
Software Reliability and Dependability: a Roadmap
Bev Littlewood & Lorenzo Strigini

Key Research Pointers

Shifting the focus from software reliability to user-centred measures of dependability in
complete software-based systems.

Influencing design practice to facilitate dependability assessment.

Propagating awareness of dependability issues and the use of existing, useful methods.
Injecting some rigour in the use of process-related evidence for dependability assessment.
Better understanding issues of diversity and variation as drivers of dependability.

The Authors

Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor

of Software Engineering at City University, London. Prof Littlewood has worked for

many years on problems associated with the modelling and evaluation of the

dependability of software-based systems; he has published many papers in international

journals and conference proceedings and has edited several books. Much of this work

has been carried out in collaborative projects, including the successful EC-funded

projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant to

industrial companies in France, Germany, Italy, the USA and the UK. He is a member

of the UK Nuclear Safety Advisory Committee, of IFIP Working Group 10.4 on Dependable

Computing and Fault Tolerance, and of the BCS Safety-Critical Systems Task Force. He

is on the editorial boards of several international scientific journals.

175

Lorenzo Strigini is Professor of Systems Engineering in the Centre for Software Reliability

at City University, London, which he joined in 1995. In 1985-1995 he was a researcher

with the Institute for Information Processing of the National Research Council of Italy

(IEI-CNR), Pisa, Italy, and spent several periods as a research visitor with the Computer

Science Department at the University of California, Los Angeles, and the Bell

Communication Research laboratories in Morristown, New Jersey. He holds a "Laurea"

cum laude in Electronic Engineering from the University of Pisa, Italy (1980). His

research has addressed fault-tolerance in multiprocessor and distributed systems,

protocols for high-speed networks, software fault tolerance via design diversity, software

testing and software reliability assessment. He has been a principal investigator in

several national and collaborative European research projects on these topics, and a

consultant to industry on fault-tolerance and on reliability assurance for critical

applications. He has published more than 60 papers in international journals and

conferences. His main current interest is defining practical, rigorous methods for

assessing the dependability of software and other systems subject to design faults, and

for supporting development decisions to achieve it. He is a member of the IFIP

Working Group 10.4 on Dependable Computing and Fault Tolerance, of IEEE and

ACM and of the Editorial Board of the IEEE Transactions on Software Engineering.

176

Software Reliability and Dependability: a Roadmap

Bev Littlewood Lorenzo Strigini
Centre for Software Reliability, City University

Northampton Square, London EC1V OHB, UK
+44 20 7477 8420 +44 20 7477 8245

b.littlewood@csr.city.ac.uk 1.strigini@csr.city.ac.uk

A B S T R A C T

Software's increasing role creates both requirements for
being able to trust it more than before, and for more people
to know how much they can trust their software. A sound

engineering approach requires both techniques for producing
reliability and sound assessment of the achieved results.

Different parts of industry and society face different

challenges: the need for education and cultural changes in
some areas, the adaptation of known scientific results to

practical use in others, and in others still the need to
confront inherently hard problems of prediction and

decision-making, both to clarify the limits of current
understanding and to push them back.

We outline the specific difficulties in applying a sound
engineering approach to software reliability engineering,

some of the current trends and problems and a set of issues
that we therefore see as important in an agenda for research
in software dependability.

Keywords

Reliability engineering, dependability modelling and
assessment, COTS reliability, diversity

1 I N T R O D U C T I O N

We use "dependability" [17] informally to designate those
system properties that allows us to rely on a system
functioning as required. Dependability encompasses, among
other attributes, reliabili ty, safety, securi ty, and

availability. These qualities are the shared concern of many
sub-disciplines in software engineering (which deal with
achieving them), of specialised fields like computer
security, and of reliability and safety engineering. We will

concentrate on the aspects that are the traditional concern of
these last allied disciplines, and will mainly discuss
reliability, but many of our remarks will also be of
relevance to the other attributes.

In this area, an important factor is the diversity of "the

software industry", or, rather, among the many industrial
sectors that produce or use software. The demand for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Future of Sofware Engineering Limerick Ireland
Copyright ACM 2000 1-58113-253-0/00/6...$5.00

software dependability varies widely between industrial
sectors, as does the degree of adoption of systematic

approaches to it. From many viewpoints, two extremes of
the range are found in mass-marketed PC software and in
safety-critical software for heavily-regulated industries. A

couple of decades ago there was a revolution in
dependability of consumer goods such as TV sets, VCRs

and automobiles, when companies realised that there was

market advantage to be gained by demonstrating higher
reliability than their competitors. There has not yet been a
similar movement in the corresponding sectors of the
software industry.

I . I Why is our dependence on software
increasing?

It is commonplace that software is increasingly important

for society. The 'Y2K bug' has just brought this to the
attention of the public: not only was a huge expense
incurred for assurance (verification and/or fixes) against its

possible effects, but this effort affected all kinds of
organisations and of systems, including many that the
public does not usually associate with computer software. It

is useful to list various dimensions of this increased
dependence:

• Software-based systems replace older technologies in

safety- or mission-critical applications. Software has
found its way into aircraft engine control, railroad
interlocking, nuclear plant protection, etc. New critical
applications are developed, like automating aspects of
surgery, or steering and 'piloting' of automobiles.
Some of these applications imply 'u l t ra -h igh '

dependabil i ty requirements [24]. Others have
requirements that are much more limited, but require
the development of a computer dependability culture in

the vendors (e.g., equipment manufacturers without
previous experience of using computers in safety-
critical roles) and/or in the customers and users (e.g.,
doctors and surgeons);

• Software moves from an auxiliary to a primary role in

providing critical services. E.g., air traffic control
systems are being modernised to handle more traffic,
and one aspect of this is increasing reliance on
software. The software has traditionally been regarded
as non safety-critical, because humans using manual

backup methods could take over its roles if it failed,
but increasing traffic volumes mean that this fall-back

capability is being eroded. Here the challenge is to
evolve a culture that has been successful so far to cope

177

with higher dependability requirements under intense
pressure for deploying new systems;

• Software becomes the only way of performing some

function which is not perceived as 'critical' but whose

failures would deeply affect individuals or groups. So,
hospitals, supermarkets and pension offices depend on
their databases and software for their everyday business;
electronic transactions as the natural way of doing
business are extending from the financial world to
many forms of'electronic commerce';

• Software-provided services become increasingly an
accepted part of everyday life without any special
scrutiny. For instance, spreadsheet programs are in
widespread use as a decision-making aid, usually with
few formal checks on their use, although researchers
have found errors to be extremely frequent in producing
spreadsheets [27] and the spreadsheet programs
themselves suffer from many documented bugs and
come with no promise of acceptable reliability by their
vendors;

• Software-based systems are increasingly integrated and

interacting, often without effective human control.
Larger, more closely-coupled system are thus built in
which software failures can propagate their effects more
quickly and with less room for human intervention.

With increased dependence, the total societal costs of
computer failures increase. Hence there is a need to get a
better grip on the trade-offs involving dependability, in
many cases to improve it and generally better to evaluate it.

1 .2 Why is there a problem with software
re l iab i l i ty?

The major difference between software and other engineering
artefacts is that software is pure design. Its unreliability is
always the result of design faults, which in turn arise from
human intellectual failures. The unreliability of hardware
systems, on the other hand, has tended until recently to be
dominated by random physical failures of components - the
consequences of the 'perversity of nature'. Some categories
of hardware systems do fail through design and
manufacturing defects more often than is desirable - for
example buildings in poor countries - but engineering
knowledge is sufficient, at least in principle, to prevent
these systematic failures.

Reliability theories have been developed over the years
which have successfully allowed hardware systems to be
built to high reliability requirements, and the final system
reliability to be evaluated with acceptable accuracy. In
recent years, however, many of these systems have come to
depend on software for their correct functioning, so that the
reliability of software has become more and more
important.

The increasing ubiquity of software stems, of course, from
its general-purpose nature. Unfortunately, however, it is
precisely this that brings disadvantages from the point of
view of achieving sufficient reliability, and of
demonstrating its achievement. Rather informally, these
problems stem from the difficulty and novelty of the
problems that are tackled, the complexity of the resulting

solutions, the need for short development timescales, and
finally the difficulty of gaining assurance of reliability
because of the inherently discrete behaviour of digital
systems.

Novelty
Whereas in the past computer-based systems were often
used to automate the solution of problems for which
satisfactory manual solutions already existed, it is
increasingly common to seek computerised solutions for
previously unresolved problems - often ones that would
have been regarded as impracticable using other technology.
This poses particular difficulties for systems with high
reliability requirements, since it means that we can learn
little from experience of previous systems. Other branches
of engineering, by contrast, tend to have a more continuous
evolution in successive designs. The change itself to a
software-based system, for example from a non-digital
electronic control system, may be regarded as a step change
in technology. Equivalent step-changes in other branches of
engineering are known to be risky, for example the attempt
to introduce new materials for turbine blades that led to
insolvency and nationalisation for Rolls Royce in 1971.

Difficulty
There is a tendency for system designers to take on tasks
that are intrinsically difficult when building software-based
systems. Software frees the designer from some of the
constraints of a purely hardware system, and allows the
implementation of sometimes excessive extra functionality.

Thus there are examples of software being used to
implement difficult functionali ty that would be
inconceivable in older technologies - e.g., enhanced support
to pilots in fly-by-wire and unstable aircraft control,
dynamic control of safe separation between trains in
'moving block' railway signalling. Most complex modern
manipulations of information - e.g., the control of massive
flows of funds around the world's banking systems, or the
recent growth of e-commerce - would not be possible
without software.

The more difficult and novel the task, of course, the more
likely that mistakes will be made, resulting in the
introduction of faults which cause system failure when
triggered by appropriate input conditions. In the worst
cases, the over-weening ambition of designers has resulted
in systems being abandoned before they were even
complete, with consequent heavy financial loss.

Complexity
Most importantly, these trends toward new and increased
functionality in computer-based systems are almost
unavoidably accompanied by increased complexity. There is
no universally accepted measure of complexity, but if we
look at simple size as a rough-and-ready indicator, its
growth is evident - see, for example, the growth in
packages such as MS Office from one release to another.

Great complexity brings many dangers. One of the greatest
is difficulty of understanding: it is common to have
systems that no single person can claim to understand
completely, even at a fairly high level of abstraction. This

178

produces uncertainty about the properties of the program -
particularly its reliability and safety.

Control of unwarranted complexity is thus an important
aspect of good design: a system should be no more complex
than it need be to deliver the needed functionality. Clearly
some of the trends discussed above militate against control
of complexity. When complexity/s needed, the challenge is
to determine how much the added intellectual difficulty
detracts from the dependability of the product.

Assurance

Finally, the inherent discreteness of behaviour of digital
systems makes it particularly difficult to gain assurance of
their reliability. In contrast to conventional mechanical and
electrical systems, it is usually impossible to extrapolate
from evidence of failure-free operation in one context in
order to claim that a system will perform acceptably in
another, similar context. It is, of course, almost always
infeasible to test all such contexts (inputs).

Knowing that software is sufficiently reliable is necessary
before we can make intelligent decisions about its use. This
is clear for safety-critical systems, where we need to be sure
that software (and other) failures will not incur unacceptable
loss of human life. It is less clear, but we believe also
important, in more mundane applications where, for
example, it must be decided whether the trade-off between
new functionality and possible loss of reliability is cost-
effective. There is abundant anecdotal evidence of financial
losses from computer undependability: many users need
better estimates both of the frequency and of the possible
impact of computer failures. This is part of the general need
for better assessment of the effectiveness of automation
projects.

It is this problem of assurance that has been at the centre of
our own research interests; it will thus form a large part of
the remainder of the paper.

1 . 3 Industry demand and concerns

These different factors are common to all software-related
industries, but their combinations vary.

The baleful impact of novelty is evident in much of the
software used for important everyday tasks, like office
automation. This is developed and marketed in ways that are
closer to fashion-driven consumer goods than to
professional tools. Dependability takes very low priority.
New releases are frequent, and tend to include new features
to outdo competitors and lure customers into making a new
purchase. Reported bugs are preserved in the next release.
The user's manual gives an ambiguous description of many
functions of the software, and their semantics change
between releases, or even between different parts of the
same software suite. Many functions are used by small
subsets of the user population, making many bugs difficult
to find and economically uninteresting to fix. Furthermore,
the platforms on which they run often do not enforce
separation between the various applications and software
supporting them, so that failures propagate, reducing
system reliability and complicating fault reporting and
diagnosing.

A feature-dominated development culture is part of a
competitive situation in which the time-to-market for new
features is perceived by producers as the dominant economic
driver. Scarcity of expertise in recent technologies for
producing software commands high salaries and a premium
over experience and reliability culture. Thanks to tools like
application-specific languages, libraries of components,
spreadsheet and database programming packages, many
more people can build complex software-based systems
more quickly than was previously possible, often without a
formal technical education and without an apprenticeship
with more experienced professionals. Compared to more
traditional software professionals, these new designers may
be as effective at building apparently well-functioning
systems, but are unaware of the accumulated experience of
risks and pitfalls in software design, and may well lack the
required skills of abstraction and analysis.

In this kind of market, both producers and users have little
scope for a rational approach to dependability. Vendors do
not offer suitable information for comparing products. The
reliability of any one application, besides varying with the
way it is used (the relative frequencies of the different types
of functions it is required to perform and of the inputs to
them), depends heavily on the other applications with
which it coexists in the same computer. Even for
performing very simple tasks we depend on complex
software (e.g., to add two columns of numbers we may use
a feature-rich spreadsheet program) and hence we obtain
lower reliability than we could.

Last but not least, cultures have developed in which
excessive computer undependability is accepted as, and thus
becomes, inevitable. Users of office software, for instance,
often perceive the software's behaviour as only
approximately predictable. They are often unable to
discriminate between their own misunderstandings of
procedures and genuine software failures and often blame
themselves rather than designers of poor or poorly
documented systems [26].

At the other end of the spectrum, software for safety-critical
application is subject to stringent development procedures
intended to guarantee its reliability. Costs are much higher,
times-to-market longer, innovation slower. Competitive
pressures on these factors are resisted by a necessary
conservatism in the regulator, the customers and/or the
developers. However, little is known about the actual
reliability gains from the various assurance techniques
employed, about the actual reliability of new (and often
even of mature) products, and about the dependability
penalties implied by novel, complex applications or new
features. When regulators lack confidence about the
reliability of a new product, licensing delays may ensue
with huge costs. Different industrial sectors adhere to
different standards, creating barriers between markets. Some
of these differences may be mere historical accidents, but
there is little scientific knowledge to support a choice
between the alternative practices that they prescribe. It is
then natural for each sector to cling to its own, apparently
satisfactory practices.

179

2 WHY P R O B A B I L I S T I C R E L I A B I L I T Y ?
People who are new to the problems of software reliability
often ask why reliability needs to be described in terms of
probabilities. After all, there is a sense in which the
execution of a program is completely deterministic. It is
either fault-free, in which case it will never fail; or it does
contain faults, in which case any circumstances that cause it
to fail once will always cause it to fail. This contrasts with
hardware components which will inevitably fail if we wait
long enough, and which can fail randomly in circumstances
in which they have previously worked perfectly.

Reliability engineers often call failures due to software (and
other failures arising from design defects) systematic, to
distinguish them from random hardware failures. This is
somewhat misleading: it suggests that in the one case using
probabilities is inevitable, but that in the other we might
be able to get away with completely deterministic
arguments. In fact this is not so, and probability-based
reasoning seems inevitable in both cases. The word
systematic for software failures really refers to the fault
mechanism, i.e. the mechanism whereby a fault reveals
itself as a failure, and not to the failure process. It is correct
to say that if a program failed once on a particular input
(i.e. particular set of input and state values and timings) it
would always fail on that input until the offending fault had
been successfully removed, and the term 'systematic '
describes this, rather limited form of determinism.

However, we are really interested in the failure process:

what we see when using the system under study - and in
particular the software. The software failure process arises
from the random uncovering of faults during the execution
of successive inputs. We cannot predict with certainty what
all future input cases will be and we do not know the
program's faults. So, we would not know which inputs, of
the ones we had not yet executed, would produce a failure if
executed (if we did know this, we could use the information
to fix the fault).

So, there is inevitable uncertainty in the software failure
process, for several reasons. This uncertainty can only be
captured by probabilistic representations of the failure
process: the use of probability to express our confidence in
the reliability of a program is therefore inevitable. The
language and mathematics of reliability theory are as
appropriate (or inappropriate) for dealing with software
reliability as they are for hardware and human reliabilities.
In particular, it is appropriate, during the construction of a
system, to assign a probabilistic reliability target even
though, in the most general case, the system is subject to
random hardware failures, human failures, and failures as a
result of software or hardware design faults.

3 W H A T L E V E L S OF R E L I A B I L I T Y A R E
C U R R E N T L Y A C H I E V A B L E ?

The difficulty of achieving and demonstrating reliability
depends on the level of reliability that is required. This
varies quite markedly from one application to another, and
from one industry to another, but should rationally be
determined by considering the cost of the consequences of
failures. Some of the most stringent requirements seem to

apply to applications involving active control. For
instance, software-based flight control systems ('fly-by-
wire') in civil airliners fall under the requirement that
catastrophic failures be "not anticipated to occur over the
entire operational life of all airplanes of one type", usually

translated as 10 -9 probability of failure per hour [5]. By
contrast, safety systems (systems that are only called upon
when some controlled system gets into a potentially
dangerous state) such as nuclear reactor protection systems,
often have relatively modest requirements: for example,

some nuclear protection systems have a requirement of 10 -4
probability of failure upon demand 09fd).

The most stringent of these requirements look extremely
difficult to satisfy, but there is some evidence from earlier
systems that very high software reliability has been
achieved during extensive operational use. Reliability data
for critical systems are rarely published, but, for instance,
measurement-based estimates on some control and

monitoring systems give a failure rate of 4-10 -8 per hour
for potentially safety-related functions [18]. An analysis
[30] of FAA records (while pointing at the extreme
difficulty of extracting trustworthy data) tentatively
estimated failure occurrence rates in avionics software to

vary in the range 10 -7 to 10 -8 for those systems in which
failures prompted the issue of FAA 'airworthiness
directives'. The AT&T telephone system historically
exhibited very high quality-of-service measures, achieved by
focusing not only on component reliability but also
extensive redundancy, error detection and recovery
capabilities. For instance, the 4ESS switches achieved
observed downtime (from all causes) of less than 2 hours

per 40 years, or about 5.7.10 -6 unavailability [4]; a recent
analysis [15] indicates that software failure accounts for
only 2% of telephone service outage time experienced by
customers.

It is interesting, but perhaps not surprising, that hard
evidence about achieved levels of software reliability come
from those industries where the required levels are extremely
high: typically these industries have reliability cultures that
long preceded the introduction of computer systems.
Figures from the newer IT industries are much harder to
come by. However, there is much anecdotal evidence of low
reliability from the users of PC software, and this
viewpoint has not resulted in any authoritative rebuttal
from the industry itself.

It should be emphasised that the evidence, above, of having
achieved extremely high reliability was only available after

the event, when the systems had been in operational use for
extremely long times. In fact for most of these systems,
particularly the safety critical ones, the assurance that the
reliability target has been met is needed before the systems
are deployed. This remains one of the most difficult
problems in software reliability.

4 H O W CAN WE M E A S U R E AND ASSURE
R E L I A B I L I T Y ?

We now consider briefly the different types of evidence that
can support pre-operational claims for reliability. In

180

practice, particularly when high levels of reliability need to
be assured, it will be necessary to use several sources of
evidence to support reliability claims. Combining such

disparate evidence to aid decision making is itself a difficult
task and a topic of current research.

4 .1 Testing of software under operational
condi t ions

An obvious way to estimate the reliability of a program is

to simulate its operational use, noting the times at which

failures occur. There has been considerable research on the
statistical techniques needed to analyse such data,

particularly when faults are removed as they are detected.
This reliability growth modelling [2, 25] is probably one of

the most successful techniques available: it is now
generally possible, given the availability of appropriate
data, to obtain accurate estimates of reliability and to know
that they are accurate.

There are, however, limitations to this approach. In the first
place, it is often difficult to create a testing regime that is

statistically representative of operational use. For reliability

assessment, doubts will remain on whether inaccuracies in

the testing regime may invalidate the reliability predictions
obtained. In some areas - e.g., general office products,

management information systems - the products often

change the way in which their users operate so that the
operational environment is not stable.

Secondly, the reliability growth models tend to assume that

fault removal is successful: they can be thought of as
sophisticated techniques for trend fitting. They will not
capture any short-term reversals of fortune, such as a failure

to remove a fault or, worse, the introduction of a new fault.
This has serious implications in critical applications, where
the possibility that the last fix might have introduced a new
fault may be unacceptable. This is the case in the UK
nuclear industry, for example, where the conservative
assumption is made that any change to a program creates a
new program, which must demonstrate its reliability from
scratch.

Finally, the levels of reliability that can be assured from
these kinds of data are quite limited. To demonstrate a mean
time between failures of x time units using the reliability

growth models can require a test of duration several hundred
times x time units [24]. Similarly, if we seek a
conservative assessment by only considering testing after

the last change to the software, achieving, e.g., 99%

confidence in 10 -3 pfd would require 4600 statistically

representative demands to be executed without failures; 99%

confidence in 10 -4 would need 46000 demands without

failure, and so on. Increasing the reliability level to be
demonstrated increases the length of the test series required
until it becomes infeasible. Yet, these methods are adequate
for the levels of reliability that are required of many
practical systems (cfthe safety systems quoted above).

4 .2 Evidence of process quality

Since it is obvious that the quality of a process affects the
quality of its product, it is accepted practice that the higher
the dependability requirements for a system, the more

stringent quality requirements are imposed on its
development and validation process. For instance, standards
for software for safety-critical systems link sets of

recommended or prescribed practices to the level of required
reliability. The fact of having applied the recommended
practices is then often used as a basis for claiming that the
corresponding reliability level has been achieved.
Unfortunately, there is no evidence that the former implies
the latter. In a parallel development, in recent years there
has been increasing emphasis on the contribution of strict

control on the software development process to product
quality. But again, although common sense tells us that it
is unlikely for poor development procedures to produce

highly reliable software, there is little or no evidence
indicating how much benefit can be expected from the use

of good process. Indeed, it is clear that good process can
sometimes result in very unreliable products. Even if we
had extensive experience of the relationship between process

and product qualities on previous products, it seems likely
that this will contain large statistical variation, and thus

preclude strong conclusions being drawn about a particular
new product.

There are similar problems in relating counts (or estimates)

of software faults to reliability. Even if we could trust the
statistical techniques that estimate the numbers of faults left

in a program, which is doubtful [9], it is not possible to

use this information to obtain accurate reliability
predictions. One reason for this is that the 's izes ' of
software faults seem to be extremely varied [1]: to know the

reliability of a program it is necessary to know both the
number of faults remaining and the contribution that each
makes to unreliability.

4.3 Evidence from static analysis of the
software product

Static analysis techniques clearly have an important role in
helping to achieve reliability. It also seems intuitively

obvious that they could increase confidence in the reliability
of a program. For example, a formal proof that a particular

class of fault is not present in a program should make us
more confident that it will perform correctly: but how much

more confident should we be? More precisely, what
contribution does such evidence contribute to a claim that a

program has met its reliability target?

At present, answers to questions like this are rather
informal. For example, probably the largest Malpas [31]

analysis ever conducted was for the safety system software
of the Sizewell nuclear reactor. This showed up some

problems, but it was claimed that none of these had safety
implications. On the other hand, certain parts of the system
defeated the analysis tool because of their complexity. Thus
while some considerable comfort could be taken from the
analysis, the picture was not completely clear. At the end of
the day, the contribution of this evidence to the safety case
rested on the informed judgement of expert individuals.

4 .4 Evidence from software components and

structure

For many kinds of non-software systems, 'structural '
models of reliability allow the reliability of a system to be

181

derived from the reliabilities of its components, which are
often easier to estimate or known before the system is even
built. Achieving a similar ability for software systems is a
yet unfulfilled aspiration. 'Structural' models of reliability
have been indeed developed for software [3, 16, 21]. They
could, in principle, be used when a system is built out of
COTS items: the component reliabilities can, in principle,
be estimated from their previous operational use in other
systems. But practical issues still stand in the way (and will
appear again in the next section about 'future challenges'):

• obtaining such data, which are seldom documented with
sufficient accuracy and detail to allow confident
predictions;

• knowing that the interactions among components are
actually limited to those that a simple model can
capture; e.g., spurious transfers of control or modules
overwriting other modules' variables may be difficult
to represent in manageable models;

• estimating the benefits of redundancy, a traditional
application of this kind of modelling, is complicated
by the need to estimate failure correlation between
redundant components. For software systems, it is
impossible to assume failure independence even among
diverse components [22], and there is no basis for the
experience-based, conservative rules of thumb used in
other areas of engineering;

• knowing whether the previously measured reliabilities
will apply in the novel context, since the reliability of
each components depends on its usage profile, which
will vary between systems.

5 TRENDS AND R E S E A R C H C H A L L E N G E S
F O R T H E FUTURE

Among the challenges that we list here, only some are
actually 'hard' technical research topics. The difficulties in
applying reliability and dependability techniques in current
software engineering are quite often cultural rather than
technical, a matter of a vast gap of incomprehension
between most software experts and dependability experts.
For an actual improvement in engineering practice, it is
necessary to bridge this gap. This may require more than
just goodwill, but research into its economic, cultural and
psychological causes and how to deal with them.

There is a general trend towards greater utilisation of off-
the-shelf software, which offers some promise for both
better reliability and better ability to assess it. Wider
populations of users make the effort of high-quality
development and assurance activities more affordable. This
does not guarantee that this effort will be made, though:
with mass-distributed consumer software, for instance, these
economies of scale have been used instead for reducing
prices or increasing profits. For dependability-minded
customers, like the safety-critical industries, quality of
COTS products is now a major concern. Re-use of COTS
items may also pose difficulties and reliability risks if, as is
common, the components were not designed within a re-use
strategy in the first place. This issue is open to empirical
study. A large user base should also help with problem
reporting and product improvement but, again, this

potential would only be realised given sufficient economic
incentives.

Widely used off-the-shelf components should also offer the
possibility of using data from their previous operational use
to extrapolate future reliability and to support the structure-
based reliability models described in section 4.4. To allow
this extrapolation, characterising differences between usage
environments and their effects on reliability becomes an
important research problem. Immediate goals could be
simply rules for conservative extrapolations from past
experience, or about when extrapolation is legitimate,
expressed in terms of the characteristics of components,
architectures and system use.

The practical difficulties listed should apply less to those
software producers that cater to safety-critical applications.
Here, there is also a trend towards standardisation and
consolidation of product lines, so that developing new
applications is increasingly a matter of customisation rather
than ad-hoc design. With pressure from the customers, this
trend may realise the promises of the 'COTS movement'
sooner than in the general market, using the wide diffusion
of the same components both to improve the software faster
and to measure achieved reliability. A need here is to
develop practices for documenting past reliability records
that can become accepted standards.

Interestingly, many supporters of the 'open source'
approach claim that it produces improved reliability. It is
difficult to verify these claims and, assuming they are
correct, to clearly account for the causes of higher reliability
and determine to how wide a range of products they could be
extended. Tapping the expertise of users for diagnosing and
even repairing faults is attractive. Customers with high
reliability requirements may mistrust the apparently lax
centralised control in the open-source process, but even for
them disclosing source code offers more informed bug
reporting and distributed verification. In a related area, many
security experts believe that using secret algorithms is often
a self-defeating move for designers, as it deprives them of
the advantage of scrutiny by the research community.
Clarifying the advantages and disadvantages of the various
aspects of the open-source approach on an empirical basis,
and, more modestly, exploiting it as a source of data for
other reliability research, are two necessary items on the
agenda of research in software dependability.

5 .1 P r o p a g a t i n g a w a r e n e s s o f dependab i l i ty
i s sues and the use o f ex i s t ing , useful m e t h o d s

It is common for computer scientists to complain about the
poor quality of current software, and for vendors to reply
that their choices are dictated by their customers. Without
judging where the truth lies between these somewhat self-
serving positions, it seems clear to us that society would
benefit from greater awareness of software dependability
problems. There is room for great improvements among
users - both end users and system integrators.

Public perception of software dependability
On new Year's Day, 2000, media reports proclaimed that
very few computer systems had failed, and thus the huge
'Y2K' expenditure had been wasted. These reports show

182

ignorance of a few facts. Computer failures need not be
immediately obvious, like 'crashes'. They may be hard to
detect; knowing the approximate form of a software fault (a

'Y2K' fault) does not mean knowing when it will cause a
failure. Since computers are state machines, they may store

an erroneous state now which will cause a failure after a
long time of proper service. Last but far from least,
knowledge about dependability is always uncertain, and

investing in reducing this uncertainty is often worthwhile.
Increased awareness of these issues would certainly allow
users better to address system procurement, to prepare and

defend themselves against the effects of failures, and to
report problems and requirements to vendors.

Design culture
With the blurring of the separation between professional

software developers and users, these misperceptions
increasingly affect system development. But even

professional developers often lack education in
dependability, both from academic learning and from their

workplace environment. The RISKS archives
(http://www.CSL.sri.com/risksinfo.html) are a useful
source for new and old developers, users and educators. They

document both useful lists of common problems, for those
who wish to learn from historical memory, and the lack of

this shared memory for many users and developers. Many
reported problems stem from repeated, well-known design
oversights (e.g., 'buffer overflow' security vulnerabilities).

The same cultural problems show up again and again: lack
of risk analysis and of provisions of fall-backs and

redundancy, focus on a technical subsystem without
system-level consideration of risks.

Management culture
Assessing dependability and taking high-level engineering
decisions to achieve it run into different problems. Here we
deal with uncertainty, requiring understanding of probability
and statistics applied to rather subtle questions. Managers
who come from software design do not usually have an

appropriate background. The errors in applying theoretical
results to decision-making are often very basic: ignoring the
limits of the methods (e.g., accepting clearly unbelievable
prediction of ultra-high reliability [20], or trusting failure
probability estimates to multiple significant digits),
misusing one-number measures (e.g., using an MTI'F

comparison to choose a system for which the main
requirement is availability over short missions: a serious

error), embracing methods from the scientific literature
which have been proven inadequate (e.g., requiring a vendor
to estimate reliability by a specific method that errs in
favour of the vendor). The knowledge that decision-makers
need concerns the basic concepts of dependability and
uncertainty and awareness of the misunderstandings that
arise between the software and the reliability specialists.
Perhaps the most serious challenge for the reliability
engineer is in delimiting the role for the probabilistic
treatments of dependability: on the one hand, clarifying the
limits of the possible knowledge of the future; on the other

hand, pointing out that if we really want to examine what
we know, some formalism is an indispensable support for

rigorous thought. In some industries, labels like "10 -9

probability of failure" are now applied without much
consideration of what evidence would really be required for
claiming them. In practice, this probabilistic labelling is a
conventional exercise, even where there is the most serious
attention to safety. The challenge is to make practitioners

accept that a well-founded claim of "better than 10 -4'' would
be more useful to them, and to make the public accept that
this is not a change for the worse.

5 .2 Focus on Use r -Cen t r ed , Sys tem-Level

Dependability Qualities
All too often, reliability is described in terms of compliance
of a specific program with its written specifications. This
may have paradoxical consequences: if a program was
written with imprecise, largely unstated requirements, does
this imply that we cannot state reliability requirements for
it? The sensible way of approaching reliability is to define

failure in terms of a system's effect on its user. For

instance, in using a computer to write this article, we have
a very clear perception of what would constitute a failure,

e.g., the computer reacting to a command with an
unexpected change to the text, or its crashing or corrupting
a stored file. Measuring the reliability of individual

components with respect to component-specific
requirements is, in other areas of engineering, a convenient

step towards assessing the satisfaction of the user's

dependability requirements (cf 4.4). It may also be useful
for carefully structured software-based systems, ones in

which, for instance, altering the options for my E-mail-

reading software cannot destroy recent changes to my
article. But component-based assessment is not the goal of

reliability engineering. For the user, failures are classified
by their consequences rather than their causes: it does not

matter to me whether I lose my article because the word

processor contains a bug, or because the platform allows an
unrelated application to interfere with the word processor, or
because the manual to the word processor does not explain
the side-effects of a certain command. Actually, most users
cannot tell whether a certain undesired behaviour of a word
processor is due to a bug or to their misunderstanding of the

function of the software. The system I am using to produce
the printed article includes the computer with its software as
well as myself, and it is the reliability of this system that

should be of concern to designers.

User-oriented requirements have many dimensions. Thus,
traditionally, telephone companies established multiple

target bounds for the frequency of dropped calls, frequency
and total duration of outages, and so on. Users of an office
package have distinct requirements regarding the risks of
corruption to stored data, of unintended changes to an open
file, or interruptions of service. All these needs are served
by attention to various aspects of design: reliability of
application modules, robustness of the platform, support
for proper installation and detection of feature interactions,
effective detection of run-time problems, informative error
messages and design to facilitate recovery by the user.

With an accent on integration rather than ex-novo design,
and a climate of feature-dominated frequent improvements,

most system integrators and users find themselves using
software whose reliability is difficult to assess and may turn

183

out to be very poor in their specific environments. This
increases the importance of resilience or fault tolerance: the
ability of systems to limit the damage caused by any failure
of their components. Propagating a culture of robust
design, and exploring its application in modern processing
environments, seems an essential part of improving
dependability in the short term. Measuring robustness is
essential for trusting systems built out of re-used
components. Examples of attempts in this direction are [6,
13], but there are still challenges in studying how to obtain
robust or conservative estimates given the unknown usage
pattern to which the software may be subjected.

In all these areas, dependability in software in general could
benefit from lessons learned in the area of safety, e.g., the
need for systematic analysis of risks ('hazards' for the safety
engineer) early on during specification and of prioritising
dependability demands, the realisation that maintenance and
transition phases are an essential and critical part of a
system's life, the importance of human factors in both
operation and maintenance [19, 29], the need to understand
the genesis of mistakes, the necessity of fault tolerance
(error detection and recovery) and of diversity.

5 .3 Design for dependabi l i ty assessment
The difficulties in assessing software dependability are due
in part to the complexity of the functions that we require
from software, but also for a large part to design cultures
that ignore the need for validation. Engineers have
traditionally accepted that the need to validate a design (to
demonstrate beforehand that the implemented system will
be serviceable and safe) must constrain design freedom.
Structures have been limited to forms that could be
demonstrated to be acceptably safe, either by extensive
empirical knowledge or by the methods of calculation
known at the time. The less a new design could be pre-
validated on models and prototypes, the more conservative
the design had to be. This restraint has been lost in a large
part of the software industries. We list here design practices
that have a potential for facilitating validation and thus
reliability engineering.

Failure prevention
A generally useful approach is that of eliminating whole
classes of failures. One method is proving that certain
events cannot happen (provided that the software
implementation preserves the properties of the formal
description on which the proof is based). Another set of
methods uses the platform on which software runs to
guarantee separation of subsystems. Memory protection
prevents interference and failure propagation between
different application processes. Guaranteed separation
between applications has been a major requirement for the
integration of multiple software services in few powerful
computers in modern airliners. We recommend [14] for a
thorough discussion of separation and composability.

It should be noted that these methods can support one
another. E.g., hardware-level separation between
applications prevents some departures from the behaviour
assumed in formal proofs of 'correctness' based on high-
level descriptions. Exploiting this synergy for dependability

assessment is a possibility that has not been explored,
although a suitable approach is described in [28].

These methods favour dependability engineering in multiple
ways. First of all, they directly increase reliability by
reducing the frequency or severity of failures. Run-time
protections may also detect faults before they cause serious
failures. After failures, they make fault diagnosis easier, and
thus accelerate reliability improvements. For dependability
assessment, these failure prevention methods reduce the
uncertainties with which the assessor has to cope. The
probability of any failure to which they apply can be trusted
to be lower than the probability of, e.g., an error in a proof
or a failure of a hardware protection mechanism - often
negligible in comparison to the probabilities of other
software failure modes. So, for instance, sufficient
separation between running applications means that when
we port an application to a new platform, we can trust its
failure rate to equal that experienced in similar use on a
previous platform plus that of the new platform, rather than
being also affected by the specific combination of other
applications present on the new platform. This is a step
towards applying structure-based reliability models (el
Section 4.4). Some difficulties typical of software would
remain (failure dependence between subsystems, wide
variation of reliability with the usage environment), but the
range of applicability of structure-based models would
certainly increase.

System monitoring
Testing for reliability assessment can also be aided by
software designers. They can simplify the space of demands
on the software which testers need to sample, and simplify
the set of variables that the test designer must understand in
order to build a realistic sample of the usage profile of the
software. For instance, periodic resets limit the traces of
operation of the software to finite lengths; subsystem
separation reduces the number of variables affecting the
behaviour of each subsystem; elements of defensive and
fault-tolerant programming - assertions for reasonableness
check, interface checks, auditing of data structures - improve
the ability to detect errors and failures, so that failure counts
from testing becomes more trustworthy (cf [11]).

Error detection techniques have an important role
throughout the lifetime of systems. No matter how
thoroughly a system has been assessed before use,
information from its actual failure behaviour in use is
precious. Reported errors and failures can lead to faults
being corrected. For instance, the civil aviation industry has
procedures for incident reporting and promulgation of
corrections to equipment and procedures that contribute to
its general safety. Besides improving dependability,
monitoring is useful for improving its assessment. For
instance, when a safety-critical system starts operation, the
assurance of its being sufficiently safe is affected by various
uncertainties. Even if it has been tested in realistic
conditions, a prediction on the probability of future
accidents is only possible with rather wide bounds, due to
both the possibility that actual use will differ from predicted
use, and to the fact that the period of test was limited. As
operation continues, both factors of uncertainty are reduced

184

(in a way that is easily captured by mathematical
formulations for the latter, and requires more ad hoc,
informal reasoning for the former).

Monitoring requires a technical component- effective
means for automatically detecting and logging problems -
and an organisational component - procedures and incentives
for the data thus logged to be collected AND analysed. The
technical means have been around for a long time. The
organisational part is more difficult. Experience teaches that
a vendor's dedication may not be enough, as users may be
selective in reporting failures. However, given a will, a
vendor of even, say, personal computer operating systems
could reach the point of being able to advertise the
reliability of the operating system using truthful
measurement from the field. The technical means are there.

All these approaches come together when we consider the
'COTS problem'. When integrating a COTS subsystem in
a new system with explicit dependability requirements, it
would seem natural for a designer to require assurance in
some appropriate form: possibly, a documented proof of
correctness from specified viewpoints, and certainly an
indication of the forms of monitoring applied in previous
uses and the reliability data thus collected. Thus, for
instance, the price of COTS components could increase
with documented experience as the risk of using them
decreases, allowing more efficient cost-effectiveness
decisions for dependability-riainded designers.

5.4 Diversity and variation as drivers of
dependability

'Functional diversity' or, less frequently, 'design diversity'
are common approaches to ensuring safety or reliability of
critical systems. The study of their effectiveness is still
open: while they have been shown to deliver reliability
improvements, the evidence about their cost-effectiveness
and their limits, compared to other techniques, is still as
primitive as for most software engineering techniques.
Further study is certainly warranted, in particular given the
increasing pressure to use COTS items. Integrators using
these components have limited control on their quality.
Given the alternative between using diverse COTS systems
in a redundant configuration and procuring a higher-quality,
bespoke system, the former alternative may often be the
only way of achieving a modest level of assurance at
reasonable cost.

A more important consideration has emerged from the study
of design diversity, i.e., that some form of diversity is a
factor in most methods for ensuring dependability. For
instance, we inspect software to find those faults that were
not avoided in writing it. We combine two forms of
verification in the hope that one of them may be effective
on those faults that the other failed to find. The usefulness
of a technique is then a function of both its effectiveness if
used alone (e.g., the ability of a testing technique to detect
faults and thus lead to improved reliability), and of how
well it complements the rest of the process in which it is
applied. Between two techniques of equal cost, the one that
is proven more effective in isolation may turn out to be the
less effective in combination with the rest of the process.

This trade-off is outlined in [23], and implies a need for
extending empirical research from measuring the 'absolute'
reliability potential of software engineering techniques in
isolation to either characterising whole processes or
characterising the similarities and differences between the
effects of the individual techniques.

5.5 Judgement and decision-making
Engineering approach
Software reliability research is often seen as the production
of techniques for increasing reliability. This view often
prompts the response that industry cannot afford any extra
effort on reliability. This is a limiting view. Engineering
should deal with control. In achieving dependability, this
means matching the means to the dependability targets. In
assessing it, it means predicting some effects of using the
assessed system. It is true that predicting the reliability that
a software project will achieve is affected by large
uncertainties. These must be taken into account for rational
decisions. In particular, overkill is a sensible strategy if the
costs of overkill in process quality are outweighed by the
potential extra costs of undependable products.

However, competition militates against overkill in seeking
dependability. For instance, in the telecoms industry,
increasing deregulation frees service providers to seek
different trade-offs between cost and quality of service, of
which software dependability is a component. This
encourages more precise tuning of expenditure on reliability
to the perceived needs: witness, for instance, the continuing
success of the IEEE conference on software reliability
engineering, ISSRE. The topics debated include the
feasibility of new techniques, but also attempts to measure
and thus compare the actual advantages and costs of
alternative techniques. This activity is important and
especially discriminating any common lessons from the
multitude of individual studies is a challenging topic with
large potential rewards.

There are legitimate concerns with possible over-confidence
in a reliability engineering approach. It is tempting, in all
areas of engineering, to ask for deterministic rules linking
the reliability techniques to the achieved results. This is
never realistic, and even less so in software. The
effectiveness of the various techniques is both inherently
variable and difficult to study, so the cost difference between
a mildly optimistic attitude to achieving a dependability
target and a mildly conservative attitude is and may remain
large. The challenge for research is to reduce this gap, but
also to clarify its existence and its consequences for
decision-making.

Choice of process for dependability
A first problem arises in choosing software engineering
methods. Most proposed methods for improving software
reliability have intuitive appeal, but measuring whether
their advantages are real and justify their cost is seldom
attempted [8, 12]. This situation is possibly changing for
the better, judging by the software engineering literature.
Many companies now have extensive measurement
systems, oriented at project management and process
improvement. Data collection may well be used both for

185

better reliability assessment and for better assessment of the
methods used, although their emphasis is often on
productivity without reference to dependability.

There are limits to such experimental validation. Given the
many factors in a software engineering process, it is
difficult to trust data from heterogeneous sources. Indeed,
successes in statistically understanding the software process
seem mostly to occur in large companies with highly
repetitive processes. By implication, small companies with
their own special practices or application domains, or any
fast-changing development process, would not be
susceptible to evaluation of their effectiveness. There are
definite research problems here. On the one hand, exploiting
the available statistics to extract all the useful conclusions
they warrant, but avoiding overgeneralisation, poses
demanding problems of data analysis. On the other hand,
there is the need to base decisions on general laws that
determine the effectiveness of the various methods, rather
than raw statistical data. Decision-makers often posit such
laws, based on their experience, but these are not subjected
to scientific scrutiny and indeed different experts have
contrasting beliefs.

Formalism and judgement in assessment
The problem just discussed, of judging the reliability effects
of choices in the software process, presents itself in
dependability assessment as well: process-based evidence is
heavily used in dependability assessment. For modest
dependability requirements, the statistical techniques now
available (cf 4.1) would support assessment without
recourse to process evidence, but industry is reluctant to
apply the required effort in testing and data collection. For
some extreme requirements, as discussed before, using all
available evidence becomes essential; adherence to a
prescribed process is usually a major part of this evidence,
but is not a sufficient basis for believing that the software
indeed satisfies the dependability requirements. Injecting
some rigour in the use of process-related evidence for
dependability assessment is an important research challenge.

The difficulties in rigorously assessing reliability have two
facets. One is the scarcity of knowledge, e.g. about the
actual effect of process on product dependability. The other
is the difficulty of understanding how the disparate evidence
that we need to use - e.g., logical evidence from formal
analyses, evidence about aspects of the design such as fault
tolerance, direct measurements from statistical testing, and
so on - should be combined into an overall evaluation,
preferably quantitative, of reliability. In principle, both can
be handled by probabilistic reasoning. Like all formal
languages, the language of probability requires some
training, but rewards its user with the ability to better
dominate complex problems. Proper use of theory would
avoid many errors, not least errors of overconfidence in the
absence of sufficient data.

On the other hand, matching formal descriptions to the real
world requires judgement and prudence that cannot be
formalised. Moreover, the usual input to successful
applications of probabilities, namely statistical data, is
often lacking when we deal with software. This requires, for

instance, restraint in using detailed 'structural' models (cf
section 4.4). Instead, the lure of deducing formally correct
results tempts users to trust complex models with little
evidence that they apply to reality. We still see even
extreme fallacies like system reliability models in which
software failure probabilities, for lack of convenient
estimates, are set to 0 or to arbitrary 'estimated' values.
Informal expert opinions are often substituted both for
trusted physical laws and for raw probabilistic inputs to
models. Claims in numerical, probabilistic terms can thus
be produced casually or used beyond their legitimate scope.
While it is unavoidable for decision-makers to use expert
judgement, they should be aware of its limits and of the
need to challenge and cross-check all the critical bases of a

decision.

For combining disparate evidence, Bayesian Belief Nets
(BBNs) are a promising candidate [7], but the need for
caution remains. The Bayesian formalism enforces a
rigorous probabilistic consistency. However, it guarantees
conclusions that are only as trustworthy as the evidence
items, and the assumed relationship between them, that go
into creating a BBN. So, in spite of the explosion of
interest in BBNs in recent years, there are still serious
limitations to their use, mainly due to problems with their
validation. There is considerable ongoing research on these
issues, but assessments produced by BBNs must be seen
with a critical eye, especially when dealing with critical

systems.

5 .6 Very Large-Sca le Systems
Very large 'systems of systems' are now built by the (often
unplanned) aggregation of computer-based systems. This
creates concerns that are outside the traditional domains of
software and reliability engineering.

In extending the practice of dependability engineering to
such systems, one need is for modelling increasingly
complex systems [10] without losing the ability to
understand and to solve the models. Another is to avoid the
risk that factors that were negligible in previous reliability
problems become dominant, making the detailed models
useless. A warning is sounded by the still frequent practice
in reliability and safety estimates of disregarding the effects
of software failures when assessing systems that are
increasingly software-based. It may be that radically
different models from those hitherto used must be integrated
with traditional software reliability practice. Software has
made it difficult to apply component-based reliability
models familiar to hardware engineers and required black-
box, sampling-based approaches to measurement and
prediction. Likewise, for large-scale integrated systems we
may need to borrow modelling practices that have been
successful elsewhere, for instance in modelling the
evolution of diseases or the propagation of disturbances in
electrical distribution networks.

Other factors in these large systems also require a more
interdisciplinary approach to their dependabili ty.
Deregulation and privatisation are a common trend in many
industries that form the national infrastructures. This leads
the industries concerned to scrutinise more stringently their

186

cost-dependability trade-offs. Here, concerns about large-
scale societal vulnerabilities may justify demand for
effective achievement and assessment of higher levels of
reliability than would be required by the individual players.
Some of the actors operate in novel or rapidly changing
markets, like Internet applications. Dependability costs are
seen up front, while losses from undependability lie in the
future. In any case, large systems grow without a general
design, and their emerging properties determine the
dependability observed by their various users. Design, for
these systems, is limited to industry's attempts to
standardise or otherwise to influence customer behaviour,
and to government regulation. The issues to be studied
become the interplay of economic incentives, legal
environment and technology development and their joint
effect on the complex systems.

5.7 Integration with Human Reliability
A clear requirement in most software design is better
attention by software designers to factors like the user's
cognitive workload and mental models of the software's
operation. But there are other areas in which engineering for
reliability has to be integrated with 'human factors' and
cognitive research. One such area concerns the diversity and
complementarity between people and machines: both
between users and computer systems, and between
developers and mechanised aids. The early history of
automation has brought new understanding of the strengths
and weaknesses of humans as operators of machinery
compared to those of automated machinery, i.e., of humans
as designers of automation. This understanding has yet to
be internalised by software engineering practice and
research. Another useful direction is exploiting the progress
of cognitive psychology applied to the mechanisms of
human error for understanding the effects of software
processes. While much ergonomic research has examined
operator errors in dealing with automation, applications to
design activities are limited. We should not expect an
ability to predict the effectiveness of a software engineering
method from first principles, but useful indications for
evaluating and improving the reliability implications of
software engineering methods.

6 C O N C L U S I O N S
An engineering approach to design must include
dependability aspects. In software, progress in this direction
has been slow, but is necessary for more efficient decisions
by both individual actors and society. Increasing dependence
on software increases the costs of undependability or of not
matching dependability to needs. Some current trends, like
that towards using more COTS components, create both
opportunities and technical challenges for this progress.
There are non-technical difficulties to overcome, in terms of
education of users and developers and better communication
between technical communities. The research challenges
include both learning more about the effects of the practices
for achieving dependability and learning better to organise
knowledge to support judgement and decision-making.

A C K N O W L E D G E M E N T S
The authors' work was supported in part by EPSRC grants
GR/L07673 and GR/L57296.

REFERENCES
[1] E. N. Adams. Optimizing preventive service of software
products. IBM Journal of Research and Development 28, 1
(January 1984), 2-14.

[2] S. Brocklehurst, B. Littlewood. New ways to get
accurate reliability measures. IEEE Software 9, 4 (July
1992), 34-42.

[3] R. C. Cheung. A User-Oriented Software Reliability
Model. IEEE Transactions on Software Engineering SE-6,
2 (March 1980), 118-125.

[4] G. F. Clement, P. K. Giloth. Evolution of Fault
Tolerant Switching Systems in AT&T. In A. Avizienis, H.
Kopetz and J.-C. Laprie (Eds.) The Evolution of Fault-
Tolerant Computing, Springer-Verlag, 1987, 37-54.

[5] FAA. Federal Aviation Administration, Advisory
Circular AC 25.1309-1A, 1985.

[6] J.-C. Fabre et al., Assessment of COTS microkernels
by fault injection, in Proc. DCCA-7 (San Jose, California,
USA, January 1999), 25-44.

[7] N. Fenton, M. Neil. Software Metrics: a roadmap", in
this volume.

[8] N. Fenton, S. L. Pfleeger, R. Glass. Science and
Substance: A Challenge to Software Engineers. 1EEE

Software 11, 4 (July 1994), 86-95.

[9] N. E. Fenton, M. Neil. A Critique of Software Defect
Prediction Models. IEEE Transactions on Software
Engineering 25, 5 (September/October 1999), 675-689.

[10] N. Fota et al., Safety analysis and evaluation of an air
traffic control computing system, in Proc. SAFECOMP
'96 (Vienna, Austria, October 1996), 219-229.

[11] M. J. Harrold. Testing: a roadmap", in this volume.

[12] L. Hat-ton, Programming Languages and safety-Related
Systems, in Proc. Safety-Critical Systems Symposium
(Brighton, U.K., 1995), 49-64.

[13] P. Koopman, J. DeVale, Comparing the robustness of
POSIX Operating Systems, in Proc. FTCS-29 (Madison,
USA, June 1999), 30-37.

[14] H. Kopetz. Software Engineering for Real-time: a
roadmap", in this volume.

[15] D. R. Kuhn. Sources of failure in the public switched
telephone network. IEEE Computer 30, 4 (April 1997), 31-
36.

[16] J.-C. Laprie, K. Kanoun. X-ware reliability and
availability modeling. IEEE Transactions on Software
Engineering 18, 2 (February 1992), 130-47.

[17] J. C. Laprie (Ed.) Dependability: Basic Concepts and
Associated Terminology. Springer-Verlag, 1991.

[18] A. Laryd, Operating experience of software in
programmable equipment used in ABB Atom nuclear I&C
application, in Proc. Advanced Control and Instrumentation

187

Systems in Nuclear Power Plants (Espoo, Finland, June
1994), 31-42.

[19] N. G. Leveson. Safeware: system safety and
computers. Addison Wesley, 1995.

[20] N. G. Leveson, C. S. Turner. An Investigation of the
Therac-25 Accidents. IEEE Computer 25, 7 (July 1992),
18-41.

[21] B. Littlewood. Software Reliability Model for Modular
Program Structure. IEEE Transactions on Reliability 28, 3

(August 1985), 241-246.

[22] B. Littlewood, D. R. Miller. Conceptual Modelling of
Coincident Failures in Multi-Version Software. I E E E

Transactions on Software Engineering SE-15, 12

(December 1989), 1596-1614.

[23] B. Littlewood et al. Modelling the effects of
combining diverse software fault removal techniques. IEEE

Transactions on Software Engineering (to appear).

[24] B. Littlewood, L. Strigini. Validation of Ultra-High
Dependability for Software-based Systems.
Communications of the ACM 36, 11 (November 1993),
69-80.

[25] M. R. Lyu (Ed.) Handbook of Software Reliability
Engineering. IEEE Computer Society Press and McGraw-
Hill, 1996.

[26] D. A. Norman. The Design of Everyday Things.
Doubleday, 1990.

[27] R. R. Panko, R. P. J. Halverson, Spreadsheets on
trial: a survey of research on spreadsheet risks, in Proc.

HICSS-29 (Wailea, Hawaii, USA, January 1996), 326-335.

[28] D. Powell, Failure Mode Assumptions and
Assumption Coverage, in Proc. FTCS-22 (Boston,
Massachusetts, USA, 1992), 386-395.

[29] J. Reason. Human Error. Cambridge University Press,
1990.

[30] M. Shooman, Avionics Software Problem Occurrence
Rates, in Proc. ISSRE'96 (White Plains, New York,
U.S.A., October/November 1996), 55-64.

[31] N. J. Ward, The static analysis of safety critical
software using MALPAS, in Proc. SAFECOMP'89
(Vienna, Austria, December 1989), 91-96.

188

