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1 Introduction 

Software requirements errors have been found to account. for a majority of production 

software failures [BMU75 , End75) and have been implicated in a large number of accidents 

[Lev86) . Errors introduced during the requirements phase can cost up to 200 times more to 

correct than errors introduced later in the life cycle [Boe81] and can have a major impact 

on safety. Therefore, techniques to provide adequate requirements specifications and to 

find errors early are of great importance. 

One application area for which requirements specification is particularly critical is 

process-control, i.e ., software that controls arbitrarily large or energetic physical phenom­

ena. Such software is usually real-time and often embedded within some larger system such 

as a ship, aircraft , missile, spacecraft, manufacturing or processing plant, or transporta­

tion system where the software is used to assist in the formulation and implementation of 

decisions made by the computer or by humans for the purpose of controlling the larger sys­

tem. In such process-control systems, minor behavioral distinctions often have significant 

consequences . It is therefore particularly important that the requirements specifications 

distinguish the behavior of the desired software from that of any other, undesired program 

that might be designed, i.e, they must be both precise (unambiguous) and correct with 

respect to the encompassing system requirements . The requirements analysis techniques 

1This work was partially supported by NASA grant NAG-1-668 , NSF Grant CCR-8718001 , and by 

NSF CER Grant DCR-8521398 . 

A shorter and quite different version of this paper was presented at the 11th International Conference on 

Software Engineering, Pittsburgh, :tvla.y 1989. The content has changed significantly. 
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discussed in this paper are most relevant for these types of systems. 

Our goal is to provide analysis procedures to help find flaws in the software requirements 

specifications for process-con'trol systems early in the software development. The approach 

is an engineering approach where a model (the requirements specification) is built and then 

analyzed to ensure that the properties of the model match the desired behavior. Some of 

the analysis procedures to be described in this paper involve the checking for consistency 

with criteria that must be satisfied by all such systems; these criteria often arise from 

the basic properties inherent in any process-control system. Other procedures rely on 

heuristics that can be used to improve the specification by examining, within the context 

of the particular process being controlled, properties that are often present in such systems . 

This approach complements other approaches to the same problem that have been 

proposed. For example, prototyping is very useful for ensuring that the human/machine 

interface (HMI) has been properly described. It is less powerful when attempting to ensure 

that physical processes are correctly controlled by the software, especially when, as is 

usual, the rest of the system has not yet been built or even completely designed when the 

software development must begin. Furthermore, prototyping has the same limitations as 

testing when the goal is to ensure with very high confidence that certain constraints, such 

as safety, are always satisfied. It is possible to make guarantees about the behavior of the 

software only for the particular inputs applied and not for all inputs. Prototyping may 

involve a lot of work just to find out that the wrong software was built and the work must 

start again. It is helpful to find and eliminate as many problems as possible before the 

prototyping begins. 

Executable specifications (such as [BCF83, Zav82, Rea89]) are related to prototypes in 

that such specifications may actually act as a prototype, but they may involve less coding 

than prototyping. Like a prototype, such specifications may be inefficient since they may 

require specifying more than would normally be necessary and again are limited in power 

of analysis and assurance to that possible with testing. Some executable specifications 

are also not very readable and thus are less useful as specifications for the rest of the 

software development process. But like prototypes, executable specifications are better 

than the approach presented in this paper at finding problems in the specification of the 

HMI - few models of human behavior exist and very little is known a.bout the desirable 

and necessary properties of HMI design . 

Because our goal is to present general analysis procedures that can be applied to black­

box requirements specified in any language, we use a notation and analysis model in this 

paper that can be easily mapped to many of the current real-time requirements specification 

languages (such as [Hen80, Har87, Alf77]), i .e., the first-order predicate calculus and a 

simple state ma.chine model. Our goal is not to provide another language for specification 

of requirements ; the formal notation is for the purpose of providing rigor in defining the 

analysis procedures and criteria. while requiring only a small number of primitives that are 

easily mapped to existing specification languages. 
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The next section defines what we mean by semantic analysis of software requirements. 

In the rest of the paper we introduce the analysis model and provide a description of the 

analysis criteria we have developed. In this paper, we consider only analysis procedures 

that examine the behavioral description of the computer. However, our long range goal 

is to define procedures that include detailed consideration of the behavior of the entire 

system working together, i.e., a melding of system engineering and software engineering in 

order to model and to analyze the interface between the process and the computer. Also, 

only black-box requirements are considered, i.e., the behavior of the software is described 

only in terms of observable phenomena external to the software. Although requirements 

and design often become intertwined, even a specification that includes design information 

needs to include a complete set of black-box behavioral requirements as well, and these 

behavioral requirements are the subject of this paper. 

2 Semantic Analysis of Requirements 

A system is a set of components working together within a given environment to achieve 

some common purpose or objective. For the most part, the systems of interest in this paper 

are physical systems or processes. Besides the basic objective or function implemented by 

the process, these types of systems also may have constraints on their operating conditions. 

Constraints may be regarded as boundaries that define the range of conditions within which 

the system may operate. Constraints may arise from several sources including: 

• quality considerations, 

• physical limitations and equipment capacities ( e.g, avoiding overload of equipment 

in order to reduce maintenance), 

• process characteristics (e.g., limiting process variables to m1111m1ze production of 

byproducts), and 

• safety (e.g., avoiding hazardous states). 

Early in the development process, tra.deoffs between goals in the functional description 

a.nd constraints must be identified and resolved according to priorities assigned to ea.ch. 

Identifying these conflicts and resolving them is a major component of both the system a.nd 

software requirements analysis process. The other component is ensuring that the behavior 

of the process-control system implements the function to be achieved by the system. Both 

of these together are necessary to determine whether the software is "correct" for process­

control systems . . Semantic analysis of the software requirements addresses both of these 

elements as it examines the correctness of the specification. 

Software correctness can be separated into two aspects: subsystem correctness and sys­

tem correctness. Subsystem correctness implies that the implementation or constructed 
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version of the subsystem satisfies the subsystem requirements. The most important prop­

erty of the requirements specification with respect to achieving this is precision or lack of 

ambiguity. The behavior of the software must have been specified in _sufficient detail to 

distinguish the behavior of the desired software from that of any other, undesired program 

that might be designed. If a requirements document contains insufficient information for 

the designers to distinguish between observably distinct behavioral patterns, then the spec­

ification is ambiguous. If the differences between two programs that satisfy the same set 

of requirements is not significant for a given application (i.e., will not affect the achieve­

ment of the system goals and the satisfaction of the constraints), the ambiguity may not 

matter. But languages or specification procedures that do not permit the expression of 

subtle distinctions or do not include requirements to cover all possible circumstances will 

be inadequate for some applications. Ambiguity or imprecision in the software require­

ments specification can have a major impact on testing, formal verification, and reuse of 

the software. It can also affect the ability to determine system correctness. 

System correctness implies that the subsystems working together, if they satisfy their 

requirements (i.e., the subsystems are correct), will implement the required system function 

while satisfying the constraints on how that function may be achieved. For most process­

control systems, this must be accomplished under all possible conditions, i.e., the system 

must be robust. Note that the constraints may include acceptable failure behavior if it 

becomes impossible to continue to achieve the goals of the system. More specifically, the 

behavior of the control subsystem (in our case, the computer) is defined with respect 

to assumptions about the behavior of the other parts of the system, i.e., the conditions 

in the environment within which it operates. A robust system will detect and respond 

appropriately to violations of these assumptions. Therefore, the robustness of the software 

built from the specification depends upon the completeness of the specification of the 

environmental assumptions; there must be no observable events that leave the program's 

behavior indeterminate. 

Documenting all environmental assumptions and checking them at run-time may seem 

expensive and unnecessary. Many assumptions are made on the basis of the physical 

characteristics of input devices and cannot be falsified even under unreasonable physical 

conditions and failures. For example, an input line connected to a 1200 baud modem 

cannot fail in such a fashion as to cause the data rate to exceed 1200 baud. The interrupt 

signal may stick high (i.e., on), but for most modern hardware that will stop data transfer, 

not accelerate it. However, if the environment in which the program executes ever changes, 

the assumption may no longer remain valid; e.g., the 1200 baud modem may be upgraded 

to 9600 baud. Similarly, if the software is ever reused, the environment for the new program 

may differ from that of the earlier use. A striking example of this type of problem involved 

the reuse of air traffic control software in Great Britain that was originally written and 

designed for air traffic control centers in the U.S. It was not discovered until after the 

software was installed that the American designers had not ta.ken zero degrees longitude 

into account which caused the computer to fold its map of Brita.in in two at the Greenwich 
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meridian [Lam88]. 

Besides documentation of assumptions, it may be important for real-time software to 

check assumptions at run-time when the improper performance of the software may cause 

serious consequences. Examples abound of accidents resulting from incomplete require­

ments and non-robust software [Lev86, Neu85]. In one case, an accident occurred when 

a flight-control system was not programmed to handle a particular attitude of the air­

craft [Neu85]. In another incident, an aircraft was damaged when the computer raised 

the landing gear in response to a test pilot's command while the aircraft was standing 

on the runway [Neu85]. System safety engineers have concluded that inadequate require­

ments specification and design foresight are the greatest cause of software safety problems 

[Lev86]. 

The software requirements specification must contain the information necessary to make 

possible the determination of both of these types of correctness - system and subsystem. 

The problem then becomes to determine the type and amount of information sufficient 

to ensure correctness, and the type of analysis that can be performed to ensure that this 

information is present and to detect missing or incorrect information. That is the topic 

of this pa.per, with special emphasis on procedures for ensuring robustness and lack of 

ambiguity. 

3 Basic Model and Terminology 

Traditionally process-control has been defined as: 

An arrangement of elements (such as amplifiers, converters, and human op­

erators) interconnected in such a way as to maintain, or to affect in a prescribed 

manner, some physical quantity or condition of the process which forms a part 

of the system [Low71]. 

The scope of modern process-control is, however, not limited to maintaining and regulating 

the variables in a system but also includes supervision and planning by means of scheduling 

and sequencing events and operations in the system. 

The operation of a system can be expressed as a function F relating system inputs (Is), 

outputs (C\), and time (t). This system function consists of the functional description and 

the set of constraints on the system. At any moment, there is a unique set of relationships 

between inputs and outputs whereby ea.ch output value will be related to the past and 

present values of the inputs and time. These relationships will involve fundamental chem­

ical, thermal , mechanical, aerodynamic, or other laws as embodied within the nature and 

construction of the system. The system is constructed from components whose interaction 

implements F including, usually, a control component or components whose function is to 

ensure that F is correctly achieved. 
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A closed-loop process-control system can be modeled as four basic components within 

a control loop (figure 1): the process , the control component, actuators, and sensors . 

The Process is the actual process to be controlled. The behavior of the process is con­

trolled through the manipulated variables (Vm) and the actual behavior is monitored 

through the controlled (Ve) variables. The process can be described by the process 

function Fp, a mapping from Vm x Is x 1) x t -t Os x Ve· Unfortunately, it is usually 

difficult to derive a mathematical model of the process due to the fact that most 

processes are highly nonlinear (i.e., the process characteristics depend on the level of 

operation), and, even at a constant operating level, the process characteristics change 

with time (i.e., the process is nonstationary). However, some of the process charac­

teristics can be described or assumptions can be made about the characteristics, and 

these can be used to derive the control function. It is important to remember that 

any attempt to provide a mathematical expression describing the process involves 

simplifying assumptions and therefore will be imperfect although useful. 

The Control Component is the implementation of the control function. The implemen­

tation can be either analog or digital. The functional behavior of this component 

is described by a control function ( F c) mapping I x C x t -t 0. The process may 

change state not only through internal conditions and through the manipulated vari­

ables, but also by disturbances (V) that are not subject to adjustment and control 

by the control component. The general control problem is to adjust the manipu­

lated variables so as to achieve the system goals despite disturbances. Feedback is 
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by the control component. The general control problem is to adjust the manipu­

lated variables so as to achieve the system goals despite disturbances. Feedbacl" is 

6 



provided via the controlled variables in order to monitor the behavior of the process. 

This feedback information (along with external command signals C) can be used as a 

foundation for future control decisions as well as an indicator of whether the changes 

in the process initiated by the control component have been achieved. Note that the 

control component may have only partial control over the process - state changes in 

the process may occur due to internal conditions in the process or because of external 

disturbances. 

Actuators are devices designed to manipulate the behavior of the process, e.g. valves con­

trolling the flow of a fluid . The actuators physically execute commands issued by the 

control component in order to change the manipulated variables. The functionality 

of the actuators is described by the actuator function FA mapping 0 x t -t Vm· 

Sensors constantly monitor the actual behavior of the process. For example, a thermome­

ter may measure the temperature of a solvent in a chemical process. Sensors provide 

the control component with measurements of the controlled variables. The sensor 

function Fs maps Ve x t -t I. 

This model describes a classic feedback control system where the control component 

monitors the process ,through controlled variables and makes adjustments accordingly. 

There are disadvantages with such a system. It does not take corrective action until the 

controlled variables already deviate from their desired values. Furthermore, any corrective 

action is not realized until the changing conditions have propagated around the control 

loop. Delays, called time lags, caused by each component may cause serious problems in 

the system. 

A complimentary approach, feedforward control, measures and estimates disturbances 

and tries to predict their effect on the process. Corrective actions are taken before the 

controlled variables deviate from their desired values. Feedforward control cannot replace 

a feedback control, however. The effectiveness of a feedforward system is limited by the 

mathematical model describing the system and the accuracy of the components involved. 

Inaccuracies may cause the feedforward system to have a steady-state offset taking the 

system out of balance. Also, the feedforward control component cannot compensate for 

unexpected disturbances. Process-control systems often combine feedforward and feedback 

strategies in order to offset the disadvantages of each. 

Process-control is a time-based concept. The objective is to maintain some property 

at some specified value in time or to effect some sequence of state changes in time. The 

sequence of steps to be taken may be dependent on both satisfaction of prerequisite con­

ditions in the process or environment and on time. 

Control actions will lag in their effects on the process because of delays in signal propa­

gation around the control loop. An actuator may not respond immediately to an external 

command signal. Also the process may have delays in responding to manipulated variables. 

Sensors usually obtain values only at certain "sampling" intervals. Time lags also restrict 
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Figure 2: Block diagram of the temperature control system. 

the speed and extent with which the effects of disturbances can be reduced. On the other 

hand, the time lags restrict the rapidity with which disturbances can upset the process, 

and there are instances where the presence of time lags makes some types of closed-loop 

control both possible and effective. Furthermore, time lags in some components may be 

so small in comparison with other components that their effects may not be crucial. In 

fact, if the sampling period of the sensors becomes small in relation to the time lags of the 

rest of the system, the sampled control system becomes, in effect, continuous. This is also 

true for actuators that operate in a discrete manner. Because many of the problems asso­

ciated with computerized process-control stem from timing, a large amount of the analysis 

described in this paper involves timing. 

3.1 An Example System 

Figure 2 shows a process-control system that will be used throughout the paper to illustrate · 

the concepts introduced. (The complete example is included in the appendix.) It is based 

on a set of requirements introduced in [JM87] as an example of safety-assertion analysis. 

The system controls the coolant temperature in a reactor tank by moving two independent 

control rods. The goal or basic required functionality is maintenance of the coolant at 

an externally defined temperature of C' 0 K. The coolant temperature is measured by an 

automatic sensor and is provided to the control component when the temperature changes 

by c~K. If the te.mperature of the coolant cannot be changed , a complete shutdown is 

required. A safety constraint on the control function of the cooling system is that a rod 

cani10t be moved within 30sec of its previous movement. 

The following assumptions are made: 

8 



1. The rods have mechanical stops so that an attempt to move a rod past its limit will 

have no effect on the system. 

2. Every rod movement will perturb a stable system enough to report a temperature 

change. 

3. The goal will always be attainable; i.e. the possible movement of the rods is always 

enough to stabilize the temperature at the right value. 

4. The process is dynamically stable; i.e., no runaway temperature changes will take 

place. There will never be a need to move the rods with shorter than 30sec intervals. 

3.2 The Requirements State Machine 

The goal of this paper is to describe semantic analysis criteria that can be applied to 

any behavioral requirements specification. In order to make these criteria independent of 

any specific, existing requirements language, we introduce a general behavioral model of 

the control function, called a requirements state machine (RSM), which is an abstraction 

of most state-based specification languages. Either requirements written in a state-based 

language could be translated into an RSM model and analyzed, or the criteria can be 

mapped onto a specific language and applied directly to the specification. In this paper, 

the RSM is used to model the control function Fe; properties of the process, sensor, and 

actuator functions, Fp, Fs, and FA, respectively, are used to derive the semantic analysis 

criteria. 

The RSM model we use is a Mealy machine ([HU79]) with outputs on the transi­

tions between states. Transitions are labeled with logical expressions of the form Input 

predicate/I Output predicate, and a transition is taken if the Input predicate on that transi­

tion evaluates to true. If an output is to be produced, the constraints on that output are 

expressed in the 01dput predicate associated with the transition. 

The RSlVI is denoted as a seven-tuple (2',,Q,q 0 ,Pr,Pa,o,~1) where: 

• 2', is the set of input/output variables, I and 0, used by the control component 

(software). 

• Q is the finite set of states of the control component C. 

• q0 E Q is the initial state of the control component C; the software is in this state 

before startup. 

• Pr is the set of boolean functions over r,, which represent predicates on the values 

and timing of the inputs (I) from the sensors. These predicates are called trigger 

predicates since they trigger a state change in the RSM . 
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• Po is the set of boolean functions over L:, which represent predicates on the outputs 

( 0) of the control component. 

• 8 is the state transition function mapping Q x PT to Q. That is, 8(q,p) where q E Q 
and p E PT defines the next state when the software is in state q and takes the 

transition having p as the input predicate. 

• /is the trigger-to-output relationship mapping from Q x PT to Pa. That is, 1(q, p) 

gives the predicate describing the output 0 to the actuators to be generated when 

the transition with input predicate p is taken out of state q. 

In addition the RSM has the following properties: 

• Predicates in PT and Po are expressed using the standard boolean operators and 

ordinary arithmetic operators. The expression X i represents an input or output 

occurrence of X. This expression evaluates to true the moment input X arrives at 

the black-box boundary or output X is produced and presented at the black-box 

boundary. 

• When an input I arrives at the software boundary, i.e. an Ii event has occurred, 

it is denoted as Ij or simply I. The previous occurrence of the same input will be 

denoted Jj-l and so forth. The ordering of outputs will be expressed in the same 

manner. Note that the first variable X arriving at the black-box boundary will be 

referred to as X 1 . The ordering of inputs and outputs is externally visible. 

• The predicates in PT are either equivalent to the form Input event/\Jnput Constraints 

or they represent a timeout. Every input predicate that is not a timeout will contain 

only one Input event. For a timeout, the mere passage of time with no triggering 

input event will eventually result in a true predicate. 

• A clock and a function giving the absolute time of an event are needed to express 

timing. The expression t(I i) denotes the time when I arrives at the black-box 

boundary. The clock is started when the system receives the signal to startup, i.e. 

t(S'u i) = 0. 

• In certain instances the value of a variable is interesting . The value of a variable X 

is denoted v(X). 

To illustrate, consider the reactor coolant example. If no rods have been moved recently 

(within 30sec) and an input I indicating a temperature change occurs, the control tries 

to move Rodl. The rod will be moved up or down, depending on the value of I. After 

moving Rodl , the RSM will wait 30sec in state Rod1Nfoved. If no additional input arrives 
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Ij !\LowjjOut(Rodl, down) 

Ij !\HighjjOut(Rodl, down) 

TimeOut(Rodl)ll-

Figure 3: A fragment of an RSM 

during this time, the RSM changes to NoRodsMoved. In figure 3 the predicates used will 

be abbreviated: 

Low 

High 

TimeOut(X) 

Out(O,X) 

v(I) < C 0 
]( 

v(I) 2 C0 
]( 

t>t(Xi)+30 

Oj !\(v(O) = X) 

The transition predicate on the uppermost transition can be expressed informally as : If an 

input I arrives and the value of I is less than C°K then produce an output Rodi with the 

value ·up. 

Semantic analysis of requirements involves procedures for examining each of the parts 

of the RSM within the context of the system function F in order to find flaws in the 

software requirements specification and to ensure that it (and the software built from it) 

has certain desirable properties . This paper describes some of the semantic analysis that 

might be performed. Unfortunately, it is usually not possible to specify a complete formal 

model of the system F. However, it is possible to define criteria that must be satisfied for 

all such systems and also heuristics that will aid in finding missing requirements, incorrect 

requirements , and ambiguous requirements when considered within the context of the 

particular goals and constraints of the system being developed. We define these criteria 

and heuristics in terms of the parts of the RSM, i.e., input/output variables (I:), states 

( Q), trigger predicates (PT) , output predicates (Po) , the trigger-to-output relationship (!), 
and transitions (5), looking at each in turn. 

4 Input/Output Variables 

The input and output alphabet I; represents all the types of information the sensors can 

provide to the software and the commands that the software can provide to the actuators 
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(manipulated variables). These variables need to be rigorously defined in the specification 

document. With this information, the variable coverage in the RSM can be determined. 

All information from the sensors should be used somewhere in the RSM. If not, it 

is very likely that important behavior has been omitted from the software requirements 

specification. An input variable I is said to be used if the predicate I j appears as a 

conjunctive part of the input predicate on some transition, i.e., the arrival of the variable 

at the black-box boundary is required for at least one input predicate in the state machine 

to evaluate to true. 

Like inputs, there is a great likelihood that some important requirement for software 

behavior has been forgotten if there is some legal value for an output that is never produced. 

An output va1 ~ iable 0 is used if 0 j appears in the predicate, i.e., the production of this 

variable is included in an output predicate on at least one transition. For example, if 

v(O) E {up, down} and the RSM specifies when to generate v(O) =up but not when to 

generate v( 0) =down, the specification is almost certainly incomplete. 

5 States 

The possible states of the control software requirements are elements of Q. These will of 

course be specific to the application. However, there are states, those involved in software 

startup and shutdown, that must be treated in the requirements specification of all systems. 

There are also some general characteristics of Q that may be examined. 

5.1 Startup and Shutdown 

There are two different startup situations: initial startup after complete process shutdown 

and startup after the software has been temporarily off-line. These present special prob­

lems that need attention in the requirements specification; many accidents and run-time 

failures stem from inadequacies in the software dealing with the transitions between normal 

processing and various types of partial or total shutdown. 

In the initial startup or after temporary process shutdown, the clock (as well as other 

system and local variables) will need to be initialized, i.e., t = 0. In the second case where 

only the software has been shutdown, the variable and status of the process, including time, 

will probably have changed since the computer was last operational. Unlike other types 

of software, such as data processing systems, an important consideration when developing 

process-control is that they usually continue to change state even when the computer­

controlled is not executing. There needs to be a specification of the responses to input that 

arrives before software startup and after soft-ware shutdown, or at lea.s t an assurance that 

this information can safely be ignored. Serious accidents have occurred because designers 

did not consider the problem of how to handle information about the state of the world 
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that arrived while the system was in a manual mode and the computer was temporarily 

off-line. As an example, an accident occurred in a batch chemical reactor when a computer 

was taken off-line to modify the software [Kle88]. At the time the computer was shut-down, 

it was counting the revolutions on a metering pump that was feeding the reactor. When 

the computer came back on-line, the software continued counting where it had left off with 

the result that the reactor was overcharged. 

There are a variety of potential solutions to this re-synchronization problem. Message 

serialization, for example, is a commonly used technique that will detect "lost" information 

and indicate potential discontinuities in software operations. Another technique often used 

involves checking elapsed time between apparently successive inputs by means of a self­

contained time-stamp in each input (requiring clock synchronization) or via reference to 

a time-of-day clock upon the receipt of each input. Shutdown will be different depending 

on the application, but all shutdown states require that consideration be given to how to 

restart. Each method and each application will lead to unique fequirements, but the need 

to ensure synchronization of data and status between the software and the external system 

elements is invariant. 

If the hardware can retain a signal indicating the existence of an input I prior to 

software startup, the program has two startup states with respect to the given input (i.e., 

the input was present or not) and (at least) two separate requirements must be specified: 

one to deal with startup when there is indication of a prior input signal, one when there 

is not. Note that in the case of an input event I occurring before program startup, t(Ii) 

is unobservable by the software. Systems where the software time-stamps incoming data 

must include special requirements to handle this situation correctly at startup or errors 

can result. Furthermore, careful consideration must be given to the use of the value of I, 

i.e. v(I) , (for the pre-startup input event I), as it is hardware dependent which v(I) is 

retained in the case (unobservable by the software) that there were multiple events I prior 

to program startup: Some hardware may retain the value from the first such event, some 

the most recent, etc. 

Any specification for a real-time system should also include requirements to detect a 

possible disconnect between the computer and the environment that occurred prior to any 

program startup. After program startup, there should be some finite bound on the time the 

program waits without receiving a given input before it tries various alternative strategies 

such as alerting an operator or shifting to an open-loop control mechanism that does not 

utilize the absent input. This is very similar to a maximum-time-between events condition 

(discussed below) but applies to the time after startup in the absence of even the first 

input of a given type. There may (and in general, will)' be a series of intervals d1 , d2 , etc. 

during which the program is required to attempt various means of dealing with the lack of 

input from the environment. Eventually, however, there must be some period after which, 

in the absence of input, the conclusion must be that there is some malfunction. 
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5.2 ·Modes 

Some languages for requirements specification, e.g. [Hen80, Har87], have features that 

provide for specifying modes of operation (e .g., an aircraft is taking-off, in-transit, landing) . 

These modes partition Q into subsets with common characteristics. Modes may be defined 

in terms of previous states of the process, current process characteristics, or possible future 

states. 

The use of modes helps to simplify the description of required operation of the software. 

It also affects the analysis in that particular criteria or procedures may be applied differently 

when in different modes or may apply only to particular modes. 

Modes generally allow a higher-level view of control flow in the system. It is possible to 

consider modes in the RSM, but it is not organized to do this efficiently; RSM is a general 

model suitable for use with languages with and without modes. However, it is useful to 

describe some of the analysis procedures with respect to particular general characteristics. 

Besides general operational characteristics, Q may be partitioned according to certain 

desired, or undesired, properties of the system. One partitioning that is used in this paper 

groups states according to risk of leading to an accident or unacceptable event as defined 

by system engineers or clients. Risk is related to possible events or paths that could result 

from a particular state. In particular, when in a state q, there are a set of certain states, 

Qq, that it is possible to reach. These may be partitioned into safe and hazardous subsets 

respectively: Q q, and Q Qh. Q Qh could even be ordered so that a further subset of hazardous 

states with minimum risk is defined, Q MinRisk · 

Various properties or modes may have complex interactions. For example, the appro­

priate action to be taken in the event that an unsafe state is reached may differ depending 

upon the current mode of operation (e .g., the aircraft is landing or is in level flight). 

6 Trigger Predicates 

There must always be a way for the RSM to leave every state if the system it describes is 

to be robust 2
. Formally, let Pr

1 
be the subset of the input predicates in Pr that have I j 

as a conjunctive component. A first condition for robustness may then be stated: 

where IE L: and q, q1 E Q. This is, however, not enough. In addition, the logical OR (V) 

of the input predicates on the transitions out of any state must form a tautology, i.e.: 

~ VPi 

2This is not a sufficient condition for robustness - other conditions are discussed elsewhere in this 

paper - but it is a necessary condition. 
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where the Pis are the input predicates leading out of the state. That is, if there is a trigger 

condition for a state to handle inputs within a range, there needs to be some transition 

defined to handle data that is out-of-range. There must also be a requirement that specifies 

what to do if no input occurs at all, i.e., a timeout. 

Another restriction on the input predicat.es is necessary to ensure deterministic behavior 

in the RSM. Consider the case of two transitions with the input predicates I j /\v(I) > 0 

and Jj /\v(I) < 2 respectively. If v(I) = 1, both predicates will evaluate to true, and both 

transitions should be ta.ken. This leads to undesirable nondeterministic behavior of the 

RSM. The problem is eliminated by forcing all transitions out of any state to be disjoint. 

Formally, let Pi represent the input predicate on the ith transition out of a state. Then 

deterministic behavior is guaranteed by the requirement 

Ensuring that the RSM satisfies the tautology requirements along with a transition 

involving a timeout ensures that exactly one predicate will always evaluate to true and 

that, therefore, there is always a transition out of every state. It does not ensure, however, 

that all assumptions about the environment have been adequately specified, i.e., that there 

is a defined response for all possible input conditions the environment can produce. This is 

dependent upon the amount and type of information (restrictions and assumptions) that 

is included in the triggers. In the rest of this section, we define the type of information 

needed in the trigger predicates for process-control systems. 

At the black-box boundary to the computer, only time and value are observable to the 

software. Therefore, the predicates in Pr and Po defining triggers and outputs must be 

defined only in terms of constants and the time and value of observable events or conditions. 

6.1 Essential Value Assumptions 

The existence of an input at the black-box boundary does not in itself require a value 

assumption. For example, a hard-wired hardware interrupt has no value; it may still 

trigger an output. For each input I, a value assumption is essential only if v(I) is used 

in defining the value or time of some output 0. In other words, the existence of I helps 

trigger 0, but v(I) is not referred to further in the definition of v(O) or t(O). When v(I) is 

used in the definition of p E Po, appropriate assumptions on the acceptable characteristics 

of v(I) must be specified, e.g., range of acceptable values, set of acceptable values, parity 

of acceptable values, etc. The completeness of value specification has been adequately 

covered elsewhere, e.g., [Cri84]. 

As noted earlier, even where an assumption is not essential, it should be specified when­

ever possible, i.e., whenever it is known: The receipt of an input with an "unexpected" 

value is a sign that something in the environment is not behaving as the designer antici­

pated. Checking simple value assumptions on inputs iS comparatively inexpensive. Since 
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/j /\Low/\ Validl1 llOut(Rodl, up) 

/j /\High/\ Validl1 llOut(Rodl, n) 

TimeOut( Rodl) 11-
Figure 4: Value assumptions added. 

failure of such assumptions is one indication of various, reasonably common hardware mal­

functions or of misunderstanding about software requirements, it is difficult to envision 

an application where the specification should not require robustness in this regard, i.e., 

incoming values should have their values checked and there should be a specified response 

in the event of an out-of-range condition. 

For example, consider the coolant in the reactor. Assume that physical limitations in 

the process ensure that the temperature of the coolant will never drop below 273°K or rise 

above 500°K. It is also clear from the example that a temperature reading Ii should differ 

from a previous reading Ji-1 by Cr. i.e. h = Ii-l ±Cr· Violations of these assumptions is 

an indication of a sensor failure. By adding the predicates 

(273 ~ v(I) ~ 500) /\ ( v(Ii) = v(I;-1) ±Cr) 

/j ((v(I) < 273) V (v(I) > 500) V (v(Ii) =J v(Ii_i) ±Cr)) 

the RSM is modified to check the required value assumptions (figure 4). 

Even when real-time response is not required, it is important that violations of as­

sumptions be logged for off-line analysis. A hole in the ozone layer at the South Pole 

was not detected for six years because the depletion of the ozone was so severe that a 

computer analyzing the data had been suppressing it , having been programmed to assume 

that deviations so extreme must be errors [NYT86]. 

6.2 Essential Timing Assumptions 

Timing problems are one of the common causes of run-time failures in process-control sys­

tems, and timing is often inadequately specified. The need for and importance of specifying 

timing assumptions in the software requirements stems from the basic nature and impor­

tance of timing in process-control systems as described previously. Several different timing 
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assumptions are essential in the requirements specification of triggers: ranges, capacity, 

and load. 

Time Ranges 

While the specification of the value of an event is usual but optional, a timing specification 

is always required: The mere existence of an observable event (with no timing specification) 

in and of itself is never sufficient - at the least, inputs must be required to arrive after 

program startup or handled as described above. For systems described using RSM, this 

basic timing assumption is explicitly defined by the initial state where the transition labeled 

with the startup event must be the only exit point. Besides this, a trigger specification must 

include either (1) the occurrence of an observable signal (or signals) or (2) the specification 

of a duration of time without a specific signal. 

The arrival of an input at the black-box boundary has to include a lower bound on time 

and will, in general, include further timing constraints, i.e., an upper bound on the time 

interval in which the input is to be accepted. Requirements dealing with input arriving 

outside the time interval and the non-existence of an input during a given time interval, i.e., 

a duration of time without an expected signal, also have to be defined to ensure robustness. 

The accepting interval will always be bounded from below by the time of the event that 

brought the machine to the current state. Some other lower bound may be desirable, but 

the limit must always be expressed in terms of previous, observable events. 

In the rod-example it is assumed that two consecutive temperature readings will be 

separated by at least tmin seconds. By modifying Valid! and Error this timing constraint 

is included in the RSM. 

Validl2 

Error2 

Validf1 /\ (t(Iij) ~ t(Ii-d) + tmin) 

Error1 V (t(Id) < t(Ii-1 i) + tmin) 

Note that requirements such a.s t(I i) =ll:OOam are ambiguous. The value of t(I i) 
is the value of the reference clock observed "simultaneously" with the occurrence of I . 

Conceptually, the clock is ticking at the rate of one tick per unit of temporal precision. 

In general, I will occur between two ticks of any clock , no matter how frequent the ticks. 

To say that it must occur exactly at H:OOam is meaningless unless the specification also 

specifies what clock is to be used, and, even then, the time cannot be known more precisely 

than the granularity of the clock. Concrete discussion of specific clocks should be avoided 

in a software requirements specification; all that it is really necessary to know is the 

required precision of the clock. Translating the clock's precision into an attribute of the 

input results in a requirement with bounding inequalities rather than an equality, e.g. 

10:59am< t(Ii) < ll :Olam (commonly written as t(Ii) =ll:OOam ±lmin) , which specifies 

an accuracy of plus or minus a minute on the timing. 

For requirements of the second type, i.e. , those that involve the non-existence of a signal 

17 



IT /\Low/\ ValidI2llOut(Rodl, up) 

TimeOut( Rodl) 11-

empStable(I) II Out( Rodl, down) 

Figure 5: Complete requirement for state N oRodsM oved 

during a given interval, both ends of the interval must be either bound by or calculable 

from observable events. Informally, there must be an upper bound on the time the program 

"waits" before producing the output 0. There must also be a specific time to start timing 

the lack of inputs or an infinite number of intervals (and thus outputs) would be specified. 

For example, a requirement of the type "if there is no input I for 10 seconds, then produce 

output O" is not bound at the lower encl of the interval and therefore is ambiguous. Should 

the non-existence interval start at time t, at t + t:, t + 2t:, etc.? The observable event need 

not occur at either end of the interval, the ends need only be calculable from that event, 

e.g., there is no input for 5 sec preceding or following event E . An example of a completely 

bounded interval is the requirement that when in state NoRodsMoved, an output Rodi is 

to be generated if tmax seconds elapse without the receipt of a temperature reading I . If 

TempStable(X) = t > t(Xi) + tmax 

the complete requirement can be seen in figure 5 where t(I i) provides the lower, observable 

bound of the interval and the duration of tmax seconds effectively sets the upper bound. 

Capacity and Load 

In an interrupt driven system, the count of unmasked input interrupts received over a 

given period of time partitions the software state space into at least two states: normal 

and overloaded. The required response to an input will differ in the two states; there must 

therefore be sepa~·ate output assertions to deal with them. The term capacity will be used 

to refer to the count of inputs of a single homogeneous type , while load (to be discussed 

shortly) is the count of a set of heterogeneous input events. 
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Capacity. The treatment of capacity depends upon whether interrupts are allowed to be 

disabled or not . Assuming for the moment that interrupts are not locked out on a given 

port, there is always some arrival rate for an interrupt signaling an input that will overload 

the physical machine. Either it will run out of CPU resources as it spends execution cycles 

responding to the interrupt or it will run out of memory as it stores the data for future 

processing. Thus , both the hardware selection and the software design require that an 

assumption be made about the maximum number of inputs N signaled by a given interrupt 

.that must be accommodated within a duration of timed. This is the requirement called 

capacity. 

Specifications of capacity requirements are properly included in a black-box require­

ments specification since they stem from properties in the environment of the computer 

(i .e., properties of the process being controlled or of the sensors providing information 

about the process) and because the arrival rate of inputs is observable at the black-box 

boundary. In general, inputs to process-control systems should have both minimum and 

maximum capacity assumptions and will often be part of one or more load assumptions 

as well. A bank in Australia reportedly lost a great deal of money from the omission 

of behavior to deal with "excessive" load in an ATM system [Pur87]. When the central 

computer was unable to cope with the load, the ATMs dispensed cash whether there were 

adequate funds in the account to cover the withdrawal or not. The inability to handle 

the true load, although irksome, would not by itself have caused as much damage as that 

which resulted from the lack of an explicit, black-box overload response behavior. 

Multiple capacity assumptions are meaningful, although not necessarily required in any 

given case. For example, the capacities could be 4 per second but not more than 7 in any 

two seconds nor more than 13 in four seconds, etc. One capacity assumption is required; 

multiple assumptions may derive from application-specific considerations. There can also 

be multiple capacities assumed for a given input based on additional data characteristics, 

such as : not more than 4 inputs per second when v(I) > 8 but not more than 3 per 

second when v( I) > 20. Finally, note that a capacity assumption with N = 1 is the same 

as an assumption on the minimum time between successive inputs _:_ another common 

performance constraint . 

Even if a particular statistical distribution of arrivals over time is assumed and specified, 

a capacity limit assumption is still required: Assuming the arrival distribution to be Poisson 

or Erlang does not preclude the possibility, no matter how improbable, of an "overflow" of 

any given capacity. If capacity is exceeded, there must be some specification of the ways 

that the system can acceptably fail soft or fail safe. This is discussed in Section 8 with 

respect to specifying graceful degradation. 

Where interrupts can be masked or disabled, the situation is more complex. If disabling 

the interrupt could result in a "lost" event (depending on the hardvvare, the duration of the 

lockout, and the characteristics of the device at the other end of the channel), the need for 

a capacity assumption will then depend on the usage of the input in the specification. An 

input I appearing as the only I j event in the production of an output 0 clearly requires 
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a capacity assumption, since a "lost>' I (caused by interrupt lockout) is a violation of the 

requirement. If it is not the only input event in the trigger, its capacity may be dominated 

by some other event. Domination of 11 by another input 12 occurs when, for example, a 

transition predicate can be written as · · · /\ (t(I2 j) < t(I1 i) < t(I2 i) + d)ll · ·" In this 

case, an interrupt for 11 could potentially be disabled until the event 12 j is detected, then 

enabled and left enabled until 11 j occurs or a period of time d elapses (whichever occurs 

first) and then disabled again. Thus the interrupt could not be overly disruptive of the 

computation, in that it could occur at most once in the specified interval. 

An interrupt-signaled event that is at any time undominated in the requirements spec­

ification requires a capacity assumption. The capacity of a totally dominated event is 

inferable from its dominators' capacities. 

Formally, capacity is not some separate, special type of requirement (i.e., "perfor­

mance"). Instead it is specifiable as a conjunctive phrase in the trigger predicates for all 

outputs that are capacity-dependent. Let n be the number of inputs of type I that have 

arrived at the black-box boundary, Wi be predefined weights allowing penalties if more 

than one input arrives during the time interval d, and lvh( d) be the capacity for input I 

over the interval d. Then the trigger predicates may be expressed: 

Ii ( ~ k ~1 ' (d)) h k { Wj if t(I;j) - t(Ii-1 i) < d 
/\ L.., "i < m I /\ · · · w ere ·; = . 

i=l 0 otherwise 

Load. ·whereas capacity is defined in terms of one single type of input, load involves 

multiple input types. Assume that we have an ordering of all types of inputs from 1 to m, 

and let I; j symbolize the arrival of an input of type i. Then the jth arrival of this input 

can be written l;i j. The acceptable load when input I arrives at the black-box boundary 

can now formally be expressed as: 

where k . = { Wi if t(I n. - t(I;j j) < d 
1 0 otherwise 

and where n is a count of inputs of type i that have arrived, w ; is defined as in the capacity 

definition, the his are weights that allow some inputs to be specified as more expensive than 

others, and L( d) is the required load or capacity limit for a period of time with duration 

d. 

Load is more general than capacity, in that a load condition such as that above will 

suffice to implicitly define N!r; ( d) , even if no explicit definition is given. In that case, for 

any undefined /\If!;( d), the maximum number of Iii possible within a duration of timed will 

be L( d) (or min{ Li( d)} if there are multiple load assumptions, Li), since all the other event 

terms could conceivably be zero unless there are minimum arrival rate assumptions mr; ( d) 
specified as well. If minimum arrival rate assumptions are specified, then the maximum 

capacity for any undefined Nfr; would be min { L k} - L m r
1 

. 

jf;i 
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The smallest time period d for which a minimum arrival rate assumption is explicitly 

assumed and specified is the maximum possible time between successive events. If there 

must be at lea.st n Ii events within the interval of duration d preceding each such event -

where n/d is the assumed minimum arrival rate - then no more than timed can elapse 

between any two occurrences of I i or the minimum arrival rate assumption would be 

violated. For process-control systems, robustness dictates the specification of a minimum 

arrival rate assumption for most, if not all, possible inputs: Indefinite, total inactivity on 

the part of any real-world process is unlikely. Robust software should have the capability 

to query its environment with regard to inactivity over a given communication path. 

Although inputs from human operators or other, slow, system components may be nor­

mally incapable of overloading a program, various malfunctions can cause excessive, spuri­

ous inputs to be generated. Robustness requires consideration of that case and specification 

of a capacity limit for such inputs as a means of detecting possible external malfunctions. 

In one serious accident, an aircraft went out of control and crashed when a mechanical 

malfunction in a fly-by-wire flight-control system set up an accelerated environment for 

which the flight control computer was not programmed [FM84]. 

7 Output Predicates 

As with inputs, the complete specification of the behavior of an output 0 requires both 

its time t(Oi) and its value v(O). Again note that the time is required. There is no limit 

to the complexity of timing specifications for outputs, but, at the least, specification of 

bounds and minimum and maximum time between outputs is required as it is for inputs. 

Besides these, there a.re also some special requirements for the specification of predicates 

on the outputs: environment capacity, data age, and latency. 

Environmental Capacity Considerations. The rate at which the sensors are produc­

ing data and sending it to the computer is the concern in input capacity. Output capacity, 

on the other hand, defines the rate the actuators can accept and react to data produced 

by the software. If the sensors can generate lvfr (cl) inputs of type I during the time period 

of duration d, but the output environments can only "absorb" or process a lower number 

of outputs, an output overload might occur. 

Output capacity limitations often stem from the constraints on behavior of the control 

system. They may be required because of physica.l"limitations in the actuators (e.g., a 

valve can only perform a limited number of adjustments per second) , constraints on pro­

cess behavior (excessive wear on actuators might increase maintenance costs), or safety 

considerations (e .g. , a restriction on how often a catalyst can be added safely to a chemical 

process). 

Differences in input capacity and output capacity result in the need to handle three 
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cases: 

1. The input and output rates are both within limits and the "normal" response can be 

generated. 

2. The input rate is within limit but the output rate would be exceeded if a normally 

timed output were produced, in which case some sort of special actions are required. 

3. The input rate is excessive, in which case some abnormal response is necessary (grace­

ful degradation). 

When input and output capacities differ, there must be multiple periods for which discrete 

capacity assumptions are specified. For the largest interval in which both input and output 

capacities are assumed and specified, the absorption rate of the output environment must 

equal or exceed the input arrival rate or the program might never catch up; but over short 

durations, the program can buffer or shield the output environment from excessive outputs. 

Contingency action must be specified for cases where these assumptions do not hold . 

Data Age. Another important aspect of the specification of output timing involves data 

obsolescence. In practical terms, there are few, if any, input values that are valid forever . 

Even if nothing else happens and the entire program is idle, the mere passage of time 

renders much data of dubious validity eventually. Although the program is idle, the real 

world in which the computer is embedded, i.e., the process that the computer is controlling, 

is unlikely to be. Control decisions have to be based on data from the current state of the 

system, not on obsolete information. 

Data obsolescence considerations require that all output events are properly bounded 

in time: 

· · · 1101 /\t(IT) + Dv > t(OT) /\ v(O) = · · · 

where Dv is the data validity factor or age limit for the input I triggering 0. The input is 

only valid for the output 0 if it occurred within the preceding period of time of duration 

Dv. As an example of the possible implementation implications of such a requirement, 

MARS, a distributed fault-tolerant system for real-time applications, includes a validity 

time for · every message in the system after which the information in the message is discarded 

[KMS.S, KD87]. 

Frola and Miller[FM84] report on an accident related to and perhaps caused by lack of 

specification of a data age factor. A computer issued a close weapons bay door command 

on a B-lA aircraft at a time when a mechanical inhibit had been put in place on the door. 

The close command was generated when someone in the cockpit punched the 'close door 

switch' on the control panel during a test. Several hours later, when the maintenance was 

completed and the inhibit removed, the door unexpectedly closed. The situation had never 

been considered in the requirements definition phase; it was fixed by putting a time limit 

on all commands . 
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Latency. Since a computer is not arbitrarily fast, there is an interval of time during 

which the receipt of new information cannot change an output 0 even though it arrives 

prior to the actual output of 0. The duration of this latency interval, 6.t, is a factor 

influenced by both the hardware and the software. An executive or operating system that 

permits interrupts for data arrival may be able to exhibit a shorter 6.t than one that 

polls periodically, but underlying hardware constraints prevent it from being eliminated 

completely. Thus the latency interval can be made quite small, but it can never be reduced 

to zero. 

The acceptable size of 6.t is set by the process that the software is controlling. In chem­

ical process-control, a fairly large 6.t could be allowed, while in an aircraft a much smaller 

value of 6.t may be required. The choice of operating system, interrupt logic, scheduling 

priority and/or system design parameters will be influenced by the latency value. Also , 

behavioral analysis of the requirements to determine consistency with process functional 

requirements and constraints may not be correct unless the value of this behavioral pa­

rameter is known and specified for the software. Therefore, the requirements must include 

the allowable latency factor. 

As an example, consider an output 0 that is to signal, within a response time rt, the 

fact that no input of type 12 has been received within the previous time period of duration 

d. This could be specified as 

t > t(Id) + d + 6.t/I 
Oj /\t(Oj):::; t(Ij) + d +rt+ 6.t 

The use of an interval of time without some event I j to trigger an output always 

requires the specification of a 6.t factor between the end of the interval and the occurrence 

. of the output . Where the upper ?otmd on the interval is a simple event , i.e. , the trigger 

is not the non-existence interval but the terminating event itself, then latency is not an 

issue. However, where the intent is to signal the non-existence of an input after some other 

event, then a latency specification is required. This is true for both trigger and output 

predicates. 

In some cases , the need for latency specification is application-dependent. For example: 
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t > t(I1 j) +ell 
Oj /\ . . . 

~---

If the intent is that there is no input 12 prior to the output, the latency factor is missing. 

If the intent is to be that there was an 11 with no 12 within the interval around it, the 

latency factor is unnecessary. Because software may be re-used in environments where 

the current intentions may differ from what was actually implemented, safety and other 

considerations dictate that the latency factor always be included in the specification when 

the non-existence interval's upper bound is not a simple observable event. 

There may need to be additional transitions in the RSM to handle the case where an 

event is observed within the latency period. For example, if an action is taken based on 

the assumption that some input never arrived and if it is subsequently discovered that the 

input actually did arrive but too late to affect the output, it may then be necessary to take 

corrective action. 

8 Trigger-to-Output Relationship 

There are some criteria for analyzing requirements specifications that relate not to input 

or output predicates alone but to their relationship/· These include requirements in most 

process-control systems for graceful degradation and for responsiveness and spontaneity. 

8.1 Graceful Degradation. 

The requirements needed to deal with overload will generally fall into one of five classes: 

1. Requirements to generate warning messages. 

2. Requirements to generate outputs to reduce the load - i.e., messages to external 

systems to "slow down" . 

:3. Requirements to lock out interrupt signals for the overloaded channels. 

4. Requirements to produce outputs (up to some higher load limit) that have reduced 

accuracy and/ or response time requirements and/ or some other characteristic that 
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will allow the CPU to continue to cope with the higher load. 

5. Requirements to reduce the functionality of the software or, in extreme cases, to 

shutdown the computer and/or the process. 

The first three cases are handled in an obvious way. The fourth case, commonly called 

performance degradation, should be graceful, i. e., predictable and non-abrupt. Graceful 

degradation may be specified by including the load in the timing or accuracy factors for 

the output. Assume the observed load, L, (during the interval of duration d immediately 

preceding the input I) is defined as: 

{ 

Wi 
where kj = 

0 

if t(Ii) - t(Iij i) < d 

otherwise 

and where n, Wi, and hi are defined as in the definition of load given previously. Then a 

gracefully degrading predicate for 0 can be written as: 

Oj /\[v(O) = x ± !a(L)] 

/\[(t(Ij) + !tow(L)) < t(Oi) < (t(Ij) + c + fhigh())] 
(1) 

where fa defines the accuracy of 0 and !tow and fhigh defines the limits on the response time. 

fhigh and f1 0 w are continuous, monotonically-increasing functions of load, !tow( x) ~ fhigh ( x) 
for all x, and c is a constant . If fhigh is a fast_er growing function than !tow, the time window 

in which an output can legally be produced will grow and the predictability of the response 

time will decrease (figure 6a). Two inputs occurring quite close to one another in time 

could then legally trigger outputs having widely different response times, potentially even 

appearing in the reverse order from the order in which their respective triggers arrived. 

For safety-critical systems, abrupt degradation (figure 6c) and/or random (although 

bounded) degradation often needs to be avoided. Certainly for operator feedback, "pre­

dictability is preferable to variability, at least within limits," even if the cost of the pre­

dictability is a slight increase in average response time [FD82] (figure 6b ). 

Function shedding, the fifth case listed above, is specified by the use of different load 

prerequisites for different outputs - the outputs with the lower load prerequisites being 

"shed" first. When the load is exceeded, then the program changes state to a "degraded 

performance" state wherein some observable action should usually be taken such as alert­

ing a human operator, disabling or requesting resets of busy interfaces, recording critical 

parameters for subsequent analysis, etc. 

Once a state with a. degraded performance has been entered, there needs to be a specifi­

cation of the conditions required to return to a. normal processing mode. Informally, what 

is needed is a hysteresis delay. After detecting a ca.pa.city or load violation, the system must 

not attempt to return to the normal state too quickly; the exact same set of circumstances 

that caused it to leave may still exist. For example, let the event that caused the state 
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Figure 6: a. /high faster growing than ftow· b. fhigh = f1 0 w, i.e. predictability is maintained. 

c. Abrupt degradation of fhigh· 

26 



to change be the receipt of the nth input of I within a period d, where the capacity is 

specified as limited to n -1. Then if the system attempts to return to normal within a 

period of x ~ d, the very next occurrence of an I might cause the state to change again 

to the overload state. The system could thus ping-pong back and forth in an unacceptable 

fashion. 

If the transition to return to normal operation is triggered by an input Irn, the transition 

taking the RSM from an overloaded state to normal operation should include a hysteresis 

factor assuring that the return signal is not too close in time to the input ! 0 1 that caused 

the overload. The input predicate on the transition could be written as: 

where hd is the hysteresis delay required before the transition can be taken. 

Discrete events such as operator actions or reset messages from external (temporarily 

overloaded) interfaces are not the only way a system can return to normal processing. 

It may be desired to attempt to change state purely on the basis of time elapsed since 

last state change. System robustness considerations suggest the specification of a complex 

series of checks on the temporal history of mode exit/resumption activities to avoid constant 

ping-panging at a cyclic rate hd. Choice of responses and checking logic is an application­

dependent activity, as is choice of the value hd, but these need to be considered when 

developing the requirements . 

8.2 Responsiveness and Spontaneity 

Responsiveness and spontaneity deal with the actual behavior of the controlled process and 

how it reacts (or does not react) to output produced by the controller. In particular , does a 

given output 0 cause the process to change, and, if so, is that change detectable by means 

of some input J. Basic process-control models include feedback to provide information to 

the control component about changes in state caused by disturbances or about expected 

responses caused by changes to the manipulated variables. This is a basic property of 

almost all process-control systems: · If feedback information is not used by the software, 

the requirements specification is probably deficient. That is, basic feedback loops need to 

be included in the software requirements and missing feedback loops provide clues as to 

deficiencies in the requirements specification. 

As an example, an accident occurred when a steel plant furnace was returned to pro­

duction after being shut down for repair [Bah88]. A power supply had burned out in a 

digital thermometer during power-up so that the thermometer continually registered a low 

constant temperature. The controller, knowing it was a cold start, ordered 100% power to 

the gas tubes. The furnace should have reached operating temperature within one hour, 

but the computer failed to detect that the thermometer inputs were not increasing as they 

should have been. After four hours , the furnace had burned itself out , and major repairs 

were required. 

27 



A situation like this one could easily have been avoided if the information about the 

characteristics of the process was used as a predictor to forecast its expected behavior of 

the system. In this case the only knowledge needed to avoid the accident was that the 

temperature should increase if the burners are on. 

The information about the expected response of the process is to be found in the process 

function Fp. If the process does not respond to an output as expected and within some 

expected period of time, there is presumably something wrong and the software should be 

required to act accordingly - perhaps by trying a different output, by alerting a human 

operator, or at the least, by logging the abnormality for future, off-line analysis. 

It is desirable to design a process-control system such that the effects of every output 0, 

affecting a manipulated variable in the system, can be detected by some input I provided 

by the feedback loop. The situation is, however, not always that simple. Disturbances 

interfering with the process can cause changes that are not initiated by the software or can 

inhibit desired changes that the software has commanded. 

Every output 0 to which a detectable response I is expected within a period of timed 

induces at least two requirements: The "normal" response requirement, i.e., 

I j /\ ( t ( 0 j) + .6. t < t (I j) < t ( 0 j) + d) 

and the requirement, to deal with a failure of the environment to produce the expected 

response. The failure could involve either the response having an erroneous or unreasonable 

value, or the expected response might be missing entirely, i.e., 

Ij /\(t(Oj) + .6.t < t(Ij) < t(Oj) + d) 
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where fit represents the latency period, i.e., the time between the receipt of an input and its 

processing (as defined previously). If the environment responds too quickly, one suspects 

coincidence rather than appropriate stimulus-response behavior. Most processes do not 

react instantaneously but only after a delay (time lag). A value-based handshake protocol 

can be used to eliminate the need for the latency factor, i.e., some field of the input I 

identifies it as uniquely a response to some specific output 0. Note that some inputs I are 

spontaneous, i.e., they may be triggered by environmental factors not necessarily caused 

by some prior output O. But an input I that is supposed to be non-spontaneous, i.e., 

one that is only supposed to arrive in response to some prior system output, induces yet 

another requirement to respond to a presumably erroneous (i.e., spontaneous) input. 

9 Transitions 

Requirements may involve looking not only at the triggers and outputs associated with 

each state, but also at paths between the states. In particular, some analyses rely on the 

guarantee that certain states will be reachable. 

If a pa.th exists between states qi and q2 , it can be uniquely defined by a sequence of 

input predicates. Formally, the transition function o is extended to apply to sequences of 

input predicates. Define l; as a mapping Q x Pj. 1--t Q. 

Let q E Q, p E Pr, and s E Pj. then 

8(q, >.) =q 

5(q,sp) =o(S(q,s),p) 

where ).. is the null predicate. The existence of an input predicate sequence s from qi to qz 

(path) is formally expressed as 

The analysis in this section is based on examination of the paths between states of interest 

and the predicate sequences describing these paths. 

9.1 Basic Reachability 

A state qm is said to be reachable from state qn if there exists a path from qn to qm and the 

logical AND (!\) of the predicates in the instantiated predicate sequences; corresponding 

to that path does not result in a contradiction. Formally, let p E Pr and s E Pj.. Define </> 

as: 

¢(>.) =true 

</>(sp) = </>(s) !\ p 

29 



State qm is reachable from state qn iff 

In the RSM, all states have to be reachable from the initial state q0 . This requirement 

may be stated: 

\fq3s: (8(qo,s) = q) /\ (¢>(si)). 

Most state-based models include techniques for reachability analysis. 

If a state is unreachable there are two possibilities: Either the state has no function 

and can be eliminated from the specification, or the state should be reachable and the 

requirements document must be modified accordingly. 

9.2 Recurrent Behavior 

Most process-control software is cyclic in nature, i.e., it is not designed to terminate under 

normal operation. The purpose of the software is to control and monitor a physical envi­

ronment and the nature of the problem usually calls for software to perform continuously 

one single task, to alternate between a finite set of distinct tasks, or to perform continu­

ously a sequence of tasks while in a given mode. Most systems, however, do include some 

states with non-cyclic behavior such as temporary or permanent shutdown states or states 

where the software changes to a different operating mode. 

It is important to analyze the RSM to assure that desired behavior is repeatable. For 

instance, in the control rod example it is essential to be able to issue a sequence of Rodi 

commands. Since the number of states in the RSM is finite , at least one state issuing a 

Rodi command has to be included in every cycle or the RSM will eventually reach a state 

where Rodl cannot be moved again, and the temperature cannot be controlled as required. 

Formally, state q is part of a cycle iff 

3s: (8(q,s) = q) /\ (¢>(si)) /\ (s-::/- ,\) 

Assuring that a state is included in cyclic behavior will in many cases be insufficient ; 

the nature of the path describing the cycle may also need to be examined. Consider an 

output to start a piece of equipment. It may be necessary to start the equipment more 

than once, i.e. the state qstart where the start command is issued has to be in a cycle. It 

may, however, be harmful to the equipment if two start commands are issued without an 

intermediary stop command. Therefore, every cycle including qstart also has to include a 

state qstop· Formally 

\Is: ((8(qsta..t, s) = qstart) /\ (¢>(si)) /\ (s-::/- A)):=;, 

3s1,s2: (((8(qstart,S1) = qstop) /\ (ef>(si;))/\ 

(8(qstop 1 s2) = qstart) /\ (</>(s2;)) /\ (s = S1s2))) 

30 



The analysis of the recurrent behavior in the RSM can easily be generalized to cover 

arbitrarily complex sequences of events. 

9.3 Reversibility. 

In a process-control system, there are frequently cases where a command issued to an 

actuator can be canceled or reversed by some other command or combination of commands. 

This capability is referred to as reversibility. Outputs should be reviewed and classified as 

to their reversibility. If an on command is to be reversible, then a state where the canceling 

off command is issued must be reachable from the state in which the on command was 

issued. Otherwise, the command cannot be re.versed. 

As another example, an alert condition to an operator (such as a below-minimum-safe­

altitude warning to an air traffic controller) should be reversible when the condition no 

longer holds (e.g. , the aircraft is now at a safe altitude). There will usually be several 

different classes of the reversing outputs. For example, the appropriate reversing output 

may depend on whether the controller has acknowledged the receipt of the original alert, 

is in the process of reviewing the alert, or has taken positive action to ameliorate the 

alert condition. The human/machine interface, in particular, is full of complex classes of 

reversible phenomena [Jaf88). 

9.4 Reachability of Safe States 

We define an unsafe state as one with an unacceptable level of risk of leading to an accident. 

In the early conceptual stages of the development of a safety critical system, system safety 

engineers usually perform a preliminary hazard analysis to identify hazards (unsafe states) 

and categorize them as to risk level. Further analysis can be performed to translate system 

hazards into software hazards, i .e. , software outputs that would put the system into a 

hazardous state given certain environmental conditions. 

It is not always possible to enforce a requirement that the system can reach no hazardous 

states - in some systems, temporarily being in an elevated risk state is unavoidable. 

However , the · system should never be in an undesired hazardous state. Safe states may 

have limited or no functionality, but they all have the property that they have acceptable 

risk of leading to an accident. 

One simple definition of a safety policy, for which the specification could be checked, is 

the following: 

• The computer never initiates a control action (command) that will move the process 

from a safe to an unsafe state. Let Q s and Q h represent the set of all safe states and 

the set of all hazardous states respectively. Then 

Vqs,q1i---,:Js: (5(qs,s) = qh) /\ (</>(si)) 
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where q3 E Q3 and Qh E Qh. 

• Given that the system gets into an unsafe state (by a failure of a component, including 

a computer error, or by a transformation that is not initiated by the computer, e.g. 

human error or environmental disturbances or stress), then the computer-controller 

will transform the hazardous state into a safe state, i.e., every path from a hazardous 

state leads to a safe state. That is, 

There may be several possible safe states, depending upon the type of hazard or 

on conditions in the environment. For example, the action to be taken if there is a 

failure in a flight-control system may depend on whether the aircraft is in level flight 

or if it is landing. 

It may not be possible to build a safe system, i.e., it may not be possible to get from every 

hazardous state to a safe state. In that event, the system must be redesigned, abandoned, 

or a level of risk accepted. This risk can be minimized by providing procedures to minimize 

the probability of the hazardous state leading to an accident or to minimize the effects of 

an accident. Then a third criteria for safety is: 

• If a system gets into a hazardous state and there is no possible path to a safe state, 

then the computer will transform the state into one with the minimum risk possible 

given the hazard and the environmental conditions. Formally, 

9.5 Path Robustness 

For most safety-critical, process-control software, there are concerns in addition to pure 

reachability. Even if a state fulfills all reachability requirements, there is still the question 

of the robustness of the path, or paths, affecting this particular state. 

Consider an output 0 such that v(O) E{up,down}. Suppose that every possible path 

from .a state qup with v(O) ='ll]J to any state qdown that sets v(O) =down includes the 

arrival of input I in at least one input predicate. Then if the software's ability to receive 

I is ever lost (e.g., through sensor failure), there are circumstances under which it will not 

be able to set v(O) =down. Thus, the loss of the ability to receive I can be said to be a 

soft-failure mode since it could inhibit the software from setting v(O) =down. Formally, 

the inability to receive Ij is a soft-failure mode iff 
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If the predicate I j occurs in every path expression from all states in which v( 0) =up 

to all states that set v(O) =down, the loss of the ability to receive I is now said to be a 

hard-failure mode since it will inhibit the software from producing a down command. 

Lacking ability to receive Ij is a hard-failure mode iff 

VqupVqdown,s[(8(qup,s) = qdown)::::} (•</>(si) V Ji)] 

The more failure modes the RSM has, whether soft or hard, the less robust with respect 

to external disturbances will be the software that is correctly built to that specification. 

9.6 Constraint Analysis 

In addition to ensuring that the basic goals of Fe are implemented correctly in the soft­

ware, an evaluation of the consistency of the requirements with the system constraints is 

necessary. Conflicts may exist - these should be detected and tradeoffs to resolve them 

evaluated. 

As an example, path robustness requirements may conflict with safety constraints . 

Consider the following conflicting requirements. An unsafe state, i.e. one from which an 

a priori "dangei·ous" output such as a command to launch a weapon can be produced, 

should have at least one, and possibly several, hard-failure modes for the production of 

the output command: No input received from proper authority, no weapons launch. This 

conflicts with the reqtiirement that a fail-safe system should have no soft-failure modes, 

much less hard ones, on paths between dangerous states and safe states. Leveson and Stolzy 

[LS87] describe state-machine analysis procedures to provide the information necessary to 

detect and resolve some of these types of conflicts. 

The type of analysis required to guarantee consistency with the system constraints will 

depend upon the type of constraints involved. The presence of constraints can potentially 

affect most of the criteria and analysis methods mentioned in this paper. Some constraints 

can be ensured using the criteria already described. Others require additional analysis. For 

example, procedures for ensuring that only safe states are reachable have been described. In 

addit ion , basic reachability analysis must be extended. Even though a path predicate does 

not form a contradiction, it might be infeasible or undesirable when viewed in conjunction 

with the behavior of the rest of the system and with the constraints. Therefore, reachability 

analysis needs to be performed considering not only the basic path predicates, but also 

constraints on the sequence of events. 

To illustrate, consider the constraint to be satisfied in our example, i.e. , a. rod is not 

allowed to move within 30 seconds of its previous movement. Formally, let 

Constraint =(t(Rod li j) 2: t(Rodli-l j) + 30sec)J\ 

(t(Rod2j j) 2: t(Rod2j-l j) + 30sec) 

where i and j are integers. To guarantee this property, all paths ta.king the RSM from 

one occurrence of a rod command to another must be consistent vvith this constraint . If 
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Q Rodl ·is defined as the set of all states wherein a Rodi command can be issued, and Q Rod2 

similarly, then consistency with Constraint is expressed as: 

Vs: [(J(q1,s) = q2) => (-i¢(s;) V Constraint)]/\ 

Vs: [(J(q3,s) = q4 ) => (-i<f>(si) V Constraint)] 

where q1, q2 E QRodl and q3, q4 E QRod2· 

To analyze with respect to Rodi, the first step is to identify the transitions where a 

Rodi command can be issued. Path analysis can then be applied to find the sequences of 

events that will make the software issue two consecutive Rodi commands. By showing that 

all possible paths described by these sequences will take at least 30 seconds to traverse, it 

is guaranteed that the constraint on Rodi will be satisfied. In the example there are two 

possible shortest-time sequences separating two Rodi commands, s1 = { TimeOut(Rodi), 

TempHigh} and s2 = { TempStable(Rodi)}. s1 is guaranteed to take at least 30 seconds 

since it contains the predicate t > t(Rodl i) + 30 as a conjunctive trigger. s2 consists 

of the single predicate t > t(Rodl i) + tmax which will guarantee consistency with the 

constraint if tmax 2 30sec. Thus consistency with the system constraint on Rodi requires 

the assumption tmax 2 30sec. The consistency for Rod2 is handled similarly. 

10 Conclusions 

The software requirements specification must contain sufficient information to ensure sys­

tem and subsystem correctness. This paper has presented the type and amount of infor­

mation necessary to ensure system and subsystem correctness in process-control systems 

along with the types of analysis that can be performed to ensure that this information 

is present and to detect missing or incorrect information. Emphasis has been placed on 

procedures for ensuring robustness and lack of ambiguity. Our goal is to prevent or detect 

errors early in the software development cycle. 

In real systems, requirements are often not complete before software development be­

gins. Furthermore, changes are often made as the design of the other parts of the system 

becomes more detailed and problems a.re found necessitating changes in the desired soft­

ware behavior. It is therefore unlikely that the analysis will be completed before software 

design begins. To avoid costly redesign and recoding, the requirements specification and 

analysis should be as complete as possible as early as possible. But realistically, much 

of the analysis may need to be put off or redone as the software and system develop­

ment proceeds. Our procedures can easily be repeated to account for changes or left until 

incompletely specified aspects of the requirements are completed. 

The RSM, as defined in this paper, models only the behavior of the control component 

C. Much useful analysis can be performed on this model, but our long-term goal is to 

extend the RSM to model the interface between the control component and the process, 
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i.e, the sensors Sand the actuators A along with some aspects of the process P. This will 

extend the amount of analysis that is possible including many of the traditional types of 

analysis performed by system engineers such as failure modes and effects analysis (FMEA), 

potentially bridging some of the gap between system engineering and software engineering. 
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A The Rod-Example 

Variables : 

Input : I =int 273 .. 500. The temperature reading sent by the automatic sensor. 

Output : Rodl , Rod2 = { 1tp, down} . The control commands to the rods in the 

reactor . 

Constants : 

tmin = minimum time between temperature readings 

tmax = maximum time between temperature readings 

Cr = resolution of temperature reading 

d = maximum response time 

Input Predicate Abbreviations : 

Validl1 = 273 :::; v(I) :::; 500 

Valid! = Validl1 /\ (v(I;) = v(Ji_i) ±Cr)/\ (t(Id);:::: t(;-1i) + tmin) 

Error =IT (•Validl1 V (v(I;)-/:- v(Ii_i) ±Cr) V (t(I;) < t(J;_i) + tmin)) 

Low = v(I) < C 

High = v(I) ;::::. C 

TempLow = IT/\ Valid!/\ Low 

TempHigh =IT /\Valid!/\ High 

TimeOut(x) = t > t(x i) + 30 where x E ~ 

TempStable(x )= t > t(x i) + tmax where x E {I, Su, Rodl} 

Output Predicate Abbreviations : 

Out(O , x)OT /\(v(O) = x) /\ (t(Oj):::; t(Ii) + d) 

where 0 E {Rodl , Rod2} and x E {up , down} 
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