
15 Software Product Line Engineering with the UML:
Deriving Products

 T. Ziadi and J.-M. Jézéquel

Abstract
Software product line engineering introduces two new dimensions into the traditional
engineering of software-based systems: the variability modeling and the product derivation.
The variability gathers characteristics that differ from one product to another, while the
product derivation is defined as a complete process of building products from the product
line. Software Product Line Engineering with the UML has received a lot of attention in
recent years. However most of these works only concern variability modeling in UML static
models and few works concern behavioral models. In addition, there is very little research
on product derivation. This chapter investigates the product derivation in the context of the
product line engineering with the UML. First, a set of extensions are proposed to model
product line variability in two types of UML models: class diagrams (the static aspect) and
sequence diagrams (the behavioral aspect). Then we formalize product derivation using a
UML model transformation. An algorithm is given to derive a static model for a product and
an algebraic approach is proposed to derive product-specific statecharts from the sequence
diagrams of the product line. Two simple case studies are presented, based on a Mercure
product line and the banking product line, to illustrate the overall process, from the
modeling of the product line to the product derivation.

15.1 Introduction

Rather than describing a single software system, the model of a software product line (PL)
describes the set of products in the same domain. This is done by distinguishing elements
shared by all the products of the line, and elements that may vary from one product to
another. Concepts of commonality and variability are, respectively, used to designate
common and variable elements in a PL [39] Variability can concern two main aspects:

can be omitted in others. Variation elements define alternatives (variants) to choose from.
Beyond variability modeling, the product derivation process is defined as a complete
process of constructing products from the software PL [12].
 Unified modeling language (UML) [33] is an object-oriented notation for software
system modeling. It proposes a set of models to specify several aspects of systems. Class
diagrams are UML models that can be used to specify static aspects of systems, while

optionality or variation [7, 18]. An optional element only concerns some products and it

sequence diagrams (SD) and statechart diagrams are examples of models describing be-
havioral aspects. Software PL Engineering with the UML has received a lot of attention in
recent years [3,5,9,10,13,14,18,26,27,37,38]. Section 15.4 presents a study on these works
and shows that the most of existing works only concern UML static models and few
works concern behavioral models [3,14,17]. In addition, there is very little research on
product derivation [3,13]. The product derivation support is a significant criterion for de-
termining the utility for users of any PL approach. The approaches that only model vari-
ability in UML models without product derivation support have only a descriptive utility.
This means that these approaches are only useful for PL architecture description.
 In this work we defend the idea that any approach of PL engineering should go beyond
the descriptive utility and propose supports for resolving the variability and obtaining
product models. For this, we investigate the product derivation process in the context of
PL engineering with the UML. We give an overview of PL design by first presenting
structural variability involved in class diagrams, then how behavioral aspects may be
designed using UML sequence diagrams. We then formalize product derivation as UML
model transformations. First, a transformation algorithm is given to automatically derive
the static product model from the PL model. Second, an algebraic approach is proposed to
derive product-specific statecharts from PL sequence diagrams.
 To present these design techniques, Sect. 15.2 focuses on static aspects of the PL design,
its constraints, and its derivation process into specific products; this part also stresses the
need to check derived products with respect to variability constraints. Next, Sect. 15.3
proposes an algebraic approach to derive product-specific statecharts from the SD of the
PL. Here PL behaviors are specified as algebraic expressions on basic UML2.0 sequence
diagrams, where variability is introduced by means of three new algebraic constructs. Our
derivation approach is defined in two steps: We first define an algebraic way to derive
product expressions from the PL expression and then statecharts are generated by
transforming product SD given as an expression into a composition of statecharts. Section
15.4 discusses related work, and finally Sect. 15.5 draws some conclusions and
perspectives.

15.2 Deriving Static Aspects

15.2.1 The Mercure Product Line

cation software delivering, forwarding, and relaying messages from and to a set of net-
work interfaces connected into heterogeneous distributed system. The Mercure PL must
handle variants for five variation points: any number of specialized processors e(Engines),
network interface boards (NetDriver), levels of functionality (Manager), user interface

T. Ziadi and J.-M. Jézéquel

As a case study for describing static aspect derivation, we consider the Mercure PL, which

implementation have been described in [23,24]. It can abstractly be described as a communi-
is a line of Switched Multi-Megabit Data Service (SMDS) servers whose design and

558

(GUI) and support for languages (Language). Figure 15.1 shows a feature diagram of the
Mercure PL (we follow FODA notations [28]). The Mercure consists of Engine, Net
Driver, Manager, GUI, and Language. The Mercure product may support one or more of
Engine 1,…, Engine N, the selection being represented by FODA alternative features. In
the same way, we define all NetDriver, Manager, GUI, and Language dimensions.
 The FODA [28] notations allow us to specify dependency relationships, called
composition rules, between domain features. FODA supports two types of composition
rules: the “require” rule that expresses the presence implication of two or more features,
and the “mutually exclusive” rule that captures the mutual exclusion constraint on feature
combinations. A “require” rule is identified in the context of the Mercure PL: it specifies
that the choice of the NetDriver1 implies the choice of the Engine1 (see Fig. 15.1).

Fig. 15.1. The FODA diagram for the Mercure PL

15.2.2 PL Static Architecture as UML Class Diagrams

To describe the PL static architecture, we use UML class diagrams. In [42], we have pro-
posed a UML profile for PL. This profile includes mechanisms to specify variability
within two types of UML 2.0 diagrams: class diagrams and sequence diagrams. For class
diagrams, we proposed to specify variability using two mechanisms:

– Optionality. Optionality in PL means that some features are optional for the PL

members, i.e., they can be omitted in some products. To specify optionality in class
diagrams, we introduced the <<optional>> stereotype. This stereotype can be
applied to classes, packages, attributes, or operations [42].

15 Software Product Line Engineering with the UML 559

– Variation. Inheritance in UML allows defining variability in class diagrams [2]. The
idea is to define a variation point as an abstract class and variants as concrete
subclasses. Each subclass defines the implementation of the abstract class in a specific
way. However, this variability is only resolved at run time and it is not explicit in the
model. To explicitly specify the variation in UML class diagram, we introduced two
stereotypes <<variation>> and <<variant>> [42]. The <<variation>>
stereotype is associated with the abstract class while <<variant>> is associated with
subclasses. Each product can choose one or more subclasses [42]. Figure 15.2 shows an
example of a variation point specified using the <<variation>> and
<<variant>> stereotypes. Notice that the subclass A in Fig. 15.2 is not stereotyped
<<variant>>; this means that this subclass is mandatory for all products.

Fig. 15.2. Example of a variation point

Let us now apply these extensions to the Mercure PL. As previously specified in the
FODA diagram of the Mercure PL, the Mercure product may support a set of Engines
among Engine1, Engine2, EngineN. Using the variation mechanism presented
earlier, we define an abstract class called Engine and stereotyped <<variation>>
and the several dimensions as subclasses stereotyped <<variant>> In the same way we
specify other variation points: NetDriver, Manager, GUI, and Language. Figure
15.3 shows the UML class diagram of the Mercure PL. It basically says that a Mercure
system is an instance of the Mercure class, aggregating an Engine (that encapsulates the
work that Mercure has to do on a particular processor of the target distributed system), a
collection of NetDrivers, a collection of Managers (that represent the range of
functionalities available), and the GUI that encapsulates the user preference variability
factor. A GUI has itself a collection of supported languages (see Fig. 15.3).

T. Ziadi and J.-M. Jézéquel 560

Mercure

<<variation>>
Engine

<<variation>>
NetDriver

<<variant>>
Engine 1

<<variant>>
Engine N

<<variant>>
NetDriver 1

<<variant>>
NetDriver N

<<variation>>
Manager

<<variant>>
Manager 1

<<variant>>
Manager N

Message

<<variation>>
GUI

<<variant>>
GUI 1

<<variant>>
GUI N

<<variation>>
Language

<<variant>>
Language 1

<<variant>>
Language N

Buffers

1..*

1

Watch

1

*

Observe 1..*

1..*

1..*

1..*

1

1..*

Use 1..*

Available

1

1..*
Use 1

1

..........

..........

..........

..........

..........

Fig. 15.3. The Mercure Product Line UML class diagram

15.2.3 Product Line Constraints

In addition to variability, the PL architecture is defined as a standard architecture with a
set of constraints [4]. In this context, we have identified in [45] two types of PL con-
straints that guide the product derivation process. We proposed to define them as Object

15 Software Product Line Engineering with the UML 561

both the generic constraints that apply to all PLS, and specific constraints that concern a
specific PL (a detailed description of these constraints can be found in [45]).

Generic Constraints

The introduction of variability using the <<variant>>, <<variation>>, and
<<optional>> stereotypes improves genericity, but can generate some inconsistencies.
For example, if a mandatory element depends on an optional or on a variant one, the
derivation can produce an incomplete product model. So the derivation process should
preserve the consistency of the derived products. In [45], we proposed the formalization
of consistency constraints using OCL and we called them Generic Constraints. An
example of such constraint is the dependency constraint that forces mandatory elements to
depend on mandatory ones only. It is specified using OCL as the following invariant
for the Dependency1 metaclass:

context Dependency inv:

 S.isStereotyped(’optional’) or
S.isStereotyped(’variant’)) implies

self.client -> forAll (C|
 C.isStereotyped(’optional’) or

C.isStereotyped(’variant’))

isStereotyped(S) is an auxiliary primitive indicating if an element is stereotyped by a
string S. It is formalized using OCL as follows:

context Construct::Class::isStereotyped(
 s: string):Boolean;

isStereotyped =
self.extensions-> exists(E|
 E.ownedEnd.type.name =s)

Specific Constraints

A fundamental characteristic of the PL is that all elements are not compatible. That is, the
selection of one element may disable (or enable) the selection of others. For example in
the class diagrams for the Mercure PL in Fig. 15.3, the choice of the class variant Net-
Driver1 in the specific product needs the presence of the Engine1 variant. Another
challenge for the product derivation is to ensure these dependencies in the derived prod-
ucts. In our work, these dependencies are called Specific Constraints and are also formal-

1A dependency in the UML specifies a require relationship between two or more elements. It is

represented in the UML metamodel [33] by the metaclass Dependency; it represents the relationship
between a set of suppliers and clients. An example of the UML Dependency is the “Usage,” which
appears when a package uses another one.

T. Ziadi and J.-M. Jézéquel

Constraints Language (OCL) metal evel constraints. In what follows we briefly present

562

self.supplier->exists (S|

ized as OCL metalevel constraints [45]. The presence constraint in the Mercure PL is for-
malized as an invariant for the Model metaclass as follows:

context Model inv:

self.presenceClass(’NetDriver1’) implies

self.presenceClass(’Engine1’)

presenceClass(C) is an auxiliary operation indicating if a specific class called C is
present in the model. It is formalized using OCL as follows:

context Model::presenceClass(C : Class) : Boolean;

presenceClass =
 self.ownedMember->exists(el : NamedElement|

 (el.oclIsKindOf(Class) and cl.name = C.name) or
 (el.isKIndOf(Namespace) and el.presenceClass(C)))

15.2.4 From Product Line Models to Product Models

Deriving static aspects in PL consists in generating the UML class diagram of each prod-
uct from the PL class diagram. As shown previously, the PL class diagram is defined by a
set of variation points and to derive a product-specific class diagram, some decisions (or
choices) associated with these variation points are needed. For example, each Mercure
product could choose among the presence or absence of all variant classes. A mechanism
is needed to capture the decisions that are made for a specific product. As in [3], we call
this mechanism a decision model. In this section, we propose to use the Abstract Factory
design pattern as a decision model associated with the PL class diagram. Then we propose
an algorithm, based on models transformation, to derive product class diagrams. To illus-
trate this algorithm, we use three products in the Mercure PL: FullMercure, Custom-
Mercure, and MiniMercure:

– FullMercure is the product that includes all NetDrivers, all Engines, all Managers, all

GUIs, all Languages. Thus, all combinations can be dynamically bound.
– CustomMercure is a restricted product. It only supports two different network drivers :
NetDriver1 and NetDriver2, one manager: Manager1, two GUIs: GUI1 and
GUI2, two languages: Language1 and Language2.

– MiniMercure is the lightest product that only supports NetDriver1, Engine1,
GUI1, Manager1, and Language1.

The Decision Model

The Abstract Factory is a creational design pattern [15]. It allows defining an interface for
creating a line of related objects. In [25], one of the authors proposed the use of this pat-
tern to refine product derivation at compilation time. Our aim in this section is to reuse
again this pattern as a design of the PL decision model. Figure 15.4 shows the structure of
our decision model applied to the Mercure PL. We use an abstract factory, called Mer-
cure_Factory, to define an interface for creating variants of Mercure’s five variation

15 Software Product Line Engineering with the UML 563

points. The abstract class Mercure_Factory defines five factory methods, one for
each variation point. new_gui()for example is the factory method, which concerns the
GUI variation point. These factory methods are abstractly defined in the class Mer-
cure_Factory and given concrete implementation in its subclasses called concrete
factories. We create one concrete factory for each product in the PL. FullMercure,
CustomMercure, and MiniMercure in Fig. 15.4 are concrete factories for the Mer-
cure PL. We propose to specify decisions related to each product using stereotypes ap-
plied to method factories. We use stereotypes to restrict the return type of factory methods
to the possible one. For example, the CustomMercure product model includes only
GUI1 and GUI2. The Factory Method that corresponds to the GUI variation point is
new_gui(), so we add two stereotypes <<GUI1>> and <<GUI2>> to this factory
method (see Fig. 15.4).

Derivation

Now we have to tackle the automation of the derivation process exploiting the variation
points and the decision model. The derivation algorithm we use to derive product models
is described in Fig. 15.5. It takes as input the PL class diagram, and the concrete factory
from the decision model and it generates as output the product class diagram. It is
decomposed into three steps: selection of variant classes, model specialization, and model
optimization. They are:

T. Ziadi and J.-M. Jézéquel

Mercrure_Factory

FullMercrure

CustomMercrure

MiniMercrure

+new_gui():GUI
+new_language():Language
+new_network_manager():Manager
+new_netdriver():NetDriver
+new_engine():Engine

+new_gui():GUI
+new_language():Language
+new_network_manager():Manager
+new_netdriver():NetDriver
+new_engine():Engine

+<<GUI1, GUI2>>new_gui():GUI
+<<Language 1, Language 2>>new_language():Language
+<<Manager 1>>new_network_manager():Manager
+<<NetDriver 1, NetDriver 2>>new_netdriver():NetDriver
+<<Engine 1>>new_engine():Engine

+<<GUI1>>new_gui():GUI
+<<Language 1>>new_language():Language
+<<Manager 1>>new_network_manager():Manager
+<<NetDriver 1>>new_netdriver():NetDriver
+<<Engine 1>>new_engine():Engine

Fig. 15.4. The Abstract Factory as a decision model for the Mercure PL

564

15 Software Product Line Engineering with the UML

– Step 1: Variant classes selection. The first step consists of selecting variant classes

using the concrete factory. For each factory method, we retrieve its stereotypes. These
stereotypes define the names of the selected subclasses of the abstract class returned by
the factory method. When the factory method does not define stereotypes (such as in
the FullMercure concrete factory methods), all the subclasses of its return type are
selected.

– Step 2: Model specialization. In this step, we remove all variants classes from the
model that have not been selected in the first step. However, to preserve coherence,
variant ancestors of selected variant elements are not removed.

– Step 3: Model optimization. Here we delete unused factories and optimize the
inheritance. Inheritance optimization is applied when there is only one concrete class
inheriting from an abstract one. In this case the abstract class is omitted and replaced
by the concrete one.

Fig. 15.5. Static aspect derivation: the derivation algorithm

565

To achieve the implementation of the derivation algorithm, we have used the INRIA
Model Transformation Language (MTL). Information about implementation and technical
materials can be found at http://modelware.inria.fr/mtl. We have applied the derivation for
the three Mercure products: FullMercure, CustomMercure, and MiniMercure.
Figure 15.6 shows the CustomMercure model obtained by derivation from the Mercure
model in Fig. 15.3.

T. Ziadi and J.-M. Jézéquel

Mercure

Engine

NetDriver

Engine 1

Engine 2

NetDriver 1

NetDriver N

Manager 1

Message

GUI

GUI 1

GUI 2

Language

Language 1

Language 2

Buffers

1..*

1

Watch

1

*

Observe 1..*

1..*

1..*

1..*

1

1..*

Use 1..*

Available

1

1..*
Use 1

1

Fig. 15.6. The CustomMercure model, automatically derived from the Mercure PL model

566

Derivation vs. Constraints

The PL model should satisfy generic constraints before the derivation and the product
model derived should satisfy specific constraints. The generic constraints represent the
preconditions of the derivation algorithm while specific constraints represent the post-
conditions:

15 Software Product Line Engineering with the UML

DeriveProductModels(PL_classDiagram:Model,
aConcreteFactory:Class)

pre: check Generic Constraints on PL classDiagram
post: check Specific Constraints on the Product classDiagram
 result.

15.3 Deriving Behavioral Aspects

In addition to static aspect description, behavior modeling plays an important role in the
traditional engineering of software-based systems; it is the basis for systematic approaches
to requirements capture, specification, design and simulation, code generation, testing,
and verification. Scenario languages such as UML2.0 SD are an example of formalisms
for modeling behavior. They focus on the global interactions between actors and system
components. To be useful in the PL context, SD should also allow for expression of vari-
ability. We show in this section how variability can be expressed in UML2.0 SD using
UML stereotypes and tagged values. We take advantage of UML2.0 SD and their compo-
sition operators to specify PL SD as algebraic expressions extended by algebraic constructs
for variability. Then we present an algebraic approach to derive the product behaviors
from the PL SD. Before illustrating behavioral aspect derivation, we briefly present the
banking product line (BPL) as an example, which is used throughout this section.

15.3.1 The Banking Product Line

In this section, we reuse the example of a BPL as described in [3]. It is a set of products
providing simple functionalities to clerks in the banking domain. It provides four main
functionalities:

– Creation of accounts (F1). Customers are able to open simple accounts but must do so

with a minimum balance. Account can have an associated limit specifying to what
extent a customer can overdraw money.

– Money deposit on accounts (F2). Customers can deposit an amount of money on their
accounts.

– Money withdrawal from accounts (F3). Customers can withdraw money from their
account. If the account has a limit, a customer can only withdraw money up to this
limit. If not, he (or she) cannot withdraw beyond the current balance of the account.

– Currency exchange calculation (F4). The bank system can offer a functionality for
exchange calculation. This particularly concerns currency exchange: euros, dollars, etc.

567

Variability in the BPL example concerns the support of overdrawing to a set limit,
which is optional because some products do not allow the addition of limits on accounts.
Currency exchange calculation is also an optional functionality and it is only supported by
some products. Table. 15.1 shows four different product members of the BPL. The BS1
product for example supports limits on accounts and does not support exchange
calculation while BS4 is a complete product with limits on accounts and exchange
calculation support.

T. Ziadi and J.-M. Jézéquel

Table 15.1. The Banking PL members

BS1
BS2
BS3
BS4

yes
no
no
yes

no
no
yes
yes

15.3.2 Product Line Behaviors as UML2.0 Sequence Diagrams

UML2.0 Sequence Diagrams

UML2.0 SD [33] enhances the previous versions of scenarios proposed in UML1.x by
introducing composition operators. A basic SD describes a finite number of interactions
between a set of objects. The semantics of a basic SD is now based on partially ordered
events (instead of ordered collections of messages as in UML1.x), which makes it easy to
introduce concurrency and asynchronism, and allows the definition of more complex
behaviors.

Figure 15.7 shows the basic SD related to the Banking PL. A UML2.0 SD is
represented by a rectangular frame labeled by the keyword sd followed by the name of the
SD. The SD Deposit for example shows interactions between Clerk, Bank, and
Account to deposit an amount on a specific account. The vertical lines represent life
lines for the given objects. Interactions between objects are shown as horizontal arrows
called messages (like deposit). Each message is defined by two events: message
emission and message reception, which induce an ordering between emission and
reception. Events located on the same lifeline are ordered from top to down.

UML2.0 basic SD can be composed into composite SDs called combined interactions
using a set of operators called interaction operators [33]. We only use three fundamental
operators: seq, alt, and loop. The seq operator specifies a weak sequence2 between
the behaviors of two operand SDs. The alt operator defines a choice between a set of in-
teraction operands. The loop operator specifies an iteration of the SD. For all these op-
erators, each operand is either a basic or a combined SD. The combined SD BankPL in
Fig. 15.8 shows how basic SDs for the BPL are related. It refers to the basic interactions

2UML2.0 [33] defines two operators, seq and strict to define weak and strict sequence, res-
pectively. A weak sequence means that only events on the same lifeline in the first SD are executed
before events on the same lifeline in the second SD. A strict sequencing means that all events in the
first SD are executed before events in the second diagram.

568

product limit support exchange calculation

15 Software Product Line Engineering with the UML

:Bank : Account

depositOnAccount(accID, amount)

sd Deposit

deposit(amount)

:Clerk :Bank

: Account

createAccount(custD, curr, bal)

sd CreateAccount

create(custID)

:Bank

sd CreateAccountOK

:Bank

insufficientMessage(l)

sd CreateAccountFailed

deposit(bal)

: Account:Bank

sd SetLimit

setLimit()
: Account:Bank

sd SetCurrency

setCurrency()

:Bank : Account

sd WithdrawOk

:Bank : Account

sd WithdrawFailed

insufficientBalance()

insufficientMessage()

withdraw(amount)
withdrawMessage()

depositMessage()

:Bank : Account

withdrawFromAccount(accID, amount)

sd WithdrawWithLimit

verifyBalance(amount)

verifyLimit(amount)

:Bank : Converter

sd ConvertFromEuro

convertFromEuro(amount)

fromEuro(amount)

:Bank : Converter

sd ConvertToEuro

convertToEuro(amount)

toEuro(amount)

sufficientBalance()

:Bank : Account

withdrawFromAccount(accID, amount)

sd WithdrawWithoutLimit

verifyBalance(amount)

Clerk

Clerk

Clerk

Clerk

Clerk

Clerk

Clerk

Clerk

Fig. 15.7. UML2.0 sequence diagrams for the Banking PL

using the ref operator. BankPL specifies that there are five main alternative behaviors
for requirements of BPL members (1) Account creation. (2) Deposit on account. (3)
Withdraw from account (this last functionality is described using the combined SD
WithdrawFromAccount). (4) Exchange calculation from euro and (5) Exchange cal-
culation to euro. Following UML2.0 notations [33], combined SDs are defined by rect-
angles whose left corner is labeled by an operator (alt, seq, loop). Operands for
sequence and alternative are separated by dashed horizontal lines. Sequential composition
can also be implicitly given by the relative order of two frames in a diagram. For example,
in the SD BankPL basic SD CreateAccountOk is referenced before SD SetLimit.
This is equivalent to the expression CreateAccountOk seq SetLimit.

569

T. Ziadi and J.-M. Jézéquel

Variability in Sequence Diagrams

As shown in [42,43], variability can be specified in UML2.0 SD using simple stereotypes

refer to [42,43] for more details:

– Optionality. A combined SD can refer to an optional SD: interactions specified by this

optional SD are only supported by some products and can be omitted in others. To
specify optionality of an SD, we introduced the <<optionalInteraction>>
stereotype and the optionalPart tagged value. The tagged value specifies the
occurrence name of the optional SD (to differentiate among various occurrences of the
optional SD, since an optional SD might be referred to more than once in the same
combined SD). Figure 15.8a shows an example of a combined SD called CDS1,
which refers to an optional SD called SD1. The tagged value optionalPart takes
SD1-occ1 as value.3

 – Variation. This variability mechanism makes it possible to define a set of variants of
behaviors from which a particular product would have to select exactly one variant.
Using UML2.0 SDs, the variation of the behavior is modeled as a combined SD
stereotyped <<variation>>, which refers to a set of subinteractions stereotyped
<<variant>>. Each subinteraction specifies a variant behavior. As for the optional
SD, a variation SD <<variation>> can be referred to several times in the same
combined SD. To differentiate among multiple occurrences, we introduce the tagged
value variationPart to specify the name of the occurrence. Figure 15.8b shows an
example of a variation SD called CSD2, which refer to two SD variants SD-v1 and
SD-v1. Note that this variation mechanism is different from the alt interaction
operator. The variation mechanism proposes a choice that must be made at product
derivation time so that the derived product contains only one of the alternative
behaviors, while the alt operator defines a choice made after the product derivation,
i.e., at run time.

3

and tagged values. We briefly describe here these mechanisms; interested readers can

– Virtuality. The virtuality of an SD means that its behavior can be redefined by another
SD or refinement associated to a specific product. This type of variability is inspired by
an existing construction in MSC [22]. The behavior of the virtual SD will be replaced
at product derivation time by the behavior of the refinement SD associated with the
product. Virtuality is introduced by the stereotype <<virtual>> and the tagged
value virtualPart indicating the occurrence of the virtual interaction. Figure 15.8c
shows an example of a combined SD called CSD3, which refers to a virtual SD called
SD3.

We follow new notations of tagged values in UML2.0: a tagged value is now represented in
 UML2.0 as a note [33].

570

15 Software Product Line Engineering with the UML

A1:A b1:B

sd CSD1

SD1

ref
<<optionalInteraction>><<optionalInteraction>>

optionalPart = SD1-occ1

SD-v1
ref

SD-v2
ref

a1:A b1:B

sd CSD2
<<variation>>

<<variant>>

<<variantion>>
variationPart = SD-occ1

<<variant>>

A1:A b1:B

sd CSD3

SD3
ref

<<virtual>><<virtual>>
virtualPart = SD3-occ1

(a) Optionality

(b) Variation

(c) Virtuality

Fig. 15.8. Variability for UML2.0 SD

The combined SD in Fig. 15.9 BankPL illustrates two variability mechanisms:
optionality and variation.

1. Since some products of the BPL do not support overdrawing, a stereotype <<op-

tionalInteraction>> is added to the basic SD SetLimit and the tagged
value optionalPart takes the value settingLimit (see the combined SD
AccountCreation in Fig. 15.9). In addition, since exchange calculation is an
optional functionality in the BPL, basic SD SetCurrency, ConvertToEuro,
and ConvertFromEuro are defined as optional too (see the combined SD
AccountCreation in Fig. 15.9).

 2. There are two SD variants when withdrawing from an account: withdraw with balance
and limit checking, and withdraw with balance checking only. The SD Withdraw is
defined with the <<variation>> stereotype. The two SDs WithdrawWithLimit
and WithdrawWithoutLimit are stereotyped <<variant>>. The tagged value
variation Part takes withdraw Account as value (see the WithdrawFrom
Account combined SD in Fig. 15.9).

571

T. Ziadi and J.-M. Jézéquel

Algebraic Specification

Taking advantage of UML2.0 composition operators for SD, we introduce in this section
an algebraic specification of UML2.0 SDs in the form of reference expressions. We then
extend it for PLs by including variability constructions defined above.

Definition 1. A reference expression for SD (noted RESD hereafter) is an
expression of the form:

<RESD>::=<PRIMARY> ("alt" <RESD> |"seq" <RESD>)*
<PRIMARY>::=EØ | <IDENTIFIER> | "("<RESD>")" |

"loop" "(" <RESD> ")"
<IDENTIFIER>::= (["a"-"z","A"-"Z"]|["0"-"9"])*

seq, alt and loop are the SD operators mentioned above. EØ is the empty expression
that defines a sequence diagram without interaction.

So far, this algebraic framework does not contain any means to specify variability. We
introduce three algebraic constructs that correspond to the three variability mechanisms
presented earlier. This allows the definition of optional, variation, and virtual expressions.

Definition 2. The optional expression (OpE) is specified in the following form:

OpE ::= "optional" <IDENTIFIER> "[" <RESD> "]"

where <IDENTIFIER> refers to the name of the optional part and the <RESD>
refers to its corresponding expression.

specified by an optional expression. The tagged value optionalPart in the diagram
specifies the name of the expression. For the BPL example, optionality of the interaction
SetLimit is specified by the expression:

optional settingLimit [SetLimit]

Definition 3. A Variation expression (VaE) is defined as follows:

VaE::="variation" <IDENTIFIER> "[" <RESD> "," (<RESD>)* "]"

For example, the variation interaction Withdraw in Fig. 15.9 encloses two interaction
variants. It is specified algebraically as follows:

variation withdrawAccount [WithdrawWithLimit,
 WithdrawWithoutLimit]

An optional SD (i.e., an SD stereotyped <<optionalInteraction>>) can be

572

15 Software Product Line Engineering with the UML

:Bank :Account

sd BankPL

: :

Deposit
ref

alt

loop

AccountCreation
ref

WithdrawFromAccount
ref

:Bank :Account

sd AccountCreation

: :

CreateAccountOk
ref

alt

CreateAccountFailed
ref

CreateAccount
ref

<<optionalInteraction>>
optionalPart =settingLimit

<<optionalInteraction>>
optionalPart =settingCurrency

<<optionalInteraction>>
optionalPart =fromEuro

<<optionalInteraction>>
optionalPart =toEuro

:Bank :Account

sd WithdrawFromAccount

: :

<<variation>>
sd Withdraw

WithdrawOk
ref

alt

WithdrawFailed
ref

Clerk

Clerk
Clerk

:Convertor
<<optionlaLifeline>>

<<variation>>
variationPart =withdrawAccount

WithdrawWithoutLimit
ref

<<variant>>

WithdrawWittLimit
ref

<<variant>>

SetCurrency
ref

<<optionalInteraction>>

ConvertFromEuro
ref

<<optionalInteraction>>

ConvertToEuro
ref

<<optionalInteraction>>

SetLimit
ref

<<optionalInteraction>>

Fig. 15.9. The UML2.0 combined sequence diagram for the Banking PL

573

T. Ziadi and J.-M. Jézéquel

Definition 4. Virtual expressions (ViE) are specified as:

ViE ::= "virtual" <IDENTIFIER> "[" <RESD> "]"

Hence, algebraic expressions including variability will be defined by expressions of the
form:

<RESD-PL>::=<PRIMARY-PL>("alt" <RESD-PL> | "seq" <RESD-PL>)*

<PRIMARY-PL>::= EØ |<IDENTIFIER> |"("<RESD-PL>")" |
"loop" "(" <RESD-PL> ")" | VaE | OpE
|ViE

The SD BankPL of Fig. 15.9 can be algebraically represented by the following
expression:

EBPL = loop (Deposit alt (CreateAccount seq (CreateAccountOk seq

(optional settingLimit[SetLimit]) seq (optional

settingCurrency [SetCurrency])) alt CreateAccountFailed)

alt ((variation withdrawAccount [WithdrawWithLimit,

WithdrawWithoutLimit]) seq (WithdrawOk alt WithdrawFailed))

alt (optional fromEuro [ConvertFromEuro])

alt (optional toEuro [ConvertToEuro]))

15.3.3 Deriving Product Behaviors

In section “Algebraic specification,” we have specified PL behaviors using scenarios rep-
resented as UML2.0 SD enriched with variability mechanisms. Scenarios are not the only
way to describe software behaviors; statecharts [19] are another formalism that is often
used to depict the behavioral aspects of systems. However, if scenarios capture require-
ments in the early stage of the development process, statechart models are more dedicated
to detailed design phases as they are closer to the implementation (some tools such as
Rhapsody [21] generate code from them). To formalize product behavior derivation, we
have studied the problem of statechart synthesis from scenarios. Furthermore, scenarios
and statecharts differ in their nature (scenarios capture interactions amongst a set of ob-
jects, and statecharts represent the internal behavior of a single object). Statechart syn-
thesis out of a collection of scenarios has received a lot of attention in the context of
single product development [29,30,32,40]. So far, the proposed solutions do not consider
the PL aspects. In this section, we propose an algebraic approach to synthesize product
statecharts from PL scenarios. Firstly, variability is resolved by deriving the RESD-PL
into a set of RESDs, one for each product. Then statecharts are generated by transforming
product scenarios given as an RESD into a composition of statecharts.

574

15 Software Product Line Engineering with the UML

Step 1: Product Expressions Derivation

The first step toward product behavior derivation is to derive the corresponding product
expressions from the RESD-PL. Decision resolutions for a specific product are defined in
what we call an Instance of decision model (IDM), which is defined as follows:

i i

1 2 3

Ei is the selected expression.

Table. 15.2 shows four Instances of Decision Model associated with the four products

in the BPL. For example, IDM1 is the Instance of Decision Model associated with the
product BS1, which supports limits on accounts and does not offer the currency exchange
calculation functionality.
 The derivation can be seen as a model specialization through abstract interpretation of a
generic PL expression in the IDMi context, where IDMi is the Instance of Decision
Model related to a specific product. For each variability mechanism, the interpretation in a
specific context is quite straightforward:

1. Interpreting an optional expression means deciding on its presence or absence in
the product expression. This is defined as:

[][] E] [name optional IDMi =

Note that the empty expression is a neutral element for the sequential and the alternative
composition. It is also idempotent for the loop, i.e:

– E seq EØ = E ; EØ seq E = E
– E alt EØ = E ; EØ alt E = E
– loop (EØ) = EØ

This allows us to replace a complete part of a RESD-PL by EØ when this part should be
removed.

E if (name,TRUE) ∈ IDMi

EØ if (name,FALSE)∈ IDMi

575

Definition 5. An Instance of Decision Model (noted hereafter IDM) for a product P is a
set of pairs (name , Res), name designates a name of an optional, variation or
virtual part in the RESD-PL and Res is its decision resolution related to the product P.
Decision resolutions are defined as follows:

– The resolution of an optional part is either TRUE or FALSE.
– For a variation part with E ,E ,E .. as expression variants, the resolution is i

if
– The resolution of a virtual part is a refinement expression E.

T. Ziadi and J.-M. Jézéquel

2. Interpreting a variation expression means choosing one expression variant among
its possible variants. This is defined as:

[][] ..] E2, E1, [name variation IDMi = Ej if (name,j)∈ IDMi

3. Interpreting virtual expressions means replacing the virtual expression by another

expression:
 [][]] E [name virtual IDMi = E’ if (name,E’)∈ IDMi

BS1 IDM1 ={(settingLimit,TRUE),(settingCurrency, FALSE),(withdraw
Account, 1),(fromEuro, FALSE), (toEuro, FALSE)}

BS2 IDM2 ={(settingLimit, FALSE), (settingCurrency,
FALSE),(withdrawAccount, 2), (fromEuro, FALSE),
(toEuro, FALSE)}

BS3 IDM3 ={(settingLimit, FALSE), (settingCurrency,
FALSE), (withdrawAccount, 2), (fromEuro, TRUE),
(toEuro, TRUE)}

BS4 IDM4 ={(settingLimit, TRUE),(settingCurrency,
TRUE),(withdrawAccount, 1), (fromEuro, TRUE), (toEuro, TRUE)}

The BS2 product expression EBS2 is obtained by the interpretation of the EBPL in the IDM2
context:
 EBS2 = [][] EBPL IDM2.

The derivation of the four optional expressions and the variation expression in EBPL is
realized as follows :

[][] SetLimit] [itsettingLim optional IDM2 = EØ
[][] y]SetCurrenc [rencysettingCur optional IDM2 = EØ
[][] uro]ConvertToE [toEuro optional IDM2 = EØ
[][] mEuro]ConvertFro [fromEuro optional IDM2 = EØ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
]thoutLimitWithdrawWi thLimit,WithdrawWi [

 countwithdrawAc variation
 IDM2 =

 thoutLimitWithdrawWi

Table 15.2. Instances of the decision model for the banking product line

576

product instance of decision model (IDM)

15 Software Product Line Engineering with the UML

The reference expression obtained for the BS2 is the expression EBS2below. Since EØ is a
neutral element for seq and alt, EØ is removed from the product expression:

 EBS2 = loop(Deposit alt (CreateAccount seq (CreateAccountOk)

 alt CreateAccountFailed) alt (WithdrawWithoutLimit

 seq (WithdrawOk alt WithdrawFailed))

The BS4 product, which provides overdrawing on accounts and exchange operations,
will be characterized by the presence of SetLimit, SetCurrency,
ConvertToEuro, and ConvertFromEuro SDs; and by the choice of
WithdrawWithLimit SD. The product expression obtained for product BS4 is:

EBS4

 seq (SetLimit seq SetCurrency)) alt CreateAccountFailed)

 alt (WithdrawWithLimit seq (WithdrawOk alt

 WithdrawFailed))

 alt (ConvertFromEuro)

 alt (ConvertToEuro)

Step 2: Statechart Synthesis

The derived product expressions are expressions without variability, i.e., expressions that
only compose basic SDs by interaction operators: alt, seq, and loop. The second step
of our derivation approach aims at generating statecharts for objects in each derived product.
Product SD are translated into statecharts using the method proposed in [44]. We generate
flat statecharts, i.e., statecharts without hierarchy. Figure 15.10 shows examples of flat
statecharts, in which states represented by double circled states are called junction states.
Junction states are introduced to formalize statechart composition [44]. Transitions are
labeled e/a, where e is a triggering event and a is an action. STØ refers to an empty
statechart, containing a single state, which is at the same time an initial and a junction
state (see the STØ statechart in Fig. 15.10).

Statechart Operators

Our method for statechart synthesis is based on an algebraic framework for statechart
composition. This framework is inspired by the algebraic composition of UML2.0 SD
[44]. We have formalized three statechart operators: seqs, alts and loops for the

577

 = loop(Deposit alt (CreateAccount seq (CreateAccountOk

T. Ziadi and J.-M. Jézéquel

e2'/a2'

/a3'

e1/a1 /a2

ST1

e'1

ST2

ST
Ø

Fig. 15.10. Example of flat statecharts

section, we briefly describe these operators; the complete formalization can be found in
[44]:

– Sequence (seqs). The sequential composition of two statecharts is a statechart
that describes the behavior of the first operand followed by the behavior of the
second one. Figure 15.11 shows the sequential composition of the ST1 and ST2.

– Alternative (alts). The statechart resulting from the alternative composition
describes a choice between the behaviors of its operands. See for example ST1
alts ST2 in Fig. 15.11.

– s

the iteration of the ST2.

As for sequence diagrams, we algebraically describe statechart composition with refer-
ence expressions.

Definition. 6. A reference expression for statecharts (noted REST hereafter) is an expres-
sion of the form:

<REST>::=<PRIMARY-REST> ("alts" <REST> | "seqs" <REST>)*

<PRIMARY-REST>::= STØ | <IDENTIFIER> | "("<REST>")"

 | " loops " "(" <REST> ")"

Synthesis Process

Using our algebraic framework for statecharts, translating product UML SD to statecharts
is defined in two steps: synthesis from basic sequence diagrams and synthesis from com-
bined SD. The next paragraphs describe these two steps.

Synthesis from basic sequence diagrams. In the first step of our synthesis method we gen-
erate statecharts from all basic SD in the PL. This step is based on an algorithm generating
a statechart P(SD,O) depicting the behavior of each object O in each basic SD SD. We

sequencing, alternation, and the iteration of statecharts, respectively. In the rest of this

578

Loop (loop). This operator defines iteration of a statechart. Figure 15.11 shows

15 Software Product Line Engineering with the UML

do not detail here the algorithm computing P(SD,O), which can be found in [44]. To
summarize, this algorithm uses projections of SDs on object lifelines to generate the state-
charts. Receptions in the SD become events in the statechart and emissions become
actions. For a transition associated with a reception, the action part will be void, and for

e2'/a2'

/a3'

e1/a1 /a2

ST1 seq
s
 ST2

e'1

e2'/a2'

/a3'

e1/a1 /a2

ST1 alts ST2

e'1

e2'/a2'

/a3'

e'1

loop
s
 (ST2)

 Fig. 15.11. Statechart operators

transitions associated with actions, the event part will be empty. The generated statechart
contains a single junction state, which corresponds to the state reached when all events
situated on an object lifeline have been executed. When an object does not participate in a
basic SD, the algorithm generates an empty statechart. Figure 15.12 illustrates the synthe-
sis of the statechart associated with the Bank object from the Deposit basic SD.

:Bank

depositOnAccount(accID, amount)

sd Deposit

deposit(amount)

depositMessage()

?depositOnAccount(accID, amount)

/ !deposit(amount)

/ !depositMessage()

P(Deposit , Bank)

 Fig. 15.12. Statechart synthesis from basic SD

579

T. Ziadi and J.-M. Jézéquel

Figure 15.13 shows the flat statecharts generated from the twelve basic SDs from Fig.
15.9 for the Bank object.

Let us apply this construction method to the combined SD for the BS2 product. The
Bank’s REST, called RESTBS2 is described below. Figure 15.14 shows the statechart
obtained from this REST.

O,

seqs, alts, s

.

RESTBS2 = loops (P(Deposit,Bank) alts (P(CreateAccount, Bank)

seqs (P(CreateAccountOk, Bank) alts P(CreateAccountFailed,

 Bank)))

alts (P(WithdrawWithoutLimit,Bank) seqs (P(WithdrawOk,Bank)

alts P(WithdrawFailed,Bank))))

The same method can be applied for the BS4 product. Its reference expression EBS4 is
transformed into the statechart composition expression RESTBS4 defined below. Figure
15.15 shows the Bank statechart obtained from RESTBS4. Note that as BS2 and BS4
differ in the presence or the absence of an overdrawing limit and exchange operations, the
synthesized statecharts differ in the transitions that concern these two functionalities. The
differences between the statecharts obtained for product BS2 and BS4 are illustrated in
Fig. 15.15 by gray zones.

 EBS4 = loops (P(Deposit, Bank) alts (P(CreateAccount, Bank)

 seqs ((P(CreateAccountOk, Bank) seqs P (SetLimit, Bank)

 seqs P(SetCurrency, Bank)) alts P (CreateAccountFailed,

 Bank)))

 alts (P(WithdrawWithLimit,Bank) seqs ((P (WithdrawOk, Bank)

 alts P(WithdrawFailed, Bank)))

 alts (P(ConvertFromEuro, Bank))

 alts (P(ConvertToEuro, Bank)))

method is based on the correspondence between interaction operators and statecharts
a RESToperators and it allows constructing RESTs from RESDs [44]. For each object

loop by statecharts operators is constructed by replaci ng in the RESD seq, alt, and
 and loop , respectively, and each reference to an SD by the statechartS

operators.
P(S,O) From the REST obtained, a statechart can be built using statechart composition

statecharts through projections of basic SDs, we now deal with combined SDs. Our
Synthesis from Combined Sequence Diagrams Once we have obtained a collection of

580

?depositOnAccount

P(Deposit, Bank)

?deposit / !depositMessage ?withdrawFromAccount

P(WithdrawWithLimit, Bank)

/ !verifyBalance / !verifyLimit

?withdrawFromAccount

P(WithdrawWithoutLimit, Bank)

/ !verifyBalance ?sufficientBalance

P(WithdrawOk, Bank)

/ !withdraw / !withdrawMessage

?insufficientBalance

P(WithdrawFailed, Bank)

/ !insufficientMessage ?createAccount

P(CreateAccount, Bank)

/ !create

P(CreateAccountOk, Bank)

/ !deposit

/ !insufficientMessage

P(CreateAccountFailed, Bank)

/ !setLimit

P(SetLimit, Bank)

/ !setCurrency

P(SetCurrency, Bank)

?convertFromEuro

P(WithdrawFromEuro, Bank)

/ !fromEuro ?convertToEuro

P(WithdrawToEuro, Bank)

/ !toEuro

Fig. 15.13. Bank basic statecharts

?createAccount / !create

/ !deposit

 ?insufficientMessage

?depositOnAccount

 / !deposit

?withdrawFromAccount

 / !verifyBalance

?sufficientBalance / !withdraw / !withdrawOk

/ !withdrawOkMessage

?insufficientBalance
?withdrawFailedMessage

Bank

15 Software Product Line Engineering with the UML

Fig. 15.14. The Bank statechart in the BS2 product

581

?createAccount / !create

/ !deposit

 ?insufficientMessage

?depositOnAccount

 / !deposit

?withdrawFromAccount

 / !verifyBalance

?sufficientBalance
 / !withdraw / !withdrawOk

/ !withdrawOkMessage

?insufficientBalance
?withdrawFailedMessage

Bank

/ !verifyLimit

/ !setLimit

? convertFromEuro

? convertToEuro

 / !toEuro

 / !fromEuro

/ !setCurrency

Fig. 15.15. The Bank statechart in the BS4 product

15.3.4 Implementation and Validation

In the context of the ITEA Families [1] project, a prototype tool of the proposed approach
has been implemented in Java and is integrated into the Eclipse platform. It is freely
available from http://modelware.inria.fr/plibs. UML2.0 SD with variability are specified
in Eclipse, thanks to the Omondo case tool (see Fig. 15.16a) Then RESD-PL are
automatically extracted from these diagrams. The prototype implements product
expression derivations from RESD-PL according to a given IDM. Then a statechart for a
specific object is generated from the derived expression. The generated statecharts can be
visualized using the Omondo case tool again (see Fig. 15.16b). A complete description of
the prototype can be found at http://modelware.inria.fr/plibs.

T. Ziadi and J.-M. Jézéquel 582

Fig. 15.16. Sequence diagrams and statechart visualization in the PLiBS prototype

We have used our approach for a complete BPL case study with 14 basic SDs. Table. 15.3
shows statistics (number of states and transitions) on the generated statecharts for the
Bank object in each BPL member (these statistics show that the generated statechart for
the Bank object differs from one product to another). We have also validated our
approach on two case studies: The camera PL [42] and the auction PL [41]. As we noticed
in Sect.15.3, some tools allow generating code from statecharts. We are currently studying
code generation from the generated statecharts in our method using existing tools.

BS1
BS2
BS3
BS4

12
10
13
15

16
14
19
21

15.4 Related Work

Software PL Engineering with the UML has received a lot of attention in recent years.
Table 15.4 summarizes existing work on PL engineering with the UML. Most of these
works address variability modeling whereas only two works refer to the product
derivation process.

(a) Example of sequence diagrams specification. (b) Example of the generated statecharts.

15 Software Product Line Engineering with the UML

Table 15.3. States and transitions for the generated Bank statechart in the different products.

583

product # states # transitions

els (use cases). Halmans et al. [18] extend use cases with stereotypes to specify variabil-
ity. Use cases are described using templates. Bertolino et al. [5] introduce tags to describe
variability in a textual description of uses cases. In Chap. 11, readers can find a detailed
description of Bertolino et al.’s work. Maßen et al. [37] extend the UML use case meta-
model to support variability. John et al. [26] tailor use case diagrams and textual use cases
to support PL requirements specification. In our work, we do not consider uses cases.
Even if the textual description through templates, used by the previous works, is a good
way to document PL requirements, SD are more operational and as shown with our app-
roach detailed design can be generated from them.

ability in UML static models. However, few works model variability in behavioral mod-
els: Gomaa et al. [17] introduce variability in UML collaboration diagrams with three
stereotypes <<kernel>>, <<optional>>, and <<variant>>. KobrA [3] intro-
duces the stereotype <<variant>>, which can be applied to messages in SD and to
statecharts. The KobrA’s solution to specify variability in SD is difficult to use in practice.
Indeed, if all messages in the same SD are optional, the user should specify all these mes-
sages with the stereotype <<variant>>. This can compromise the readability of the
SD. On contrary, our <<optionalInteraction>> is applied to the complete SD.

only concern UML1.x models.
Concerning product model derivation, only KobrA [3] and Flege [13] refer to this.

While we formalized product derivation as UML model transformations, KobrA and
Flege do not propose a means to implement derivation. Cerón et al. [8] propose two prac-
tices implementing the product architecture derivation. The main assumption in this
proposition is: the PL is defined by an engineering assets repository and each product
should choose components from this repository to obtain a product-specific architecture.
Haugen et al. [20] also use UML2.0 SD to specify behaviors of systems. They introduce a
new operator called xatl to distinguish between mandatory and potential behaviors. A
potential behavior represents a variant of a mandatory behavior. This is close to our
variation construct where interaction variants correspond to the potential behaviors.

In addition to these works, readers can find in Chap. 6 a complete study about Model
Driven Engineering for Software PLs. The chapter also proposes a framework for model-
ing variability in PLs.
 In Sect. 15.3, we have used statechart synthesis from scenarios to derive product-
specific behaviors. There are many works on statechart synthesis; however these works
only concern single product development (i.e., without consideration for variability). To
our knowledge, there are no other works proposing statechart synthesis from software PL
scenarios. The next paragraph describes existing works on statechart synthesis in the con-
text of a single product development. There are works that synthesis statecharts from
UML1.x, from Message Sequence Charts MSC [22] and from Live Sequence Charts [11].

Due to the poor expressive power of UML1.x SD, the proposed solutions for statechart

aging several scenarios. For example, Whittle et al. [40] enrich messages in SD with pre-
and postconditions given in (Object Constraint Language) OCL, which refer to global

AQ: “Korba: has been
changed “KobrA” to
match with the rest in
the chapter. Please
check.

T. Ziadi and J.-M. Jézéquel 584

For variability modeling, many works [5,17,18,26,37] are related to functional mod-

synthesis [29,30,32,40] often use additional information or ad hoc assumptions for man-

There are many works [3,10,14,16,27,34,38] that propose extensions to specify vari-

Flege [13,14] also introduces variability in UML statecharts. Note that all these works

state variables. State variables identify identical states throughout different scenarios and
guide the synthesis process. Our approach does not use variables, and structures the state-
charts and transitions based on information provided by lifeline orderings and SD opera-
tors. Koskimies et al. [30] use the Biermann–Krishnaswamy algorithm [6], which infers
programs from traces. This work establishes a correspondence between traces and scenar-
ios and between programs and statecharts. In [29,32] it is also proposed to use interactive
algorithms to generate statecharts from UML1.x sequences diagrams.

Several other approaches [31,35,36] study statechart synthesis from MSC [22], a
scenario formalism similar to sequence diagrams. MSCs allow composition of basic
scenarios (bMSCs) with High-Level Message Sequence Charts (HMSC). This
composition mechanism is very close to that of current SDs in UML2.0 and our approach
can be used to generate statecharts from MSCs.

PL requirements and not for statechart synthesis.

Table 15.4. Existing works on PL engineering with the UML

Bertolino et al. [5] X
Halmans and Pohl [18] X
John and Muthig [26] X
Maßen and Lichter
[37]

X
Robak et al. [34] X X
Clauß [9,10] X
Gomaa [16, 17] X X X
Flege [13, 14] X X X
KobrA [3] X X X X
SPLIT-Daisy [27] X
Webber [38] X

15.5 Conclusions and Future Research

In this chapter we have described PL design and derivation techniques building on
advanced model transformation technology. Working at the level of UML design models,
derivation of both static and behavior aspects was considered. For static aspect derivation,
we started from a class diagram modeling the full PL along with a decision model given in

according to the PL-specific constraints.

15 Software Product Line Engineering with the UML

Finally, Chap 13 also uses SD but it uses them to derive product-specific .test cases from

the form of a set of concrete factories to build specialized UML models corresponding
to the selected products. The challenge of such model manipulation is to be able to trans-
form the model accessing its metalevel and ensuring the integrity of the derived model

585

variability modeling Product Derivation
functional static behavior static behavior

aspects aspects aspects aspects aspects

For behavioral aspects derivation, we started from UML2.0 Sequence Diagrams
extended with algebraic constructs to specify variability. We use interpretations of the
algebraic expressions to resolve the variability and derive product expressions, which are
ultimately transformed into a set of product-specific statecharts. The introduction of
variability in behavioral models can be used to factorize common behavioral models in
different products, and should then facilitate domain-engineering phases. However, some
parts of the synthesis can be reused from one product to another, hence facilitating reuse
during application engineering. As discussed in [44], statechart synthesis should be
considered more as a step toward implementation rather than as a definitive bridge from
user requirements to code.

In the context of the ITEA Families [1] project, prototype tools of the proposed app-
roaches have been implemented. We used Model Transformation Language MTL and its
related framework UMLAUT-NG for implementing the static aspect derivation. For
behavioral aspects, a prototype tool has been implemented in Java and integrated into the
Eclipse platform. We used our approach in several case studies; however we hope in the
future to use it in an industrial context.

This work has been partially supported by the ITEA project ip02009, FAMILIES in the
Eureka ∑! 2023 Program. We wish to thank Loïc Hélouët for many inspiring discussions.
We also gratefully acknowledge the reviews of Stan Bühne, Juan Carlos Dueñas, Timo
Käkölä, Kim Lauenroth, Jim Steel, and Patrick Tessier, which significantly improved the
quality of this chapter.

References

T. Ziadi and J.-M. Jézéquel

Acknowledgments

586

1. FAMILIES project. http://www.esi.es/Families/ (2003)
2. Anastasopoulos, M., Gacek, C.: Implementing product line variabilities. Technical report, IESE report no.

089.00/E, version 1.0, IESE (November 2000)
3. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D., Paech, B., Wüst, J.,

Zettel, J.: Component-Based Product Line Engineering with UML. Component Software Series (Addison-
Wesley, Reading, MA 2001)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practices, 1st edn (Addison-Wesley, Reading,
MA 1998)

5. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Use case description of requirements for
product lines. In: International Workshop on Requirement Engineering for Product Line (REPL02),
September 2002, pp 12–18

6. Biermann, A.-W., Krishnaswamy, R.: Constructing programs from example computations. IEEE Trans.
Softw. Eng. 2(3), 141–153 (September 1976)

7. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., Pohl, K.: Variability issues in software product
lines. In: 4th Workshop Product Family Engineering (PFE4), 2001, pp 11–19

8. Cerón, R., Arciniegas, J.L., Ruiz, J.L., Dueñas, J.C., Bermejo, J., Capilla, R.: Architectural modelling in
product family context. In: EWSA, ed by Oquendo, F., Warboys, B., Morrison, R. Lecture Notes in Computer
Science, vol 3047 (Springer, Berlin Heidelberg New York 2004) pp 25–42

9. Clauß, M.: Generic modeling using UML extensions for variability. In: Workshop on Domain Specific
Visual Languages at OOPSLA 2001, Tampa Bay, FL, USA, 2001

10. Clauß, M.: Modeling variability with UML. In: GCSE 2001 Young Researchers Workshop, 2001

15 Software Product Line Engineering with the UML 587

11. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Formal Meth. Syst. Des. 19(1),
45–80 (2001)

12. Deelstra, S. et al: Product derivation in software product families: a case study. Syst. Softw. 74(2), 173–194
(January 2004)

13. Flege, O.: System family architecture description using the UML. Technical report, IESE-report no. 092.00/E,
IESE (December 2000)

14. Flege, O.: Using a decision model to support product line architecture modeling, evaluation, and instantia-
tion. In: Proceedings of Product Line Architecture Work-shop. The 1st Software Product Line Conference
(SPLC1), 2000, pp 15–20

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pattern Elements of Reusable Object-Oriented Soft-
ware (Addison-Wesley, Reading, MA 1995)

16. Gomaa, H.: Object oriented analysis and modeling for families of systems with UML. In: IEEE International
Conference for Software Reuse (ICSR6), ed by Frakes, W.B., June 2000, pp 89–99

17. Gomaa, H.: Modeling software product lines with UML. In: International Workshop on Software Product
Lines: Economics, Architectures, and Implications (SPLW2), ed by Knauber, P., Succi, G., 2001, pp 27–31

18. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to customers. Softw.
Syst. Model. 2(1), 15–36 (2003)

19. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)
20. Haugen, O., Stolen, K.: STAIRS-steps to analyze interactions with refinement semantics. In: UML Confer-

ence UML2003, October 2003, pp 388–402
21. I-Logix. Rhapsody. http://www.ilogix.com/
22. ITU-T. Z.120: Message Sequence Charts (MSC) (November 1999)
23. Jézéquel, J.-M.: Object Oriented Software Engineering with Eiffel (Addison-Wesley, Reading, MA 1996)
24. Jézéquel, J.-M.: Object-oriented design of real-time telecom systems. In: IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, ISORC’98, Kyoto, Japan, April 1998
25. Jézéquel, J.-M.: Reifying configuration management for object-oriented software. In: Proceedings of the 20th

International Conference on Software Engineering (IEEE Computer Society, Silver Spring, MD 1998)
pp 240–249

26. John, I., Muthig, D.: Tailoring use cases for product line modeling. In: International Workshop on Requirement
Engineering for Product Line (REPL02), September 2002, pp 26–32

27. El Kaim, W.: Managing variability in the LCAT SPLIT/Daisy. In: Proceedings of Product Line Architecture
Workshop. The 1st Software Product Line Conference (SPLC1), 2000, pp 21–32

28. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson S.: Feature-oriented domain analysis (FODA) feasibility
study. Technical report, CMU/SEI-90-TR-21 (Software Engineering Institute November 1990)

29. Khriss, I., Elkoutbi, M., Keller, R.: Automating the synthesis of UML statechart diagrams from multiple col-
laboration diagrams. In: Proceedings of UML’98: Beyond the Notation, 1998, pp 115–126

30. Koskimies, K. et al: Automated support for modelling OO software. IEEE Softw. 15: 87–94 (January 1998)
31. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to statecharts. In: Distributed and Parallel Embedded

Systems (Kluwer, Dordrecht 1999) pp 61–71
32. Mäkinen, E., Systä, T.: MAS – an interactive synthesizer to support behavioural modeling. In: Proceeding of

International Conference on Software Engineering (ICSE 2001) (2001)
33. Object Management Group (OMG): Unified modeling language specification version 2.0: superstructure.

Technical report pct/03-08-02 (OMG 2003)
34. Robak, S. et al: Extending the UML for modeling variability for system families. Int. J. Appl. Math. Comput.

Sci. 12(2), 285–298 (2002)
35. Uchitel, S. et al: Synthesis of behavioral models from scenarios. IEEE Trans. Softw. Eng. 29(2), 99–115

(February 2003)
36. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from scenarios. In: Proceedings of

International Conference on Software Engineering (ICSE 2001) (2001)
37. van der Maßen, T., Lichter, H.: Modeling variability by UML use case diagrams. In: International Workshop

on Requirement Engineering for Product Line (REPL02), September 2002, pp 19–25
38. Webber, D.L.: The variation point model for software product lines. Ph.D. thesis (George Mason University,

George Mason University, Fairfax, VA 2001)
39. Weiss, M.D., Robert Lai, C.T.: Software Product-Line Engineering: A Family Based Software Development

Process (Addison-Wesley, Reading, MA 1999)
40. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: Proceeding of International

Conference on Software Engineering (ICSE 2000) (2000)
41. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Moédélisation de lignes de produits en UML. In: Proceedings of LMO

2003, Langages et Modeles a Objets, Vannes, France, February 2003

T. Ziadi and J.-M. Jézéquel 588

42. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML profile for software product lines. In: Proceedings of
the 5th International Workshop on Product Family Engineering (PFE-5). Lecture Notes in Computer Science,
vol 3014 (Springer, Berlin Heidelberg New York 2003) pp 129–139

43. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Modeling behaviors in product lines. In: Proceedings of REPL’02,
Workshop on Requirements Engineering for Product Lines, Essen, Germany, September 2002

44. Ziadi, T., Hélouët, L.L., Jézéquel, J.M.: Revisiting statecharts synthesis with an algebraic approach. In
International Conference on Software Engineering, ICSE’26, Edinburgh, Scotland, UK, May 2004

45. Ziadi, T., Jézéquel, J.M., Fondement, F.: Product line derivation with UML. In: Proceedings of Software
Variability Management Workshop (University of Groningen, Department of Mathematics and Computing
Science February 2003)

