLs) that make it possible to
represent in a precise and comprehensive way a number
of software process features and facets:

!"Activities that have to be accomplished to achieve the
process objectives (e.g., develop and test a module).

!"Roles of the people in the process (e.g., software
analyst and project manager).

!"Structure and nature of the artifacts to be created and
maintained (e.g., requirements specification documents,
code modules, and test cases).

!"Tools to be used (e.g., CASE tools and compilers).
There are many different types of PMLs. For a detailed
discussion of the existing approaches, the reader is invited
to refer to a number of surveys published in the past years
([1], [2], [4]). In general, existing PMLs are based on a
number of linguistic paradigms that are extended in order
to increase their expressive power. For instance, several
approaches exploit Petri nets (SPADE, FUNSOFT nets),
while others are centered on logical languages
(Sentinel/Latin). Lee Osterweil has adopted a somewhat
different approach with the notion of process
programming. This approach is based on the idea that
processes can be described using the same kind of
languages that are exploited to create conventional
software. This view has been initially pursued with the
development of a language based on Ada (called
APPL/A) and recently of a new language (called JIL) that
incorporates constructs and concepts typical of different
programming languages.

PMLs can be used for different purposes:

!"Process understanding. A PML can be used to represent
in a precise way how a process is structured and
organized [5]. This can be instrumental to eliminate
inconsistencies in the process specification (i.e., the
company quality manual).

!"Process design. Proactively, a PML can be used to
design a new process, by describing its structure and
organization.

!"Training and education. A precise description of the
process can be useful to teach company procedures and
operations to newly hired personnel.

!"Process simulation and optimization. A process
description can be simulated to evaluate possible
problems, bottlenecks, and opportunities for
improvement.

!"Process support. A precise description of the process
can be interpreted and used to provide different levels
of support to the people operating in the process [6].

An environment that supports the creation and
exploitation of software process models is often called
Process-centered Software Engineering Environment
(PSEE).

Process improvement
As any other human-centered endeavor, software
processes can exhibit unexpected or undesired
performance and behaviors. The experiences of the past
years have emphasized a wide range of situations where
this phenomenon can be observed. Let’s consider some
typical examples:

!"Delivered products do not exhibit the desired quality
profile in terms of reliability, functionality, or
performance.

!"A specific sequencing of process operations introduces
unnecessary delay and overhead that can be eliminated
or at least reduced by allowing a redistribution of
responsibilities and work assignments.

!"It is difficult to keep track of the changes and variations
of the software products generated by different
members of the developed team.

The above situations are meant to be just examples and do
not represent the entire range of problems faced by
software engineers. In general, researchers and
practitioners have realized that processes cannot be
defined and “frozen” once for all. Processes need to
continuously undergo changes and refinements to increase
their ability to deal with the requirements and
expectations of the market and of the company
stakeholders. Hence, process need to be continuously
assessed and improved.

These observations have motivated a range of projects
devoted to the creation of quality models and
improvement methods for software process improvement.
A quality model (such as the SEI Capability Maturity
Model – CMM – and the ISO 9001 standard [7]) defines
the requirements of an ideal company, i.e., a reference
model to be used in order to assess the state of a company
and the degree of improvement achieved or to be
achieved. An improvement method (i.e., SPICE and
IDEAL) suggests the steps to be accomplished in order to
improve the quality of a software process. Basically,
improvement methods indicate how to carry out the
“process of improving a process”.

An important part of process improvement is process
assessment, i.e., the determination of the degree of
maturity of a process with respect to a quality model.
Indeed, some of the most important contributions in
process improvement have been originally started with the
goal of creating assessment models and methods (e.g.,
CMM).

Metrics and empirical studies
The techniques and methods discussed in the previous
two sections (process modeling and support, and process
improvement) need to be based on reliable and effective
practices. PMLs and support environments may certainly
be useful, but we need to know how to structure and
organize the process to be described and supported using
PMLs/PSEEs. Similarly, to improve we need to identify
the techniques and tools that are really instrumental to
enhancing the performance of a specific process.
Basically, we need answers to a number of questions such
as the following ones:

!"What are the indicators that can tell us something about
the quality of a process?

!"What techniques are more effective to improve a
specific process?

!"What is the cost and expected impact of a tool on the
performance of software processes?

In general, researchers and practitioners have realized that
there is an increasing need for a systematic evaluation of
the quality of a process, of its constituents (tools,
procedures, …), and of the resulting products. This
evaluation is essential to support the implementation of
improvement strategies and of any other decision-making
activity related to software development. For this reason,
in the past decade there has been a significant
development of techniques and methods related to
software metrics and empirical studies. In this context,
there are three main kinds of contributions:

!"Definition of (new) metrics. We need indicators that are
able to quantify in a coherent and simple way the
properties of the entities involved in software
development [8]. For instance, how can we evaluate the
size and complexity of a Java program? Or also, what is
the productivity of a Java programmer?

!"Empirical methods. Defining (new) metrics is not
enough. We also need experimental approaches to
guide the evaluation of a specific process [9]. In order
to derive meaningful insights, we must be confident that
the approach followed in studying the process is
appropriate and sound.

!"Empirical results. Metrics and empirical methods are
the means that we use to study a phenomenon. Once
defined, we apply these means to understand and assess
specific problems and settings, in order to learn
something on the nature of software development
processes. These lessons learned (i.e., empirical results
such as “technique X is not effective in context Y”)
increase our ability to successfully manage software
development projects. The quality of empirical results
has to be proved with respect to two different kinds of
validity criteria [10]. We need to be sure that the study
has been designed correctly (internal validity).
Moreover, we need to understand if and under what
circumstances the results of the study can be applied in
different settings (external validity).

Processes, eventually!
The consolidated experiences of researchers and
practitioners have been instrumental to define and
consolidate successful processes. It is worthwhile to
mention here two well-known examples: the Personal
Software Process [11] and the Unified Software
Development Process [12].
!"The Personal Software Process (or PSP) is a collection

of practices and techniques that are meant to guide the
work of a software engineer. PSP has been defined by
Watts Humphrey on the basis of his experiences and
observations of real software development
organizations.

!"The Unified Software Development Process has been
recently created by Jacobson, Booch, and Rambough.
The Unified process is a set of guidelines and process
steps that should be followed to apply UML in the
different stages of software development.

Summing up
This section has provided a very quick and high-level
overview of the activities that are often qualified as
software process research. Clearly, the presentation is not
intended to be exhaustive and technically complete.
Rather, the goal was just to frame the different
contributions and activities in order to give an overall
picture of the work that has been carried out in the
previous decade. Notice also that some of the topics that
have been qualified as software process research, such as
software metrics and empirical studies, can be considered
autonomous research areas. Indeed, other papers in this
volume discuss these topics. Still, I think it is important to
mention here specific research activities on metrics and
empirical studies whose subject of study is the software
process.

As a general comment, it is possible to observe that there
are a number of important achievements that have
increased the quality and effectiveness of software
development processes. Nowadays, we are able to
conceive, create, and deploy software systems whose
complexity is orders of magnitude larger than 15 years
ago. Still, despite the large amount of results produced so
far, software process research is undergoing a crisis that is
visible through a number of symptoms:

!"Most technologies developed by the software process
community have not been transferred into industrial
use.

!"The number of papers on the software process modeling
and technology presented at conferences and published
in journals is decreasing.

!"There is an increasing feeling that the community is
stuck and unable to produce innovative and effective
contributions.

This might be a pessimistic view. Still, as in any other
area of software engineering [13], we need to rethink the
way we are carrying out the research activity. This is
instrumental to identify new directions and approaches to
research. Consequently, the next section will present some
considerations and observations on the work done so far
and propose some criteria to guide future research
activities.

3 CRITICAL ISSUES IN SOFTWARE PROCESS
RESEARCH

The critical issues and problems in software process
research can be summarized by four position statements
(see also [14]).

Software processes are processes too
I took the liberty to rephrase one of the most successful
and well-known mottos of the past decade. Created by
Lee Osterweil for his invited talk at ICSE 87, the
expression “Software processes are software too” has
driven the work of many researchers and practitioners
(including myself). The variation of Osterweil’s motto
proposed here is meant to be provocative and to stimulate
a reflection on the attitude and approach of most software
process research. We have often considered software
processes as a “special” and “unique” form of processes.
Consequently, we have basically assumed that it was
inappropriate and even impossible to reuse the approaches
and results produced by other communities (e.g.,
workflow and CSCW). Indeed, this attitude has caused a
major problem. The software process community has
redone some of the work accomplished by other
communities, without taking advantage of the existing
experiences. This insufficient willingness to analyze the
results and contributions of other areas has slowed down
the rate of innovation. Moreover, we have not taken the
opportunity to learn from other researchers’ mistakes. We
should heavily invest in finding and evaluating
commonalities and similarities [15], rather than identify
differences that often appear to be quite artificial.

The purpose and nature of PMLs/PSEEs must be
rethought
As discussed in Section 2, one of the key topics of
software process research has been the development of
PMLs and related PSEEs. As a matter of fact, after more
than 10 years of research on the topic, few (if any) of the
proposed approaches have been transferred into industrial
practice.

If we consider process modeling, we realize that
practitioners do not use the PMLs we have defined.
Indeed, practitioners’ most important need is to describe
processes with the purpose of understanding and
communicating them. Consequently, PMLs must be easy
to use, intuitive, and “tolerant”, i.e., their formality should
not become a burden for the modeler. Conversely,
existing PMLs are complex, extremely sophisticated,
strongly oriented towards detailed modeling of processes.
This is justified by the desire to be precise and to provide
enough and coherent information to enable “process
enactment”, i.e., the execution and, often, the
“automation” of the process. Moreover, this attitude is
often exacerbated by the desire of most software process
researchers to model “too much of a process”, i.e., all the
details concerning software development (e.g., steps and
procedures of a design method). Unfortunately, this
creates significant barriers to entry and, consequently,
limits the possibility for PMLs to be adopted in practice.

The problems with existing PMLs are reflected into
PSEEs. Very often, PSEEs are complex and intrusive. In
order to pursue even simple operations such as editing and
compiling a program, the initial effort needed to setup a

PSEE is often very high. Moreover, the attitude towards
modeling all the details of a process tends to make PSEEs
rigid and inflexible. If we look at the market, we may
observe that successful environments are characterized by
a somewhat different philosophy. For instance, several
researchers believe that Configuration Management (CM)
environments (e.g., Continuus and CCC) are “the” real
process-centered environments. Even if the effort needed
to setup a CM environment is significant, the activities
(i.e., process fragments) automated by this class of
products are very complex and, at the same time,
extremely boring and repetitive. For instance, managing
the checkout of a software release can be automated,
relieving software engineers from a lot of highly
repetitive work, reducing the chances of mistakes, and
shortening delivery time significantly. CM environments
have become so important to software engineers that no
large-scale development initiative can be launched
without setting up an appropriate CM environment. The
motivation for this success is that CM environments
automate in a very effective way only those process
fragments that are reasonable to automate. This should
be considered an important lesson for software process
researchers. Can we claim the same for existing PSEEs?
Aren’t we trying to model and automate something that
intrinsically can’t be modeled and automated? Isn’t the
failure of PSEEs due to an inappropriate and unrealistic
definition of the goals?

Empirical studies are a means, not an end
In the past years, research in empirical software
engineering has increased at a very fast pace. New events
and journals have been created and the number of
submissions on the subject to conferences is dramatically
increasing. The motivation for this growing interest in
empirical studies is the legitimate desire to increase our
understanding of the principles and nature of software
development. In other scientific domains, empirical
scientists have made a substantial contribution to the
development of our knowledge. Therefore, it is reasonable
and appropriate to apply the methods and approaches of
empirical sciences to software engineering.

The results of the empirical studies conducted so far,
however, have produced mixed feelings. There are two
major problems that several researchers have raised on the
subject:

!"Significance. The results of most empirical studies
appear to be not very significant. Even if it is certainly
true that most empirical studies have the purpose of
providing a formal and credible foundation for
practitioners and researchers’ beliefs, often the added
value of these experiments is limited. For instance, a
paper that has been recently accepted for publication in
a major journal spends about 50 pages of data and
statistics to state that there is some evidence that the
adoption of requirement engineering techniques is often
positively correlated to improved software process

performance. What is the reader supposed to learn from
this study? Shouldn’t researchers’ energy be directed at
studying more promising questions?

!"External validity. Many empirical studies carried out so
far tend to be characterized by a very limited external
validity. Namely, it is difficult to generalize the
conclusions of the study outside the context where the
study was carried out. There is an increasing sense of
dismay in reading papers whose results are difficult to
reuse. Certainly, an important added value of an
experiment is its design and structure, since it can be
reused in different contexts. But this does not remove
the sensation that the reuse of these empirical results is
limited and problematic.

In general, as any other scientific domain, we should keep
in mind that empirical studies are a means, not an end.
Thus, we should pay more attention to their significance
and contribution, and not just to the quality of the
experiment design or, worse, to the amount of statistical
curve fitting. Moreover, we should not automatically
disqualify as “non” scientific those efforts that are not
based on statistical evidence and controlled experiments.
In a landmark paper [16], Lee states that “… the natural
science model does not involve, as objectives, the
utilization of any of the following … : laboratory control,
statistical controls, mathematical propositions, and
replicable observations. Instead, each of these happens to
be a means to an objective in scientific research rather the
objective itself. MIS case studies are capable of achieving
the same scientific objectives through different means”. 1
Some of the most important contributions in computer
science were not based on empirical studies (as we define
them today) and statistical evidence. Did Parnas
statistically verify that the adoption of information hiding
is positively correlated to the quality of the developed
software (and vice versa)? Certainly, Parnas made his
assertion on the basis of a deep and mature experience.
But the relevance of his intuition was illustrated by
qualitative observations. As a provocation, I claim that by
today’s evaluation criteria, his work would probably not
be considered scientifically valid. Nowadays, would we
accept Parnas’s paper “On the criteria to be used to
decompose systems into modules” for publication in IEEE
TSE or ACM TOSEM or ICSE?

1 The executive overview of the paper reads as follows:
“The classical research requirements cannot be met in a
case study. Confounding variables typically make it
exceedingly difficult to sort out causal relationships. The
imposition of classical experimental controls and rigor,
aimed at overcoming these problems, may require such an
artificial environment that the validity of the results is
called into question.”

Software process improvement is process
improvement too
I have once again “stolen” Osterweil’s paper title to assert
that software process improvement should take much
more into account what other disciplines and researchers
have discovered about process quality and process
improvement. As in the case of software process
technology, we often consider software processes as
special and different from any other engineering and
design process. Therefore, we derive that software process
deserves specific improvement methods. Unfortunately,
often these new and specific methods ignore or overlook
the contributions of organizational scientists [17], [18].
Thus the risk is to reinvent the wheel and ignore
important issues that may play a critical role in any
improvement initiative. For instance, most of the
indications suggested by the CMM focus on engineering
aspects only. Unfortunately, the successful
implementation of these indications often requires a deep
reconsideration of the organization carrying out the
development activity. This kind of implications is
inadequately addressed by most software process
improvement methods [19]. Certainly, software
development is characterized by specific issues and
problems. Still, we cannot forget that software
development is carried out by teams of people involved in
a highly creative activity. It is, indeed, a human-centered
process as many others engineering and design processes
in our society.

4 LOOKING FOR RESEARCH DIRECTIONS
Constructively, the observations and comments presented
in this paper can be used to propose the following
directions for future research:

!"PMLs must be tolerant and allow for incomplete,
informal, and partial specification. The goal should be
to ease the adoption of PMLs. Practitioners should be
able to incrementally build their process models, being
informal and incomplete during the early stages of the
modeling activity when it is impossible or inconvenient
to be precise and exhaustive. If needed, the model
should be incrementally enriched and made formal to
address specific issues such as enactment and
simulation.

!"PSEEs must be non-intrusive, i.e., they should smoothly
integrate and complement a “traditional” development
environment. Moreover, it must be possible to deploy
them incrementally so that the transition to the new
technology is facilitated and risks are reduced.

!"PSEEs must tolerate and manage inconsistencies and
deviations. This requirement reflects the nature of a
creative activity such as software development, where
consistency is the exception and not the rule [20].

!"PSEEs must provide the software engineer with a clear
state of the software development process (from many
different viewpoints).

!"The scope of software improvement methods and
models should be widened in order to consider all the
different factors affecting software development
activities. We should reuse the experiences gained in
other business domain and in organizational behavior
research.

5 CONCLUSIONS
Software development is a critical activity of our society,
as we increasingly depend on software in most modern
products and services. Therefore, software process
research has an important role to play in the future of the
software engineering research and practice. To face this
challenge effectively, however, we as software process
researchers should frankly and openly evaluate the errors
and mistakes of the past, in order to avoid them in the
future and to increase the effectiveness of the solutions we
are going to propose. In this paper, I have presented four
propositions that summarize some of the concerns raised
in the community in the past years. In general, software
process researchers and practitioners should reuse the
experiences and achievements of other areas and
disciplines. Moreover, we should rethink the approach we
have adopted in studying and supporting software
processes. These observations might appear as quite
obvious and even trivial. Still, I do believe that they are
the underlying motivations for the partial lack of results
we observe in the discipline.

ACKNOWLEDGEMENTS
The author wishes to thank Anthony Finkelstein, Carlo
Ghezzi, Mehdi Jazayeri, Dino Mandrioli, David
Rosenblum, and Alex Wolf for their comments and
suggestions.

REFERENCES
[1] V. Ambriola, R. Conradi, and A. Fuggetta,

“Assessing process-centered software engineering
environments,” ACM Transactions on Software
Engineering and Methodology, vol. 6, 1997.

[2] G. Cugola and C. Ghezzi, “Software processes: a
retrospective and a path to the future,” Software
process - Improvement and practice, vol. 4, pp.
101-123, 1998.

[3] A. Fuggetta and A. Wolf, “Trends in Software
Processes,” in Trends in Software, B.
Khrisnamurthy, Ed.: John Wiley, 1995.

[4] P. Garg and M. Jazayeri, “Process-centered
Software Engineering Environments,” : IEEE
Computer Society Press, 1996.

[5] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and
G. P. Picco, “Modeling and improving an industrial
software process,” IEEE Transactions on Software
Engineering, 1995.

[6] S. Bandinelli, E. Di Nitto, and A. Fuggetta,
“Supporting cooperation in the SPADE-1

Environment,” IEEE Transactions on Software
Engineering, vol. 22, 1996.

[7] M. O. Tingey, Comparing ISO 9000, Malcolm
Baldrige, and the SEI CMM for Software: Prentice
Hall, 1997.

[8] N. Fenton, “Software measurement: a necessary
scientific basis,” IEEE Transactions on Software
Engineering, vol. 20, pp. 199-206, 1994.

[9] C. M. Judd, E. R. Smith, and L. H. Kidder,
Research methods in social relations, Sixth ed. Fort
Worth, TX (USA): Holt, Rinehart and Winston,
Inc., 1991.

[10] L. Votta, A. Porter, and D. Perry, “Experimental
Software Engineering: a report on the state of the
art,” presented at 17th International Conference on
Software Engineering (ICSE 17), Seattle (WA),
1995.

[11] W. S. Humphrey, A discipline for Software
Engineering: Addison-Wesley Publishing
Company, 1995.

[12] I. Jacobson, G. Booch, and J. Rumbaugh, The
Unified Software Development Process. Reading,
Massachusetts 01867: Addison Wesley Longman,
Inc., 1999.

[13] A. Fuggetta, “Rethinking the modes of software
engineering research,” The Journal of Systems and
Software, vol. 47, pp. 133-138, 1999.

[14] R. Conradi, A. Fuggetta, and M. L. Jaccheri, “Six
theses on software process research,” presented at
6th European Workshop on Software Process
Technology (EWSPT '98), Weybridge (UK), 1998.

[15] G. A. Bolcer and R. N. Taylor, “Advanced
workflow management technologies,” Software
process - Improvement and practice, vol. 4, pp.
125-171, 1998.

[16] A. S. Lee, “A scientific methodology for MIS case
studies,” MIS Quartely, vol. 13, pp. 33-50, 1989.

[17] F. Cattaneo, A. Fuggetta, and L. Lavazza, “An
experience in process assessment,” presented at
ICSE 17 - 17th International Conference on
Software Engineering, Seattle (USA), 1995.

[18] P. Carlson, “Information technology and
organizational change,” presented at Seventeenth
annual International Conference on Computer
documentation, New Orleans (LA), 1999.

[19] F. Cattaneo, A. Fuggetta, and D. Sciuto, “Pursuing
coherence in software process assessment and
improvement,” CEFRIEL, Milano, Technical
Report September 1998.

[20] B. Balzer, “Tolerating inconsistencies,” presented at
International Conference on Software Engineering
(ICSE 13), Austin (TX), 1991.

	ABSTRACT
	INTRODUCTION
	A BRIEF OVERVIEW OF SOFTWARE PROCESS RESEARCH HISTORY AND ACHIEVEMENTS
	The notion of process
	Process modeling and support
	Process improvement
	Metrics and empirical studies
	Processes, eventually!
	Summing up

	CRITICAL ISSUES IN SOFTWARE PROCESS RESEARCH
	Software processes are processes too
	The purpose and nature of PMLs/PSEEs must be rethought
	Empirical studies are a means, not an end
	Software process improvement is process improvement too

	LOOKING FOR RESEARCH DIRECTIONS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

