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Abstract—With software systems increasingly being employed
in critical contexts, assuring high reliability levels for large,
complex systems can incur huge verification costs. Existing
standards usually assign predefined risk levels to components in
the design phase, to provide some guidelines for the verification.
It is a rough-grained assignment that does not consider the costs
and does not provide sufficient modelling basis to let engineers
quantitatively optimize resources usage. Software reliability al-
location models partially address such issues, but they usually
make so many assumptions on the input parameters that their
application is difficult in practice. In this paper we try to reduce
this gap, proposing a reliability and testing resources allocation
model that is able to provide solutions at various levels of detail,
depending upon the information the engineer has about the
system. The model aims to quantitatively identify the most critical
components of software architecture in order to best assign the
testing resources to them. A tool for the solution of the model
is also developed. The model is applied to an empirical case
study, a program developed for the European Space Agency, to
verify model’s prediction abilities and evaluate the impact of the
parameter estimation errors on the prediction accuracy.

Index Terms—Reliability, Software Architecture, Software
Testing

I. INTRODUCTION

COMPLEX software systems are increasingly employed
in critical scenarios, such as air traffic control, railway

transportation, and medical devices. The criticality of such sce-
narios poses new challenges to software engineers, who need
to develop systems with assured high reliability levels while
at the same time keeping the development time and costs low.
Towards this aim, the development process of such systems
is usually complemented by several analysis techniques (e.g.,
hazard analysis, FTA, FMECA) in the requirement specifica-
tion, and in the design phase as well. Once the system has been
implemented, the verification process has to provide the final
assurance that the system meets the required reliability level.
The verification phase is usually responsible for the major
fraction of the overall costs, especially for critical systems. Ef-
ficacy of the verification phase strongly depends on the correct
identification of the most critical components in the software
architecture, as the available testing resources are usually
allotted based on the components’ risk levels. Identifying parts
of a complex system that are the major contributors to its
unreliability is not always an easy task, and consequently the
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testing resource allocation is most often based on engineering
judgement and hence suboptimal. Sometimes, engineers are
inclined to judge as “most critical” components that are the
most complex ones, or those that are the most used ones and
devote most of the testing efforts to them.
Some standards and methodologies1 for critical systems [1],
[2] suggest to assign predefined risk levels to components,
based on the risk level of the services in which they are in-
volved. This is clearly a rough-grained assignment that merely
provides some guidelines for the verification phase. Such
judgement-based approaches not only could lead to wrong
assignment (e.g., a less reliable, but rarely used component
could affect the total reliability less than a more reliable and
frequently used one), but they do not even provide sufficient
quantitative information in order to judiciously allocate testing
resources and quantify the reliability of the final system.
Allocation of testing resources based on quantitative reasoning
is essential to answer questions such as:
• How much risk does a component pose to the system?
• Do components at the same risk level have the same

impact on the system reliability?
• What is the impact of a change in the reliability of a

component on the system reliability?
Most importantly, non-quantitative approaches cannot
answer the following question:

• What is the reliability that each component needs to
achieve in order to assure a minimum system reliability
level, and at what cost?

We believe that a system analysis aiming at assuring the
required reliability while minimizing the testing costs needs
to be quantitative. Several researchers have tried to quantify
the required software components reliability that will assure a
minimum total system reliability. This optimization problem
has usually been addressed as reliability allocation problem.
Most of the papers in the software field coped with the design
phase and dealt with the redundancy reliability allocation [3],
[4], [5]; some authors also dealt with the problem in the
verification phase, where the issue is to allocate reliabilities to
be achieved during testing [6], [7]. Typically, these problems
are addressed by proposing some kind of model that allows
engineers to carry out an optimal allocation. However, none of
the models proposed so far meet the following requirements:

1) a model for reliability analysis of a software architecture
should explicitly describe the relationships among its

1These standards are about the safety assessment. Safety is the probability
that a system does not “catastrophically” fail in [0,t], while reliability is the
probability that the system does not fail in [0.t]. This difference does not affect
the model formulation and applicability; we will use reliability, for historical
reasons (i.e., the model is close to the reliability allocation models).
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components, in order to consider the effects of individual
component reliabilities on the system reliability;

2) the reliability of a complex system does not only de-
pend on the application components, but also on the
operational environment; thus, a model should also take
into account the reliability of the underlying software
layers, such as the Operating System. Indeed, due to
the intensive and continuous usage of OS services by
the application components, the OS reliability level has
a significant impact on the overall system reliability so
that it should not be neglected;

3) since in a critical application fault tolerance mechanisms
are increasingly adopted, a model should consider the
presence of such means of failures mitigation;

4) for a model to be useful in practice, it needs to be
flexible enough to give detailed answers when the user
has a lot of information, and to continue giving useful
indications, even though less accurately, when not much
information is available.

In this paper we propose an approach to quantitatively
identify the most critical components of a software architec-
ture in order to best assign the testing resources to them.
In particular, we present an optimization model for testing
resources allocation that includes all of the above-mentioned
aspects affecting the reliability of a complex software system.
In order to represent the software architecture, we employ the
so-called architecture-based reliability model; in particular a
Discrete Time Markov Chain (DTMC) type state-based model
is adopted. This allows us to explicitly consider the effects of
such architectural features as loops and conditional branching
on the overall reliability. Moreover, the architectural model
encompasses the operating system to consider its reliability
and its influence on the application.
The proposed optimization model also considers the most
common fault tolerance mechanisms (such as restart a com-
ponent, retry application as recovery mechanisms as also a
failover to a standby) that critical systems typically employ.
Furthermore, we try to impart the necessary flexibility to the
model by: (i) providing different levels of solutions according
to the information the user gives as input, and (ii) carrying out
a sensitivity analysis in order to analyze the effect of the vari-
ation of some parameters on the solution. Information needed
for model parameterization can be obtained by the user either
considering design/code information (such as UML diagrams)
and simulation before the testing of the system version under
consideration or by dynamically profiling a real execution from
system test cases of a previous version. Depending on the
availability and the accuracy of information, the user may
adopt one of the two approaches (or a combination of both).
Finally, the impact of performance testing time and the second-
order architectural effects are also considered for a greater
accuracy of the result.
The optimization model is implemented in a prototype tool,
which receives the model parameters (e.g., the DTMC transi-
tion probabilities) and the user options as inputs and provides
the solution by using an exact optimization technique (the
sequential quadratic programming algorithm).

The approach is then applied to an empirical case study to
verify the accuracy of the prediction abilities. The program
chosen consists of almost 10,000 lines of C code, and was
developed for the European Space Agency (ESA). Once we
built the DTMC architectural model, we predicted the amount
of testing needed for each component, in order to achieve a
predefined level of reliability. Then the software was tested
according to the predicted times and the actual achieved
reliability was compared with the predicted reliability. We also
evaluated the effect of the error in the parameter estimations
on the prediction accuracy.
The rest of this paper is organized as follows: Section II
provides an overview of related work, gives a basic back-
ground and introduces some terminology. Section III describes
the adopted architectural model and Section IV illustrates the
optimization model. Section V discusses the possible sources
of information about the parameters of the architecture and
its components, and how it can be retrieved. Finally, Section
VI discusses the experiments, followed by the conclusions in
Section VII.

II. RELATED WORK AND BACKGROUND

Lot of work in the past considered the optimal allocation of
the reliabilities to minimize a cost function, related to the de-
sign or the verification phase costs. Much initial research dealt
with hardware systems (e.g., the series-parallel redundancy-
allocation problem has been widely studied [8], [9], [10]);
software systems received attention more recently. Most of
work in the software area is concerned with the design phase,
in which the goal is to select the right set of components
with a known reliability and the amount of redundancy for
each one of them, minimizing the total cost under a reliability
constraint [11], or maximizing the total reliability under a cost
constraint [3], [4], [5] (more specifically, this is a redundancy
reliability allocation problem).
In some cases they also considered the redundancy strategies
and the hardware. For instance, the work in [3] defines a model
comparing different redundancy strategies at different level,
giving as output the best redundancy strategy to achieve the
required reliability.
When redundancy is not considered, the reliability allocation
problem can still refer either to the design or to the verification
phase. For instance, authors in [12] proposed an economic
model to allocate reliabilities during the design phase, mini-
mizing a cost function depending on fixed development costs
and on a previously experienced failure decrease cost. The
work in [13] also refers to the design phase and authors define
a general-behavior cost function to relate the costs to the
reliability of a component.
Not many papers considered the problem in the software
verification phase, where the issue is to allocate reliabilities
that components need to achieve during their testing. Among
these papers, authors in [6], [14], proposed an optimization
model with the cost function based on well-known reliability
growth models. They also include the use of a coverage factor
for each component, to take into account the possibility that a
failure in a component could be tolerated (but fault tolerance
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mechanisms are not explicitly taken into account, and the
coverage factor is assumed to be known). The authors in [7]
also try to allocate optimal testing times to the components in
a software system (here the reliability-growth model is limited
to the Hyper-Geometric (S-shaped) Model).
Some of the cited papers [3], [6], [14] also consider the
solution for multiple applications; i.e., they aim to satisfy
reliability requirements for a set of applications. However,
none of the cited papers explicitly considers the architecture
of the application. Work in [12] and [15], as well as [16]
and [3], consider the software architecture implicitly, by taking
into account the utilization of each component with a factor
assumed to be known. Among these, only Everett [16]
refers to the verification phase. Almost all of the cited papers
about reliability allocation belong to the class of the so-
called additive models [17]. However, there are other ways to
describe a software application, which can explicitly consider
the architecture and lend themselves to an easy integration
with the other aspects described in the introduction, such as
the Operating System, the fault tolerance mechanisms, the
sensitivity analysis and the performance testing. They are the
state-based models and the path-based models. Both the latter
ones and additive models belong to the class of the so-called
Architecture-based models.
This kind of models have gained importance since the advent
of object-oriented and component-based systems, when the
need to consider the internal structure of the software to
properly characterize its reliability has become important (in
the past, reliability analysis was conducted mainly considering
the software as a black box). This led to an increasing
interest in the architecture-based reliability and performance
analysis [18], [19], [20], [21].
The main features of the three mentioned classes of
architecture-based models are the following [17]:

• State-based models use the control flow graph to repre-
sent software architecture; they assume that the transfer of
control among components has a Markov property, mod-
elling the architecture as a Discrete Time Markov Chain
(DTMC) a Continuous Time Markov Chain (CTMC) or
semi Markov Process (SMP).

• Path-based models compute the system reliability consid-
ering the possible execution paths of the program.

• Additive-models, mentioned above, where the component
reliabilities are modelled by non-homogeneous Poisson
process (NHPP) and the system failure intensity is com-
puted as the sum of the individual components failure
intensities.

So far, state-based and path-based models have been mainly
used to analyze system reliability starting from its component
reliabilities, while the reliability allocation problem has been
mainly based on additive models, as described above. In this
paper we try to leverage state-based models ability of more
accurate capture of the architecture (they can describe the
architecture explicitly), by combining it with the NHPP models
ability in relating the reliability and the testing time, as shown
in Section IV. State-based models can be further categorized
into composite and hierarchical models [22]. In the former, the

software architecture and the failure behavior of the software
are combined in the same model, while hierarchical approach
separately solves the architectural model and then superim-
poses the failure behavior of the components on the solution.
Although hierarchical models provide and approximation to
the composite model solution, they are more flexible and
computationally tractable. In the composite model, evaluating
different architectural alternatives or the effect of changing an
individual components behavior is computationally expensive.
Unlike hierarchical models, they are also subject to the prob-
lem of stiffness [23]. To cope with the accuracy gap between
hierarchical and composite models, Gokhale and Trivedi [24]
included the second-order architectural effects in hierarchical
models. In this paper, hierarchical modeling approach with the
second-order architectural effects is used.

A. Terminology

In this section, we briefly introduce some terms used in the
rest of the paper. Architecture-based models are conceived to
relate the behavior of the system (expressed by some attribute,
e.g., the reliability) to the behavior of its parts. In the literature,
the parts of the application under study are often referred to
as “components”. Although the notion of component is not
well defined and universally accepted (except for applications
based on component models such as CCM, EJB or DCOM)2,
in the context of architecture-based analysis it is intended
as a logically independent unit performing a well-defined
function [19]. The level of decomposition, which defines the
granularity of components, is an analysis choice, addressed by
a trade off between a large number of small units and a small
number of large units.
In order to optimally allocate the testing resources to compo-
nents while achieving a reliability goal, a relation between
reliability and testing is needed. For this purpose, we use
Software Reliability Growth Models (SRGM), i.e., models that
describe how reliability grows as software is being improved
(by faults detection and removal). There is an extensive
body of literature on SRGMs and many different models are
available.
Such models are usually calibrated using failure data collected
during testing; they are then employed for predictions, in order
to answer questions such as “how long to test a software”, or
“how many faults likely remained in the software”, and so
on. In the context of SRGMs, the term failure intensity refers
to the number of failures encountered per unit time; its form
determines a wide variety of SRGMs.
The time dimension over which reliability is assessed to grow,
can be expressed as calendar time, clock time, CPU execution
time, number of test-runs, or some similar measures. However,
in general, the testing effort and its effectiveness do not vary
linearly with time. The functions that describe how an effort
is distributed over the exposure period, and how effective it
is, are referred to as testing-effort functions (TEF) [27]. To
address this issue, some SRGMs [27], [29], [30] also include

2Respectively, “The Corba Component Model” (http://www.omg.org), “En-
terprise Java Beans” (http://java.sun.con/products/ejb) and “Component Object
Model” (http://www.miscrosoft.com/com).
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a TEF (Testing Effort Function) to describe this relation.
The model that we propose in the next sections uses SRGMs,
one for each component, to describe the relation between the
reliability of a component and the testing effort devoted to
it. This relation can be represented as TE = f(λ), where TE
stands for Testing Effort and λ is the desired failure intensity.
Without loss of generality, we can consider “testing time” in
place of “testing effort” (T = f(λ)): in fact, if the user of the
model wants to consider the testing effort variation (for one
or more components), s/he simply chooses an SRGM for that
component that includes a Testing Effort Function (TEF) (like
the cited ones) and put it in the model like any other SRGM
(as described in the section IV). Hence, in the following, we
refer to testing time and testing effort synonymously.

III. ARCHITECTURAL MODEL

We describe the software architecture by an absorbing
DTMC, to represent terminating applications (as opposed to
irreducible DTMCs, which are more suitable to represent
continuously running applications.) A DTMC is characterized
by its states and transition probabilities among the states. The
one-step transition probability matrix P = [pi,j] is a stochastic
matrix so that all the elements in a row of P add up to 1 and
each of the pi,j values lies in the range [0, 1]. The one-step
transition probability matrix with n states and m absorbing
states can be partitioned as:

P =
(
Q C
0 I

)
(1)

where Q is an (n-m) by (n-m) sub-stochastic matrix (with
at least one row sum < 1), I is an m by m identity matrix, 0 is
an m by (n -m) matrix of zeros and C an (n-m) by m matrix.
If we denote with P k the k-step transition probability matrix
(where the entry (i,j) of the submatrix Qk is the probability
of arriving in the state j from the state i after k steps), it can
be shown [25], [27] that the so-called fundamental matrix M
is obtained as

M = (I −Q)−1 = I +Q+Q2 + · · ·+Qk =
∞∑
k=0

Qk (2)

Denoting with Xi,j , the number of visits from the state i to
the state j before absorption, it can be shown that the expected
number of visits from i to j, i.e., vi,j = E[Xi,j], is the mi,j
entry of the fundamental matrix. Thus, the expected number
of visits starting from the initial state to the state j is:

v1,j = m1,j (3)

These values are called expected visit counts; we denote
them with Vj = v1,j . They are particularly useful to describe
the usage of each component in the application control flow.
An alternative form to compute Vj values is described in [25].
We can also compute the variance of visit counts, using
M [28]. Denote with σ2

i,j the variance of the number of visits
to j starting from i. If we indicate with MD the diagonal matrix
with:

MD =
{
mi,j if i = j
0 otherwise (4)

and define M2 = [m2
i,j], we have

σ2 = M(2MD − I)−M2 (5)

Hence
V ar[Xi,j ] = σ2

i,j (6)

To represent the application as a DTMC, we consider
its control flow graph. Assuming that an application has n
components, with the initial component indexed by 1 and the
final component by n, DTMC states represent the components
and the transition from state i to state j represents the transfer
of control from component i to component j. Following the
procedure explained above, we can compute the expected
number of visits to each component and its variance.
The DTMC representation, along with the concept of visit
counts, has been used to express the system reliability as a
function of component reliabilities.
In particular, denoting with Ri the reliability of component i,
the system reliability is the product of individual reliabilities
raised to the power of the number of visits to each component,
denoted by X1,i (i.e., each component reliability is multiplied
by itself as many times as the number of times it is visited
starting from the first component); i.e., R ≈

∏n
i R

X1,i

i . Since
the number of visits to a component is a random variable
(except for the last component), the so-computed system
reliability is also a random variable. Thus, denoting with E[R]
the total expected reliability of the system, we have:

E[R] ≈
n∏
i

E[RX1,i

i ] ≈ (
n−1∏
i

R
E[X1,i]
i )Rn (7)

where E[X1,i] is the expected number of visits to com-
ponent i (and X1,i is always 1 for the final component n).
The adopted model is known to belong to the class of hierar-
chical approaches; this kind of models, though approximate,
lead to quicker and more tractable solutions than composite
models [18]. To also take into account the second-order
architectural effects and obtain a more accurate result, we can
expand the above equation according to the Taylor series, as
shown in [28]:

E[R] = [
n−1∏
i

(Rm1,i

i +
1
2
(Rm1,i

i )(logRi)2σ2
1,i)]Rn (8)

Where m1,i = E[X1,i] and σ2
1,i = Var[X1,i] (since X1,n is

always 1, m1,n = 1 and σ2
1,n = 0).

The second-order architectural effects are captured by the
variance of the number of visits. The only source of approx-
imation is the Taylor series cut-off. Note that the described
model, as most of the architecture-based models, assumes
independent failures among components. A more complex
analysis would need to also consider failure dependencies. To
complete the architectural model description, we add a state
representing the Operating System (OS). The OS is considered
as a component accessed through the system call interface.
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Transitions to the Operating System represent the transfer of
control from components to the OS, i.e., a service request
carried out via a system call.

Assume for now that the OS reliability per request is known
and denote it with K (further details about how to estimate this
value are in Section V); we have that

K ′ = E[KX1,OS ] = (Km1,OS +
1
2
(Km1,OS )(logK)2σ2

1,OS)
(9)

where m1,OS and σ2
1,OS respectively denote the mean and the

variance in the number of visits to the OS. In the same manner,
to simplify the notation, define:

R′i = E[RX1,i

i ] = (Rm1,i

i +
1
2
(Rm1,i

i )(logRi)2σ2
1,i) (10)

and the expression 8 becomes:

E[R] = [
n−1∏
i

R′i]Rn ∗K ′ (11)

In the optimization problem, E[R] is required to be greater
than a predefined level, RMIN (RMIN is an input) and Ri
values are the decision variables (i.e., they are the output),
while K is a given constant.

IV. OPTIMIZATION MODEL

In this Section we present the optimization model starting
from a basic form and then enrich it by adding several
features. The goal of the optimization model is to find the
best combination of testing efforts to be devoted to each
component so that they achieve a reliability level that can
assure an overall reliability E[R] ≥ RMIN . Based on this
model output, the tester will perform the verification activities
focusing greater efforts on more critical components. If we
assume that the reliability of each component grows with the
testing time devoted to it, we can describe this relation by
a software reliability growth model (SRGM), as in the cited
additive models. This relation can be represented as T = f(λ),
where T is the Testing Time and λ is the failure intensity.
The general optimization model will then look like:
determine the optimal values of T1, T2, . . . , Tn so as to

Minimize T =
n∑
i=1

Ti =
n∑
i=1

fi(λi) (12.a)

subject to:

E[R] = [
n−1∏
i

R′i]Rn ∗K ′ ≥ RMIN (12.b)

with i = 1 . . . n-1, n components and T indicating the total
testing time for the application to get a total reliability E[R]
≥ RMIN . Here λi variables are the decision variables (which
determine the Ti variables and that are of course present in
the constraint factors, via Ri = exp[−

∫ ti
0
λi(θ)dθ]).

Note that after the application has been tested according to the
output of the model and then released, the component failure
intensities are assumed to be constant; this is reasonable if the

application developer does not debug or change the compo-
nent during the operational phase.3 With this assumption, the
reliability of the component i at the end of the testing will be:

Ri = exp[−
∫ ti

0

λi(θ)dθ] = exp[−λiti] (13)

with ti is the expected execution time per visit to component i;
this equation relates the failure intensity of component i to its
reliability. Each component can be characterized by a different
SRGM (among the plethora of proposed ones). For instance,
if we assume the Goel-Okumoto model for all the components
(for which λ(Ti) = aigie−giTi ), the objective function becomes
T =

∑
i(1/giln(aigi/λi)), where ai is the expected number

of initial faults, λi is the desired failure intensity and gi is
the decay parameter. Other SRGMs can be used to represent
the reliability-testing time relation for each component. This
general model can be specialized according to the information
the tester has, in order to get different accuracy levels in
the solution in a flexible way. Assume that the tester has no
knowledge about the components and their previous history.
In other words, s/he does not have any historical data related
to previous testing campaigns performed on the components
(or on similar ones), and s/he is not able to obtain such
information from the current version. Without such knowledge,
s/he cannot build the SRGMs for these. In this case a basic,
minimal solution can be obtained. In particular, the output
will be the reliability that each component needs to achieve,
assuming that the testing time to achieve a failure intensity λ
is the same for all components, as though they were described
by the same SRGM with identical parameters (i.e., fi(λi) =
f (λi) ). In this case, the model will then look like:

Minimize T =
n∑
i=1

Ti =
n∑
i=1

fi(λi) =
n∑
i=1

f(λi)

(14.a)
subject to:

E[R] = [
n−1∏
i

R′i]Rn ∗K ′ ≥ RMIN (14.b)

In other words, in this case the model does not predict the test-
ing times needed to achieve the required reliability. Therefore,
the results have to be interpreted as an indication of the most
critical components in the architecture or, equivalently, as the
reliability values each component needs to achieve to satisfy
E[R] = RMIN . Measuring the reliability during the testing,
(e.g. as in [31]), the engineers will know when the testing
for each component can be stopped. We call this solution the
basic solution.
If some qualitative indications about the testing cost of com-
ponents are available, it is possible to include them as weights
in the objective function. For instance, information about
process/product metrics, that is easily obtainable, can be used
to estimate their fault content. Regression trees [32] are very

3This assumption, anyway, is not that important for us, because the problem
of estimating the reliability variation during operation or maintenance is a
different problem; for our purpose, i.e, satisfying the reliability constraint at
the software release (i.e., at the end of testing phase) in minimal tesitng time,
the stated assumption is not that relevant.
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useful for this purpose, but also the simpler fault density
approach [33] can be used. By including weights proportional
to the estimated fault content, the model solution not only
gives the reliabilities the components need to achieve, but
also an indication about the relative testing efforts to make
them achieve such reliabilities, according to the components
complexity. The previous assumption is relaxed and becomes:
each component needs an amount of testing time that is
proportional to its fault content, and hence, indirectly to its
complexity. A possible way to include the weights in the
objective function is the following:

Ti = f(
λi

1 + rWeighti
) (15)

leading to the following model:

Minimize T =
n∑
i=1

Ti =
n∑
i=1

f(
λi

1 + rWeighti
) (16.a)

subject to:

E[R] = [
n−1∏
i

R′i]Rn ∗K ′ ≥ RMIN (16.b)

where f (λi) is a default SRGM, the same for every
component with the same parameter as in the basic solution,
and rWeighti (i.e., reliability weights) is given by the
proportion of the fault content in the component i with
respect to the entire system’s estimated fault content (i.e.
faultContenti /

∑
i faultContenti). We call this solution

extended solution.
Note that in order for the weights to really increase the
needed testing time when they increase, the f(λ) function (the
inverse of the default SRGM) is preferable to be a decreasing
function, rather than an increasing/decreasing function (as
for instance, the one derived by the Goel-Okumoto SRGM),
and a simple function to be evaluated. The adoption of a
non-decreasing function would require some expedients to
be adopted for it to work correctly; however, since the only
important requirement is that this function be the same for
all the components, it makes no sense choosing a complex
function. The most appropriate choice is a simple SRGM,
like the Goel-Okumoto model.

The general model described by the equation 12 can be fully
exploited when engineers also collect information about the
failure behavior of the components. In this case the optimal
testing times needed for each component can be predicted.
In fact, data about the components failure behavior allows
engineers to build a reliability growth model for each one of
the component.
Engineers often collect this kind of information during the
testing process for various purposes, like improving the pro-
cess, assessing the achieved reliability after some testing time,
building reliability growth models, and use it in the same or
in successive projects for scheduling optimal release policies.
In this case, failure data, (i.e., interfailure times or the fault
density along with the coverage function [18]) are used to
fit the best SRGM (the issue of how to fit an SRGM for

the current project is described in Section V). By solving
the model with the SRGMs, the absolute testing times to
be devoted to each component are obtained. The accuracy
of the result depends on how well the testing processes of
the components are described by their corresponding SRGMs.
The previous assumptions are replaced by the common SRGM
assumptions (as summarized in [34] and many other related
papers). We call this general solution, epressed by equation
12, complete solution.
Finally, note that the model expression 12 is generalized
to the case of multiple applications by adding a reliability
expression, of the form of equation 11, for each application as
a constraint. The solution for multiple-applications problems
usually requires heuristic approaches (a genetic algorithm in
our case).

A. Performance Testing Time Contribution

During the testing process of a critical application, part of
testing resources could be reserved to tune the application
performance in order to fulfill performance requirements. This
is especially true for real-time systems. To also consider the
additional testing resources each component can require for
performance testing we should know the relation between the
performance improvement and the performance testing time
(i.e., a sort of performance growth model). Even if this could
be a topic of future research, more realistically it is difficult to
infer such relations, differently from reliability growth models.
For this reason, it is easier to include the performance testing
time contributions as weights in the objective function. In the
extended solution case, where no SRGM was available, we
saw that the rWeight values represent the assumed proportion-
ality between the testing time and the estimated fault content
(and indirectly to process/product metrics). In a similar way,
the performance weights will represent the proportionality
between the performance testing time and some performance
metric, e.g., the expected total execution time for a component
(ETET). Denoting with ti the expected execution time per
visit for the component i, the ETETi is given by ETETi
= Viti. The argmaxi{Viti} is the performance bottleneck of
the application [18]. Thus, assuming that performance testing
time will be proportionally devoted to components according
to their ETETi value, we can add a weight, named pWeight,
in the objective function computed as (ETETi /

∑
iETETi).

This weight represents the performance testing time contribu-
tion. In this way, performance bottlenecks will receive more
performance testing time. A possible objective function for the
extended solution (and the basic one, if rWeighti = 0) can be
the following:

Minimize T =
n∑
i=1

(f(
λi

1 + rWeighti
) ∗ [1 + PF ∗ pWeighti])

(17)
where the first term in the sum has the same meaning as in

equation 16 and PF is a factor between 0 and 1 representing the
percentage of time the tester wants to devote to performance
tests. When more information is available (like maximum
tolerable execution times for each component, as in the case of
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real time systems) different weights are possible (e.g., ranking
the component based on the difference between the total
expected execution time and the imposed maximum execution
time; the greater is the difference, the more performance
testing time they need). For the complete solution, when the
objective function is the sum of the testing time functions
fi(λi) (i.e. the inverse of SRGMs), the performance weights,
pWeight, can be added in the same way, as a penalty, due to the
“performance testing” time to be devoted to each component.
We thus have:

Minimize T =
n∑
i=1

(fi(λi) ∗ [1 + PF ∗ pWeighti]) (18)

In both cases, accounting for performance testing time will
be optional (if the tester does not want to account for it, PF
will be 0). In the future, we plan to explore the relation among
performance testing times and performance improvement, in
order to formulate a testing resource allocation problem, with
both minimum reliability and minimum performance levels as
constraints.

B. Fault Tolerance Mechanisms

The model considers the potential means of failure mit-
igation that one or more components could employ. Main
mechanisms that are adopted in critical systems, namely, the
restart-component, retry-application and failover to a standby
are considered here. Denote as “subsystem C” a component
along with its standby version (in the case of no standby
version, C denotes a single component). The fault tolerance
mechanisms are considered in the following order (Figure
1): if a failure occurs, and the failure is detected, the first
recovery attempt is to restart-component operation; the second
recovery attempt, if the first one fails, is to retry-application
and the final operation is a failover to a standby version,
once the other actions have failed. The expression we derive
below for the reliability of such a subsystem can describe
components implementing one or more of these fault tolerance
mechanisms. Other mechanisms can easily be added to the
model, by deriving the corresponding reliability expression.

Fig. 1. Fault Tolerance Mechanisms

In this case, we need to consider the following events
in order to derive an expression for the reliability of the
subsystem C:

• DETFailed = detection failed given a failure occurred
• RESFailed = the restart failed given a failure and detec-

tion occurred
• RETFailed = the retry failed, given a failure occurred,

detection occurred and the restart failed
• FOFailed = the failover failed given a failure occurred,

detection occurred, the restart failed and the retry also
failed.

Describing the component reliabilities as in the equation 13,
the failure probability of a component will be Fi = 1 - Ri =
1 - exp[-λt] , i.e. the time-to-failure (TTF) has an exponential
distribution. When a failure occurs in the primary component
of a subsystem C, the following group of events (we denote
them as E1, E2, E3) can take place:

1) The detection fails, or the detection succeeds
but the restart, retry and failover operations
subsequently fail (i.e. PE1 = PDETF ailed

+ (1 -
PDETF ailed

)(PRESF ailed
PRETF ailed

PFOF ailed
): in this

case the failure has not been covered and the conditional
TTF distribution of the subsystem C is given by the
TTF of the primary version:

EXP (λ) = 1− e−λt (19)

2) The detection succeeds and the restart also succeeds,
or the retry succeeds after the restart failed (i.e. PE2

= (1 - PDETF ailed
)[(1 - PRESF ailed

)+PRESF ailed
(1 -

PRETF ailed
)]). In this case, the failure has been covered

and the same component starts operating from scratch.
Thus, the conditional TTF distribution is given by the
sequence of two identical exponentially distribution rep-
resenting the same component rerun, i.e., by a 2-stage
Erlang:

ERLANG(λ, 2) = 1− (e−λt(1 + λt))) (20)

3) The detection succeeds, the restart/retry operations fail
and the failover to a standby version succeeds (i.e.PE3 =
(1 - PDETF ailed

)[PRESF ailed
PRETF ailed

(1 - PFOF ailed
)]

). Thus, after a failure occurrence, the standby version
will be activated. When this event occurs, if the standby
is an identical copy of the primary version, the condi-
tional TTF distribution is given again by the equation
20. If a different version is used, the distribution of
the conditional TTF is given by the sequence of two
independent exponential distributions (describing the
primary and the standby TTF), which is known to be
a Hypoexponential distribution. Given λ and λ1, the
failure intensities respectively of the primary version and
its standby, the TTF distribution will be

HY PO(λ, λ1) = 1− (
λ1

λ1 − λ
)e−λt + (

λ

λ1 − λ
)e−λ1t

(21)
The most general reliability expression, for a component that
owns all of the considered mitigation means, will be:

RC = 1− [PE1 ∗ EXP (λ) + PE2 ∗ ERLANG(λ, 2)+
+PE3 ∗ (sameVersion ∗ ERLANG(λ, 2)+

+!sameVersion ∗HY PO(λ, λ1))]
(22)
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where sameVersion is 1 if the standby is identical to the
primary copy, 0 otherwise. If a component does not have any
mitigation means, the probabilities PRESF ailed

, PRETF ailed

PFOF ailed
will be 1 and PE1 will also be 1, while PE2 and

PE3 will be 0:
RC = 1− EXP (λ) (23)

If a component has only the restart/retry mechanism and not
a standby version, the PFOF ailed = 1, PE3 = 0 and the
expression becomes:

RC = 1− [EXP (λ)PE1 + ERLANG(λ, 2)PE2 ] (24)

Finally, if a component has a stand-by version, but not the
restart/retry mechanism, PRESF ailed

and PRETF ailed
are 1,

PE2 = 0 and the expression is:

RC = 1− [PE1 ∗ EXP (λ)+
+PE3 ∗ (sameVersion ∗ ERLANG(λ, 2)+

+sameVersion ∗HY PO(λ, λ1))]
(25)

By replacing Ri by the RCi
expression in the equation 10,

the model will be described by the following:

Minimize T =
n∑
i=1

(fi(λi)) (26)

subject to:

E[R] = [
n−1∏
i

R′Ci
]RCn ∗K ′ ≥ RMIN

This general form allows adding any other failure mitigation
means for the component i, by finding the corresponding
expression for RCi . Similarly, if one wants to adopt more com-
plex expressions to describe the reliability of a subsystem C, it
is sufficent to replace the discussed RCi

expressions with the
new expression (for instance, in the discussed expression for
the failover to a standby version, the statistical independence is
assumed; the RCi expression can be replaced by more complex
expressions accounting for any form of dependence). The
parameters estimation (PDETF ailed

, PRESF ailed
, PRETF ailed

,
PFOF ailed

) is briefly discussed in the next Section.

V. INFORMATION EXTRACTION

The described approach is designed to provide different
levels of solution according to the available information. To
obtain a minimal solution, the basic information to be provided
is related to the architecture (components identification, tran-
sition probabilities), and each component (expected execution
time per visit (t) or expected total execution time (ETET)
and the OS reliability). Additional information about the
component fault density and some process/products metrics
allows for computing the extended solution. Further infor-
mation about the interfailure times, or the coverage testing
function / faults contents for the components allows to obtain
the SRGMs, and thus the complete solution. The ETET (or
equivalently t) for the components also allows the performance
testing time to be included in the solution. Finally, to include
one of the described fault tolerance mechanisms, the corre-
sponding parameters need to be estimated.

Since the model results have to be applied in the testing
phase, there are basically two different ways to obtain such
information: by design/code information and simulation before
the testing or by dynamically profiling a real execution from
system test cases of a previous version. The former refers
to design documents (such as UML diagrams), and to static
code analysis tools (mainly static profiling techniques and
simulation tools). The latter refers to the execution of the
system test cases, which emulate the system functionalities
(thus, in this case a previous version of the software has
to be profiled, since for the current version the testing still
has not started). Dynamic profiling solution assumes that
the executions will represent the real operational usage; this
is generally accomplished in two ways: by assessing the
operational profile and assigning an execution probability to
each functionality or by shuffling and re-executing the system
functional test cases, averaging the results.
Neither the design/code nor the dynamic profiling approach is
the best one for all the parameters. An approach can be better
for some parameters and worse for others.
The advantage of design/code-based estimations is that it relies
on the current system version and not on a previous one.
On the other hand, for some information (such as the ETET
or transition probabilities) the dynamic profiling approach
can be easier to use. As for the accuracy, if the system
does not change much between the profiled version and the
current version, execution traces would be more accurate than
design-based approaches; but if the current version introduced
significant changes in the code, a design-based approach would
be better. If possible, a combination of both is probably the
best solution: values obtained from past execution traces can
be refined by reflecting the changes in the new version (which
could have altered some values).
A third important way can be useful for both the approaches:
expert judgments and historical data from similar systems.
Basic information could be obtained as follows:
• Architecture: components (at each granularity level)

are normally identifiable from design documents. When
documents are not available, the architecture can be
extracted by using some source code4 as well as object
code extraction tools [35]. It can also be derived by
traces resulting from a dynamic profiling tool, such as
gprof5. Transition probabilities can also be derived by
both approaches. As for the design phase, the estimation
can be accomplished by a scenario-based approach [36],
by simulation, by static profiling of the execution or
by interviewing the program users, as in [31]. As for
the dynamic profiling, transition probabilities can be
estimated by counting the number of times the control
passes from a component to others (or to itself): point
estimate of the transition probability from component i
to component j will be given by (NumberOfTransfersi,j
/
∑
j NumberOfTransferi,j).

In particular, from the output of a profiler tool, the flat

4for instance, SWAGkit tool. Available from:
http://www.swag.uwaterloo.ca/swag-1354kit/index.html.

5GNU gprof. Available from: www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html.
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profile and the call graph can be obtained: information
provided by the flat profile (i.e., how much time a
program spent in each function and how many times
that function was called) and by the call graph (i.e.
information regarding the other functions calling a
particular function and the functions called by it) allows
us to construct the DTMC model and also get the
relevant transition probabilities. A possible way to get
these parameters is outlined in [19]. Finally, since the
OS is usually not subject to changes, its reliability can be
estimated by dynamic profiling the previous version or
also other similar systems using the same OS. The point
estimate is K = 1− limnF/N , where F is the number
of observed OS failures and N is the number of test cases.

• Components: The ETET of a component (or equiva-
lently t) in the design phase can be obtained as in the
case of the transition probabilities. Simulation could be
more suitable in this case. However, this parameter is
more easily obtainable experimentally, by the profiling
approach, since the time spent in a component is an
output of many profiler tools. Note that the accuracy
of the expected time per visit, t, also depends on the
granularity level chosen for a visit: for instance, in [18] a
visit is intended as the execution of a basic block6 of
instruction (that in average was 2 lines of code) and,
as a result, the expected time per visit did not differ
significantly among visits. This consideration also stands
for the transition probabilities accuracy. For the extended
solution, we need an estimation of the component fault
contents, to compute rWeight values. Following the fault
density approach [33], we can estimate the fault density
(FD) from past experience of the same system (previous
versions) or similar systems, or by assuming common val-
ues from the literature or also by expert’s judgment. The
fault content of component i will be φi = FD ∗ LOCi,
where LOC is the number of code lines. Following the
regression trees approach [32], we still need the estimated
fault content of the system and some complexity metrics
of the components to derive a more accurate estimation
than the FD approach of the components’ fault contents.
Finally, for the complete solution, the data necessary
to build the SRGMs can be the interfailure times or
alternatively the testing coverage function along with the
estimated component fault content [37]. Both of these
are obtainable by the dynamic profiling approach (of the
previous as well as the current version) or by historical
data from the same or similar components.
In particular, when a component does not undergo sig-
nificant changes from version to version, the SRGM
parameters estimation based on the collected failure data
can be used; when a component is significantly changed
in the new version, some parameters can still be built
using the collected data and refined through the current

6A basic block, or simply a block, is a sequence of instructions that, except
for the last instruction, is free of branches and function calls. The instructions
in any basic block are either executed all together, or not at all.

version information, while others are completely to be
estimated from the current version information (e.g.,
the initial fault content, a common parameter, can be
estimated considering the complexity metrics of the new
version, with the fault density approach or regression
trees). Some recent studies [34], estimating the number
of faults during the current version testing, reported
that after about a 25% of the total testing time, several
SRGMs (both finite and infinite NHPP models) prediction
accuracy deviated by only 20%. For a testing resource
allocation problem, this means that initially the computed
resources allocation will be affected by SRGM errors, but
dynamically re-computing the optimal allocation at some
time intervals will give more and more accurate results.
It is however worth to point out that SRGMs are known
to give good results even when data partly violates the
model’s assumptions [34], [38] they are based on, and
their usage is therefore encouraged.

Similar approaches can be used to estimate the parameters for
the fault tolerance mechanisms. Depending upon the actual
mechanisms used, the failure probability of the failure detec-
tion, restart/retry or failover operations need to be estimated.
In particular, some potential solutions are:
• Estimating the values from historical data form previous

similar systems or common values assumed for the fault
tolerance manager components in other critical systems
or from the literature.

• Doing a fault injection campaign and obtain:
– #Failed detections / #faults injected
– #Failed restarts / #attempted restarts
– #Failed retries / #attempted retries
– #Failed failover / #attempted failover

It is finally worth to point out that for all the cited parameters
expert judgment should not be neglected and should always
be used to refine the other estimation method results.
In general, it is difficult to have a common method to assess
the quality of the extracted information and to evaluate how
much it impacts on results. However, we believe that the
most effective way to do this, is to evaluate the impact of
the information quality on the specific model where it is
used, by performing a sensitivity analysis on all the estimated
parameters (as we did in the case study). This method is at
once practical and accurate. It allows us to understand and
balance possible estimation errors of input parameters (caused
by the low quality of extracted information) and their effects
on the solution.

VI. EXPERIMENTS AND RESULTS

The case study chosen for illustrative purpose is an ap-
plication, written in C, developed for the European Space
Agency. It is a program to provide user interface for the
configuration of an array of antennas. The program consists of
about 10000 lines of code. Its purpose is to prepare a data file
according to a predefined format and characteristics from a
user, given the array antenna configuration described using
an appropriate Array Definition Language. The program is
divided into three main subsystems: the Parser module, the
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Computational module and the Formatting module.
This case study has been used in other studies about reliability
analysis and evaluation (e.g., in [31],[19]),
Figure 2 shows the architectural model of the system.

Fig. 2. Software Architecture

The granularity of component (i.e., the level of decompo-
sition), is an analysis choice that depends on the needs. In
general, few large components results in easier computational
analyses and in a greater amount of available data that allow us
to build an accurate SRGM (particularly useful in the case of
complete solution). The choice of component granularity also
depends on how much they are decoupled. High decoupling
indicates that components can be more independently tested
than with coupled components: this enables the possibility to
better schedule testing activities and organize the testing team
to work on different components, by using results obtained
with the allocation model.
The granularity of component, in this case, is chosen to be a
subsystem. No fault tolerance mechanism, as those described
above, is present in this system. All the described kinds of
solution (i.e., basic, extended and complete, with or without
performance, with or without fault tolerance means, single or
multiple applications) can be obtained with the implemented
tool, depending on the features of the application under
study. In the conducted experiments we computed a single-
application complete solution, with performance and without
fault tolerance means. To estimate the parameters we used a
hybrid approach, exploiting dynamic profiling and design/code
information. In particular, the experimental procedure is out-
lined in the following basic steps:

1) Creation of a faulty version of the program, by rein-
serting faults belonging to real fault set discovered
during integration testing and operational usage (Table
I). This faulty version emulates the previous version of
the application. Note that it is likely that the version of
the application we used contains very few faults (except
the ones inserted by us), since it has been extensively
used without having failures for a long time.

2) Testing execution for the faulty version for a certain
amount of total testing time. Only a fraction of the
injected faults are removed. During the tests of this
“previous version”, the application is profiled. From
execution traces the DTMC model and the transition
probabilities are obtained. The OS is included among
the components. Failure data and execution times are
also collected during this phase.

TABLE I
TYPES OF INJECTED FAULTS

Fault Types and Subtypes #Injected Faults Type Number
Logic omitted or incorrect
Forgotten cases or steps 4 1
Unnecessary Functions 2 2
Missing Condition Test 10 3
Checking Wrong Variable 4 4
Computational Problems
Equation insufficient or incorrect 20 5
Interface incorrect or incomplete
Module mismatch 6 6
Data Handling Problems
Data initialized incorrectly 4 7
Data accessed or stored incorrectly 20 8
Total 70

3) Based on the collected failure data, an SRGM for
each component is determined. We used SREPT [39]
functionalities to obtain the SRGMs.

4) Applying the optimization model, testing times for each
component is predicted for the current version. Our tool
uses the sequential quadratic programming algorithm
to solve the non-linear constrained optimization prob-
lem [40]. The current version is then tested according
to the computed test times allocation.

5) At the end of the testing, the reliability predicted by the
model is compared with the actual achieved reliability,
computed as by (1 − limnNf/N ), where Nf is the
number of observed failures and N is the number of
executions of input cases. The prediction error is then
analyzed against the possible prediction errors that could
occur in the (i) transition probabilities estimation, (ii) in
the SRGMs and (iii) in the OS reliability estimation, by
carrying out a sensitivity analysis.

A. Results and Analysis

Step 1
According to the described steps, we injected 70 faults in the
software (31, 28 and 11 respectively in the component 1, 2
and 3) based on the fault categories of Table I. An excerpt
of the injected faults with the corresponding detection testing
time and test case number is reported in Table II.

TABLE II
AN EXCERPT OF THE INJECTED FAULTS

Fault Function Line Type Component Detect. Test
Number Time Case
2 Nodedef 62 8 1 0.124 2
3 Hexdef 100 8 1 0.949 7
4 Nodecoor 49 8 1 1.074 8
. . . . . . . . . . . . . . . . . . . . .
37 Fixsgrel 99 4 2 2.121 17
38 Fixsgrpha 29 4 2 2.414 20
39 Fixsgrid 64 4 2 2.987 24
. . . . . . . . . . . . . . . . . . . . .
68 Gwrite 110 7 3 14.412 120

Step 2
Test execution for this faulty version was carried out by
randomly generating test cases based on the operational profile
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(in this phase, 366 test cases were generated). After the
testing phase, 46 faults were removed (respectively 20, 19
and 7), leaving 24 faults in the software. The reliability of
this first version of the software was measured executing
further 3600 test cases (picked up from the operational profile)
and recording the number of failures, without removing the
corresponding faults. It amounted to R = 1 − limnNf/N
= 0.93583, with Nf = 231 and N = 3600. We assumed
a reliability goal for the next release of RMIN = 0.99;
thus the testing resources for the current version are to be
allocated according to this goal. We profiled the previous test
executions by gprof7 (for the user functions) and by straceNT8

(for the system calls), obtaining the execution counts among
the components, the corresponding transition probabilities (as
described in the previous section) and then the visit counts.
In particular, a visit to an application component is a flow of
the control to a user function coming either from a caller user
function or from a return by a called function (user function or
system call). Thus, a user function F calling another function
will have two visits: one from the caller function and another
from the return of the called function. The average time per
visit to application components during an execution can be
computed using the following formula:

TV = totalT ime/(2 ∗#calls+ systemCalls−
#termination ∗ averageDepth) (27)

where totalTime is the average total user function time
per execution (an output of gprof, averaged over test case
executions), and the denominator is the average number of
visits per execution to all the application components: #calls
is the number of user functions called per execution (doubled
to consider the return), systemCalls is the number of calls to
the OS (an output of sTrace), not doubled because we are
counting the visits to the application components, not also
to the OS; #termination is the number of terminations (either
normal or abnormal) and averageDepth is the average depth of
the call graph, included in order to subtract the “returns” from
a function that are lost due to the termination (this value has
been computed by analyzing the output of gprof, and was equal
to 2.6). Figure 3 clarifies this computation with an example
(with a normal terminating single execution and averageDepth
= 1). Execution counts for a component are computed similarly
to the denominator of equation 27. The difference is that only
the calls from a component to itself are doubled, in order to
consider the return of the control flow to itself. Calls to the
other components (and to the OS) are not doubled, because in
that case just the “return” from the called component has to
be accounted as a visit to the calling one.
However, for a better accuracy, we actually estimated the time
per visit for each one of the components, considering:

TVi = totalT imei/visitCountsi (28)

where totalTimei is the proportion of user time spent in
the component i (computed as totalTime * #callsi / #calls)

7MinGW (Minimalist GNU for windows) has been used to provide gprof
and other GNU tools under windows. See http://www.mingw.org/.

8straceNT is a system call tracer for Windows See
http://www.intellectualheaven.com/.

and visitCountsi are computed from transition probabilities
(in turn derived from execution counts) with the procedure
described in the Section III. Results are summarized in Table
III. As for the OS, the visit granularity is slightly different.

Fig. 3. Granularity of Visit

Since OS was proprietary, it was not possible to trace the
internal function calls (and this was the reason why we did
not consider the block as visit granularity); thus the visit
in this case is the flow of the control coming from a user
function to the OS via a system call; it does not consider
the control flow from the OS to itself through internal kernel
function calls. Correspondingly, the time per visit will also
have a rougher granularity: it is the average time spent in
an entire system call execution, computed as the average OS
time (obtained by timeit9) divided by the average number of
system calls (i.e., the average number of visits in this case).
Their product is always the total time spent in the OS.
The return of the system call is accounted as a visit for the
calling component from the OS, as explained above.
Their values (execution counts/number of visits and times
per visit), however, are not of interest for the OS reliability
itself, because the OS reliability (i) is given in this case for
the entire execution (not as reliability per visit) and (ii) it is
assumed constant with time. But the execution counts to and
from the OS are important to determine the visit counts for
other components.
Also the variance of the visit counts is considered, for the
second-order architectural effects. Finally the performance
factor is set to 0.1, i.e., only the 10% of testing efforts will
be employed for performance testing. Results of this step are
summarized in Table III.

Note that since the visit granularity is so fine, the expected
visit counts during an execution are very high and the
transition probabilities toward the end state are very low
(because only a minimal part of code leads to the end).
Moreover, also note that the Parser subsystem (component 1)
and the Formatting subsystem (component 3) make a great

9timeit is a command-line tool, provided with Microsoft Windows Resource
Kit Tools, that records the time a specified command takes to run.
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TABLE III
ESTIMATED PARAMTER VALUES

Minimum Required Reliability 0.99
Reliability of the Previous Version 0.93583

Mean User Process Execution Time 0.01389
Mean OS Execution Time 0.10589

Mean # User Calls 407.4
Mean # System Calls 5442

Transition Probabilities
TO 1 2 3 OS End

FROM
1 0.2307 2.71E-4 0 0.7689 7.79E-5
2 0 0.65253 0.0298 0.3439 4.96E-4
3 0 0 7.72E-4 0.99902 2.10E-4

OS 0.4049 0.0141 0.5810 0 0
END 0 0 0 0 1

Visit Counts 2865.8 222.8 3165.0 5442.3 -
Exec. Time 0.01128 0.00248 1.251E-4 0.10589 -

SRGM: Exponential SRGM. λ(t) = age−gt

1 2 3
a g a g a g

13 5.46E-2 11 9.46E-2 5 5.34E-2

use of the OS, and the corresponding transition probabilities
are significantly higher than the Computational subsystem.
The high values for visit counts could also be due to the
first-order DTMC: a first-order DTMC does not allow one
to consider the dependence of transition probability from
a component i to j on the current as well as the previous
components from which the control arrived at component
i. However, we also considered the second-order DTMC,
detecting no significant changes in the transition probabilities.
Thus to keep the treatment simple, the first-order results
are considered in the following. Finally, we did not observe
failures due to the OS; thus we estimate an OS reliability
value equals to 1. This value is clearly an overestimation due
to the low number of test cases used to estimate it; thus we
start with this value, but it will be varied (step 5) between
0.995 and 1.0 to take into account the possible estimation
error (this will also show how the overall reliability estimate
is affected by the OS reliability value).

Step 3
Based on the interfailure times (Table II) of the previous
version testing, an SRGM for each component was built, using
SREPT to fit the best model to the data. The fault content
parameters for the current version were derived from the
estimated remaining fault contents, while the rate parameters
were set at the same value of the previous testing process
(Table III).
For all of the components, the same kind of SRGM was found
to be the best fitting one (i.e., the Goel-Okumoto model):
this is mainly due to the strong similarities among the testing
processes followed for the three components.
Step 4
With the visit count values, the SRGMs and the OS reliability,
the model was built and solved by our tool, giving as output the
optimal testing times for each component. Figure 4 and 5 show
two stages of the tool, describing a screenshot of the initial
architecture configuration and of the parameters configuration
of one of the components, respectively.

Fig. 4. The initial architecture configuration

Fig. 5. The configuration of the parameters of one of the components

After executing the tests (always by generating test cases
from the operational profile) according to the optimal testing
times, 19 faults of 24 were removed (respectively 11 of 11, 5
of 9 and 3 of 4). Table IV shows the testing times devoted to
each component, the corresponding number of executed test
cases, the detection time and the detecting test case number
for each fault. (Clearly the actual devoted time will slightly
exceed the allotted time, because the latter is not a perfect
multiple of the execution time of a test case).

Step 5
According to the model, the final reliability should be
0.990289. Measuring the actual reliability using the same
procedure used for the previous version, it turned out to be
0.989722, with 37 observed failures over 3600 executions. The
relative error is about 5.7289E-4 resulting in an overestimation
of 0.057289 %.
The main sources of error in the prediction are i) the DTMC
transition probabilities and consequently the visit counts, ii)
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TABLE IV
TESTING OF THE SYSTEM ACCORDING TO THE MODEL RESULTS

Component #Fault Optimal Testing #Test Cases
Removed Time

1 11 40.638 348
2 5 6.315 58
3 3 24.682 215

Fault Number Detection Test Case
Time Number

Component 1
21 1.213 10
22 3.112 25
23 6.452 53
24 6.992 57
25 8.346 69
26 12.240 102
27 13.332 111
28 15.341 128
29 22.021 183
30 30.041 250
31 38.098 of 40.638 318 of 348

Component 2
51 0.933 7
52 2.729 22
53 2.981 24
54 4.065 33
55 6.209 of 6.315 51 of 58

Component 3
69 5.034 42
70 7.355 61
71 20.442 of 24.682 170 of 215

Fig. 6. Sensitivity to visit counts and failure intensities variation

the SRGMs prediction ability and (iii) the OS reliability. In
our case the architecture of the application and the components

themselves have not significantly changed as well as the testing
process between the two versions. Such a good prediction is
also due to this. However, we can see how in the presence
of significant changes in such values, the prediction is still
good. First, figure 6 shows the variation of the percentage
relative error in the reliability prediction against the variation
of the percentage relative error in all the visit counts (solid
line). For a maximum of 20% in the visit counts estimation
errors (underestimation) we have a reliability prediction error
of about 0.257% , i.e., a prediction of about 0.99226.
Second, in the same figure (figure 6, dashed line) the same
variation in the prediction against the percentage relative
error in the failure intensities is shown: if an SRGM does
not accurately describe the testing process, the value of the
achieved failure intensities at the end of the testing time for
each component will be affected. We evaluated such effect
by varying the failure intensities. Results in figure 6 show
that the reliability prediction will be affected by an error
of 0.256% , i.e. 0.99225, for a percentage variation of 20%
in the failure intensities (underestimation). Failure intensities
plot shows almost the same behavior as the visit counts plot,
because in the reliability computation their product appear in
the exponents (the slight difference is due to the second-order
part in the formula).
Third, since no OS failures have been observed, we estimated
the OS reliability to be equal to 1; figure 7 shows the effect
of an estimation error in the OS reliability on the overall
reliability prediction. In this case the overall prediction is more
sensitive to OS reliability prediction errors than the previous
parameters.
However, the previous percentage errors simply do not make
sense in this case; it is very unlikely to mistake the OS
reliability prediction with an error of 20%. For instance,
suppose that in our case an OS failure over 3600 execution
tests has been observed and we estimate the reliability as
(1-1/3600) = 0.9997; an error of 20% would mean making
an estimation of 0.79976, that in our case would correspond
to about 720 failures: i.e., in the current version the OS has
experiences 719 failures more than the previous version over
only 3600 test cases. It is a huge prediction mistake. Moreover,
OS has usually much more historical failure data than the other
application components; this makes OS reliability estimation
easier and more accurate. Figure 7 shows therefore the per-
centage error variation of the overall reliability depending on
the absolute variation of OS reliability in a reasonable range.

In this case, for a maximum error of 0.005 (i.e., the 0.5%),
the prediction error shifts from the original overestimation
of 0.057289% with respect to the actual reliability to an
underestimation of about 0.443% , i.e., a reliability of 0.98534.
The solution is therefore much more sensitive to the OS
reliability estimation than the other parameters.
Finally, all the results have been obtained with the estimated
operational profile; changing the operational profile will yield
different results. The effect of the operational profile variation
on reliability measurements (particularly on SRGMs) has been
studied by Pasquini et al. in [31], which however pointed
out that the “predictive accuracy of the models is not heavily
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Fig. 7. Sensitivity to OS Reliability variation

affected by errors in the OP-estimate. In general, if a model-
estimate fits the actual reliability for a correct OP-estimate
then it fits well even if the OP-estimate is erroneous”.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed an optimization model to allo-
cate the testing resources to different system components in
order for the system to achieve a required reliability level
at minimum verification costs. The purpose of the model,
through the tool implementing it, is therefore to drive engi-
neers in the verification phase. An architecture-based model
(in particular a DTMC) was used to describe the software
architecture. The optimization model was used for providing
flexible solutions, at different levels of detail, according to
the information provided by the user. The model includes
the possibility to consider the OS as a component and the
potential fault tolerance mechanisms a component could em-
ploy. Moreover, performance testing times and second order
architectural effects were considered. Experiments showed
the prediction ability of the model and its sensitivity to the
variation of potential sources of errors. The implemented
tool used the SQP algorithm for the exact solution and a
genetic algorithm for the heuristic solution, useful for solving
multiple-applications problems.
Even though the presented model aims to allocate testing
times for each component, its output contributes, as a side
effect, to a better integration testing (i.e., identifying the most
critical components, an integration strategy by critical modules
is eased) and to the system test cases generation (i.e., from
the DTMC describing the application execution a markov-
chain based testing can be adopted, without additional efforts).
Besides, the adopted architecture-based solution allows us to
obtain information about the sensitivity of some components

and their impact on the final solution that are useful to
successive designs for future versions.
As future work, we plan to extend the approach to concurrent
systems by describing the architecture through a SPN (stochas-
tic Petri Net) or a DAG (Direct Acyclic Graph) [25],[26].
Moreover, we plan to include other fault tolerance mechanisms
(e.g., N-version programming) to be able to describe more
systems. A better investigation on the performance-testing
time relations and on the OS influence is also desirable.
Finally, considering the testing strategies influence on the
testing process of a component, and hence on its SRGM, we
plan to include, as output, a rough indication of the testing
strategies to be used for each component in addition to the
testing times.
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