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James LEDOUX

Centre de Mathématiques INSA & IRMAR

20 Avenue des Buttes de Coësmes

35043 Rennes Cedex

France

July 27, 2002

1 Introduction

This chapter proposes an overview of some aspects of Software Reliability (SR) engineering.

Most systems are now driven by software. So that, it is well-recognized that assessing reliabil-

ity of software applications is a major issue in reliability engineering, particularly in terms of

cost. But predicting software reliability is not easy. Perhaps the major difficulty is that we are

concerned primarily with design faults which is a very different situation from that tackled by

the conventional hardware theory. A fault (or bug ) refers to the manifestation in the code of a

mistake made by the programmer or designer with respect to the specification of the software.

Activation of a fault by an input value leads to an incorrect output. Detection of such an event

corresponds to an occurrence of a software failure. Input values may be considered as arriving

to the software randomly. So although software failure may be not generated stochastically, it

may be detected in such a manner. Therefore, this justifies the use of stochastic models of the

underlying random process that governs the software failures. We briefly recall in Section 2,

basic concepts of stochastic modeling for reliability. Two approaches are used in SR modeling.

The prevalent is the so-called black-box one, in which only the interactions of the software with
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the environment are considered. Following [1] and [2], we use in Section 3 the self-exciting

point processes as basic tool to model the failure process. That enables an overview of most

of published SR models. A second approach, called the white-box one, incorporates in models,

information on the structure of the software. This is presented in Section 4. Section 5 proposes

basic techniques for calibrating black-box models. The last section tries to give an account

for the current practices in SR modeling and to point out some challenging issues for future

research.

Note that this chapter does not aspire to cover the whole topic of SR engineering. In partic-

ular, we do not discuss: fault prevention, fault removal, fault tolerance which are three methods

to achieve reliable software. We focus here on methods to forecast failure times. For a more

complete view, we refer to [3], the handbooks [4] and [5]. We have used the two recent books [2]

and [6] to prepare this chapter. We also recommend to read the short paper [7], that describes, in

particular, the available software reliability toolkits (with additional relevant reference [8]). Fi-

nally, the bibliography of the chapter gives a good account for journals which propose research

and tutorial papers on SR.

2 Basic concepts of stochastic modeling

Reliability of a software is defined in [9] as a measure of the continuous delivery of the correct

service by the software under a specified environment. This is a measure of the time to failure.

2.1 Metrics with regard to the first failure

Metrics of the first time to failure of a system are standard from [10], [11] and are now recalled.

The first failure time is a random variable (rv) T with distribution functionF (t) = PfT � tg; t 2 R:
2



If F has a probability density function (pdf) f then we define the hazard rate of the rv T byr(t) = f(t)R(t) ; t � 0:
with R(t) = 1 � F (t) = PfT > tg. We will also use the term failure rate. Function R(t) is

called the survivor function of the rv T . Hazard rate function is interpreted to ber(t)dt � Pft < T � t + dt j T > tg� Pf a failure occurs in ]t; t + dt] given that no failure occurred up to time t g
Thus, the phenomenon of reliability growth (“wear-out”) may be represented by an decreasing

(increasing) hazard rate.

When F is continuous, hazard rate function characterizes the probability distribution of T
through the exponentiation formulaR(t) = exp�� Z t0 r(s)ds� :

Finally, the mean time to failure, denoted by MTTF, is the expectation E[T ] of the waiting

time of the first failure. Note that E[T ] is also
R +10 R(s)ds.

A basic model for the nonnegative rv T is the Weibull distribution with parameters�; � > 0:f(t) = ��t��1 exp ���t��1]0;+1[(t) R(t) = exp ���t�� ; r(t) = ��t��1;MTTF = 1�1=� Z +10 u1=� exp(�u)du:
Note that the hazard rate is increasing for � > 1, decreasing for � < 1, constant for � = 1. For� = 1 we obtain the exponential model with parameter �.

2.2 Stochastic process of times of failure

The failure process can be thought of as a point process (pp), i.e. a sequence of rvs (Ti)i�0
where Ti is the ith failure time of the software (with T0 = 0). An equivalent point of view is to
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define the sequence of rv Xi = Ti � Ti�1 for i � 1. Xi is ith inter-failure time. We define the

counting process N(�) associated with a pp byN(t) =Xi�0 1]0;t](Ti) (N(0) = 0):N(t) is the number of observed failures up to time t. A pp will refer to any of (Ti), (Xi) orN(�). Standard metrics associated with a counting process are [11]:

– the mean value function: M(t) = E[N(t)]
– the rate of occurrence of failures at time t: ROCOF(t) = dMdt (t).
In such a context, we define the (conditional) reliability function at time t � 0 byRt(s) = PfN(t+ s)�N(t) = 0 j N(t); T1; : : : ; TN(t)g; s � 0:
This is a measure of the continuous delivery of correct service during the mission interval]t; t + s]. At time t = Ti, this function is nothing else but the conditional survivor function

of rv Xi+1 = Ti+1 � Ti given T1; : : : ; Ti. This will be denoted by Ri(s). We also define the

(conditional) mean time to failure at time t, MTTF(t), byMTTF(t) = Z +10 Rt(s)ds:
The mean time to failure at t = Ti will also denoted by MTTFi and is E[Xi+1 j T1; : : : ; Ti].

During the operational life of a software, repairs are carried out when it fails to perform

correctly. In such a case, time to repair, time to reboot the system and others factors affect the

dependability of a product. Thus, we may define the software availability as a measure of the

delivery correct service with respect to the alternation correct and incorrect service. Availability

is highly dependent on the maintenance policies of the software. We do not go into further
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details on dependability in operational phase. Indeed, we focus here on the reliability attribute

of the software as most of the literature on software reliability modeling does. We refer to [4,

Chap 2] for an account for dependability during the operational phase.

3 Black-box software reliability models

In this section, only dynamic models will be discussed. That is, we are only concerned with

models which consider failure process as a stochastic process. In other words, time is an essen-

tial component of the description of the models. On the other hand, static models are essentially

capture-recapture models. For a good account for static models, we refer to [12, Chap 5], [6].

A recent evaluation of capture-recapture models in software engineering context is [13]. Our

overview of dynamic models closely follows [1, Chap 2], [14], [2], [15]. We assume throughout

this section that any corrective action is instantaneous and each detected fault is removed.

A basic way to represent time evolution in confidence in a software is as follows. At instant0, the first failure occurs at time t1 according a rv X1 = T1 with hazard rate r1. Given timeT1 = t1, we observe a second failure at time t2 at rate r2. Function r2 is the hazard rate of the

inter-failure rv X2 = T2 � T1 given T1 = t1. Choice of r2 is based on the fact that one fault

was detected at time t1. At time t2, a third failure occurs at t3 with failure rate r3. Functionr3 is the hazard rate of the rv X3 = T3 � T2 given T1 = t1; T2 = t2 and is selected according

to the “past” of the failure process at time t2: two observed failures at times t1 and t2. And

so on. It is expected that, due to a fault removal activity, confidence in the software’s ability

to deliver a proper service will be improved during its lifecycle. Therefore, a basic model in

SR has to capture a phenomenon of reliability growth. Reliability growth will basically follow
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from a sequence of inequalities of the following formri+1(t � ti) � ri(ti) on t � ti (1)

and/or from selection of decreasing hazard rates ri(�). We illustrate this “modeling process” on

the celebrated Jelinski-Moranda model (JM) [16]. We assume a priori that software includes

only a finite number N of faults. The first hazard rate is r1(t ; �;N) = �N where � is some

nonnegative parameter. From time T1 = t1, a second failure occurs with the constant failure

rate r2(t ; �;N) = �(N � 1), : : : In a more formal setting, the two parametersN and � will be

encompassed in what we call a background history F0, which is any background information

that we may have about the software. Then “the failure rate” of the software is represented by

the function 8t � 0; rC(t ; F0) = +1Xi=1 ri(t� Ti�1 ; F0)1[Ti�1;Ti[(t) (2)

which is called the concatenated failure rate function in [2]. An appealing graphical display of

a path of this stochastic function is in Figure 1 for (JM). We can rewrite (2) asrC(t ; �;N) ���N�0 tt1 t2 t3
Figure 1: Concatenated failure rate function for (JM)�(t ; F0; N(t); T1; : : : ; TN(t)) = �(N �N(t)) (3)

Function �(�) will be called the stochastic intensity of the pp N(�). We see that stochastic

intensity for (JM) is proportional to the residual number of bugs at any time t and each detection
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of failure results in a failure rate whose value decreases of amount �. This suggests that no new

fault is inserted during a corrective action and any bug contributes in the same manner to the

“failure rate” of the software.

To go further, we replace our intuitive presentation in a stochastic modeling framework.

Justification for what follows is that almost all published software reliability models can be

interpreted in the foregoing framework. Specifically, this allows a complete overview of the

stochastic properties of the panoply of available models without referring to their original pre-

sentations.

3.1 Self-Exciting Point Processes

A slightly more formal presentation of the previous construction of the point process (Ti) would

be: we have to specify all the conditional distributionsL(Xi j F0; Ti�1; : : : T1); i � 1:
The sequence of conditioningF0; fF0; T1g; fF0; T1; T2g; : : : should be thought of as the natural

or internal history on the pp at times 0; T1; T2; : : : respectively. So that, function ri is the hazard

rate of the conditional distribution L(Xi j F0; Ti�1; : : : ; T1), that is, when it has a pdfri(t ; F0; Ti�1; : : : ; T1) = fXijF0;Ti�1;::: ;T1(t)RXijF0;Ti�1;::: ;T1(t) : (4)

This leads to the following expression of the stochastic intensity�(t ; F0; N(t); T1; : : : ; TN(t)) = +1Xi=1 fXijF0;Ti�1;::: ;T1(t � Ti�1)RXijF0;Ti�1;::: ;T1(t� Ti�1) 1[Ti�1;Ti[(t): (5)

If we turn back to the (JM) model, we have F0 = f�;Ng andfXijF0;Ti�1;::: ;T1(t) = �(N � (i� 1)) exp (��(N � (i� 1)) t)1[0;+1[(t):
7



Continuing in this way, this should lead to the martingale approach for analyzing pp, that es-

sentially adheres to the concepts of compensator and stochastic intensity with respect to the

internal history of the counting process. In particular, the left continuous version of the stochas-

tic intensity defined in (5) may be thought of as the usual predictable intensity of a pp in the

martingale point of view (see e.g. [17, Th11] and references therein). van Pul gives in [18] a

good account for what can be done using the so-called dynamic approach of pp. We do not go

into further details here. We prefer embrace the engineering point of view developed in [15].

It is clear from (5) that the stochastic intensity is excited by the history of the pp itself. Such

stochastic processes are usually called a self-exciting point process (SEPP). What follows is

from [1], [2], [15].

1. Ht = fN(t); T1; : : : ; TN(t)g will denote the internal history of N(�) up to time t.
2. N(�) is said to be conditionally orderly if for any Qt � Ht, we havePfN(t+ dt)�N(t) � 2 j F0; Qtg = PfN(t+ dt) �N(t) = 1 j F0; QtgO(dt):

where O(dt) is some real-valued function such that limdt!0 O(dt) = 0.

With Qt = ; and Formula (6), we get PfN(t+ dt) � N(t) � 2 j F0g = o(dt) where o(dt)
is some real-valued function such that limdt!0 o(dt)=dt = 0. This is the usual orderliness or

regular property of a pp [11]. Conditional orderliness is to be interpreted as saying that givenQt and F0, as dt decreases to zero, the probability of at least two failures occurring in a time

interval of length dt tends to zero at a rate higher than the probability that exactly one failure in

the same interval does.

Definition 3.1 A pp N(�) is called a self-exciting point process if
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1. N(�) is conditionally orderly;

2. there exists a nonnegative function �(� ; F0;Ht) such thatPfN(t+ dt) �N(t) = 1 j F0;Htg = �(t ; F0;Ht)dt + o(dt) (6)

and E��(t ; F0;Ht)� < +1 for any t > 0
3. PfN(0) = 0 j F0g = 1
Function � is called the stochastic intensity of the SEPP.

We must think �(t ; F0;Ht) of as a function of F0, t and N(t); T1; : : : ; TN(t). Degree to which�(t) depends on Ht is formalized in the notion of memory. A SEPP is of memory-m, if

– for m = 0: �(�) depends on Ht only through N(t) the number of observed failures at time t;
– for m = 1: �(�) depends on Ht only through N(t) and TN(t);
– for m � 2: �(�) depends on Ht only through N(t); TN(t); : : : TN(t)�m+1 ;

– for m = �1: �(�) is independent of the history Ht of the pp. We also say that stochastic

intensity has no memory.

When stochastic intensity depends only on a background history F0, then we get a Doubly

Stochastic Poisson Process (DSPP). Thus, the class of SEPP also encompasses the family of

Poisson Processes. If intensity is a non-random constant �, we have the Homogeneous Pois-

son Process (HPP). A SEPP with no memory and a deterministic intensity function �(�), is a

NonHomogeneous Poisson Process (NHPP). In particular, if we turn back to the concatenated

failure rate function (see (2)), then selecting a NHPP model corresponds to selecting some con-

tinuous deterministic function as rC . We see that, given Ti = ti, the hazard rate of Xi+1 is
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ri+1(�) = rC(� + ti) = �(� + ti). We retrieve a well-known fact for a NHPP: the (conditional)

hazard rate between ith and i + 1th failure times and the intensity function �(�) only differ

through the initial time of observation of the two functions. We list properties of SEPP [15]

which are of some value for analyzing the main characteristics of models. We will omit to write

the dependence in F0.
Counting statistics for SEPP

The probability distribution of rv N(t) is strongly related to the conditional expectationb�(t ; N(t)) = E��(t ; Ht) j N(t)�:
This function is called the count-conditional intensity. For a SEPP, b�(� ; N(t)) satisfiesb�(t ; N(t)) = limdt!0 PfN(t+ dt) �N(t) = 1 j N(t)gdt= limdt!0 PfN(t+ dt) �N(t) � 1 j N(t)gdt :
Then we can obtain the following explicit representation for PfN(t) = ng with n � 1PfN(t) = ng = Z0<t1<���<tn<t nYi=1 b�(ti ; i � 1) exp�� nXi=0 Z ti+1ti b�(u ; i)du�dt1 : : : dtn (7)

with t0 = 0 and tn+1 = t.ROCOF(t), defined as the derivate of M(t), is thenROCOF(t) = E hb�(t ; N(t))i = E[�(t ; Ht)]:
We see that notion of ROCOF(t) and stochastic intensity coincide only if intensity is a deter-

ministic function of time, i.e. the pp is a NHPP.
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Likelihood function for a SEPP

Assume that we observe a fixed number i of failures. Then the likelihood function isfT1;::: ;Ti(t1; : : : ; ti) = �(t1 ; 0) iYk=2 �(tk ; k � 1; t1; : : : ; tk�1)exp�� Z t10 �(s ; 0)ds� iXk=2 Z tktk�1 �(s ; k � 1; t1; : : : ; tk�1)ds�(8)

If we observe the failure process up to time t, the joint distribution of N(t); T1; : : : ; TN(t) is

given in [15, Th6.2.2].

Reliability and MTTF functionsRt(s) = exp�� Z t+st �(u ; N(t); T1; : : : ; TN(t))du�
In particular at instant Ti, we obtainRi(s) = 8<:exp � � R s0 �(u ; 0)du � if i = 0exp�� R Ti+sTi �(u ; i; T1; : : : ; Ti)du� if i � 1.

The following characterization of 0-memory SEPP is intuitively clear from the definition of

the stochastic intensity of a SEPP.

Theorem 3.2 N(�) is a SEPP with 0-memory is equivalent to N(�) is a Markov process.

This result explains why a very large part of SR models may be developed in a Markov frame-

work (see e.g. [12], [3, Chap 10]). In particular, all NHPP models are of Markov-type. In

fact, it can be shown [15] that a SEPP with m-memory corresponds to a process (Ti) which is am-order Markov chain, that is L(Ti+1 j Ti; : : : ; T1) = L(Ti+1 j Ti; : : : Ti�m+1) for i � m.

A last relevant result is concerned with 1-memory SEPP.
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Theorem 3.3 A 1-memory SEPP with a stochastic intensity satisfying�(t ; N(t); TN(t)) = f(N(t); t � TN(t))
for some real-valued function f , is characterized by a sequence of independent inter-failure

durations (Xi). In this case, density probability function of Xi isfXi(xi) = f(i� 1 ; xi) exp�� Z xi0 f(i� 1 ; u)du� : (9)

Such a SEPP was called a generalized renewal process in [19] because Ti is the sum of indepen-

dent but not identically distributed rv. Moreover, it is an usual renewal process when functionf does not depend on N(t).
To close this presentation of self-exciting processes, we point out that we only use a “con-

structive” point of view. Our purpose, here, is not to discuss the existence of point processes

with a fixed concatenated failure rate function or stochastic intensity. However, we emphasize

that orderliness condition and existence of the limit in (6) in Definition 3.1 are enough to spec-

ify the pp (see e.g. [20]). It is also shown in [14, Th4.1] that, under conditional orderliness

condition, concatenated failure rate function well-defines a SEPP with respect to operational

Definition 3.1. Moreover, an easily checked criterion for conditional orderliness is given [14,

Th4.2]. In particular, if hazard rates in (4) are locally bounded then conditional orderliness

holds.

3.2 Classification of SR models

We obtain from the concept of memory for a SEPP, a classification of the existing models. It is

appealing to define a model with a high memory. But, as usual, the pay-off is the complexity in

the statistical inference and the amount of data to be collected.
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3.2.1 0-memory SEPP

A first type of 0-memory SEPP is when �(t ; Ht;F0) = f(N(t);F0). We get major common

properties of this first class of models from Subsection 3.1.

– N(�) is a Markov process (a pure birth Markov process).

– (Xi) are independent (given F0). From (9), rv Xi has an exponential distribution with pa-

rameter f(i � 1;F0). This easily gives a likelihood function given inter-failure durations(Xi).
– Ti = Pik=1Xk is an Hypoexponential distributed rv as the sum of i independent and expo-

nentially distributed rvs [21].

– Rt(s) = exp (�f(N(t);F0)s). The reliability function only depends on the current number

of failures N(t). We have MTTF(t) = 1=f(N(t);F0).
Example 3.1 (JM) Jelinski-Moranda model has been introduced in Section 3. This model has

to be considered as a benchmark model, since all authors designing a new model emphasize that

their model includes JM as particular case. The stochastic intensity is given in (3) (see Figure 1

for a path). Besides properties common to the class of SEPP considered in this paragraph,

we had the following additional assumptions: the software includes a finite N of bugs in the

program and no new fault is inserted during debugging. We also noted that each fault has

the same contribution to the un-reliability of the software. These assumptions are generally

considered as questionable. We derive from (7) that the distribution of rv N(t) is Binomial with

parameters N and 1� exp(��t). The main reliability metrics are:ROCOF(t) = N� exp(��t);MTTFi = 1N � i �;Ri(s) = exp � � (N � i �)s�: (10)
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We also mention the Geometric model of Moranda [22] where the stochastic intensity is�(t ; Ht; �; c) = �cN(t) where � � 0 and c 2]0; 1[.
A second class of 0-memory SEPP is when the stochastic intensity is actually a func-

tion of time t, N(t) (and F0). In fact we only have in this category of models, SEPP with�(t ; Ht;F0) = (N � N(t))'(t) for some deterministic function '(�) of time t. Note that'(t) = � gives (JM).

– N(�) is a Markov process.

– Let us denote
R t0 '(s)ds by �(t). We deduce from (7) that N(t) is a Binomial distributed rv

with parametersN and p(t) = 1� exp(��(t)). This leads to the term Binomial-type model

in [23]. It follows that E[N(t)] = Np(t) and ROCOF(t) = N'(t) exp(��(t)).
– Rt(s) = exp � � (N �N(t))(�(s+ t) � �(t))�.
– We get the likelihood function given failure times (Ti) from (8)fT1;::: ;Ti(t1; : : : ; ti) = N !(N � i)! exp � � (N � i)�(ti)� iYj=1'(tj) exp (��(tj))
– The pdf of rv Ti is fTi(ti) = i �Ni � exp(��(ti))'(ti)[exp (��(ti))� 1]i�1.
Littlewood’s model in [24] is an instance of a Binomial model with '(t) = �=(� + t) and�; � > 0.

3.2.2 NHPP model: �(t ; Ht;F0) = f(t;F0) and is deterministic

A large part of models is of NHPP-type. We refer to [25] and [6, Chap 5] for a complete list of

such models. The very appealing properties of the counting process explains the widely use of

this family of pp in SR modeling.
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– N(�) is a Markov process.

– We deduce from Definition 3.1 that for any t, N(t) is a Poisson distributed rv with parameter�(t) = R t0 f(s;F0)ds. In fact, N(�) has independent (but nonstationary) increments, that is,N(t1); N(t2)�N(t1); : : : ; N(ti�1)�N(ti) are independent rvs for any (t1; : : : ; ti).
– The mean value function M(t) is �(t). Then ROCOF(t) = f(t;F0). Such a model is called

a finite NHPP model if M(+1) < +1 and an infinite one when M(+1) = +1. Indeed,

if M(+1) < +1 then we only consider a finite number of failure times with probability 1.

– Rt(s) = exp � � (�(t+ s)� �(t))�.
– Likelihood function given failure times (Ti) is from (8)fT1;::: ;Ti(t1; : : : ; ti) = exp (��(ti)) iYk=1 f(tk;F0): (11)

Example 3.2 (GO) This model is characterized by the following mean value function and in-

tensity function: �(t) = M (1 � exp (��t)) and �(t ; �;M) = M� exp(��t) for t � 0.

Parameters � and M are the failure rate per fault and the finite expected (initial) number of

faults contained in the software. We see that, at any time t, the intensity function is propor-

tional to the expected remaining number of faults �(t ; �;M) = �(M � �(t)). Thus, (GO) is

essentially a NHPP-version of (JM).

Example 3.3 (MO) For the Musa-Okumoto model [3], mean value function and intensity func-

tion are �(t) = ln (��t+ 1)=� and �(t ; �; �) = �=(��t+ 1) respectively. � is the initial value

of the intensity function and � is called the failure intensity decay parameter. It is easily seen

that �(t ; �; �) = � exp (���(t)). Thus, intensity function exponentially decreases with the

15



expected number of failures and shows that (MO) may be understood as a NHPP version of

Moranda’s Geometric model.

As quoted in [26], using a NHPP model may appear inappropriate to describe reliability

growth of a software. Indeed, this is debugging which modifies the reliability. Thus, the true

intensity function changes probably in a discontinuous manner during corrective actions. How-

ever, Miller showed in [27] that a binomial-type model of Subsection 3.2.1 may be transformed

in a NHPP variant assuming that the initial number of faults is a Poisson distributed rv with

expectation N . For instance, (JM) is transformed into (GO). Moreover, Miller showed that

binomial-type model and its NHPP variant are indistinguishable from a single realization of the

failure process. But, these two models differ as prediction model because estimates of parame-

ters are different.

3.2.3 1-memory SEPP with �(t ; Ht;F0) = f(N(t); t � TN(t);F0)N(�) is not Markovian. But the inter-failure durations (Xi) are independent rvs given F0 (see

Theorem 3.3) and the pdf of rv Xi is given in (9).

Example 3.4 (LV) Stochastic intensity of the Littlewood-Verrall model [28] is�(t ; Ht; �;  (�)) = � (N(t) + 1) + t � TN(t) (12)

for some nonnegative function (�). We briefly recall the Bayesian rationale underlying the def-

inition of this model. Uncertainty about the debugging operation is represented by a sequence

of stochastically decreasing failure rates (�i)i�1, that is�j �st �j�1; i.e
�8t 2 R : Pf�j � tg � Pf�j�1 � tg�: (13)

Thus, using stochastic order allows a decay of reliability which takes place when fault are

inserted. Prior distribution of rv �i is Gamma with parameters � et  (i). It can be shown that
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Figure 2: A path of the stochastic intensity for (LV)

inequality (13) holds when  (�) is a monotonic increasing function of i. Given �i = �i, rvXi has an exponential distribution with parameter �i. Unconditional distribution of rv Xi is a

Pareto distribution with pdf f(xi ; �;  (i)) = � (i)�(xi +  (i))�+1 :
Thus, the “true” hazard rate of Xi is ri(t ; �;  (i)) = �=(t +  (i)). In [29], parameters �
and  are estimated using Bayesian method. The corresponding model is called a Hierarchical

Bayesian model in [2] and is also a 1-memory SEPP. If  (�) is linear in i, we haveRi(t) = �  (i+ 1)t+  (i+ 1)�� ; MTTFi =  (i+ 1)� � 1 :
We also mention the Schick-Wolverton’s model [30] where �(t ; Ht;�; N) = �(N �N(t))(t� TN(t)) and � > 0; N are the same parameters as for (JM).

3.2.4 m � 2-memory

Instances of such models are rare. For m = 2, we have the time-series models in [31], [32].

For m > 2, we have the adaptative concatenated failure rate model from [33] and the Weibull

models of Pham [34]. We refer to original contributions for details.
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4 White-box modeling

Most work on software reliability assessment adopts the black-box view of the system, in which

only the interactions with the environment are considered. The white-box (or structural) point

of view is an alternative approach in which the structure of the system is explicitly taken into

account. This is advocated for instance in [35], [36]. Specifically, the structure-based approach

allows analyzing the sensitivity of the reliability of the system with respect to the reliability of

its components. Up to recently, only a few papers proposed structure-based software reliability

models. A representative sample was (in discrete time) [35], [37], [38] and (in continuous time)

[39],[36], [19],[40]. An up-to-date review on the architecture-based approach is given in [41].

We will present the main features of the basic Littlewood’s model which are common to most

previous cited works. The discrete time counterpart is Cheung’s model.

In a first step, Littlewood defines an execution model of the software. The basic entity is the

standard software engineering concept of module as for instance in [35]. The software structure

is then represented by the call graph of the setM of the modules. These modules interact by

execution control transfer and, at each instant, control lies in one and only one of the modules

which is called the active one. From such a view of the system, we build up a continuous time

stochastic process (Xt)t�0 which indicates the active module at each time t. (Xt)t�0 is assumed

to be a homogeneous Markov process on the setM.

In a second step, Littlewood describes the failure processes associated with execution ac-

tions. Failure may happen during a control transfer between two modules or during an execution

period of any module. During a sojourn of the execution process in the module i, failures are

part of Poisson process having parameter �i. When control is transferred from module i 2 M
to module j 2M, a failure may happen with probability �(i; j). Given a sequence of executed
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modules, the failure processes associated with each state are independent. Also, the interface

failure events are independent on each other and on the failure processes occurring when a

module is active.

The architecture of the software is combined with the failure behavior of the modules and

that of interfaces into a single model which can then be analyzed. This method is referred

as the “composite-method” according to the classification of Markov models in the white-box

approach proposed in [41]. Basically, we are still interested in the counting process N(�).
Another interesting point process is obtained by assuming that the probability of a secondary

failure during a control transfer is 0. Thus, assuming that �(i; j) = 0 for all i; j 2 M in

the previous context, we get a Poisson process whose parameter is modulated by the Markov

process (Xt)t�0. This is also called a Markov Modulated Poisson Process (MMPP). It is well-

known (e.g. [17]) that the stochastic intensity of a MMPP with respect to the history Ht _ F0,

where F0 = �(Xs; s � 0), is �Xt . Thus, N(�) is an instance of a DSPP.

Asymptotic analysis and transient assessment of distribution of rv N(t) may be carried out

in observing that the bivariate process (Xt; N(t))t�0 is a jump Markov process with state spaceM� N. Computation of all standard reliability metrics may be performed as in [42],[43]. We

refer to these papers for details and for calibration of the models.

It can be argued that models of Littlewood-type are inappropriate to capture a reliability

growth of the software. In fact, Laprie et al. [19] has developed a method to incorporate such

a phenomenon which can be used, for instance, in the Littlewood’s model to take into account

reliability growth of modules in the assessment of the overall reliability (see [43]).

In the original papers about Littlewood’s model for modular software, it is claimed that if
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failure parameters decrease to 0 then N(�) is asymptotically a HPP with parameter� =Xi2M �(i)�Xj2MQ(i; j)�(i; j) + �i�;
where Q is the irreducible generator of the Markov process (Xt)t�0 and � its stationary dis-

tribution. �(i) is to be interpreted as the proportion of time the software passed in module i
(over a long time period). We just discuss the case of a MMPP. Convergence to 0 of the failure

parameters �i (i 2 M) may be achieved in multiplying each of them by a positive scalar ", and

in considering that " decreases to 0. So that, the new stochastic intensity of the MMPP is "�Xt .
As " tends to 0, it is easily seen from a MMPP with a modulating two-states Markov process(Xt)t�0 that, for the first failure time T , probability PfT > tg converges to 1. Therefore, we

can not obtain an exponential approximation to the distribution of rv T as " tends to 0. Thus, we

can not expect to derive a Poisson approximation to the distribution of N(�). In fact, the right

statement is: if failure parameters are much smaller than the switching rates between modules,N(�) is approximately a HPP with parameter �. For a MMPP, a proof is given in [44] using

martingale theory. Moreover, the rate of convergence in total variation of finite dimensional-

distributions of N(�) to those of the HPP is shown to be in ". This last fact is important because

user has no information on the quality of the Poissonian approximation given in [36]. However,

there is no rule to decide a priori if the approximation is optimistic or pessimistic (see [43]).

A similar approach to [44] is used in [45] to derive Poisson approximation and rate of conver-

gence for more general pp than MMPP, including the complete Littlewood’s counting process

[46], the counting model of [43]. Such asymptotic results give a “hierarchical-method” [41] for

reliability prediction: we solve the architectural model and superimpose the failure behavior of

the modules and that of the interfaces on to the solution to predict reliability.
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5 Calibration of model

Suppose that we have selected one of the black-box models of Section 3. We obtain reliability

metrics which depend on the unknown parameters of the model. Thus, we hate to estimate

these metrics from the failure data. We briefly review standard methods to get point-estimates

in Subsections 5.1, 5.2.

One major goal of the SR modeling is to predict the future value of metrics from the gath-

ered failure data. It is clear from Section 3 that a central problem in SR is to select a model

because the huge number of available models. Criteria to compare SR models are listed in [3].

The authors propose quality of assumptions, applicability, simplicity and predictive validity.

To assess the predictive validity of models, we need methods which are not only based on a

goodness-of-fit approach. Various techniques may be used: u-plot, prequential likelihood, etc.

We do not discuss this issue here. A good account for predictive validation methods are given in

[47], [48], [4, Chap 4], [3], [11] where comparisons between models are also carried out. Note

also that predictive quality of a SR model may be drastically improved using preprocessing of

data. In particular, statistical tests have been designed to capture trend in data. Thus, reliability

trend analysis allows using SR models which are adapted to reliability growth, stable reliability

and reliability decrease respectively. We refer to [49], [4, Chap 10] and references therein for

details. Parameters will be denoted by � (it can be multivariate).

5.1 Frequentist procedures

Parameter � is considered as taking an unknown but fixed value. Two basic methods to estimate

the value of � are: method of maximum likelihood (ML), the least squares method. That is,

we have to optimize with respect to � an objective function which depends on � and collected
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failure data to get a point-estimate. Another standard procedure, interval estimation, gives an

interval of values as estimate of �. We only present point-estimation by method of maximum

likelihood on (JM) and NHPP models. Others models may be analyzed in a similar way. ML

estimations possess several appealing properties that make the procedure widely used. Two of

these properties are the consistency and the asymptotic normality to get confidence interval for

the point-estimate. Another one is that the ML estimates of f(�) (for one-to-one function f ) is

simply f(b�) where b� is the ML estimate of �. We refer to [3, Ch 12] for a complete view of the

frequentist inference procedures in SR modeling context.

Example 5.1 (JM) Parameters are � and N . Assume that failure data are given by observed

values x = (x1; : : : ; xi) of rv’s X1; : : : ; Xi. If (�;N) are the true values of parameters, then

the likelihood to observe x is defined asL(�;N ; x) = fX1;::: ;Xi(x ; �;N) (14)

where fX1;::: ;Xi(� ; �;N) is the pdf of the joint distribution of X1; : : : ; Xi. The estimate(b�; bN) of (�;N) will be the value of (�;N) which maximizes the likelihood to observe data x:fX1;::: ;Xi(x ; b�; bN) = max�;N L(�;N ; x). Maximizing the likelihood function is equivalent

to maximizing the log-likelihood function lnL(�;N ; x). From the independence of rv’s (Xi)
and (14), we obtain thatlnL(�;N ; x) = ln iYk=1�(N � (k � 1)) exp � � �(N � (k � 1))xk�:
Estimates (b�; bN) are solution of @@� lnL(�;N ; x) = @@N lnL(�;N ; x) = 0:b� = ibNPik=1 xk �Pik=1(k � 1)xk iXk=1 1bN � (k � 1) = ibN � 1Pik=1 xk Pik=1(k � 1)xk
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The second equation may be solved by numerical techniques and then the solution is put into

the first equation to get b�. These estimates are plugged into formulae (10) to get ML estimates

of reliability metrics.

Example 5.2 (NHPP models) Assume that failure data are t = (t1; : : : ; ti) the observed fail-

ure times. The likelihood function is given by (11). Thus, for (MO) model, ML estimates of

parameters �0; �1 (where �0 = 1=�; �1 = ��) are solution of [3]b�0 = iln(1 + b�1ti) ; 1b�1 iXk=1 11 + b�1tk = i ti(1 + b�1ti) ln(1 + b�1ti) :
Assume now that failure data are the cumulative numbers of failures n1; : : : ; ni at some

instants d1; : : : ; di. The likelihood function is from the independence and Poisson distribution

of the increments of the counting process N(�)L(� ; t) = iYk=1 (��(dk)� ��(dk�1))nk�nk�1(nk � nk�1)! exp � � (��(dk)� ��(dk�1)) � (d0 = n0 = 0);
where ��(�) is the mean value function of N(�) given that � is the true value of the parameter.

For (GO) model, parameters are M;� and their ML estimates arecM = ni1� exp(��di) di exp(��di)ni1 � exp(��di) = iXk=1 (nk � nk�1)(dk exp(��dk)� dk�1 exp(��dk�1))exp(��dk�1)� exp(��dk) :
The second equation is solved by numerical techniques and the solution is incorporated into the

first equation to get cM . Estimation of reliability metrics are obtained as for (JM).

5.2 Bayesian procedure

An alternative to frequentist procedures is to use Bayesian statistics. Parameter � is considered

as a value of a rv �. A prior distribution of � has to be selected. This distribution represents

the a priori knowledge on the parameter and is assumed to have a pdf ��(�). Now, from the
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failure data x, we have to update our knowledge on �. If L(� ; x) is the likelihood function of

the data, then Bayes theorem is used as updating formula: pdf of the posterior distribution of �
given data x is f�jx(�) = L(� ; x) ��(�)RRL(� ; x)��(�)d� :
Now, we find an estimate b� of � by minimizing the so-called posterior expected loss:

RRl(b�; �)f�jx(�)d�
where l(�; �) is the loss function. With a quadratic loss function l(b�; �) = (b� � �)2, it is well-

known that the minimum is obtained by the conditional expectationb� = E[� j x] = ZR�f�jx(�)d�:
It is just the mean of the posterior distribution of �. Note that all SR models involve two or more

parameters, so that the previous integral must be considered as multidimensional. Therefore

computation of such integrals are by numerical techniques. Since a decade, progress has been

made on such methods: e.g. Monte Carlo Markov Chain methods (see e.g. [50]).

Note that prior distribution can also be parametric. In general, Gamma or Beta distribu-

tions are used. So that, additional parameters need to be estimated. This may be carried out

by using the ML method. For instance, this is the case for function  (�) in the (LV) model in

[28]. However, such estimates may be derived in the Bayesian framework and we obtain a hi-

erarchical Bayesian analysis of the model. Many models of Section 3 have been analyzed from

a Bayesian point of view using MCMC methods like Gibbs sampling, or data augmentation

method (see [51] for (JM), (LV); [52] for NHPP model, [53] for S-shaped models and reference

therein).
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6 Current issues

6.1 Black-box modeling

We list some issues which are not new but covering well-documented limitations of popular

black-box models. Most of them have been recently addressed and practical validation is

needed. We will see that the prevalent approach is to use the NHPP modeling framework.

Indeed, an easy way to incorporate in a NHPP model various factors affecting the reliability of

a software, is to select a suitable parameterization of the intensity function (or ROCOF). Any

alternative model combining most these factors will be of value.

6.1.1 Imperfect debugging

The problem of imperfect debugging may be naturally addressed in the Bayesian framework.

Reliability growth is captured through deterministically nonincreasing sequence of failure rates(ri(�)) (see (1)). In Bayesian framework, parameters of ri(�) are considered as random. So that,

we can deal with stochastically decreasing sequence of rvs (ri)i (see (13)), which allows to take

into account the uncertainty on the effect of a corrective action. An instance of this approach is

given by the (LV) model (see also [29], [34]).

Note that the binomial class of models can incorporate a defective correction of a detected

bug. Indeed, assume that each fault detected has a probability p to be removed from the soft-

ware. The hazard rate after (i � 1) repairs is �(N � p(i � 1)) (see [23]). But, the problem of

eventual introduction of new faults is not addressed. Kremer [54] solves the case of a single in-

sertion using a nonhomogeneous birth-death Markov model. This has been extended to multiple

introductions in [55]. Shanthikumar and Sumita [56] proposed a multivariate model where mul-

tiple removing and insertions of faults are allowed at each repair. This model involved complex
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computational procedures and is not considered in literature. Recent advance in addressing the

problem of eventual insertion of new faults is concerned with finite NHPP models. It consists in

generalizing the basic proportionality between the intensity function and the expected number

of remaining faults at time t of (GO) model (see Example 3.2) in�(t) = �(t)[n(t)� �(t)]
where �(t) represents a time-dependent detection-rate of a fault; n(t) is the number of faults in

the software at time t, including those already detected and removed and those inserted during

the debugging process (�(t) = � and n(t) = M in (GO)). Making �(�) time-dependent allows

representing a phenomenon of learning process which is closely related to the changes in the

efficiency of testing. This function can monotonically increase during testing period. Select a

nondecreasing S-shaped curve as �(�) gives an usual S-shaped NHPP model. Further details

may be found in [6, Chap 5] and references therein.

Another basic way to consider insertion of new faults is to use a marked point process

(MPP) (e.g. [15, Chap 4]). We have the pp of failure detection times T1 < T2 < � � � and

with each date Ti, we associate a mark Mi which represents the cumulative number of faults

removed and inserted during the debugging phase. We retrieve a usual pp if all marks are 1. For

such a model, we are interested in the mark-accumulator process
PN(t)i=0 Mi (M0 = 0). A basic

instance of MPP is the compound Poisson Process where N(�) is a HPP and Mi’s are i.i.d. and

independent of N(�). This may also be used to model clustering of failures (see [57]). Such

MPP are not SEPP of Section 3.1 because orderliness condition fails. This framework was used

by van Pul [18] to extend models of (JM) type to incorporate the possibility of inserting new

faults during repair.
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6.1.2 Early prediction of software reliability

A major limitation of SR models of Section 3 for software engineering community is to provide

no help for managing in the earlier phase of development (or testing) of a product. Indeed,

calibration of these black-box models requires a relatively large set of failure data. This is rarely

encountered in the earlier life-cycle of a software. In some sense, we are now concerned with

the general topic of software quality assessment (which includes dependability concepts) with

no failure data. Thus, we have to develop statistical models of quality which are not directly

related to the knowledge of a part of the failure process. In such a case, model must be based on

a priori information on the product: judgment of experts, quality of the development process,

similar existing products, software complexity, etc. Incorporating subjective information leads

naturally to Bayesian statistics. We refer to [2, Chap 5,6] for discussion in this context. Since

we are mainly interested in reliability assessment, we restrict ourselves to more and less recent

issues relying quality control to the software reliability.

A widespread idea is that complexity of a software is an influent factor of the reliability

attributes. Much work has been devoted to quantify the software complexity through software

metrics (see e.g. [58]). Typically, we compute Halstead and McCabe metrics which are program

size and control flow measures respectively. It is worthy of note that most software complexity

metrics are strongly related to the concept of structure of software code. Thus, including com-

plexity factor in SR may be thought of as a first attempt to take into account the architecture of

a software in reliability assessment. We turn back to this issue in Subsection 6.2. Now, how

to include complexity attributes in earlier reliability analysis? Most of recent research focus on

the identification of software modules which are likely fault-prone from data of various com-

plexity metrics. In fact, we are faced with a typical problem of data analysis that explains why
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literature on this subject is mainly concerned with procedures of multivariate analysis: linear

and nonlinear regression methods, classification methods, techniques of discriminant analysis.

We refer to [4, Chap 12], [59],[60] and references therein for details.

Another empirical evidence suggests that the higher the test coverage, the higher the relia-

bility of the software would be. Thus, a model which incorporates information on functional

testing as soon as it is available is of value. This issue is addressed in a NHPP model proposed

in [61]. It consists in defining an appropriate parameterization of a finite NHPP model which

relates software reliability to the measurements that can be obtained from the code during func-

tional testing. Let a be the expected number of faults that would be detected given infinite time

testing. The intensity function �(�) is assumed to be proportional to the expected number of

remaining failures: �(t) = [a � �(t)]�(t) where �(t) is the hazard rate per-fault. Finally, the

time-dependent function �(t) is of the form�(t) = dc(t)dt1 � c(t)
where c(t) is the coverage function. That is, the ratio of the number of potential fault-sites

covered by time t divided by the total number of potential fault-sites under consideration during

testing. Function c(t) is assumed to be continuous and monotone as function of time testing.

Specific forms of function c(�) allow retrieving some well-known finite failure models: expo-

nential function c(t) = 1 � exp(��t) corresponds to the (GO); Weibull coverage functionc(t) = 1 � exp (��t) corresponds to the generalized (GO) model [62]; S-shaped coverage

function correspond to S-shaped models [25], etc. Gokhale et al propose to use a log-logistic

function. We refer to [61] for details. Such a parameterization leads to estimate a and the pa-

rameters of function c(�). The model may be calibrated according to the different phase of the

software life-cycle. Here, in early phase of testing, an approach is to estimate a from software

28



metrics (using procedures of multivariate analysis) and measure coverage during the functional

testing using a coverage measurement tool (see e.g. [4, Chap 13]). Thus, we get early prediction

of reliability (see [63] for an alternative using information from testing phases of similar past

projects).

6.1.3 Environmental factors

Most SR models in Section 3 ignore the factors affecting software reliability. In some sense,

previously issues discussed in this section can be considered as an attempt to capture some

environmental factors. Imperfect debugging is related to the fact that new faults may be inserted

during a repair. Complexity attributes of a software is strongly correlated to its fault-proness.

Empirical investigations show that the development process, testing procedure, programmer

skill, human factors, the operational profile and many others factors affect the reliability of a

product (see e.g. [64], [4, Chap 13], [65], [66] and references therein). A major issue is to

incorporate all these attributes into a single model. At the present time, investigation focus on

functional relationship between the hazard rate ri(�) of the software and quantitative measures

of the various factors. In this context, a well-known model is the so-called Cox proportional

hazard model (PHM) where ri(�) is assumed to be an exponential function of the environmental

factors: ri(t) = r(t) exp nXj=1 �jzj(i)! (15)

where zj(�)’s, called the explanatory variables or covariates, are the measures of the factors and�j’s are the regression coefficients. r(�) is a baseline hazard rate that gives the hazard rate when

all covariates are set to 0. Therefore, given z = (z1; : : : ; zn), the reliability function Ri isRi(t j z) = R(t) exp nXj=1 �jzj(i)! (16)
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with R(t) = exp�� R t0 r(s)ds�. Formula (15) expresses the effect of accelerating or deceler-

ating the time to failure given z. Note that covariates may be time-dependent, random. In this

last case the reliability function will be the expectation of function in (16). Baseline hazard rate

may be any of the hazard rates used in Section 3. The family of parameters can be estimated

using ML. Note that one of the reasons for the popularity of PHM is that the unknown �j’s may

be estimated by the partial likelihood approach without putting a parametric structure on the

baseline hazard rate. We refer to [67], [68], [11], [69] for general discussion on Cox regression

models. Applications of PHM to software reliability modeling are given in [12, Chap 7], [70],

[71] and references therein. Recently, Pham derives in [72] an enhanced proportional hazard

(JM) model.

A general way to represent influence of environmental factors on reliability is to assume that

stochastic intensity of the counting process N(�) is a function of some m stochastic processesE1(t); : : : ; Em(t) or covariates�(t ; Ht;F0) = f(t; E1(t); : : : ; Em(t); T1; : : : ; TN(t); N(t))
where Ht is the past up to time t of the pp and F0 encompasses the specification of the paths

of all covariates. Thus, function �(t ; Ht;F0) may be thought of as the stochastic intensity

of a SEPP driven or modulated by the multivariate environmental process (E1(t); : : : ; Em(t)).
DSPP of Subsection 3.1 is a basic instance of such models and have been widely used in com-

munication engineering and in reliability. Castillo and Siewiorek proposed in [73], a DSPP

with a cyclo-stationary stochastic intensity to represent the effect of the workload (measure of

system usage) on failure process. That is, intensity is a stochastic process assumed to have

periodic mean and autocorrelation function. A classic form for intensity of a DSPP is �(Et),
where (Et) is a finite Markov process. This is the MMPP discussed in Section 4, where (Et)
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represented the control flow structure of the software. In the same spirit of system in a random

environment, Özekici and Sofer [65] use a pp whose stochastic intensity is (N � N(t))�(Et),
where N�N(t) is the remaining number of faults at time t and Et is the operation performed by

the system at t. (Et) is also assumed to be a finite Markov process. Transient analysis of N(�)
may be carried out as in [42] from the Markov property of the bivariate process (N�N(t); Et).
We refer to [65] for details. Note that both pp are instances of SEPP with respective stochastic

intensities E[�(Et) j Ht] and (N �N(t))E[�(Et) j Ht] (Ht is the past of the counting process

up to time t). The practical purpose of such models has to be addressed. In particular, further

investigations are needed to estimate parameters (see [74]).

6.1.4 conclusion

There exists other issues which are of value in SR engineering. In the black-box modeling

framework, we can think about alternative to approaches reported in Section 3. The problem of

SR growth assessing may be thought of as a problem of statistical analysis of data. Therefore,

prediction techniques developed in this area of research can be used. For instance, some authors

have considered neural networks (NN). The main interest as SR model is to be nonparametric.

Thus, we rejoin discussion on statistical issues of Subsection 6.3. NN may also be used as a

classification tool. For instance, identifying fault-prone modules may be performed with a NN

classifier. We refer to [4, Chap 17] and references therein for an account of the NN approach.

Empirical comparison of the predictive performance of NN models and recalibrated standard

models (as defined in [75]) is given in [76]. NN is found to be a good alternative to the standard

models.

Computing dependability metrics is not an end in itself in software engineering. A major

question is the time to release a software. In particular we have to decide when to stop testing.
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Optimal testing time is a problem of decision making under uncertainty. A good account of

Bayesian decision theory for solving such a problem is in [2, Chap 6]. In general, software

release policies are based on reliability requirement and cost factors. We do not go into further

details here. We refer to [12, Chap 8] for a survey up to 1990s, and [77], [78] for more recent

contributions to these topics.

6.2 White-box modeling

A challenging issue in SR modeling is to define models taking into account information about

the architecture of the software. To go further, software interacts with hardware to make a

system. In order to derive model for a system made up of software and hardware, the only point

of view is a white-box approach (see [49] and [79] for an account on this topic). We focus on the

software product here. Many reasons advocate for a structure-based approach in SR modeling:

– Advancement and widespread used of object oriented systems designs. Reuse of compo-

nents.

– Softwares are developed in a heterogeneous fashion using components-based software de-

velopment.

– Early prediction methods of reliability have to take into account the influence about the

structure of a software, of testing and reliability of its components.

– Early failure data are prior to the integration phase and thus concern testing part of the soft-

ware, not the whole product.

– Addressing problem of reliability allocation, resource allocation for modular software.

– Analyze sensitivity of the reliability of the software to the reliability of its components.
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As noted in Section 4, the structure-based approach has been largely ignored. Foundations of

the Markovian models presented in Section 4 are old. Some limitations of Littlewood’s model

have been recently addressed in [43], in particular to obtain availability measures. Asymptotic

considerations in [45] show that such reliability model tends to be of Poisson-type (homoge-

neous or not depending on stationarity or not of the failure parameters) when the product has

achieved a good level of reliability. It is important to point out that no experience with such

kinds of models is reported in the literature. Maybe it is related to questionable assumptions of

modeling, as the Markov exchanges of control between modules.

An alternative way to represent the interactions between components of software is to use

one of the available modeling tools which are based on stochastic petri nets, SAN network,

etc. But, if many of them offer a high flexibility in the representation of the behavior of the

software, computation of various metrics are very often performed using automatic generation

of Markov chain. So that, these approaches are subject to traditional limitation of Markov

modeling: failure rate of the components are not time-dependent; the generated state-space is

intractable from the computational point of view; etc.

To overcome limitations of an analytic approach, a widespread method in performance anal-

ysis of system is discrete-event simulation. This point of view was initiated by Lyu (see [4,

Chap 16]) for software dependability assessment. The idea is to represent the behavior of each

component as a nonhomogeneous Markov process whose dynamic evolution only depends on a

hazard rate function. At any time t, this hazard rate function depends on the number of failures

observed from the component up to time t, as well as the execution time experienced by the

component up to time t. Then rate-based simulation technique may be used to obtain a possible

realization of such a Markovian arrivals process. The overall hazard rate of the software is actu-
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ally a function of the number of failures observed from each component up to time t and of the

amount of execution time experienced by each component. We refer to [4, Chap 16] and [80]

for details. In some sense, the approach is to simulate the failure process from the stochastic

intensity of the counting process of failures.

Long since, the theory of “coherent-system” allows analyzing a system made up of n com-

ponents through the so-called structure function. If xi (i = 1; : : : ; n) denotes the state of

component i (xi = 1 if component i is up and 0 otherwise) then the state of the system is

obtained from computation of the structure function�(x1; : : : ; xn) = � 1 if system is up0 if system is down.

Function � describes the functional relationship between the state of system and the state of

its components. Many textbooks on reliability review methods for computing reliability from

complex function � assuming that state of each component is a Bernoulli random variable (see

e.g. [17, Chap 2]). An instance of representation of a 2-module software by a structure function

taken into account control flow and data flow is discussed in [2, Chap 7]. This “coherent-

system” approach is widely used to analyze the reliability of communication networks. How-

ever, it is well-known that exact computation of reliability is then a NP-hard problem. Thus,

only structure functions of few dozens of components can be exactly analyzed. Large systems

have to be assessed by Monte-Carlo simulation techniques (see e.g. [81], [82]). Moreover, in

case of fault-tolerant software, we are faced with a highly reliable system which involves so-

phisticated simulation procedures to overcome limitations of standard ones. In such a context,

an alternative consists in using binary decision diagrams (see [4, Chap15], [83]). We point out

that structure function is mainly a functional representation of the system. Thus, many issues

discussed in the context black-box modeling also have to be addressed. For instance, how to
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incorporate environmental factors identified in [34]?

As we can see, a great deal of research is needed to obtain a white-box model which offers

the advantages motivating development of such an approach. Opening the “black-box” to get

accurate models is a hard task. Many aspects have to be addressed: definition of what is the

structure or architecture of software; what kind of data can be expected to future calibration of

models and so on. A first study of the potential sources of SR data available during development

is given in [84]. This would help the creation of some benchmark data sets which will allow

validating white-box models. What is clear is that actual progress in white-box modeling can

only be achieved from an active interaction between the statistics and software engineering

communities. All this surely explains why the prevalent approach in SR is the black-box’s one.

6.3 Statistical issues

A delicate issue in SR is the statistical properties of estimators used to calibrate models. Main

drawbacks of ML method are well-documented in the literature. Finding ML estimators require

solving equations which may not always have a solution or may give an inappropriate solution.

For instance, Littlewood and Verrall give in [85], a criterion for bN = 1 and b� = 0 (with

finite nonzero b� = bN b�) to be the unique solution of ML equations for (JM) model. Problem

of solving ML equations in SR modeling is addressed in [86], [87], [88], [89]. Another well-

known drawback is that such ML estimators are usually unstable with small data sets. This

situation is basic in SR. Moreover, note that certain models like (JM) assume that software

contains a finite number of faults. So, using standard asymptotic properties of ML estimators

may be questionable. Such asymptotic results are well-known in the case of i.i.d. sample. But

in SR, sample are not i.i.d. That explains why recent investigations on asymptotic normality

and consistency of ML estimators for standard SR models use framework of martingale theory
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which allows dependence in data. Note that overcoming conceptually finite (expected) num-

ber of faults needs unusual concept of asymptotic properties. A detailed discussion is given in

[18] and references therein, in [88] for NHPP models. Such works are important because these

asymptotic properties are the foundations of interval estimation (a standard alternative to point

estimate), of the derivation of confidence interval for parameters, of studies on asymptotic vari-

ance of estimators, etc. All these topics must be addressed in details to improve the predictive

quality of SR models.

It is clear that any model works well with failure data which correspond to the basic as-

sumptions of the model. But given data, a large part of models is inappropriate. A natural way

to overcome too stringent assumptions, in particular of distributional type, is to use nonpara-

metric models. However, the parametric approach remains highly prevalent in SR modeling.

Major attempt to gap this fill is [90], where a completely monotonic ROCOF is estimated by

regression techniques (see also [91]). A recent work of Littlewood and co-authors [92] uses

nonparametric estimates for the distribution of inter-failure times (Xi). This is based on kernel

methods for pdf estimation (see [93]). Conclusion of authors is that results are not very im-

pressive but more investigation is needed, in particular using various kernel functions. We can

think for instance to wavelets ([94]). Similar discussion may be done in Bayesian approach of

SR modeling. Specifically, most bayesian inference for NHPP assumes a parametric model for

ROCOF and proceeds with prior assumption on the unknown parameters. In such a context, an

instance of a nonparametric bayesian approach has recently been used in [95]. Conceptually,

nonparametric approach is promising, but is computationally intensive in general and is not

easy to comprehend.

These developments may be viewed as preliminary works using statistical methods based
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on the so-called dynamic approach of counting processes as reported for instance in the book

of Andersen et al [69] (the bibliography gives a large account for research on this area). The

Aalen pioneer-work was on the multiplicative intensity model which, roughly speaking, writes

the stochastic intensity associated with a counting process as�(t ; Ht; �(Ys; s � t)) = �(t)Y (t)
where �(�) is a nonnegative deterministic function, whereas Y (�) is a nonnegative observable

stochastic process whose value at any time t is known just before t (Y (�) is a predictable pro-

cess). Nonparametric estimation for such a model is discussed in [69, Chap 4]. A Cox-type

model may be obtained in choosing Y (t) = exp�Pj �jZj(t)� with stochastic processes as co-

variates Zj (see [96]). We can also consider additive intensity models when the multiplicative

form involves multivariate functions �(�) and Y (�) (e.g. see [97]). Conceptually, this dynamic

approach is appealing because it is well supported by a lot of theoretic results. It is worthy

of note that martingale theory may be of some value for analyzing static models as capture-

recapture models (see [98], [99] for details). Thus, applicability of the dynamic point of view

on pp in the small data set context of software engineering is clearly a direction of further in-

vestigations (see e.g.[18] for such an account). Moreover, if it is shown that gain in predictive

validity is high with respect to standard approaches, then a user-oriented “transfer of technol-

ogy” must follow. That is, friendly tools for using such statistical material must be developed.
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