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Abstract 
 

SimSE is an educational software engineering simulation game that uses a unique software process modeling ap-

proach. This approach combines both predictive and prescriptive aspects to support the creation of dynamic, interactive, 

graphical models for software engineering process education. This paper describes the different constructs in a SimSE 

process model, introduces the associated model builder tool, describes how we built an initial model of a waterfall proc-

ess, and discusses the underlying tradeoffs and issues involved in our approach. 
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1. Introduction 

Simulation is a powerful educational technique that is frequently used in a wide range of educational domains to pro-

vide students with valuable hands-on experience of situations that would otherwise be too difficult or risky to practice in 

reality. Educational simulations provide students with the freedom to experiment with alternative approaches and repeat 

experiences, gaining a deeper insight with each simulation run. Although software engineering process education is one 

domain in which simulation would be an ideal educational tool, the field has yet to fully leverage this approach. There 

have been a few exceptions that have identified promising avenues (Collofello, 2000; Drappa and Ludewig, 2000; Nulden 

and Scheepers, 2000; Pfahl, et al., 2004; Sharp and Hall, 2000) , but have not yet fully pushed the boundaries of simula-

tion in software engineering education. Namely, these approaches have been limited in one or more of the following ar-

eas: interactivity, customizability, and/or graphics.   

To address these issues, we have developed SimSE, an interactive, graphical, educational software engineering simula-

tion game designed to teach students the process of software engineering (Navarro and van der Hoek, 2004). SimSE ad-



dress the large gap that exists in traditional software engineering educational techniques—students are exposed to several 

software engineering concepts and theories in lectures, but have limited opportunity to put these ideas into practice in a 

typically small software engineering project. SimSE aims to fill this gap by providing students with virtual experiences of 

participating in quasi-realistic, large-scale software engineering processes.  

SimSE is a single-player game in which the player takes on the role of project manager of a team of developers. As the 

player manages the process to complete (a particular aspect of) a software engineering project, they can, among other 

things, hire and fire employees, assign tasks to them, monitor their progress, and purchase tools. Because a visually inter-

esting graphical user interface is considered essential to any successful educational simulation (Ferrari, et al., 1999), the 

user interface of SimSE is fully graphical, displaying a virtual office in which the software engineering process takes 

place (see Figure 1). This display includes typical office surroundings, such as desks, chairs, computers, and meeting 

rooms, as well as information about employees (e.g., productivity, current task, energy level), artifacts (e.g., size, com-

pleteness, correctness), customers (e.g., satisfaction level), projects (e.g., budget, time), and tools (e.g., number of users, 

productivity increase factor). Employees “communicate” with the player through pop-up speech bubbles over their heads, 

in which they inform the player of important information, such as when they have started or completed a task, when a 

random event has occurred, or to express a response to one of the player’s actions (e.g., quitting because the player has 

been working them too hard). Players use this information to make decisions and take actions, driving the simulation ac-

cordingly. 

One of the fundamental goals of the SimSE project is to allow customization of the software process models it simu-

lates. Real-world processes vary with different application domains, organizations, and cultures, and therefore SimSE 

must be able to portray different processes as well. Furthermore, instructors using SimSE may belong to different schools 

of thought regarding best software engineering practices, and may have different teaching objectives that require different 

types of models. Therefore, an integral part of SimSE is a process modeling language with associated tool support. 

The educational, interactive, and graphical nature of SimSE imposes three unique requirements upon its process mod-

eling language: First, it must be both predictive—allow the modeler to specify causal effects that the player’s actions will 

have on the simulation, and prescriptive—support the specification of the allowable next steps the player can take at any 

given time. Second, it must be interactive, meaning that it should operate on a step-by-step basis, accepting user input and 

providing feedback constantly throughout the simulation. Finally, it must allow the modeler to specify the graphical rep-

resentations of the elements in the model. Our survey of existing process modeling approaches revealed that most are 



either predictive (Abdel-Hamid and Madnick, 1991; Boehm, 2000; Lakey, 2003) or prescriptive (Cass, et al., 2000; Noll 

and Scacchi, 2001), but not both; few are interactive (Cass, et al., 2000; Noll and Scacchi, 2001); few support graphics 

(Howell and McNab, 1998; MAPICS Inc., 2004); and none fulfill all of these requirements. The closest fit is the model-

ing language used in SESAM, another educational software engineering simulation environment (Drappa and Ludewig, 

2000). However, despite the fact that the SESAM language is highly flexible and expressive, the model building process 

is learning- and labor-intensive and requires writing code in a text editor. Furthermore, the user interface for the simula-

tion is text-based so the modeling language has no support for graphics. 

We build on SESAM and other approaches in the software process modeling approach used in SimSE. Our approach 

combines and refines the applicable features in existing process modeling languages to create predictive, prescriptive, 

interactive, graphical models for use in SimSE. The remainder of this paper details this modeling approach. Section 2 

describes the different components of a SimSE model. Section 3 summarizes a waterfall process simulation model that we 

built using our approach, including some of its goals and how they were implemented. In Section 4 we present the model 

builder tool that is used to define a SimSE model. In Section 5 we discuss issues and tradeoffs involved in the approach. 

Section 6 provides a brief overview of related work, and we conclude in Section 7 with our current progress and direc-

tions for future work.  

 

2. Modeling Constructs 

A SimSE model consists of five parts. Figure 2 illustrates the relationships between the different parts of a model. Ob-

ject types define templates for all objects that participate in the simulation. The start state of a model is the collection of 

objects present at the beginning of a simulation. Actions refer to the activities in which objects in the simulation can par-

ticipate. Rules define the effects that actions have on the rest of the simulation. Graphics refer to the graphical representa-

tions of all objects in the simulation and the layout of the virtual office. The remainder of this section discusses each of 

these modeling constructs in further detail. 

 

2.1 Object Types 

The first step in building a SimSE model is to define the object types to be used in the model. Each major entity par-

ticipating in the simulation will be an instantiation of an object type. Every object type defined must descend from one of 



five meta-types: Employee, Artifact, Tool, Project, or Customer. Each of these meta-types have very limited semantics in 

and of themselves, except for where objects of each type are displayed in the GUI of the simulation, and how the player 

can interact with each type of object. Specifically, only objects descending from Employee and Customer will display 

overhead pop-up messages during the game, and only objects descending from Employee will have right-click menus 

associated with them so the player can command their activities.  

An object type descends from a parent meta-type, and consists of a name and a set of typed attributes. For each attrib-

ute, in addition to the name and type (String, Double, Integer, or Boolean), the following metadata must be specified:  

• Key: a Boolean value indicating whether or not this attribute is the key attribute for the object type. 

• Visible: a Boolean value denoting whether this attribute should be visible to the player throughout the game. 

• VisibleAtEnd: a Boolean value indicating whether or not this attribute should be visible at the end of the game–

designed to give further insight to the player about why they received their particular score when such an attribute 

that was hidden throughout the game is revealed at the end. 

• MinVal: the minimum value for this attribute (for Double and Integer attributes only). 

• MaxVal: the maximum value for this attribute (also for Double and Integer attributes only). 

• MinDigits: the minimum number of digits after the decimal point to display for this attribute’s value (for Double at-

tributes only). 

• MaxDigits: the maximum number of digits to display (also for Double attributes only).  

Three sample object types, a “Programmer” of type Employee, a “Code” of type Artifact, and an “SEProject” of type 

Project are shown in Figure 3. Note that the format of this example and the examples throughout this paper are shown in a 

“shorthand” version of the actual SimSE modeling language format, which is XML-like and difficult to read. However, 

since this language is completely hidden from the user by our model building tools, we have accordingly omitted it from 

this paper. See Section 4 for a more extensive discussion of this issue. 

 

2.2 Start State 

Once the object types for a simulation have been defined, the start state for that simulation can be specified. The start 

state refers to the set of objects that are present when the simulation begins. Each one of these objects must be an instan-

tiation of one of the object types defined for the model, and starting values for all attributes must be assigned—no default 



values are automatically given. Figure 4 shows sample instantiated objects for the “Programmer”, “Code”, and “SEPro-

ject” object types from Figure 3. 

 

2.3 Actions 

The next part of a SimSE model is the set of actions in which the objects in the simulation can participate. For exam-

ple, to model a situation in which programmers are building a piece of code using an IDE (integrated development envi-

ronment), one would create a “Coding” action, in which the participants include a “Code” Artifact, one or more “Pro-

grammer” Employees and one or more “IDE” Tools. This example is shown in detail in Figure 5. As another example 

(not shown), an Employee of any type could participate in a “Break” action, referring to the activity of taking a break, 

during which he or she rests and does not work.  

For each action, the following information is specified: 

• Name: name of the action. 

• Visibility: whether or not the player should be able to see that the action is occurring, and, if true, a textual de-

scription of that action to display in the game’s user interface. 

• Participant(s): roles in the action that can be filled by one or more objects of one or more possible object types. 

• Trigger(s): what causes the action to begin to occur in the simulation. Three distinct classes of triggers exist: 

autonomous, user-initiated, and random. Autonomous triggers specify a set of conditions (based on the attributes 

of the participants in the action) that cause the action to automatically begin, with no user intervention. For in-

stance, an Employee may automatically take a break when his or her energy level drops below a certain threshold. 

User-initiated triggers also specify a set of conditions, but include a menu item text string, which will appear on 

the right-click menu for an Employee when these conditions are met. This menu item corresponds to this action, 

and when the menu item is selected, the action begins. For example, in the “Coding” action shown in Figure 5, a 

menu item with the text “Start coding” will appear on the menus of all “Programmer” and “Tester” Employees 

who meet the specified conditions (hired and, for testers, health level greater than or equal to 0.7). When this 

menu item is selected by the player, the action will begin. Random triggers introduce some chance into the model, 

specifying both a set of conditions and a frequency that indicates the likelihood of the action occurring whenever 

the specified conditions are met. For instance, a “Quit” action might have a 75% chance of occurring whenever an 



Employee’s energy level is below 0.2, meaning that employees are likely to quit when they have been worked too 

hard, but may not always do so.  

• Destroyer(s): An action destroyer works in a similar manner as an action trigger, but has the opposite effect: 

whereas a trigger starts an action, a destroyer stops an action. Destroyers can be of the same types as triggers 

(autonomous, random, or user-initiated), but have one additional type: timed. A timed destroyer specifies a “time 

to live” value for an action—once an action starts, it exists for a number of simulation clock ticks equal to this 

value, and is then automatically destroyed. The “Coding” action shown in Figure 5 has associated with it two de-

stroyers: an autonomous one that will cause the action to stop when the code is 100% complete, and a user-

initiated one that allows the player to make the action cease at any time, in order to reallocate their employees to 

other tasks. 

Triggers and destroyers also have two additional pieces of information that must be specified: priority and game-

ending. The priority of a trigger or destroyer refers to the order in which that trigger/destroyer will be checked, and, if all 

conditions are met, executed. All triggers in a model are prioritized in relation to all other triggers in that model, and all 

destroyers are likewise prioritized in relation to all other destroyers. In the “Coding” action shown in Figure 5, the 

autonomous destroyer (“autoDestroyer”) has priority 10, while the user-initiated destroyer (“userDestroyer”) has priority 

11, indicating that when a “Coding” action is occurring, the conditions for the autonomous destroyer will be checked first. 

This sequence is specified so that if the code is 100% complete, the action will cease (as a result of the autonomous de-

stroyer) before the user-initiated destroyer is checked and the “Stop coding” choice is put on an Employee’s menu. Any 

trigger or destroyer can also be designated as game-ending, meaning that when that trigger or destroyer occurs, the game 

will be over. A game-ending trigger or destroyer must have exactly one of its participant’s attributes specified as the score 

attribute, indicating that the value of that attribute at the time that trigger or destroyer is executed will be given as the 

player’s score. A typical game-ending trigger might be attached to a user-initiated “DeliverProductToCustomer” action in 

which the score is designated as the “score” attribute of an “SEProject” participant. 

 

2.4 Rules 

After all of the action types have been defined, the next task in building a SimSE model is to attach rules to each ac-

tion type. A rule defines an effect of an action—how the simulation is affected when that action is active. Two example 

rules attached to the “Coding” action are shown in Figure 6. 



We distinguish three types of rules in a SimSE model: create objects rules, destroy objects rules, and effect rules. As 

its name indicates, a create objects rule causes new objects to be created in the game. For example, as shown in Figure 6, 

a “Coding” action might have associated with it a create objects rule that creates a new “Code” Artifact object with its 

size and number of errors equal to zero. This would indicate that a new piece of code comes into existence as a result of 

programmers participating in a “Coding” action. 

In contrast to a create objects rule, the firing of a destroy objects rule results in the destruction of existing objects. For 

instance, a “Fire” action might have associated with it a destroy objects rule that removes an Employee from the game, 

indicating that they have been fired. 

An effect rule is the most powerful and expressive type of rule in SimSE. Rules of this type specify the complex ef-

fects of an action on its participants’ states, including the values of their attributes and their participation in other actions. 

For instance, the effect rule attached to the “Coding” action, shown in Figure 6: (a) causes the size of the code to increase 

by the additive productivity levels of all of the programmers currently working on it; (b) causes the number of unknown 

errors in the code to increase based on the error rates of the currently active coders; and (c) updates the completeness 

level of the code. At the same time, it decreases the energy and productivity levels of the coders as they work, and resets 

their error rates based on their current energy levels. As another example, a “Break” action might have an effect rule at-

tached to it that: (a) increases the energy of an employee; and (b) deactivates the employee from all other actions in which 

he or she is currently participating for the duration of the “Break” action. In specifying an effect, the modeler can use a 

number of different constructs, including participant attribute values, the number of participants in an action, the number 

of other actions in which a participant is involved, the time elapsed in the simulation, random values, numbers, user in-

puts, and mathematical operators. 

In addition to a rule’s general type (create objects, destroy objects, or effect), each rule is also assigned a timing type, 

indicating when and how often that rule will be executed. There are four possible timing types: trigger, destroyer, singu-

lar, or continuous. A trigger rule will execute only once, at the time the action is triggered, while a destroyer rule will 

execute once at the time the action is destroyed. A singular rule will also execute once, but during the first clock tick that 

an action is active (the clock tick immediately after the action starts/is triggered). A continuous rule, on the other hand, 

will fire once every clock tick that the action is active. Only effect rules can be continuous, since there is no need to create 

the same object multiple times (using a create objects rule), or destroy the same object multiple times (using a destroy 

objects rule). Table 1 summarizes these various combinations. In the rules shown in Figure 6, the new Code Artifact is 



created once, at the time the action is triggered, since the create objects rule is assigned a trigger timing. Because the ef-

fect rule is assigned a continuous timing, however, its expressions are evaluated every clock tick that the action is active, 

and the “Coder” and “CodeDoc” attributes are updated accordingly. 

 

2.5 Graphics 

Because the user interface of SimSE is fully graphical, graphics are an integral part of our modeling approach, and are 

woven throughout the different parts of a model. For instance, each action trigger and destroyer can have associated with 

it a string of text to appear in pop-up bubbles over the heads of that action’s Employee participants when the action either 

begins (trigger) or ends (destroyer). For example, “I’m coding now” may appear over the head of all “Coder” participants 

when they are beginning a “Coding” action (see Figure 5). Likewise, effect rules can have specified with them rule inputs 

that cause a dialog to appear during the simulation, prompting the user for input. For instance, an effect rule attached to a 

“Give Bonus” action might prompt the user to enter the amount of the bonus they wish to give. In addition to these 

graphical aspects woven throughout the model, specific images must be assigned to each object in the start state, and the 

layout of the “office” must be specified—locations in the office for all employees, as well as for their surroundings (e.g., 

desks, walls, computers, and chairs). Because these graphical features of the modeling approach are straightforward, and 

consist of simply assigning images and coordinates to objects, an example is omitted from this paper. 

 

3. Example Waterfall Model 

As an initial attempt at building a simulation model using the SimSE modeling approach, we developed a model that 

emulates a waterfall-like process and teaches a number of overarching lessons about the software engineering process in 

general. Although the waterfall model is not the most interesting or challenging life cycle model that exists, it is still com-

monly taught, and its simplicity allows us to clearly demonstrate the principles of the environment and teach some overall 

lessons about the software engineering process in general. Clearly, many more models of various size and complexity 

need to be built and evaluated, which we are currently in the process of doing (see Section 7). In the remainder of this 

section, we first detail the main lessons we aimed to teach in designing the model, and then present how some of those 

lessons were implemented using our approach. 

 



3.1 Lessons 

In developing our model, we aimed to portray a waterfall process by making the model reward the player for following 

the waterfall process and penalize them for deviating from this process. In addition, we strove to teach a number of over-

all lessons about software engineering in general. We collected these lessons and phenomena by performing a survey of 

existing software engineering literature, talking to software engineering professionals, and collecting concepts and theo-

ries that are taught in the introductory software engineering class at UC Irvine. The result of these activities is a compen-

dium of 86 “fundamental rules of software engineering” (Navarro, 2002). The following is a representative sample of the 

breadth of lessons that we implemented in our model, many of which are taken from these rules. 

 

1. Do requirements, followed by design, followed by implementation, followed by integration, followed by testing.  

2. At the end of each phase, perform quality assurance activities (e.g., reviews, inspections), followed by correction 

of any discovered errors. 

3. If you do not create a high quality design, integration will be problematic. 

4. Developers’ productivity varies greatly depending on their individual skills, and matching the tasks to the skills 

and motivation of the people available increases productivity (Boehm, 1981; Bryan, 1997; Sackman, et al., 1968). 

5. The greater the number of developers working on a task simultaneously, the faster that task is finished, but more 

overall effort is required due to the growing need for communication among developers. (Brooks, 1995). 

6. Software inspections find a high percentage of errors early in the development life cycle (Tvedt, 1996). 

7. The better a test is prepared, the higher the amount of detected errors. 

8. The use of software engineering tools leads to increased productivity (Tvedt, 1996). 

 

3.2 Implementation 

We now present a few of the rules that implement some of the lessons described above. The first rule is a continuous 

effect rule attached to the “CreateDesign” action that modifies the “size” attribute of the design document artifact being 

created: 

 
1  DesignDoc: 
2    Design: 
3      size = this.size + (allActiveSoftwareEngineerDesigners.productivityInDesign  
4        * (1 – (.01 * (numDesigners * (numDesigners – 1) / 2)))  



5          * (1 + this.completenessDiffRequirementsDoc) 
6            * (1 + allActiveDesignEnvironmentTools.productivityIncreaseFactor)) 
 

 

In short, this rule says that as a design is being created, the size will increase by an amount dependent on the additive pro-

ductivity of the designers (line 3), the communication overhead of the number of designers working on it (line 4), the 

difference in completeness between the requirements document and the design document (line 5), and the productivity 

increase factor of any design environment tool used (line 6). The amount of increase is primarily based on the productiv-

ity of the designers, and each of the other factors serve as multipliers to either raise or lower this amount. We can see in 

this rule the implementation of a number of the aforementioned software engineering lessons. First, we can see lesson #5 

in the first multiplier (line 4). The amount of increase is reduced by 1% for each communication link between two people 

who are working on the design. (Note that because there exists no empirical data for this value, we assigned it to 1% after 

trying several different values and playing the game repeatedly in order to determine which value produced the most edu-

cationally effective result. This same process was used to formulate many of the rules in our model for which there exists 

no empirical data.) In the second multiplier (line 5) we can see the implementation of lesson #1 that enforces the sequen-

tial nature of the waterfall model. The design document’s “completenessDiffRequirementsDoc” attribute is an integer 

attribute with minimum value 0 and maximum value 1 (hence, it must be either 0 or 1). This value is set in another effect 

rule that is executed before the one shown here, which sets it to 0 if the requirements document is less complete than the 

design document, or 1 otherwise. Hence, the amount of increase in the size of the design document is doubled if the fea-

tures the developers are designing have been specified first. Otherwise, there is no effect. 

In the third multiplier (line 6), we can see the implementation of lesson #8, which states that tools increase productiv-

ity. The amount of increase in the size of the design document is increased according to the productivity increase factor of 

the design environment tool.  

The next rule is also a continuous effect rule attached to the “CreateDesign” action, but this one modifies the design 

document’s “numUnknownErrors” attribute: 

 

 
1  Design Doc: 
2    Design: 
3      numUnknownErrors = this.numUnknownErrors +  
4       (allActiveSoftwareEngineerDesigners.errorRateInDesign 
5         * (1 – (.01 * (numDesigners * (numDesigners – 1) / 2)))  
6           * (1 + (allActiveRequirementsDocuments.PercentErroneous / 100 * 10))  
7             * (1 + (1 – this.completenessDiffRequirementsDoc))  
8               * (1 – allActiveDesignEnvironmentTools.errorRateDecreaseFactor)) 



   
 

This rule represents the effect that as the design is being created, a number of unknown errors are being introduced into 

the design document. This number is primarily based on the designers’ additive error rate in design (line 4), and is af-

fected by the communication overhead between the designers (line 5), the number of errors in the requirements document 

(line 6), the completeness of the requirements document (line 7), and the error rate decrease factor of any design envi-

ronment tool used. In this rule we can again see lesson #5 implemented (line 5) in that the amount of errors the designers 

can introduce is tempered by the communication overhead. The next multiplier (line 6) illustrates lesson #2, which states 

that any errors that are not corrected in one artifact will be carried over into the next artifact. In this expression, the 

amount by which the design document’s unknown errors will increase will be (x * 10)% higher, where x is the percentage 

of the requirements document that is erroneous. (The amount is multiplied by 10 in order to create a more obvious ef-

fect—during play testing of the model, we found that this lesson was not clearly visible enough without this amplifica-

tion. See Section 5 for a discussion on the tradeoff between accuracy and educational effectiveness.) 

The next multiplier (line 7) again illustrates the sequential nature of the waterfall model stated in lesson #1. It repre-

sents that the number of unknown errors introduced into the design document will be doubled if the requirements docu-

ment is less complete than the design document (completenessDiffRequirementsDoc = 0), but will otherwise have no ef-

fect (completenessDiffRequirementsDoc = 1). 

Finally, the last multiplier (line 8) again implements lesson #8, but affects the artifact’s errors rather than the artifact’s 

size, as in the previous rule. This expression represents that the number of unknown errors introduced into the design 

document will be decreased according to the error rate decrease factor of the design environment tool. 

 

4. Model Builder 

To facilitate a high-level, rapid, and easier model building process than writing the above model by hand, we have de-

veloped a model builder tool. This model builder completely hides the underlying modeling language from the modeler, 

and provides a graphical user interface for specifying the object types, start state, actions, rules, and graphics for a model. 

Figure 7 shows the user interface for the model builder, with the tab for defining object types in focus. The tabs for the 

other parts of the model builder are not shown, but they are similar in appearance to the object builder in that they all fa-

cilitate building a model using buttons, drop-down lists, menus, and dialog boxes—no programming is required. Once a 



model is specified, the model builder then generates Java code for a complete, customized simulation game based on the 

given model.  

Although the model builder removes the inherent difficulties of a programming language (e.g., syntax), we recognize 

that the difficulty of collecting software engineering phenomena and rules and translating these into SimSE actions and 

rules still remains. To assist with this, we plan to provide addition models beyond the waterfall, with accompanying 

documentation, as a part of SimSE. Instructors can then use and/or adapt these models for their own purposes, rather than 

write them from scratch. 

It is important to note that use of the model builder also does not guarantee the model is a “good” model. Rather, a 

strongly iterative development cycle is required. In our experience so far, building a model involves a significant amount 

of time aside from the initial construction of the model in which the model is repeatedly played and refined in order to 

ensure that the desired lessons and effects are illustrated, as well as to achieve the desired balance between educational 

effectiveness and realism (see Section 5 for further discussion on this issue). To shorten this development time, as well as 

to provide more insight to players in regards to why they received their particular score, we plan to develop an explana-

tory tool that can be run in parallel to, or at the end of a game. This tool will provide such information as which rules 

were fired at which times, as well as graphically show a trace of events and the changing values of various attributes over 

time. We anticipate that this explanatory tool will significantly shorten the “play-testing” phase of model development by 

providing a more direct insight into the model’s internal workings. 

 

5. Discussion 

In designing SimSE’s software process modeling approach, it became apparent that some tradeoffs would have to be 

made. We acknowledge that it is not as generic or flexible as some general purpose modeling and simulation approaches 

(Birtwistle, 1979; Howell and McNab, 1998), or even domain-specific languages designed specifically for modeling 

software processes (Emmerich and Gruhn, 1991; Kaiser, et al., 1993). However, aside from the fact that none of these 

approaches met the unique needs of our educational game domain, we felt that such a level of genericity and flexibility 

was unnecessary for our purposes. The process by which we designed our modeling approach underscores this: We sur-

veyed the software engineering literature and extracted the widely accepted process lessons and rules that would con-

ceivably go into a SimSE model, and then designed the modeling approach with these rules in mind. Although they in-



clude a wide range of different types of phenomena, from management issues, to organizational behavior theories, to cor-

porate culture, to the traditional software engineering theories, nearly all of the rules that we have collected thus far can 

be modeled and simulated in SimSE. We will continue to gather more rules, see how well they can be modeled in SimSE, 

and refine the modeling approach accordingly. 

We also believe that the educational nature of SimSE makes a low-level modeling approach inappropriate—too much 

detail and realism may overwhelm the user and distract from the lessons that the model is trying to teach. Another danger 

is that lessons may get expressed at too low of a level and not be brought out obviously enough in the simulation to be 

educationally effective (Ferrari, et al., 1999; Randel, et al., 1992). At the expense of some realism, effects need to be 

somewhat obvious and “over the top” at times in order to effectively illustrate and enforce the concepts being taught. This 

can be seen in the example model we presented in Section 3, for instance, in the rule that multiplied by 10 the effect of 

errors in the requirements document on the number of errors being introduced into the design document. Furthermore, 

although limited in some ways, the specificity of our modeling approach promotes a simplicity that makes it more usable 

and easier to learn than some more generic approaches. 

It can be seen from the description of the modeling constructs and the example model that the SimSE software process 

modeling approach fits the requirements that we introduced in Section 1. It is prescriptive in that the modeler can limit the 

particular actions a player can take at any given time, and also determine when certain actions must cease—done through 

the use of conditions on triggers and destroyers. It is predictive in that it allows the modeler to specify exactly how the 

player’s actions will affect the state of the simulation, through the use of rules attached to actions. It is interactive in that 

it operates on an incremental, time-step basis, calculating effects and allowing the user to take actions during every clock 

tick of the simulation. It is graphical in that it allows the modeler to specify the graphics to be used in the simulation. 

We acknowledge that there are still some weaknesses to our approach, which lie mainly in the fact that it lacks many 

common programming language constructs, such as if-else statements, explicit data structures, loops, and predicates. This 

makes it necessary at times to use some non-intuitive, roundabout techniques to get the desired effect. One example of 

this is in the existence of the “completenessDiffRequirementsDoc” attribute attached to a design document object, dis-

cussed in Section 3.2. In any programming language, such an attribute would be unnecessary—an if-else statement with a 

predicate could simply be used to check whether the completeness of the requirements document was greater than or 

equal to the completeness of the design document, and, if so, adjust the multiplier in question accordingly. Instead, in our 

approach, we have to first create this hidden attribute, specify that it can only be equal to either 0 or 1 by making it an 



integer with minimum value 0 and maximum value 1, and then create a rule that sets it to the correct value using more 

mathematical manipulations. 

Another instance of this sort of limitation was revealed when we attempted to model the following software engineer-

ing rule: Error correction is done most efficiently by the document’s author (Drappa and Ludewig). In a full-fledged 

modeling language this might be modeled by keeping an array of employee names or IDs with the document/artifact ob-

ject, indicating that those people had been authors of that document. When an employee would then go to correct that 

document, this array would simply be searched for that employee’s name/ID, and, if found, correction would speed up 

accordingly. In our approach, however, there is no way to perform such a task, due to the absence of arrays, loops, and if-

else statements. 

Another example of an effect that SimSE could not model is the influence of work environment aspects on productiv-

ity. For instance, (Tvedt, 1996) states that improving the work environment by doing such things as giving employees 

enclosed offices and providing common areas where employees can participate in “water cooler” conversations increases 

productivity.  Because our modeling approach currently uses graphics mainly for decorative purposes, it cannot support 

this kind of phenomenon. However, we plan in the future to enhance SimSE by adding more semantics to the layout of 

the office. 

Nevertheless, there were very few instances in which we found effects that could not be modeled at all, and none of 

them are considered the most fundamental principles of software engineering. Most of the effects we wanted to model 

could be modeled, but required somewhat of a different mode of thinking—in terms of the SimSE modeling constructs 

provided, rather than the programming language constructs to which most people are used. In order to assist with these 

difficulties, we plan to provide a “tips and tricks” document along with the model builder’s documentation. This docu-

ment will provide guidelines for how common effects can be modeled that might not be intuitive at first. We believe that 

the added simplicity of the model builder tool, along with its documentation, will be able to offset most of the drawbacks 

of our approach. We will be able to informally evaluate whether or not this is true when, in the near future, we distribute 

the model builder to instructors at several different institutions and get their feedback about it. 

 

6. Related Work 



In recent years, there have been a number of new and innovative approaches in both software engineering education 

and software process simulation. Several have already combined the two to create software process simulations specifi-

cally for education (Collofello, 2000; Drappa and Ludewig, 2000; Nulden and Scheepers, 2000; Pfahl, et al., 2000; Sharp 

and Hall, 2000). To date, the most advanced of these is SESAM (Drappa and Ludewig, 2000) (mentioned previously), a 

software engineering simulation environment in which students manage a team of virtual employees to complete a virtual 

project on schedule, within budget, and at or above the required level of quality. SESAM represents a first example of a 

software process modeling language that is prescriptive, predictive, and interactive (but not graphical). We build on 

SESAM’s approach in the two major ways: First, we simplify the modeling process by providing our graphical model 

builder tool, eliminating the need for writing source code in an explicit modeling language. Second, we provide support 

for including graphics in the simulation models, a feature that is considered essential to any successful educational simu-

lation (Ferrari, et al., 1999). We also focus the modeling approach by limiting all objects to the five meta-types (Em-

ployee, Artifact, Customer, Project, and Tool), albeit at the expense of extra expressivity and flexibility. Furthermore, we 

have incorporated many of SESAM’s well-documented software engineering rules of behavior into our SimSE models. 

Other educational software engineering simulations have included OSS (Sharp and Hall, 2000), which includes exten-

sive graphics, but is not customizable, and puts the player in more of an “observer” role, rather than that of an active par-

ticipant in the software engineering process. Others make no use of graphics, and have limited interactivity, but are rig-

idly based on real-world software engineering process data (Collofello, 2000). Still others make various additional trade-

offs between graphics, interactivity, accuracy, and customizability (Nulden and Scheepers, 2000; Pfahl, et al., 2000). 

 

7. Conclusions and Future Work 

The educational, graphical, and interactive nature of the SimSE software engineering simulation game necessitates a 

rather unique modeling approach. Our new predictive and prescriptive modeling language, along with its associated 

model builder tool, supports the creation of interactive, graphical simulation models for software engineering education. 

We have recently completed a first version of SimSE, along with a high-level waterfall model in which an overall soft-

ware engineering process is simulated and a number of general lessons about the process as a whole are taught. The game 

generated by this model was used in an experiment to assess the teaching potential of SimSE. In this experiment, we had 

29 undergraduate computer science students who completed an introductory software engineering course at UC Irvine 



play the waterfall model version of the game and give us their feedback in a questionnaire. In general, students liked the 

game, found it enjoyable, believed that it did a relatively good job of illustrating and reinforcing the lessons they learned 

in lectures, and felt that it should be added as a standard component of the introductory software engineering course. Be-

cause this experiment is outside the scope of this paper, its details are not included here, but can be found in (Navarro and 

van der Hoek, 2005 (to appear)). 

We are currently in the process of building three more models: Two of these are high-level models—one teaches the 

Rational Unified Process model of software development (Kruchten, 2000) and one teaches the Extreme Programming 

process (Beck, 2000). The third one is a more detailed model that teaches the roles and regulations of the inspection proc-

ess (by making the student organize and perform a code inspection). We plan to continue to build different types of mod-

els to demonstrate specific situations, such as the roles of various forms of testing (by making a student deliver high qual-

ity code), and overarching practices, such as the tradeoffs among different lifecycle models (by letting the student vary 

the model by which to develop a product). We plan to continue conducting experiments with SimSE, in order to evaluate: 

(1) the teaching potential of the models we have developed (and will develop) by conducting more experiments similar to 

the one we already completed, as well as incorporating it as a part of the introductory software engineering course at UC 

Irvine; and (2) the usability, effectiveness, and usefulness of the modeling approach and the model builder tool by having 

software engineering instructors at various institutions use our tool and provide us with their feedback. 

 

8. More Information 

 More information about SimSE, as well as downloads, are available at: http://www.ics.uci.edu/~emilyo/SimSE
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Figure 1: SimSE’s Graphical User Interface. 
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Figure 2: Relationships Between Modeling Constructs. 

 

 
 
 



Programmer Employee    Code Artifact    SEProject Project 
{     {     { 
  name:        name:       description: 
    type: String        type: String        type: String 
    key: true        key: true        key: true 
    visible: true        visible: true        visible: true 
    visibleAtEnd: true       visibleAtEnd: true       visibleAtEnd: true 
  energy:      numUnknownErrors:     requiredSizeOfCode: 
    type: Double        type: Double        type: Double 
    key: false        key: false        key: false 
    visible: true        visible: false       visible: true 
    visibleAtEnd: true       visibleAtEnd: true       visibleAtEnd: true 
    minVal: 0.0        minVal: 0.0        minVal: 0.0 
    maxVal: 1.0        maxVal: boundless       maxVal: boundless 
    minDigits: 1        minDigits: 0        minDigits: 0 
    maxDigits: 2        maxDigits: 0        maxDigits: 0 
  productivity:      numKnownErrors:      budget: 
    type: Double        type: Double         type: Double 
    key: false        key: false        key: false 
    visible: true        visible: true        visible: true 
    visibleAtEnd: true       visibleAtEnd: true       visibleAtEnd: true 
    minVal: 0.0        minVal: 0.0           minVal: 0.0 
    maxVal: 1.0        maxVal: boundless       maxVal: boundless 
    minDigits: 1        minDigits: 0        minDigits: 0 
    maxDigits: 2           maxDigits: 0        maxDigits: 2 
  error rate:      size:         allottedTime: 
    type: Double        type: Double           type: Integer 
    key: false        key: fakse        key: false 
    visible: true        visible: true        visible: true 
    visibleAtEnd: true       visibleAtEnd: true       visibleAtEnd: true 
    minVal: 0.0        minVal: 0.0        minVal: 0.0 
    maxVal: 1.0        maxVal: boundless       maxVal: boundless 
    minDigits: 1        minDigits: 1      score: 
    maxDigits: 2        maxDigits: 1        type: Integer 
  hired:       percentComplete        key: false 
    type: Boolean        type: Double        visible: false 
    key: false        key: false        visibleAtEnd: true 
    visible: true        visible: true        minVal: 0 
    visibleAtEnd: true       visibleAtEnd: true       maxVal: 100 
}         minVal: 0.0         } 
         maxVal: 100.0    
         minDigits: 1 
         maxDigits: 1 
     } 
 

Figure 3: Programmer, Code, and Project Object Types. 

 



Object Code Artifact  Object Project SEProject Object Programmer Employee 
{ { { 
  name = “My Code”   description = “Rocket   name = “Roger” 
  numUnknownErrors = 18     Launcher Software”   energy = 0.9 
  numKnownErrors = 7 requiredSizeOfCode =   productivity = 0.6 
  size = 25600.0   256000   error rate = 0.3 
  percentComplete = 10.0 budget = 2500000.00   hired = true 
} allottedTime = 692 } 

score = 0 
}

Figure 4: Instantiated Programmer, Code, and SEProject Objects. 



Action Coding 
{ 
  Visibility: true 
  Description: “Creating code” 
 
  Participant Coder 
  { 
    quantity: at least 1 
    allowable types: Programmer, Tester 
  } 
 
  Participant CodeDoc 
  { 
    quantity: exactly 1 
    allowable types: Code 
  } 
 
  Participant IDE 
  { 
    quantity: at least 1 
    allowable types: Eclipse, JPad 
  } 
 
  Trigger userTrigger 
  { 
    type: User-initiated 
    menuText: “Start coding” 
    overheadText: “I’m coding now!” 
    game-ending: false 
    priority: 8 
    conditions 
    { 
      Coder: 
        Programmer: 
          hired == true 
        Tester: 
          hired == true 
          health >= 0.7 
 
      IDE: 
        Eclipse: 
          purchased == true   
          licenseValid == true 
        JPad: 
          purchased == true 
          licenseValid == true 
    } 

} 
 

 

  Destroyer autoDestroyer 
  { 
    type: Autonomous 
    overheadText: “I’m finished coding!” 
    game-ending: false 
    priority: 10 
    conditions 
    { 
      CodeDoc: 
        percentComplete == 100 
    } 
  } 
 
  Destroyer userDestroyer 
  { 
    type: User-initiated 
    menuText: “Stop coding” 
    overheadText: “I’ve stopped coding” 
    game-ending: false 
    priority: 11 
    conditions {} 
  } 
} 

 
 

 

Figure 5: Sample “Coding” Action with Associated Triggers. 
 



 
Rules  
{ 
  Action: Coding // action that these rules are attached to 
  CreateObjectsRule 
  { 
    timing: trigger 
    createdObjects 
    { 
      Object Code Artifact  
      { 
        name =“My Code” 
        numUnknownErrors = 0 
        numKnownErrors = 0 
        size = 0.0 
        percentComplete = 0.0 
      } 
    } 
  } 
 
  EffectRule 
  { 
    timing: continuous 
    Coder: 
      Programmer: 
        name = // no effect 
        energy = this.energy – 0.05 
        productivity = this.productivity – 0.0375 
        errorRate = (1 - this.energy) * 0.4 
        hired = // no effect 
      Tester: 
        // etc… 
 
    CodeDoc: 
      Code: 
        name = // no effect 
        size = this.size + allActiveProgrammerCoders.productivity 
        numUnknownErrors = this.numUnknownErrors + allActiveProgrammerCoders.errorRate 
        numKnownErrors = // no effect 
        percentComplete = (this.size / allSEProjectProjects.targetCodeSize) * 100 
  } 
} 
 
 

Figure 6: Example Create Objects Rule and Example Effects Rule. 

 



 

 
Figure 7: Model Builder User Interface.

  



Table 1: Timing of Execution of Each Different Type of Rule. 

Rule Type  

Create Objects Destroy Objects Effect 
Trigger Once, at trigger time Once, at trigger time Once, at trigger time 
Destroyer Once, at destroyer time Once, at destroyer time Once, at destroyer time 
Singular Once, during the first 

clock tick the action is 
active (after trigger) 

Once, during the first 
clock tick the action is 
active (after trigger)  
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ul
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Continuous  

 

Once every clock tick that 
the action is active 

 


