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Software Process Modeling:  Principles of Entity
Process Models

Abstract: A defined software process is needed to provide organizations with a consis-
tent framework for performing their work and improving the way they do it.  An overall
framework for modeling simplifies the task of producing process models, permits them
to be tailored to individual needs, and facilitates process evolution. This paper outlines
the principles of entity process models and suggests ways in which they can help to
address some of the problems with more conventional approaches to modeling soft-
ware processes.

1. Introduction

Considerable attention has been devoted to software process modeling (or process
programming) during the past few years.  Models of software life-cycle processes are expected to
provide a means of reasoning about the organizational processes used to develop and maintain
software. Most efforts in this field have focused on the functional, or task-oriented, aspects of
processes, although a few recent papers have proposed behaviorally oriented modeling ap-
proaches. Even these, however, still approach behavioral modeling from a task orientation,
focusing on when tasks are performed.  This paper proposes an entity orientation to behavioral
modeling. The paper argues that entity process models can be helpful in circumventing some of
the problems with more task-oriented models of software processes.

Following a discussion of the problem domain, the principles of entity process models are
presented. These principles are illustrated by a detailed example of this approach, applied to a
significant component of a software process.  The example focuses on the coding and unit testing
of a module, including many realistic feedback paths that make software processes so complex.
Finally, the paper derives sample schedules from the model, both with and without resource
constraints. The paper concludes with comments on the managerial value of entity process
models.

2. Background

2.1. The Need for a Defined Software Process
When several people work cooperatively on a common project, they need some way to coor-
dinate their work.  For relatively small or simple tasks, this can often be done informally, but with
larger numbers of people or more sophisticated activities, more formal arrangements are needed.
For example, process definition can be compared with football training.  Teams without defined
and practiced plays do not make the play-offs.  While the sequence of plays will change from
game to game, the winning team generally has worked out their plays in advance, knows when to
use them, and can perform them with skill.  The software process is much the same.  Unfor-
tunately, few software teams work out their plays in advance, even though they know the key
problems they will encounter. For some reason they act as if late requirements changes, regres-
sions, or system integration problems will not recur.
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The software process is the technical and management framework established for applying tools,
methods, and people to the software task. A defined process not only prepares for likely even-
tualities; it also provides a mechanism for organized learning.  As projects improve their methods
for handling key tasks, these can be incorporated in the repertoires of "plays" available to the rest
of the organization.  This process definition makes it easier for each new project to build on the
experiences of its predecessors, and it also protects against the dangers of ill-prepared crisis
reactions. An important observation of process management is that process changes adopted in
a crisis are generally misguided.  Crises are the times when shortcuts are most likely and when
organizations are most prone to omit critical tasks.  These shortcuts often lead to truncated
testing, skipped inspections, and deferred documentation.  With time at a premium, rationalization
is most likely and process judgments are least reliable.  Because it is difficult to justify many tests,
analyses, or inspections in the heat of the moment, a thoughtfully defined and approved process
can be a great help.  When the crisis occurs, it has been anticipated, and established means are
at hand to deal with it. In short, a defined process provides the software professionals with the
framework they need to do a consistently professional job.

2.2. The Need for a Standard Process Framework
While there are often needs for project-specific process tailorings, there are also compelling
reasons for a standard process framework:

1. Process standardization is required to permit training, management, review, and
tool support.

2. With standard methods, each project’s experiences can contribute to overall proc-
ess improvement in the organization.

3. Process standards provide a structured basis for measurement.

4. Because process definitions take time and effort to produce, it is impractical to
produce new ones for each project.

5. Because the basic tasks are common to most software projects, a standard process
framework will need only modest customization to meet most special project needs.

2.3. Software Process Models
A software process architecture is a framework within which project-specific software processes
are defined [Humphrey 88].  It establishes the structure, standards, and relationships of the
various process elements.  Within such an architectural framework it is possible to define many
specific processes.  A software process model is then one specific embodiment of such a soft-
ware process architecture.

While software process models may be constructed at any appropriate level of abstraction, the
process architecture must provide the elements, standards, and structural framework for refine-
ment to any desired level of detail.

2.4. Criteria for Effective Process Models
Before establishing criteria for evaluating modeling approaches, it is first necessary to define the
uses for such models.  The basic uses for process models are to:

1. Enable effective communication regarding the process.  This could involve commu-
nication among process users, process developers, managers, or researchers. It
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enhances understanding, provides a precise basis for process execution and
automation, and facilitates personnel mobility.

2. Facilitate process reuse.  Process development is time-consuming and expensive,
so few project teams can afford the time or resources to totally develop their own.

3. Support process evolution.  Precise, easily understood, expandable, and reusable
process definitions provide an effective means for process learning.  Good process
models are thus an important element of software process improvement.

4. Facilitate process management.  Effective management requires a clear under-
standing of plans and the ability to precisely characterize status against them.
Process models potentially provide a framework for precisely defining process
status criteria and measures [Kellner 88a, Kellner 88b, Kellner 89].

From this, it is clear that process models must:

A. Represent the way the work is actually (or is to be) performed.

B. Provide a flexible and easily understandable, yet powerful, framework for represent-
ing and enhancing the process.

C. Be refinable to whatever level of detail is needed.

The first two points are relatively obvious, but the third is often overlooked. As improvements are
made in supporting the software process, precise task definitions are required to permit effective
tool and environment development [Feiler 86, Feiler 88].  As with any data processing application,
poorly understood tasks lead to inadequate requirements and ineffective systems.  While it is
more challenging than most application developments, software process automation is much like
application development and thus must start from precise process models at relatively deep
levels of detail.

Finally, to be most effective in supporting the four objectives of process modeling presented
above, process models must go beyond representation.  They must support comprehensive anal-
ysis of the process through the model, and allow predictions to be made regarding the conse-
quences of potential changes and improvements.  Certainly, modeling approaches that smoothly
integrate representation, analysis, and predictions are preferred.  We describe such an approach
elsewhere [Kellner 88a, Kellner 88b, Kellner 89].

3. Process Modeling Concerns

3.1. The Problems with Current Software Process Models
A number of process models have been proposed in the literature, including the "waterfall model"
[Royce 70, Royce 87], the "spiral model" [Boehm 86], and "iterative enhancement" [Basili 75].
Nevertheless, outside the research community, much software process thinking is still based on
the waterfall framework, as described by Win Royce in 1970 [Royce 70].  While this model has
been helpful in explaining the software development process, it has several shortcomings with
respect to the above criteria [Boehm 86]:

1. It does not adequately address the pervasiveness of changes in software devel-
opment (A).

2. It unrealistically implies a relatively uniform and orderly sequence of development
activities (A).
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3. It does not easily accommodate such recent developments as rapid prototyping or
advanced languages (B).

4. It provides insufficient detail to support process optimization (C).

Over-reliance on the waterfall model has had several unfortunate consequences.  First, by de-
scribing the process as the sequence of requirements, design, implementation, and test, each
step is viewed as completed before the next one starts.  The reality is that requirements live
throughout development and must be constantly updated. Design, code, and test undergo a
similar evolution.  The problem is that when managers believe this unreal process, they require
that design, for example, be completed before implementation starts.  Everybody who has ever
developed much software knows that there are many tradeoffs between design and implemen-
tation. When the design is not impacted by implementation, it means that either the design went
too far or the process was too rigid to recognize and adjust for implementation problems. The
design and its documentation must thus evolve in concert with implementation.

Unrealistic software process models also bias the planning and management system.  When
requirements are supposed to be final before design starts, various documents and reviews are
conducted to demonstrate requirements completion.  Since these documents must also change
as design issues are exposed, this static view of requirements can be counterproductive.  This is
further exacerbated by pressure for an early freeze on changes.  This inhibits creative
design/requirements tradeoffs just when they should be encouraged.  These problems have cor-
responding analogues in design, implementation, and test.

A final consequence is process measurement.  When an unrealistic process model is used as a
basis for planning, the measurement and tracking system is corrupted.  Tasks are labeled as
complete when they are not, so crisp progress benchmarks are not available.  Since resource or
lead time standards are corrupted by the lack of clear activity boundaries, planning and tracking
are equally imprecise.

3.2. The Causes of Current Model Problems
The fundamental problem with current software process models is that they do not accurately
represent the behavioral (or timing) aspects of what is really done (criterion A). The reason is
that traditional process models are extremely sensitive to task sequence; consequently, simple
adjustments can require a complete restructuring of the model.  For example, consider the actual
interaction between requirements, design, and implementation in many software projects.  Often,
an implementor will be faced with a decision on the specific presentation of some error or other
message. Rather than making an arbitrary decision, such issues should be referred to a systems
design group for resolution.  Because many such choices involve user interaction, they actually
represent requirements refinements.  Clearly, the requirements that were supposed to have been
completed were not.

This problem results from an overemphasis on the modeling of tasks.  While this seems like a
natural way to guide task-oriented people, it limits human flexibility and tends to arbitrarily impose
rigidity. With the requirements-design-code-test sequence, decisions to re-examine the require-
ments during test, for example, cannot be readily accommodated.  In short, traditional modeling
has not adequately addressed the behavioral aspects of processes.
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3.3. Process Modeling Considerations
First, it is important to recognize that a complete model of a complex process must be complex.
Here, the operative word is complete.  If one wants to use a model for a specific purpose, it can
presumably be tailored to that purpose and compromise completeness in other respects.  These
compromises, however, must be made with care or the resulting simple model representation
could easily be misleading.

The traditional task-oriented approach to process models results naturally from our task-oriented
view of our work.  This, for example, is what led to the waterfall model:  the need for a general
prescription of human activity.  While this task structure is quite appropriate and relatively easy to
understand when the tasks are simply connected, it becomes progressively less helpful as the
number of possible task sequences increases.  While it can, in principle, still produce an accurate
model, it becomes more difficult to do so and progressively less understandable.

The real danger of attempting to use task-oriented models in such complex situations is that they
must be simplified to permit human comprehension, and these simplifications tend to limit
flexibility in task sequencing. When there are, for example, ten possible actions that could be
usefully performed, a simplified task-oriented process model would presumably only show one or
two. While this might be perfectly acceptable under normal circumstances, the other alternatives
might then be viewed as abnormal or unauthorized.  When such models are used to guide proc-
ess automation, project management, or contract administration, the resulting process rigidity can
cause serious problems.

The question, therefore, is not "What is the right way to model the process?" but "What is the
most appropriate way to model this process for this purpose?"

A final point concerns actual process execution.  When the process model is used to guide or
control the detailed performance of the process by people or machines, a comprehensive model
is required and it must include a task-oriented view. Indeed, we have suggested that a complete
process model needs to contain functional, behavioral, structural, and conceptual data modeling
views [Kellner 88b, Kellner 89].  For process management purposes, however, a simpler process
model is appropriate as long as it does not artificially constrain process execution. There is good
reason to believe that task-oriented models are not the best for this purpose.

Considerable attention has been devoted to software process modeling (or process
programming) during the past few years; for example, see [Fourth 88, Lehman 87, Osterweil
87, Rombach 89].  However, most efforts have focused on the functional, or task-oriented, as-
pects of processes. Although some behaviorally oriented modeling approaches have been re-
cently reported [Phillips 88, Phillips 89, Williams 88a, Williams 88b], these efforts still approach
behavioral modeling from a task orientation, focusing on when tasks are performed.  This paper
proposes an entity orientation to behavioral modeling, as described below.
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4. Entity-Based Models

One alternative is to consider basing process models on entities, similar to those used by Jack-
son in the Jackson System Development (JSD) methodology [Jackson 83]. Here, one deals with
real entities and the actions performed on them.  Each entity is a real object that exists and has
an extended lifetime.  That is, entities are things that persist rather than ephemeral objects that
are transiently introduced within the process.

Examples of such entities are the requirements, the finished program, the program documen-
tation, or the design.  While these sound like some of the items discussed in the waterfall model,
they are quite different.  The traditional waterfall model deals with tasks such as producing the
requirements. This task is then presumed completed before the next one (design) starts.  In
reality, the requirements entity must survive throughout the process.  While it undergoes many
transformations, there is a real requirements entity that should be available at all later times in the
process. Exactly the same is true of the design, the implementation, and the test suite.

4.1. The Stability of Entity Process Models (EPMs)
The reasons that EPMs provide a useful representation of a software process are:

• EPMs deal with real objects (entities) that persist.

• Each entity is considered by itself and is viewed as having a defined sequence of
states.

• State transitions result from well defined causes, although they may depend on the
states of other entities as well as process events and conditions.

• As long as the relative sequential relationships of these transitions are retained
within each entity stream and as long as any prerequisites and dependencies be-
tween entities are maintained, the timing within the various entity streams is not
material.

Each entity stream is thus individually robust and can be stretched or compressed without
destroying its self-consistency.  Further, as one entity stream is adjusted, one need only consider
those other process aspects that are involved in the transition conditions between entity states.

4.2. Entities
The proper definition of the entities in a process is important.  An entity must:

• Exist in the real world and not merely within the model or process.

• Be identifiable and uniquely named.

• Be transformed by the process through a defined set of states [Jackson 83].

Entities are real things, not just artifacts that are introduced to assist in the work.  When, for
example, the full software product life cycle is considered, a number of the "artifacts" produced
during development become extremely important. Examples are the requirements, the design,
the test documents, the test cases, and the test plans.  When products evolve through multiple
versions, similar needs arise.  What is not so clearly recognized, however, is that the traditional
view of these items as end products of a development phase can lead to the belief that they are
completed and will undergo no further changes. As a result, there are often no official process
provisions for keeping the design up-to-date throughout implementation and test.
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4.3. Software Process Entities
This specification of an entity requires that we define the "real world." For purposes of software
development, we define the real world as the set of all users for the software system. This does
not include, for example, software development itself nor the management and contracting activi-
ties that drive and control it.  This is arguably subjective, but the logic is to separate those
essential products of the process from the artifacts and mechanisms used to control and produce
it.

The question then is, what are the potential uses for the software product and what process
artifacts are required to support them?  Some obvious entities are:

• Deliverable code

• Users’ installation and operation manuals

Some more debatable items are:

• Requirements documents

• Design

• Test cases and procedures

If software maintenance or acceptance testing is considered part of the real world, these should
be considered process entities as long as they are identifiable and are transformed by the proc-
ess. This, in fact, is one of the key problems in the traditional task-oriented view of the process.
The requirements, for example, must evolve throughout the process as the users’ needs and the
implementation realities are better understood.  A similar evolutionary path applies to the design
and test materials, which are also needed for subsequent product enhancement and repair.

Another potential entity is a prototype produced to clarify some design question.  Assuming that it
is produced, tested, and discarded, it is clearly not an entity even though it may contribute impor-
tantly to some new design state.  Again, this is not a question of what is right or wrong but of what
is most helpful in the particular situation.  Prototyping would thus show up as an activity, unless,
that is, the prototype ended up being delivered as part of the product. The fact that it isn’t an
entity does not mean that it isn’t important.  Even if using a prototype were the only way to
produce a quality design, it would still not be an entity.  It would, however, be an essential part of
the design activity.  Thus, even though it may be transformed many times, an entity persists
throughout the software system’s useful lifetime.  If the process being modeled only spans devel-
opment, then that is the useful lifetime.  To avoid overlooking key needs or to reduce emphasis
on transient development issues, however, it is wise to attempt to consider the full system
lifetime, including subsequent enhancement and repair.

4.4. Producing Entity Process Models
The process of producing an entity process model is relatively straightforward:

• Identify the process entities and their states.

• Define the triggers that cause the transitions between these states.

• Complete the process model without resource constraints — an unconstrained proc-
ess model (UPM).
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• Impose the appropriate limitations to produce a final constrained process model
(CPM).

While this procedure is conceptually simple, it can become quite complex when applied to real
processes.

5. Example EPM

As a means of illustrating the application of entity process modeling, an example is presented that
deals with a realistic component of the software development process.  For the example to be of
manageable size, only a circumscribed portion of the software life cycle is addressed: the coding
and unit testing of a single module.  Nevertheless, this example does illustrate many of the
features of the software process that make it notoriously complex, such as parallelism of tasks,
complex decision criteria regarding the next step, iteration loops, and multiple feedback paths.
The example will be increasingly refined through three stages.

In this example, we restrict our attention to the activities occurring between the time when
(1) detailed design for the module has been developed, and (2) the module has successfully
passed unit testing.  There are three entities of interest in this example:

1. Module code

2. Unit tests for the module

3. Test execution and analysis results

As explained above, in general, each entity passes through a series of states during its lifetime.
An example time line is presented in Figure 1 for module code.  This entity does not exist during
the early stages of a project, but at some point it begins to be developed and we say it is in a
state "undergoing development."  When development stops (at least temporarily to allow testing),
we say it enters the state "developed."  At some point after the code has been developed (and
while the entity module code is in the "developed" state), it will be tested.  This typically will result
in cycling back through additional development work.  Finally, the module passes all unit tests
and is promoted to the state of "tested and passed."

A few key points of our approach are highlighted by this example.  Entities remain in a state for a
positive (non-zero) amount of time, while the transitions between states are represented as taking
negligible time.  Between the time of its creation and termination, an entity must always be in
some particular state. Some states are "active", wherein the entity is being created or trans-
formed in some way, such as undergoing development.  The remaining states are "passive",
wherein the entity remains in the same condition, not undergoing any change.  Note that although
the module code is tested during its time in the "developed" state, it is not changed.  Generally,
however, it is relatively simple to identify the various entities of a process and enumerate their
salient states.

Our work in software process modeling has primarily utilized a commercially available software
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system called STATEMATE.1 The focus of this paper is on a behavioral modeling perspective, 
and our approach to behavioral modeling utilizes statecharts [Harel 87, Harel 88a], which are 
supported by the STATEMATE tool [Harel 88b]. Other aspects of our modeling approach have 
been described elsewhere [Kellner 88a, Kellner 88b, Kellner 89]. Statecharts are an enhance-
ment to traditional state transition diagrams. The three statecharts presented in this paper were 
produced on the STATEMATE system.

5.1 Basic Example
Recall that this example considers three entities: module code, module unit tests, and the test 
execution and analysis results. Figure 2 presents a statechart depicting an entity process model-
ing view of our example process.   The boxes in the diagram represent states, while the lines rep-
resent transitions between states. States can have orthogonal components, separated by 
dashed lines. These orthogonal components represent parallelism (concurrency); for example, 
the module code, tests, and test execution report all exist concurrently, as illustrated in the upper 
left quadrant (labeled module_code), lower left quadrant (labeled module_tests), and upper right 
quadrant (labeled test_exec_report) of the diagram, respectively. When the overall process is in a 
state (such as the large outer state labeled sw_process), it must also be in a substate in each 
orthogonal component. We have also included components in the lower right quadrant for 
upstream entities and downstream entities. These are simply placeholders to illustrate where the 
rest of the software process would be depicted, and would include states for the entities require-
ments, designs, system builds, integration tests, etc.

We are using the constructs of an existing tool to depict examples of entity process models. 
Because STATEMATE does not offer an “entity” construct, we are forced to represent the entities 
themselves as high-level orthogonal state components, as shown by the major quadrants in the 
figure. Admittedly, this is a bit awkward, but it only occurs at the top level. At all lower levels, 
states in the statechart do indeed depict the various states of these entities.

1. STATEMATE is a trademark of i-Logix, Inc., Burlington, MA
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The state transitions are represented by lines whose labels define the trigger for making the
transition. Default transitions (beginning with a small dot) lead into the outer state, into the NONE

substates of MODULE_CODE and MODULE_TESTS, and into the NEW substate of TEST_EXEC_REPORT.
This indicates that the process begins with the entities in those states.

The states within the MODULE_CODE quadrant represent the states of the code entity, the first
being "none" or non-existent.  When the detailed design is initially ready, the trigger
DETL_DES_RDY[INITIAL] is satisfied, and the entity transitions to the DEVELOPING_CODE state. Trig-
gers can be composed of event expressions guarded by condition expressions; conditions eval-
uate to a Boolean value, and condition expressions are enclosed in brackets such as [INITIAL].
This trigger is interpreted as the event DETL_DES_RDY (detailed design for the module is ready)
when INITIAL is true (INITIAL indicates that the coding starts from scratch).  A similar explanation
applies to the transition from DEVELOPING_CODE to CODE_DEVELOPED: take it at the instant the code
is compiled, as long as it was a "clean" compilation.  As noted above, testing occurs while code is
in the CODE_DEVELOPED state. If analysis of the tests reveals a need to rework the code, we
transition back to DEVELOPING_CODE and iterate again.  Eventually, the tests will be completed and
passed, leading to the final state.  The last two states (CODE_DEVELOPED and TESTED_N_PASSED)
are enclosed in an unnamed state; this is primarily a matter of style, although it will prove useful
later. Finally, this example introduces an ON_HOLD state. Frequently, during development, it is
necessary to go back to some earlier entity, such as requirements, to recheck or clarify some-
thing, or to consider modifying the design as a result of something uncovered during devel-
opment. Thus, while in DEVELOPING_CODE, the code entity may transition to the ON_HOLD state for
a time, then return to where development left off.

The situation for the entity MODULE_TESTS is almost identical.  However, the entity
TEST_EXEC_REPORT warrants additional explanation.  The various states of this entity result from
applying a specific version of the unit tests entity (MODULE_TESTS) to a specific version of the
module code entity (MODULE_CODE). Thus, each instance of TEST_EXEC_REPORT really cor-
responds to a specific code and test pair and must thus be a separate entity in its own right,
which represents a combination of the other two entities.  Of the four states of this compound
entity, two are active: RUNNING_TESTS and ANALYZING_PROBS. Notice the synchronization be-
tween the state transitions of the three entities. For example, TEST_EXEC_REPORT can transition
from NEW to RUNNING_TESTS only when MODULE_CODE is in its CODE_DEVELOPED state and
MODULE_TESTS is simultaneously in its TESTS_DEVELOPED state. Similarly, the trigger
TESTS_COMPLETED[PASSED] causes all three entities to progress to their final states simul-
taneously.

Here the three entities MODULE_CODE, MODULE_TESTS, and TEST_EXEC_REPORT each have five,
five, and four states, respectively.  Of the resulting 100 potential system states (5 x 5 x 4), only a
relatively small number are possible, however, as determined by the various state transition con-
ditions.
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5.2. Example with Feedback
The first level of refinement to this model is presented in Figure 3.  This version of the example is
much more representative of the realities of software processes because it adds many feedback
paths to the process.  For instance, while analyzing problems uncovered during testing, it may
become apparent that revisions are needed to entities developed earlier, such as designs or even
requirements. We indicate this with the condition REWORK_PRE_CODE taking the value true.  The
upper right quadrant of the diagram (TEST_EXEC_REPORT) shows this with a transition out of
ANALYZING_PROBS and into a state called HOLD. The transition out of ANALYZING_PROBS is trig-
gered by the event ANALYZED, and leads to a condition connector (circle containing a letter c);
multiple branches lead out from there with additional triggers.  This further illustrates the repre-
sentation of decision logic.  If the REWORK_PRE_CODE flag is true, the path to HOLD is taken;
otherwise, the path directly to NEW is taken.  The transition to HOLD illustrates another feature of
statecharts as well. The label on the transition ends with /TR!(REWORK_CODE);TR!(REWORK_TESTS)

indicating an action to be performed when the transition is taken.  This is a simple action of
assigning the value "true" to the two rework flags, ensuring that the code and tests will be
reexamined after the revisions to earlier work are completed.  The transition out of HOLD is taken
when DETL_DESIGN_RDY occurs, meaning the detailed design is again ready.  This same event
triggers transitions in the states of the other two entities, namely the uppermost transitions back
into DEVELOPING_CODE and DEVELOPING_TESTS. The INITIAL flag can be set again to indicate a
need to throw out the previous work and start fresh because of wholesale changes to the design.

Another example of feedback results when problems arise downstream, such as during integra-
tion testing.  Analysis of such problems may result in a need to rework the module code or unit
tests (and corresponding values of REWORK_CODE and REWORK_TESTS). This sort of feedback is
represented by the event LATER_FEEDBACK, and may result in a transition from TESTED_N_PASSED

back to DEVELOPING_CODE, and a similar transition for the tests.  Other combinations of events
and conditions lead to demoting the state of the code from TESTED_N_PASSED back to
CODE_DEVELOPED. This happens when the code itself does not need to be reworked, but the tests
do — meaning that the new tests will have to be applied to the existing code.  Again, a similar
situation arises for the tests.

The addition of these various feedback situations certainly complicates the model.  However, that
is unavoidable since the real software process is vastly complicated by this feedback.  Many
other software process models systematically avoid illustrating this feedback precisely because it
is so complex.  However, our approach to modeling allows us to precisely capture and describe
this behavior.

A point about this example is worth making at this time.  We are not proposing that this example
is the software process. It is a stylized example of a process which could reasonably be used to
develop a module. It has been designed to be representative of actual aspects of software
processes, and to illustrate our modeling approach; but it is not dogma.  We ask the readers to
view it in that light, and to bear with us if they would prefer a slightly different process from that
described here.
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5.3. Further Refinement
The final refinement to this example illustrates how EPMs can be further refined to show addi-
tional detail.  Figure 4 presents a decomposition of the DEVELOPING_CODE state. For the purposes
of this example, we assume that the module is written in a compiled language, and that it is
compiled as a unit.  Also, for illustrative purposes, we chose to distinguish between initial coding
(starting with a clean slate), and revisions to existing code. DEVELOPING_CODE is decomposed
into two primary substates: WRITE_CODE and COMPILE_CODE. The former is further decomposed.
This lowest level of detail illustrates that INITIAL_CODE is composed of planning (PLAN_CODE) and
entering code (ENTER_CODE). These activities can be carried out in an unspecified concurrent
fashion, such as interleaving them.

The transition labeled RDY_TO_COMPILE illustrates another aspect of statecharts.  This transition
leading from WRITE_CODE means that it is a valid transition out from any of the substates of

*WRITE_CODE. One last statechart feature is the H symbol at the lower left corner of the diagram.
This is called a deep history connector, and it is connected to the ON_HOLD box, which was
reached when code development was interrupted by the need to perform some check at the

*design or requirements level.  The H means return to the exact configuration of states within
DEVELOPING_CODE that the process was in when the last transition was taken out of
DEVELOPING_CODE. This is the destination of the transition PRE_CODE_CHECKED coming back from
ON_HOLD; thus the process picks up precisely where it left off when it was interrupted.

As noted above, these statecharts were produced using the STATEMATE system.  In addition to
offering a convenient representation formalism, the system supports automated analysis of a
variety of aspects of completeness, correctness, and consistency.  These include tests for rea-
chability, nondeterminism, deadlocks, and race conditions. The process can also be simulated
through interactive, animated simulation from the diagrams.  Exploration of these issues is
beyond the scope of this paper, but is reported elsewhere [Kellner 88b, Kellner 89].

6. Scheduling Considerations

6.1. The Unconstrained Process Model
Entity process models can be used for schedule planning and analysis.  The example EPM
developed above is called unconstrained because it does not include any consideration of
resource constraints in performing tasks and making transitions between states. Thus, it de-
scribes the transitions based on their logical interconnections only, without being burdened by
issues of resource constraints.

The EPM can be used to derive what we term an unconstrained process model (UPM), which is a
schedule for the unconstrained case.  Returning to the module development example presented
above in Figure 2, Table 1 shows a set of planned times for each task.  These tasks correspond
to the active states in the statechart model.  The basic plan forecasts that after initial development
of code and tests, test execution will uncover errors calling for the rework of both code and tests
at half their initial effort level.  The second round of testing will uncover more errors, but only in
the code, requiring one-quarter the initial effort to correct.  The tests will then be passed on the
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third round.  We suppose that each of these tasks is a one-person task that cannot be distributed 
among multiple workers.

The UPM resulting from these time estimates applied to the EPM of Figure 2  is presented in 
Figure 5 in the form of a Gantt chart.  The chart illustrates when each entity is in each of its four 
respective states (the on_hold states were not used in this illustration).  Those time bars with 
numbers above them represent the time in the active states, as forecast in the table. Certainly, it 
is possible to reduce this chart to showing only the active states, but the form shown is more 
complete.  Notice that the tests will be passed in 29 hours, although 41 work hours are required 
to accomplish the work.  The graph at the bottom of the UPM chart shows the resource require-
ments (in number of personnel) for each time unit.

Since the EPM and UPM are independent of resource constraints, they present a robust repre-
sentation of task relationships and furnish a useful framework for analyzing process problems 
and determining where added resources can be most effective.

6.2 The Constrained Process Model

These models also provide the basis for establishing a constrained process model (CPM).  Since 
real software organizations have limited resources, some tasks may have to wait for personnel to 
become available to accomplish them. The CPM is thus produced by adjusting task timing to 
obtain the overall results desired, subject to the resource constraints.  A typical objective would 
be to complete the process in the shortest time.  The UPM revealed that the process could be
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completed in 29 hours, but required two workers during 12 of those hours.  Suppose now that
only one worker is available.  Figure 6 shows one possible schedule for this process, using only
one worker.  The shortest possible time with this resource constraint is 41 hours, and other
schedules can be found that will yield this time.  For example, test development could be done
before code development.

6.3. Schedule Management
These models can be valuable tools for schedule management.  Although the EPM is much more
detailed and general than a typical precedence network (such as those used for CPM or PERT),
some of the same analyses can be applied.  For example, one can see from the UPM (Figure 5)
that there is slack time for initial test development: it can begin any time between time 0 and 4
without delaying completion of the process.  On the other hand, initial code development is on the
critical path; if any way could be found to speed up that task, overall completion would occur
sooner. These charts also indicate that the addition of a second worker at certain points could
speed up completion.

The models are also useful during process execution.  A common software development problem
is the occurrence of a crisis delaying completion of a key task.  The models allow management to
determine if this task is on the critical path.  If it is, then the completion schedule is threatened,
and management can use the models to assess the available corrective actions.  By examining
the models, it becomes apparent whether added resources could help and where they should be
applied to rebalance the schedule.  It should also be noted that although our example utilized a
single resource type, this is not a methodological limitation.  Multiple resources can be required
for each task, including different types of personnel, special talents, or unique equipment.  Sepa-
rate resource requirements charts can be developed for each and considered in developing the
CPM.

Project schedules and checkpoints can also be obtained from the CPM for process tracking and
control. As can be seen from the example, the checkpoints consist of monitoring the various
entity states.  Assuming that the entity states are properly defined as discrete measurable con-
ditions of real objects, these checkpoints should be relatively easy to monitor.

This does not mean that examination of work content is not important.  On the contrary, it is
essential to include quality-directed process tasks in software plans to ensure that the work is
properly done.  This might require that inspections be held of all important work products and that
their completion result in an "inspected" state, which could be monitored by management.  Man-
agement could thus be thoroughly informed of quality status without having to wade through
voluminous reports or specifications.

This does not mean that all management tracking should be restricted to examining entity states.
It is highly desirable for managers to be personally familiar with many aspects of the work of their
people. This should include review of the technical approach, quality evaluations, quantity meas-
ures of the work performed, resource utilization, and productivity.  To evaluate schedule perfor-
mance, however, tracking of entity state progress against plan is precise and efficient.
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7. Conclusions

Perhaps the most attractive feature of EPMs is the new forces they generate:

• The prime entities of the software process are seen as persistent objects.  With
requirements, for example, this makes it clear that the requirements must evolve
throughout product development.

• A focus on states facilitates the tracking of 100% completed items rather than vague
partial task completions.

• The UPM/CPM duality assists in adjusting for crises without bypassing essential ele-
ments of the process.

• The use of the UPM/CPM pair simplifies initial scheduling and planning and permits
simple adjustments to conform to new demands and available resources.

This approach appears to solve some of the problems of using task-based process models for
processes with highly dynamic task behavior.  Since the states of the basic process entities
generally behave in a more orderly fashion than the tasks, they can provide a more robust basis
for process definition and structure. As a result of these advantages, EPMs should thus help us
to better understand software processes and to plan and manage them more effectively.

By using a large-scale process representation that both consistently represents actual process
behavior and can be refined to progressively greater levels of detail, better understanding and
more accurate control are possible.

In addition, our EPM models focus on the dynamic behavior of a process and its impacts on the
relevant entities.  Task oriented models do not generally specify the details of dynamic behavior,
meaning that they cannot be directly enacted or used for schedule planning.  Our EPMs, based
on statecharts, are formal and enactable — in that we are able to run interactive, animated
simulations of our EPMs with STATEMATE, as well as perform automated tests and analyses.
The value of enactable models is addressed more fully elsewhere [Hansen 88].
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