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A B S T R A C T  

Software's increasing role creates both requirements for 
being able to trust it more than before, and for more people 
to know how much they can trust their software. A sound 

engineering approach requires both techniques for producing 
reliability and sound assessment of  the achieved results. 

Different parts of  industry and society face different 

challenges: the need for education and cultural changes in 
some areas, the adaptation of  known scientific results to 

practical use in others, and in others still the need to 
confront inherently hard problems of  prediction and 

decision-making, both to clarify the limits of  current 
understanding and to push them back. 

We outline the specific difficulties in applying a sound 
engineering approach to software reliability engineering, 

some of the current trends and problems and a set of  issues 
that we therefore see as important in an agenda for research 
in software dependability. 

Keywords 

Reliability engineering, dependability modelling and 
assessment, COTS reliability, diversity 

1 I N T R O D U C T I O N  

We use "dependability" [17] informally to designate those 
system properties that allows us to rely on a system 
functioning as required. Dependability encompasses, among 
other attributes, reliabili ty,  safety, securi ty,  and 

availability. These qualities are the shared concern of many 
sub-disciplines in software engineering (which deal with 
achieving them), of  specialised fields like computer 
security, and of  reliability and safety engineering. We will 

concentrate on the aspects that are the traditional concern of  
these last allied disciplines, and will mainly discuss 
reliability, but many of  our remarks will also be of  
relevance to the other attributes. 

In this area, an important factor is the diversity of  "the 

software industry", or, rather, among the many industrial 
sectors that produce or use software. The demand for 
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software dependability varies widely between industrial 
sectors, as does the degree of  adoption of  systematic 

approaches to it. From many viewpoints, two extremes of  
the range are found in mass-marketed PC software and in 
safety-critical software for heavily-regulated industries. A 

couple of  decades ago there was a revolution in 
dependability of  consumer goods such as TV sets, VCRs 

and automobiles, when companies realised that there was 

market advantage to be gained by demonstrating higher 
reliability than their competitors. There has not yet been a 
similar movement in the corresponding sectors of  the 
software industry. 

I . I  Why is our dependence on software 
increasing? 

It is commonplace that software is increasingly important 

for society. The 'Y2K bug'  has just brought this to the 
attention of  the public: not only was a huge expense 
incurred for assurance (verification and/or fixes) against its 

possible effects, but this effort affected all kinds of  
organisations and of  systems, including many that the 
public does not usually associate with computer software. It 

is useful to list various dimensions of  this increased 
dependence: 

• Software-based systems replace older technologies in 

safety- or mission-critical applications. Software has 
found its way into aircraft engine control, railroad 
interlocking, nuclear plant protection, etc. New critical 
applications are developed, like automating aspects of  
surgery, or steering and 'piloting'  of  automobiles. 
Some of  these applications imply 'u l t ra -h igh '  

dependabil i ty  requirements  [24]. Others have 
requirements that are much more limited, but require 
the development of a computer dependability culture in 

the vendors (e.g., equipment manufacturers without 
previous experience of  using computers in safety- 
critical roles) and/or in the customers and users (e.g., 
doctors and surgeons); 

• Software moves from an auxiliary to a primary role in 

providing critical services. E.g., air traffic control 
systems are being modernised to handle more traffic, 
and one aspect of  this is increasing reliance on 
software. The software has traditionally been regarded 
as non safety-critical, because humans using manual 

backup methods could take over its roles if it failed, 
but increasing traffic volumes mean that this fall-back 

capability is being eroded. Here the challenge is to 
evolve a culture that has been successful so far to cope 
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with higher dependability requirements under intense 
pressure for deploying new systems; 

• Software becomes the only way of performing some 

function which is not perceived as 'critical' but whose 

failures would deeply affect individuals or groups. So, 
hospitals, supermarkets and pension offices depend on 
their databases and software for their everyday business; 
electronic transactions as the natural way of doing 
business are extending from the financial world to 
many forms of'electronic commerce'; 

• Software-provided services become increasingly an 
accepted part of everyday life without any special 
scrutiny. For instance, spreadsheet programs are in 
widespread use as a decision-making aid, usually with 
few formal checks on their use, although researchers 
have found errors to be extremely frequent in producing 
spreadsheets [27] and the spreadsheet programs 
themselves suffer from many documented bugs and 
come with no promise of acceptable reliability by their 
vendors; 

• Software-based systems are increasingly integrated and 

interacting, often without effective human control. 
Larger, more closely-coupled system are thus built in 
which software failures can propagate their effects more 
quickly and with less room for human intervention. 

With increased dependence, the total societal costs of 
computer failures increase. Hence there is a need to get a 
better grip on the trade-offs involving dependability, in 
many cases to improve it and generally better to evaluate it. 

1 .2  Why is there a problem with software 
re l iab i l i ty?  

The major difference between software and other engineering 
artefacts is that software is pure design. Its unreliability is 
always the result of design faults, which in turn arise from 
human intellectual failures. The unreliability of hardware 
systems, on the other hand, has tended until recently to be 
dominated by random physical failures of components - the 
consequences of the 'perversity of nature'. Some categories 
of hardware systems do fail through design and 
manufacturing defects more often than is desirable - for 
example buildings in poor countries - but engineering 
knowledge is sufficient, at least in principle, to prevent 
these systematic failures. 

Reliability theories have been developed over the years 
which have successfully allowed hardware systems to be 
built to high reliability requirements, and the final system 
reliability to be evaluated with acceptable accuracy. In 
recent years, however, many of these systems have come to 
depend on software for their correct functioning, so that the 
reliability of software has become more and more 
important. 

The increasing ubiquity of software stems, of course, from 
its general-purpose nature. Unfortunately, however, it is 
precisely this that brings disadvantages from the point of 
view of achieving sufficient reliability, and of 
demonstrating its achievement. Rather informally, these 
problems stem from the difficulty and novelty of the 
problems that are tackled, the complexity of the resulting 

solutions, the need for short development timescales, and 
finally the difficulty of gaining assurance of reliability 
because of the inherently discrete behaviour of digital 
systems. 

Novelty 
Whereas in the past computer-based systems were often 
used to automate the solution of problems for which 
satisfactory manual solutions already existed, it is 
increasingly common to seek computerised solutions for 
previously unresolved problems - often ones that would 
have been regarded as impracticable using other technology. 
This poses particular difficulties for systems with high 
reliability requirements, since it means that we can learn 
little from experience of previous systems. Other branches 
of engineering, by contrast, tend to have a more continuous 
evolution in successive designs. The change itself to a 
software-based system, for example from a non-digital 
electronic control system, may be regarded as a step change 
in technology. Equivalent step-changes in other branches of 
engineering are known to be risky, for example the attempt 
to introduce new materials for turbine blades that led to 
insolvency and nationalisation for Rolls Royce in 1971. 

Difficulty 
There is a tendency for system designers to take on tasks 
that are intrinsically difficult when building software-based 
systems. Software frees the designer from some of the 
constraints of a purely hardware system, and allows the 
implementation of sometimes excessive extra functionality. 

Thus there are examples of software being used to 
implement  difficult  functionali ty that would be 
inconceivable in older technologies - e.g., enhanced support 
to pilots in fly-by-wire and unstable aircraft control, 
dynamic control of safe separation between trains in 
'moving block' railway signalling. Most complex modern 
manipulations of information - e.g., the control of massive 
flows of funds around the world's banking systems, or the 
recent growth of e-commerce - would not be possible 
without software. 

The more difficult and novel the task, of course, the more 
likely that mistakes will be made, resulting in the 
introduction of faults which cause system failure when 
triggered by appropriate input conditions. In the worst 
cases, the over-weening ambition of designers has resulted 
in systems being abandoned before they were even 
complete, with consequent heavy financial loss. 

Complexity 
Most importantly, these trends toward new and increased 
functionality in computer-based systems are almost 
unavoidably accompanied by increased complexity. There is 
no universally accepted measure of complexity, but if we 
look at simple size as a rough-and-ready indicator, its 
growth is evident - see, for example, the growth in 
packages such as MS Office from one release to another. 

Great complexity brings many dangers. One of the greatest 
is difficulty of understanding: it is common to have 
systems that no single person can claim to understand 
completely, even at a fairly high level of abstraction. This 
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produces uncertainty about the properties of the program - 
particularly its reliability and safety. 

Control of unwarranted complexity is thus an important 
aspect of good design: a system should be no more complex 
than it need be to deliver the needed functionality. Clearly 
some of the trends discussed above militate against control 
of complexity. When complexity/s needed, the challenge is 
to determine how much the added intellectual difficulty 
detracts from the dependability of the product. 

Assurance 

Finally, the inherent discreteness of behaviour of digital 
systems makes it particularly difficult to gain assurance of 
their reliability. In contrast to conventional mechanical and 
electrical systems, it is usually impossible to extrapolate 
from evidence of failure-free operation in one context in 
order to claim that a system will perform acceptably in 
another, similar context. It is, of course, almost always 
infeasible to test all such contexts (inputs). 

Knowing that software is sufficiently reliable is necessary 
before we can make intelligent decisions about its use. This 
is clear for safety-critical systems, where we need to be sure 
that software (and other) failures will not incur unacceptable 
loss of human life. It is less clear, but we believe also 
important, in more mundane applications where, for 
example, it must be decided whether the trade-off between 
new functionality and possible loss of reliability is cost- 
effective. There is abundant anecdotal evidence of financial 
losses from computer undependability: many users need 
better estimates both of the frequency and of the possible 
impact of computer failures. This is part of the general need 
for better assessment of the effectiveness of automation 
projects. 

It is this problem of assurance that has been at the centre of 
our own research interests; it will thus form a large part of 
the remainder of the paper. 

1 . 3  Industry demand and concerns 

These different factors are common to all software-related 
industries, but their combinations vary. 

The baleful impact of novelty is evident in much of the 
software used for important everyday tasks, like office 
automation. This is developed and marketed in ways that are 
closer to fashion-driven consumer goods than to 
professional tools. Dependability takes very low priority. 
New releases are frequent, and tend to include new features 
to outdo competitors and lure customers into making a new 
purchase. Reported bugs are preserved in the next release. 
The user's manual gives an ambiguous description of many 
functions of the software, and their semantics change 
between releases, or even between different parts of the 
same software suite. Many functions are used by small 
subsets of the user population, making many bugs difficult 
to find and economically uninteresting to fix. Furthermore, 
the platforms on which they run often do not enforce 
separation between the various applications and software 
supporting them, so that failures propagate, reducing 
system reliability and complicating fault reporting and 
diagnosing. 

A feature-dominated development culture is part of a 
competitive situation in which the time-to-market for new 
features is perceived by producers as the dominant economic 
driver. Scarcity of expertise in recent technologies for 
producing software commands high salaries and a premium 
over experience and reliability culture. Thanks to tools like 
application-specific languages, libraries of components, 
spreadsheet and database programming packages, many 
more people can build complex software-based systems 
more quickly than was previously possible, often without a 
formal technical education and without an apprenticeship 
with more experienced professionals. Compared to more 
traditional software professionals, these new designers may 
be as effective at building apparently well-functioning 
systems, but are unaware of the accumulated experience of 
risks and pitfalls in software design, and may well lack the 
required skills of abstraction and analysis. 

In this kind of market, both producers and users have little 
scope for a rational approach to dependability. Vendors do 
not offer suitable information for comparing products. The 
reliability of any one application, besides varying with the 
way it is used (the relative frequencies of the different types 
of functions it is required to perform and of the inputs to 
them), depends heavily on the other applications with 
which it coexists in the same computer. Even for 
performing very simple tasks we depend on complex 
software (e.g., to add two columns of numbers we may use 
a feature-rich spreadsheet program) and hence we obtain 
lower reliability than we could. 

Last but not least, cultures have developed in which 
excessive computer undependability is accepted as, and thus 
becomes, inevitable. Users of office software, for instance, 
often perceive the software's  behaviour as only 
approximately predictable. They are often unable to 
discriminate between their own misunderstandings of 
procedures and genuine software failures and often blame 
themselves rather than designers of poor or poorly 
documented systems [26]. 

At the other end of the spectrum, software for safety-critical 
application is subject to stringent development procedures 
intended to guarantee its reliability. Costs are much higher, 
times-to-market longer, innovation slower. Competitive 
pressures on these factors are resisted by a necessary 
conservatism in the regulator, the customers and/or the 
developers. However, little is known about the actual 
reliability gains from the various assurance techniques 
employed, about the actual reliability of new (and often 
even of mature) products, and about the dependability 
penalties implied by novel, complex applications or new 
features. When regulators lack confidence about the 
reliability of a new product, licensing delays may ensue 
with huge costs. Different industrial sectors adhere to 
different standards, creating barriers between markets. Some 
of these differences may be mere historical accidents, but 
there is little scientific knowledge to support a choice 
between the alternative practices that they prescribe. It is 
then natural for each sector to cling to its own, apparently 
satisfactory practices. 
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2 WHY P R O B A B I L I S T I C  R E L I A B I L I T Y ?  
People who are new to the problems of software reliability 
often ask why reliability needs to be described in terms of 
probabilities. After all, there is a sense in which the 
execution of a program is completely deterministic. It is 
either fault-free, in which case it will never fail; or it does 
contain faults, in which case any circumstances that cause it 
to fail once will always cause it to fail. This contrasts with 
hardware components which will inevitably fail if we wait 
long enough, and which can fail randomly in circumstances 
in which they have previously worked perfectly. 

Reliability engineers often call failures due to software (and 
other failures arising from design defects) systematic, to 
distinguish them from random hardware failures. This is 
somewhat misleading: it suggests that in the one case using 
probabilities is inevitable, but that in the other we might 
be able to get away with completely deterministic 
arguments. In fact this is not so, and probability-based 
reasoning seems inevitable in both cases. The word 
systematic for software failures really refers to the fault 
mechanism, i.e. the mechanism whereby a fault reveals 
itself as a failure, and not to the failure process. It is correct 
to say that if a program failed once on a particular input 
(i.e. particular set of input and state values and timings) it 
would always fail on that input until the offending fault had 
been successfully removed, and the term 'systematic '  
describes this, rather limited form of determinism. 

However, we are really interested in the failure process: 

what we see when using the system under study - and in 
particular the software. The software failure process arises 
from the random uncovering of faults during the execution 
of successive inputs. We cannot predict with certainty what 
all future input cases will be and we do not know the 
program's faults. So, we would not know which inputs, of 
the ones we had not yet executed, would produce a failure if 
executed (if we did know this, we could use the information 
to fix the fault). 

So, there is inevitable uncertainty in the software failure 
process, for several reasons. This uncertainty can only be 
captured by probabilistic representations of the failure 
process: the use of probability to express our confidence in 
the reliability of a program is therefore inevitable. The 
language and mathematics of reliability theory are as 
appropriate (or inappropriate) for dealing with software 
reliability as they are for hardware and human reliabilities. 
In particular, it is appropriate, during the construction of a 
system, to assign a probabilistic reliability target even 
though, in the most general case, the system is subject to 
random hardware failures, human failures, and failures as a 
result of software or hardware design faults. 

3 W H A T  L E V E L S  OF R E L I A B I L I T Y  A R E  
C U R R E N T L Y  A C H I E V A B L E ?  

The difficulty of achieving and demonstrating reliability 
depends on the level of reliability that is required. This 
varies quite markedly from one application to another, and 
from one industry to another, but should rationally be 
determined by considering the cost of the consequences of 
failures. Some of the most stringent requirements seem to 

apply to applications involving active control. For 
instance, software-based flight control systems ( 'fly-by- 
wire') in civil airliners fall under the requirement that 
catastrophic failures be "not anticipated to occur over the 
entire operational life of all airplanes of one type", usually 

translated as 10 -9 probability of failure per hour [5]. By 
contrast, safety systems (systems that are only called upon 
when some controlled system gets into a potentially 
dangerous state) such as nuclear reactor protection systems, 
often have relatively modest requirements: for example, 

some nuclear protection systems have a requirement of 10 -4 
probability of failure upon demand 09fd). 

The most stringent of these requirements look extremely 
difficult to satisfy, but there is some evidence from earlier 
systems that very high software reliability has been 
achieved during extensive operational use. Reliability data 
for critical systems are rarely published, but, for instance, 
measurement-based estimates on some control and 

monitoring systems give a failure rate of 4-10 -8 per hour 
for potentially safety-related functions [18]. An analysis 
[30] of FAA records (while pointing at the extreme 
difficulty of extracting trustworthy data) tentatively 
estimated failure occurrence rates in avionics software to 

vary in the range 10 -7 to 10 -8 for those systems in which 
failures prompted the issue of FAA 'airworthiness 
directives'. The AT&T telephone system historically 
exhibited very high quality-of-service measures, achieved by 
focusing not only on component reliability but also 
extensive redundancy, error detection and recovery 
capabilities. For instance, the 4ESS switches achieved 
observed downtime (from all causes) of less than 2 hours 

per 40 years, or about 5.7.10 -6 unavailability [4]; a recent 
analysis [15] indicates that software failure accounts for 
only 2% of telephone service outage time experienced by 
customers. 

It is interesting, but perhaps not surprising, that hard 
evidence about achieved levels of software reliability come 
from those industries where the required levels are extremely 
high: typically these industries have reliability cultures that 
long preceded the introduction of computer systems. 
Figures from the newer IT industries are much harder to 
come by. However, there is much anecdotal evidence of low 
reliability from the users of PC software, and this 
viewpoint has not resulted in any authoritative rebuttal 
from the industry itself. 

It should be emphasised that the evidence, above, of having 
achieved extremely high reliability was only available after 

the event, when the systems had been in operational use for 
extremely long times. In fact for most of these systems, 
particularly the safety critical ones, the assurance that the 
reliability target has been met is needed before the systems 
are deployed. This remains one of the most difficult 
problems in software reliability. 

4 H O W  CAN WE M E A S U R E  AND ASSURE 
R E L I A B I L I T Y ?  

We now consider briefly the different types of evidence that 
can support pre-operational claims for reliability. In 
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practice, particularly when high levels of reliability need to 
be assured, it will be necessary to use several sources of  
evidence to support reliability claims. Combining such 

disparate evidence to aid decision making is itself a difficult 
task and a topic of  current research. 

4 .1  Testing of  software under operational  
condi t ions  

An obvious way to estimate the reliability of a program is 

to simulate its operational use, noting the times at which 

failures occur. There has been considerable research on the 
statistical techniques needed to analyse such data, 

particularly when faults are removed as they are detected. 
This reliability growth modelling [2, 25] is probably one of 

the most successful techniques available: it is now 
generally possible, given the availability of  appropriate 
data, to obtain accurate estimates of  reliability and to know 
that they are accurate. 

There are, however, limitations to this approach. In the first 
place, it is often difficult to create a testing regime that is 

statistically representative of  operational use. For reliability 

assessment, doubts will remain on whether inaccuracies in 

the testing regime may invalidate the reliability predictions 
obtained. In some areas - e.g., general office products, 

management information systems - the products often 

change the way in which their users operate so that the 
operational environment is not stable. 

Secondly, the reliability growth models tend to assume that 

fault removal is successful: they can be thought of  as 
sophisticated techniques for trend fitting. They will not 
capture any short-term reversals of  fortune, such as a failure 

to remove a fault or, worse, the introduction of  a new fault. 
This has serious implications in critical applications, where 
the possibility that the last fix might have introduced a new 
fault may be unacceptable. This is the case in the UK 
nuclear industry, for example, where the conservative 
assumption is made that any change to a program creates a 
new program, which must demonstrate its reliability from 
scratch. 

Finally, the levels of reliability that can be assured from 
these kinds of data are quite limited. To demonstrate a mean 
time between failures of  x time units using the reliability 

growth models can require a test of duration several hundred 
times x time units [24]. Similarly, if we seek a 
conservative assessment by only considering testing after 

the last change to the software, achieving, e.g., 99% 

confidence in 10 -3 pfd would require 4600 statistically 

representative demands to be executed without failures; 99% 

confidence in 10 -4 would need 46000 demands without 

failure, and so on. Increasing the reliability level to be 
demonstrated increases the length of  the test series required 
until it becomes infeasible. Yet, these methods are adequate 
for the levels of  reliability that are required of  many 
practical systems (cfthe safety systems quoted above). 

4 .2  Evidence of process quality 

Since it is obvious that the quality of a process affects the 
quality of its product, it is accepted practice that the higher 
the dependability requirements for a system, the more 

stringent quality requirements are imposed on its 
development and validation process. For instance, standards 
for software for safety-critical systems link sets of  

recommended or prescribed practices to the level of  required 
reliability. The fact of  having applied the recommended 
practices is then often used as a basis for claiming that the 
corresponding reliability level has been achieved.  
Unfortunately, there is no evidence that the former implies 
the latter. In a parallel development, in recent years there 
has been increasing emphasis on the contribution of  strict 

control on the software development process to product 
quality. But again, although common sense tells us that it 
is unlikely for poor development procedures to produce 

highly reliable software, there is little or no evidence 
indicating how much benefit can be expected from the use 

of good process. Indeed, it is clear that good process can 
sometimes result in very unreliable products. Even if we 
had extensive experience of the relationship between process 

and product qualities on previous products, it seems likely 
that this will contain large statistical variation, and thus 

preclude strong conclusions being drawn about a particular 
new product. 

There are similar problems in relating counts (or estimates) 

of  software faults to reliability. Even if we could trust the 
statistical techniques that estimate the numbers of  faults left 

in a program, which is doubtful [9], it is not possible to 

use this information to obtain accurate reliability 
predictions. One reason for this is that the 's izes '  of  
software faults seem to be extremely varied [1]: to know the 

reliability of  a program it is necessary to know both the 
number of faults remaining and the contribution that each 
makes to unreliability. 

4.3  Evidence from static analysis  of  the 
software product 

Static analysis techniques clearly have an important role in 
helping to achieve reliability. It also seems intuitively 

obvious that they could increase confidence in the reliability 
of a program. For example, a formal proof that a particular 

class of  fault is not present in a program should make us 
more confident that it will perform correctly: but how much 

more confident should we be? More precisely, what 
contribution does such evidence contribute to a claim that a 

program has met its reliability target? 

At present, answers to questions like this are rather 
informal. For example, probably the largest Malpas [31] 

analysis ever conducted was for the safety system software 
of  the Sizewell nuclear reactor. This showed up some 

problems, but it was claimed that none of  these had safety 
implications. On the other hand, certain parts of the system 
defeated the analysis tool because of their complexity. Thus 
while some considerable comfort could be taken from the 
analysis, the picture was not completely clear. At the end of  
the day, the contribution of this evidence to the safety case 
rested on the informed judgement of expert individuals. 

4 .4  Evidence from software components and 

structure 

For many kinds of  non-software systems, 'structural '  
models of  reliability allow the reliability of a system to be 
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derived from the reliabilities of its components, which are 
often easier to estimate or known before the system is even 
built. Achieving a similar ability for software systems is a 
yet unfulfilled aspiration. 'Structural' models of reliability 
have been indeed developed for software [3, 16, 21]. They 
could, in principle, be used when a system is built out of 
COTS items: the component reliabilities can, in principle, 
be estimated from their previous operational use in other 
systems. But practical issues still stand in the way (and will 
appear again in the next section about 'future challenges'): 

• obtaining such data, which are seldom documented with 
sufficient accuracy and detail to allow confident 
predictions; 

• knowing that the interactions among components are 
actually limited to those that a simple model can 
capture; e.g., spurious transfers of control or modules 
overwriting other modules' variables may be difficult 
to represent in manageable models; 

• estimating the benefits of redundancy, a traditional 
application of this kind of modelling, is complicated 
by the need to estimate failure correlation between 
redundant components. For software systems, it is 
impossible to assume failure independence even among 
diverse components [22], and there is no basis for the 
experience-based, conservative rules of thumb used in 
other areas of engineering; 

• knowing whether the previously measured reliabilities 
will apply in the novel context, since the reliability of 
each components depends on its usage profile, which 
will vary between systems. 

5 TRENDS AND R E S E A R C H  C H A L L E N G E S  
F O R  T H E  FUTURE 

Among the challenges that we list here, only some are 
actually 'hard' technical research topics. The difficulties in 
applying reliability and dependability techniques in current 
software engineering are quite often cultural rather than 
technical, a matter of a vast gap of incomprehension 
between most software experts and dependability experts. 
For an actual improvement in engineering practice, it is 
necessary to bridge this gap. This may require more than 
just goodwill, but research into its economic, cultural and 
psychological causes and how to deal with them. 

There is a general trend towards greater utilisation of off- 
the-shelf software, which offers some promise for both 
better reliability and better ability to assess it. Wider 
populations of users make the effort of high-quality 
development and assurance activities more affordable. This 
does not guarantee that this effort will be made, though: 
with mass-distributed consumer software, for instance, these 
economies of scale have been used instead for reducing 
prices or increasing profits. For dependability-minded 
customers, like the safety-critical industries, quality of 
COTS products is now a major concern. Re-use of COTS 
items may also pose difficulties and reliability risks if, as is 
common, the components were not designed within a re-use 
strategy in the first place. This issue is open to empirical 
study. A large user base should also help with problem 
reporting and product improvement but, again, this 

potential would only be realised given sufficient economic 
incentives. 

Widely used off-the-shelf components should also offer the 
possibility of using data from their previous operational use 
to extrapolate future reliability and to support the structure- 
based reliability models described in section 4.4. To allow 
this extrapolation, characterising differences between usage 
environments and their effects on reliability becomes an 
important research problem. Immediate goals could be 
simply rules for conservative extrapolations from past 
experience, or about when extrapolation is legitimate, 
expressed in terms of the characteristics of components, 
architectures and system use. 

The practical difficulties listed should apply less to those 
software producers that cater to safety-critical applications. 
Here, there is also a trend towards standardisation and 
consolidation of product lines, so that developing new 
applications is increasingly a matter of customisation rather 
than ad-hoc design. With pressure from the customers, this 
trend may realise the promises of the 'COTS movement'  
sooner than in the general market, using the wide diffusion 
of the same components both to improve the software faster 
and to measure achieved reliability. A need here is to 
develop practices for documenting past reliability records 
that can become accepted standards. 

Interestingly, many supporters of the 'open source' 
approach claim that it produces improved reliability. It is 
difficult to verify these claims and, assuming they are 
correct, to clearly account for the causes of higher reliability 
and determine to how wide a range of products they could be 
extended. Tapping the expertise of users for diagnosing and 
even repairing faults is attractive. Customers with high 
reliability requirements may mistrust the apparently lax 
centralised control in the open-source process, but even for 
them disclosing source code offers more informed bug 
reporting and distributed verification. In a related area, many 
security experts believe that using secret algorithms is often 
a self-defeating move for designers, as it deprives them of 
the advantage of scrutiny by the research community. 
Clarifying the advantages and disadvantages of the various 
aspects of the open-source approach on an empirical basis, 
and, more modestly, exploiting it as a source of data for 
other reliability research, are two necessary items on the 
agenda of research in software dependability. 

5 .1  P r o p a g a t i n g  a w a r e n e s s  o f  dependab i l i ty  
i s sues  and the use  o f  ex i s t ing ,  useful  m e t h o d s  

It is common for computer scientists to complain about the 
poor quality of current software, and for vendors to reply 
that their choices are dictated by their customers. Without 
judging where the truth lies between these somewhat self- 
serving positions, it seems clear to us that society would 
benefit from greater awareness of software dependability 
problems. There is room for great improvements among 
users - both end users and system integrators. 

Public perception of software dependability 
On new Year's Day, 2000, media reports proclaimed that 
very few computer systems had failed, and thus the huge 
'Y2K'  expenditure had been wasted. These reports show 
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ignorance of a few facts. Computer failures need not be 
immediately obvious, like 'crashes'. They may be hard to 
detect; knowing the approximate form of a software fault (a 

'Y2K' fault) does not mean knowing when it will cause a 
failure. Since computers are state machines, they may store 

an erroneous state now which will cause a failure after a 
long time of proper service. Last but far from least, 
knowledge about dependability is always uncertain, and 

investing in reducing this uncertainty is often worthwhile. 
Increased awareness of these issues would certainly allow 
users better to address system procurement, to prepare and 

defend themselves against the effects of failures, and to 
report problems and requirements to vendors. 

Design culture 
With the blurring of the separation between professional 

software developers and users, these misperceptions 
increasingly affect system development. But even 

professional developers often lack education in 
dependability, both from academic learning and from their 

workplace environment.  The RISKS archives 
(http://www.CSL.sri.com/risksinfo.html) are a useful 
source for new and old developers, users and educators. They 

document both useful lists of common problems, for those 
who wish to learn from historical memory, and the lack of 

this shared memory for many users and developers. Many 
reported problems stem from repeated, well-known design 
oversights (e.g., 'buffer overflow' security vulnerabilities). 

The same cultural problems show up again and again: lack 
of risk analysis and of provisions of fall-backs and 

redundancy, focus on a technical subsystem without 
system-level consideration of risks. 

Management culture 
Assessing dependability and taking high-level engineering 
decisions to achieve it run into different problems. Here we 
deal with uncertainty, requiring understanding of probability 
and statistics applied to rather subtle questions. Managers 
who come from software design do not usually have an 

appropriate background. The errors in applying theoretical 
results to decision-making are often very basic: ignoring the 
limits of the methods (e.g., accepting clearly unbelievable 
prediction of ultra-high reliability [20], or trusting failure 
probability estimates to multiple significant digits), 
misusing one-number measures (e.g., using an MTI'F 

comparison to choose a system for which the main 
requirement is availability over short missions: a serious 

error), embracing methods from the scientific literature 
which have been proven inadequate (e.g., requiring a vendor 
to estimate reliability by a specific method that errs in 
favour of the vendor). The knowledge that decision-makers 
need concerns the basic concepts of dependability and 
uncertainty and awareness of the misunderstandings that 
arise between the software and the reliability specialists. 
Perhaps the most serious challenge for the reliability 
engineer is in delimiting the role for the probabilistic 
treatments of dependability: on the one hand, clarifying the 
limits of the possible knowledge of the future; on the other 

hand, pointing out that if we really want to examine what 
we know, some formalism is an indispensable support for 

rigorous thought. In some industries, labels like "10 -9 

probability of failure" are now applied without much 
consideration of what evidence would really be required for 
claiming them. In practice, this probabilistic labelling is a 
conventional exercise, even where there is the most serious 
attention to safety. The challenge is to make practitioners 

accept that a well-founded claim of "better than 10 -4'' would 
be more useful to them, and to make the public accept that 
this is not a change for the worse. 

5 .2  Focus  on Use r -Cen t r ed ,  Sys tem-Level  

Dependability Qualities 
All too often, reliability is described in terms of compliance 
of a specific program with its written specifications. This 
may have paradoxical consequences: if a program was 
written with imprecise, largely unstated requirements, does 
this imply that we cannot state reliability requirements for 
it? The sensible way of approaching reliability is to define 

failure in terms of a system's effect on its user. For 

instance, in using a computer to write this article, we have 
a very clear perception of what would constitute a failure, 

e.g., the computer reacting to a command with an 
unexpected change to the text, or its crashing or corrupting 
a stored file. Measuring the reliability of individual 

components with respect to component-specific 
requirements is, in other areas of engineering, a convenient 

step towards assessing the satisfaction of the user's 

dependability requirements (cf 4.4). It may also be useful 
for carefully structured software-based systems, ones in 

which, for instance, altering the options for my E-mail- 

reading software cannot destroy recent changes to my 
article. But component-based assessment is not the goal of 

reliability engineering. For the user, failures are classified 
by their consequences rather than their causes: it does not 

matter to me whether I lose my article because the word 

processor contains a bug, or because the platform allows an 
unrelated application to interfere with the word processor, or 
because the manual to the word processor does not explain 
the side-effects of a certain command. Actually, most users 
cannot tell whether a certain undesired behaviour of a word 
processor is due to a bug or to their misunderstanding of the 

function of the software. The system I am using to produce 
the printed article includes the computer with its software as 
well as myself, and it is the reliability of this system that 

should be of concern to designers. 

User-oriented requirements have many dimensions. Thus, 
traditionally, telephone companies established multiple 

target bounds for the frequency of dropped calls, frequency 
and total duration of outages, and so on. Users of an office 
package have distinct requirements regarding the risks of 
corruption to stored data, of unintended changes to an open 
file, or interruptions of service. All these needs are served 
by attention to various aspects of design: reliability of 
application modules, robustness of the platform, support 
for proper installation and detection of feature interactions, 
effective detection of run-time problems, informative error 
messages and design to facilitate recovery by the user. 

With an accent on integration rather than ex-novo design, 
and a climate of feature-dominated frequent improvements, 

most system integrators and users find themselves using 
software whose reliability is difficult to assess and may turn 
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out to be very poor in their specific environments. This 
increases the importance of resilience or fault tolerance: the 
ability of systems to limit the damage caused by any failure 
of their components. Propagating a culture of robust 
design, and exploring its application in modern processing 
environments, seems an essential part of improving 
dependability in the short term. Measuring robustness is 
essential for trusting systems built out of re-used 
components. Examples of attempts in this direction are [6, 
13], but there are still challenges in studying how to obtain 
robust or conservative estimates given the unknown usage 
pattern to which the software may be subjected. 

In all these areas, dependability in software in general could 
benefit from lessons learned in the area of safety, e.g., the 
need for systematic analysis of risks ('hazards' for the safety 
engineer) early on during specification and of prioritising 
dependability demands, the realisation that maintenance and 
transition phases are an essential and critical part of a 
system's life, the importance of human factors in both 
operation and maintenance [19, 29], the need to understand 
the genesis of mistakes, the necessity of fault tolerance 
(error detection and recovery) and of diversity. 

5 .3  Design for  dependabi l i ty  assessment  
The difficulties in assessing software dependability are due 
in part to the complexity of the functions that we require 
from software, but also for a large part to design cultures 
that ignore the need for validation. Engineers have 
traditionally accepted that the need to validate a design (to 
demonstrate beforehand that the implemented system will 
be serviceable and safe) must constrain design freedom. 
Structures have been limited to forms that could be 
demonstrated to be acceptably safe, either by extensive 
empirical knowledge or by the methods of calculation 
known at the time. The less a new design could be pre- 
validated on models and prototypes, the more conservative 
the design had to be. This restraint has been lost in a large 
part of the software industries. We list here design practices 
that have a potential for facilitating validation and thus 
reliability engineering. 

Failure prevention 
A generally useful approach is that of eliminating whole 
classes of failures. One method is proving that certain 
events cannot happen (provided that the software 
implementation preserves the properties of the formal 
description on which the proof is based). Another set of 
methods uses the platform on which software runs to 
guarantee separation of subsystems. Memory protection 
prevents interference and failure propagation between 
different application processes. Guaranteed separation 
between applications has been a major requirement for the 
integration of multiple software services in few powerful 
computers in modern airliners. We recommend [14] for a 
thorough discussion of separation and composability. 

It should be noted that these methods can support one 
another. E.g., hardware-level  separation between 
applications prevents some departures from the behaviour 
assumed in formal proofs of 'correctness' based on high- 
level descriptions. Exploiting this synergy for dependability 

assessment is a possibility that has not been explored, 
although a suitable approach is described in [28]. 

These methods favour dependability engineering in multiple 
ways. First of all, they directly increase reliability by 
reducing the frequency or severity of failures. Run-time 
protections may also detect faults before they cause serious 
failures. After failures, they make fault diagnosis easier, and 
thus accelerate reliability improvements. For dependability 
assessment, these failure prevention methods reduce the 
uncertainties with which the assessor has to cope. The 
probability of any failure to which they apply can be trusted 
to be lower than the probability of, e.g., an error in a proof 
or a failure of a hardware protection mechanism - often 
negligible in comparison to the probabilities of other 
software failure modes. So, for instance, sufficient 
separation between running applications means that when 
we port an application to a new platform, we can trust its 
failure rate to equal that experienced in similar use on a 
previous platform plus that of the new platform, rather than 
being also affected by the specific combination of other 
applications present on the new platform. This is a step 
towards applying structure-based reliability models (el 
Section 4.4). Some difficulties typical of software would 
remain (failure dependence between subsystems, wide 
variation of reliability with the usage environment), but the 
range of applicability of structure-based models would 
certainly increase. 

System monitoring 
Testing for reliability assessment can also be aided by 
software designers. They can simplify the space of demands 
on the software which testers need to sample, and simplify 
the set of variables that the test designer must understand in 
order to build a realistic sample of the usage profile of the 
software. For instance, periodic resets limit the traces of 
operation of the software to finite lengths; subsystem 
separation reduces the number of variables affecting the 
behaviour of each subsystem; elements of defensive and 
fault-tolerant programming - assertions for reasonableness 
check, interface checks, auditing of data structures - improve 
the ability to detect errors and failures, so that failure counts 
from testing becomes more trustworthy (cf [11]). 

Error detection techniques have an important role 
throughout the lifetime of systems. No matter how 
thoroughly a system has been assessed before use, 
information from its actual failure behaviour in use is 
precious. Reported errors and failures can lead to faults 
being corrected. For instance, the civil aviation industry has 
procedures for incident reporting and promulgation of 
corrections to equipment and procedures that contribute to 
its general safety. Besides improving dependability, 
monitoring is useful for improving its assessment. For 
instance, when a safety-critical system starts operation, the 
assurance of its being sufficiently safe is affected by various 
uncertainties. Even if it has been tested in realistic 
conditions, a prediction on the probability of  future 
accidents is only possible with rather wide bounds, due to 
both the possibility that actual use will differ from predicted 
use, and to the fact that the period of test was limited. As 
operation continues, both factors of uncertainty are reduced 

184 



(in a way that is easily captured by mathematical 
formulations for the latter, and requires more ad hoc, 
informal reasoning for the former). 

Monitoring requires a technical component-  effective 
means for automatically detecting and logging problems - 
and an organisational component - procedures and incentives 
for the data thus logged to be collected AND analysed. The 
technical means have been around for a long time. The 
organisational part is more difficult. Experience teaches that 
a vendor's dedication may not be enough, as users may be 
selective in reporting failures. However, given a will, a 
vendor of even, say, personal computer operating systems 
could reach the point of being able to advertise the 
reliability of the operating system using truthful 
measurement from the field. The technical means are there. 

All these approaches come together when we consider the 
'COTS problem'. When integrating a COTS subsystem in 
a new system with explicit dependability requirements, it 
would seem natural for a designer to require assurance in 
some appropriate form: possibly, a documented proof of 
correctness from specified viewpoints, and certainly an 
indication of the forms of monitoring applied in previous 
uses and the reliability data thus collected. Thus, for 
instance, the price of COTS components could increase 
with documented experience as the risk of using them 
decreases, allowing more efficient cost-effectiveness 
decisions for dependability-riainded designers. 

5.4  Diversity and variation as drivers of 
dependability 

'Functional diversity' or, less frequently, 'design diversity' 
are common approaches to ensuring safety or reliability of 
critical systems. The study of their effectiveness is still 
open: while they have been shown to deliver reliability 
improvements, the evidence about their cost-effectiveness 
and their limits, compared to other techniques, is still as 
primitive as for most software engineering techniques. 
Further study is certainly warranted, in particular given the 
increasing pressure to use COTS items. Integrators using 
these components have limited control on their quality. 
Given the alternative between using diverse COTS systems 
in a redundant configuration and procuring a higher-quality, 
bespoke system, the former alternative may often be the 
only way of achieving a modest level of assurance at 
reasonable cost. 

A more important consideration has emerged from the study 
of design diversity, i.e., that some form of diversity is a 
factor in most methods for ensuring dependability. For 
instance, we inspect software to find those faults that were 
not avoided in writing it. We combine two forms of 
verification in the hope that one of them may be effective 
on those faults that the other failed to find. The usefulness 
of a technique is then a function of both its effectiveness if 
used alone (e.g., the ability of a testing technique to detect 
faults and thus lead to improved reliability), and of how 
well it complements the rest of the process in which it is 
applied. Between two techniques of equal cost, the one that 
is proven more effective in isolation may turn out to be the 
less effective in combination with the rest of the process. 

This trade-off is outlined in [23], and implies a need for 
extending empirical research from measuring the 'absolute' 
reliability potential of software engineering techniques in 
isolation to either characterising whole processes or 
characterising the similarities and differences between the 
effects of the individual techniques. 

5.5  Judgement and decision-making 
Engineering approach 
Software reliability research is often seen as the production 
of techniques for increasing reliability. This view often 
prompts the response that industry cannot afford any extra 
effort on reliability. This is a limiting view. Engineering 
should deal with control. In achieving dependability, this 
means matching the means to the dependability targets. In 
assessing it, it means predicting some effects of using the 
assessed system. It is true that predicting the reliability that 
a software project will achieve is affected by large 
uncertainties. These must be taken into account for rational 
decisions. In particular, overkill is a sensible strategy if the 
costs of overkill in process quality are outweighed by the 
potential extra costs of undependable products. 

However, competition militates against overkill in seeking 
dependability. For instance, in the telecoms industry, 
increasing deregulation frees service providers to seek 
different trade-offs between cost and quality of service, of 
which software dependability is a component. This 
encourages more precise tuning of expenditure on reliability 
to the perceived needs: witness, for instance, the continuing 
success of the IEEE conference on software reliability 
engineering, ISSRE. The topics debated include the 
feasibility of new techniques, but also attempts to measure 
and thus compare the actual advantages and costs of 
alternative techniques. This activity is important and 
especially discriminating any common lessons from the 
multitude of individual studies is a challenging topic with 
large potential rewards. 

There are legitimate concerns with possible over-confidence 
in a reliability engineering approach. It is tempting, in all 
areas of engineering, to ask for deterministic rules linking 
the reliability techniques to the achieved results. This is 
never realistic, and even less so in software. The 
effectiveness of the various techniques is both inherently 
variable and difficult to study, so the cost difference between 
a mildly optimistic attitude to achieving a dependability 
target and a mildly conservative attitude is and may remain 
large. The challenge for research is to reduce this gap, but 
also to clarify its existence and its consequences for 
decision-making. 

Choice of process for dependability 
A first problem arises in choosing software engineering 
methods. Most proposed methods for improving software 
reliability have intuitive appeal, but measuring whether 
their advantages are real and justify their cost is seldom 
attempted [8, 12]. This situation is possibly changing for 
the better, judging by the software engineering literature. 
Many companies now have extensive measurement 
systems, oriented at project management and process 
improvement. Data collection may well be used both for 
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better reliability assessment and for better assessment of the 
methods used, although their emphasis is often on 
productivity without reference to dependability. 

There are limits to such experimental validation. Given the 
many factors in a software engineering process, it is 
difficult to trust data from heterogeneous sources. Indeed, 
successes in statistically understanding the software process 
seem mostly to occur in large companies with highly 
repetitive processes. By implication, small companies with 
their own special practices or application domains, or any 
fast-changing development process, would not be 
susceptible to evaluation of their effectiveness. There are 
definite research problems here. On the one hand, exploiting 
the available statistics to extract all the useful conclusions 
they warrant, but avoiding overgeneralisation, poses 
demanding problems of data analysis. On the other hand, 
there is the need to base decisions on general laws that 
determine the effectiveness of the various methods, rather 
than raw statistical data. Decision-makers often posit such 
laws, based on their experience, but these are not subjected 
to scientific scrutiny and indeed different experts have 
contrasting beliefs. 

Formalism and judgement in assessment 
The problem just discussed, of judging the reliability effects 
of choices in the software process, presents itself in 
dependability assessment as well: process-based evidence is 
heavily used in dependability assessment. For modest 
dependability requirements, the statistical techniques now 
available (cf 4.1) would support assessment without 
recourse to process evidence, but industry is reluctant to 
apply the required effort in testing and data collection. For 
some extreme requirements, as discussed before, using all 
available evidence becomes essential; adherence to a 
prescribed process is usually a major part of this evidence, 
but is not a sufficient basis for believing that the software 
indeed satisfies the dependability requirements. Injecting 
some rigour in the use of process-related evidence for 
dependability assessment is an important research challenge. 

The difficulties in rigorously assessing reliability have two 
facets. One is the scarcity of knowledge, e.g. about the 
actual effect of process on product dependability. The other 
is the difficulty of understanding how the disparate evidence 
that we need to use - e.g., logical evidence from formal 
analyses, evidence about aspects of the design such as fault 
tolerance, direct measurements from statistical testing, and 
so on - should be combined into an overall evaluation, 
preferably quantitative, of reliability. In principle, both can 
be handled by probabilistic reasoning. Like all formal 
languages, the language of probability requires some 
training, but rewards its user with the ability to better 
dominate complex problems. Proper use of theory would 
avoid many errors, not least errors of overconfidence in the 
absence of sufficient data. 

On the other hand, matching formal descriptions to the real 
world requires judgement and prudence that cannot be 
formalised. Moreover, the usual input to successful 
applications of probabilities, namely statistical data, is 
often lacking when we deal with software. This requires, for 

instance, restraint in using detailed 'structural' models (cf 
section 4.4). Instead, the lure of deducing formally correct 
results tempts users to trust complex models with little 
evidence that they apply to reality. We still see even 
extreme fallacies like system reliability models in which 
software failure probabilities, for lack of convenient 
estimates, are set to 0 or to arbitrary 'estimated' values. 
Informal expert opinions are often substituted both for 
trusted physical laws and for raw probabilistic inputs to 
models. Claims in numerical, probabilistic terms can thus 
be produced casually or used beyond their legitimate scope. 
While it is unavoidable for decision-makers to use expert 
judgement, they should be aware of its limits and of the 
need to challenge and cross-check all the critical bases of a 

decision. 

For combining disparate evidence, Bayesian Belief Nets 
(BBNs) are a promising candidate [7], but the need for 
caution remains. The Bayesian formalism enforces a 
rigorous probabilistic consistency. However, it guarantees 
conclusions that are only as trustworthy as the evidence 
items, and the assumed relationship between them, that go 
into creating a BBN. So, in spite of the explosion of 
interest in BBNs in recent years, there are still serious 
limitations to their use, mainly due to problems with their 
validation. There is considerable ongoing research on these 
issues, but assessments produced by BBNs must be seen 
with a critical eye, especially when dealing with critical 

systems. 

5 .6  Very Large-Sca le  Systems 
Very large 'systems of systems' are now built by the (often 
unplanned) aggregation of computer-based systems. This 
creates concerns that are outside the traditional domains of 
software and reliability engineering. 

In extending the practice of dependability engineering to 
such systems, one need is for modelling increasingly 
complex systems [10] without losing the ability to 
understand and to solve the models. Another is to avoid the 
risk that factors that were negligible in previous reliability 
problems become dominant, making the detailed models 
useless. A warning is sounded by the still frequent practice 
in reliability and safety estimates of disregarding the effects 
of software failures when assessing systems that are 
increasingly software-based. It may be that radically 
different models from those hitherto used must be integrated 
with traditional software reliability practice. Software has 
made it difficult to apply component-based reliability 
models familiar to hardware engineers and required black- 
box, sampling-based approaches to measurement and 
prediction. Likewise, for large-scale integrated systems we 
may need to borrow modelling practices that have been 
successful elsewhere, for instance in modelling the 
evolution of diseases or the propagation of disturbances in 
electrical distribution networks. 

Other factors in these large systems also require a more 
interdisciplinary approach to their dependabili ty.  
Deregulation and privatisation are a common trend in many 
industries that form the national infrastructures. This leads 
the industries concerned to scrutinise more stringently their 
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cost-dependability trade-offs. Here, concerns about large- 
scale societal vulnerabilities may justify demand for 
effective achievement and assessment of higher levels of 
reliability than would be required by the individual players. 
Some of the actors operate in novel or rapidly changing 
markets, like Internet applications. Dependability costs are 
seen up front, while losses from undependability lie in the 
future. In any case, large systems grow without a general 
design, and their emerging properties determine the 
dependability observed by their various users. Design, for 
these systems, is limited to industry's attempts to 
standardise or otherwise to influence customer behaviour, 
and to government regulation. The issues to be studied 
become the interplay of economic incentives, legal 
environment and technology development and their joint 
effect on the complex systems. 

5.7  Integration with Human Reliability 
A clear requirement in most software design is better 
attention by software designers to factors like the user's 
cognitive workload and mental models of the software's 
operation. But there are other areas in which engineering for 
reliability has to be integrated with 'human factors' and 
cognitive research. One such area concerns the diversity and 
complementarity between people and machines: both 
between users and computer systems, and between 
developers and mechanised aids. The early history of 
automation has brought new understanding of the strengths 
and weaknesses of humans as operators of machinery 
compared to those of automated machinery, i.e., of humans 
as designers of automation. This understanding has yet to 
be internalised by software engineering practice and 
research. Another useful direction is exploiting the progress 
of cognitive psychology applied to the mechanisms of 
human error for understanding the effects of software 
processes. While much ergonomic research has examined 
operator errors in dealing with automation, applications to 
design activities are limited. We should not expect an 
ability to predict the effectiveness of a software engineering 
method from first principles, but useful indications for 
evaluating and improving the reliability implications of 
software engineering methods. 

6 C O N C L U S I O N S  
An engineering approach to design must include 
dependability aspects. In software, progress in this direction 
has been slow, but is necessary for more efficient decisions 
by both individual actors and society. Increasing dependence 
on software increases the costs of undependability or of not 
matching dependability to needs. Some current trends, like 
that towards using more COTS components, create both 
opportunities and technical challenges for this progress. 
There are non-technical difficulties to overcome, in terms of 
education of users and developers and better communication 
between technical communities. The research challenges 
include both learning more about the effects of the practices 
for achieving dependability and learning better to organise 
knowledge to support judgement and decision-making. 
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