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Abstract
Performance is determined by a system’s resources and its
workload. Some of these resources are software resources
which are embedded in the software architecture; some of
them are even created by the software architecture. This
paper considers software resources and resource architec-
ture, as an aspect of software architecture, It considers
how resource architecture emerges, the relationship of
software and hardware resources, some classes of
resource architecture, and what they can tell us about sys-
tem performance.

1.0  Introduction
Software is just a set of instructions that govern the use of
resources such as processors, memory, buses, and periph-
eral devices. The software also introduces artificial or log-
ical resources into the system to coordinate the use of
physical resources such as memory or peripheral devices,
(for example, a semaphore),  to protect the integrity of
data (for example, a lock), and for many other purposes.

Together the software and hardware resources govern the
performance of a software system, in the sense of its
response delays or its capacity to handle traffic. They can
prevent a program from proceeding, until some resource
can be allocated to the program. This aspect of authority to
proceed is common to both software resources and hard-
ware resources; we wish to emphasize their similarities
and common properties, in an overall resource architecture
for a system.

Resources are seldom treated systematically and carefully
in software design, except perhaps for processor time.
This may be intentional, as in a design which is intended
to be useable over a wide variety of physical platforms (so
it deliberately avoids consideration of physical resources).
More often resource usage is an emergent property of the
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design, and resource interactions may introduce undesira-
ble delays. In some systems the patterns of resource use
have enough structure that we can identify a resource
architecture, while in other cases the patterns are chaotic
and the architecture is not obvious.

Software architecture is essentially a system description in
terms of components and their interactions; more discus-
sion of the definition is given by Shaw and Garlan [19],
Bass et al [1] , or Hofmeister et al [6]. Components may be
clients and servers, databases, filters, layers, modules or
subsystems. Interactions include messages, calls, commu-
nications protocols, database access protocols, and multi-
casts. The value of architecture is that it creates a coherent
overall structure which guides, contains and maintains the
functional details.

Coherent overall patterns of resource use are similarly
important, particularly for efficient operation. Some soft-
ware components such as storage (buffers, files) are essen-
tially just resources, while others, such as (e.g. operating
systems processes, blackboards, databases) have resource
attributes along with other roles. Poor resource use results
in resource holding times that are longer than necessary, in
fragmented operations which acquire and release
resources many times, and in logical bottlenecks, which
are discussed below.

Resource aspects of software are mentioned with regard to
concurrency decisions, for instance in [19], and in archi-
tecture evaluation, for instance in [1],[2]. Klein, Kazman
and Clements specifically considered performance as an
example of attribute-based architecture evaluation, in [9].
Shaw has recently addressed the impact of  changing
resource capabilities in “open resource coalitions” which
may assemble resources dynamically as they run [20].
However there has been little systematic consideration of
resource attributes of software architecture. What we find
are architecture evaluations with statements along the
lines that an alternative is good for performance, because
c) 2001 IEEE 1
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it permits concurrency (see e.g. [2]). If we understand
resource architecture better, we may be able to:

• develop resource-dominated software architectures
from scratch, for applications in which quality of serv-
ice is important,

• develop a performance model for a given software
architecture,

• plan deployment of a given software architecture in
different versions with different resources, for example
over varying scales.

Performance approaches such as layered queueing models
have been developed to study these issues, particularly the
later two. A key notion in layered queueing is a resource
entity that can take the role of a server, in processing a
request, and then turn around and act as a client in request-
ing service from some lower level resource (e.g. [23],
[27], [16] ). This is natural behaviour for a software server,
and leads to a model with abstract entities that correspond
to software resources. Layered queueing has been applied
to web servers [3], transaction processing [7], data routers
[13] and distributed databases [21].

This paper has the goal of forging a connection between
the software architecture and the resource issues, in order
to promote all three of the potential uses listed above, and
others which may follow from a clearer understanding. In
this paper the idea and the essential features of a resource
architecture will be described, including several architec-
tural styles (which are also styles of software architecture).
We will see that the resource architecture may be strongly
structured, or not, and that when it emerges from a soft-
ware architecture, the resources may or may not have a
simple relationship to each other. 

2.0  Resources in Software Systems
Software operations use resources as machinery, and this
is entirely straightforward as long as one resource is used
at a time (for instance a processor, a disk, a network inter-
face). As a reference point for further discussion, consider
the following sequence of software activities:

The program executing Scenario 1 uses three physical
resources: the user I/O interface, the processor, and the

FIGURE 1. Scenario 1: a sequence of activities

processdata reportinit
start end
0-7695-0981-9/01 $10.00 (
disk I/O resources, one at a time. These resources may
force it to wait for the user to enter a command, for the
operating system to dispatch it to the processor once it is
ready, or for the disk I/O subsystem. It also requires a log-
ical resource, which is an operating system thread which
must be created or used to run the program. In some sys-
tems the total number of these threads may be limited, and
a program may have to wait for a free thread before it can
start. Figure 1 can be redrawn (see Figure 2) to show the
resources for each activity, which will be called its
resource context.  The resource context of activity “in1”,

for example, is the user interface UI and the program
thread. The resource context of a program changes over
time.

Many performance models (notably all basic queueing
network models) assume the program uses just one
resource at a time. They ignore the thread resource in Fig-
ure 2 by only considering the set of active threads.
Extended queueing models may be used to consider logi-
cal resources, but they easily become complicated, and
their construction is difficult.

Now consider a slightly more complex program in Figure
3, in which the program obtains a lock before reading and
modifying a file, and in which the file is on a network file
server. The lock is an additional resource, held for only a
part of the time, and the file server has its own thread or
threads  and CPU.     

Clearly, from Figure 3, resource contexts are complex and
they may change rapidly. For instance the program may
switch between the file server cpu (fsc) and the disk (dsk)
many times. A diagram like Figure 3 may have to be
drawn in an abstract way to hide some of the complexity.

The concept of resource in a software system implies
some concrete entity used by the program, which is either
a device or some kind of logical token (which may be
related to a device), or a member of a pool of devices or
tokens. The concept includes the notion of authority to
proceed, when the token is allocated by its manager
(which may be a part of the operating system). Some of
the diverse possibilities are: 

FIGURE 2. Scenario 1 with resources and resource 
contexts indicated on finer-grained activities

UI cpu disk cpu disk cpu UI

program thread

start
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end

(processdata) (report)(input)
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1. physical devices that execute operations, including
processors, interface devices, buses, and disk devices
and controllers,

2. memory or storage, including memory blocks, buffers,
disk sectors

3. access to data (semaphores and locks). A counting
semaphore is a resource pool

4. active threads, execution contexts, access control per-
mits, or permission to carry out an operation or to
transmit data. A flow control window for data commu-
nications can be regarded as a pool of resource tokens;
so can a pool of execution threads.

A process with unlimited threads, such as a server which
creates a thread per request, is an infinite set of resource
tokens which actually cannot withhold permission to pro-
ceed. In this sense an unlimited resource pool is missing
some of the attributes of a resource.

The concept of resource considered above is different
from that of a URL or web page, or a resource in the RDF
(Resource Description Framework) [11], which essentially
refers to resources which are documents. The question of
access limitations and permission is central to our notion
of resource, but not to RDF (although RDF is designed to
describe “all kinds” of resources and could perhaps be
stretched to include the above examples).

3.0  Resource interactions
Resources are related to each other through the pattern of
acquisition and release, and through being held simultane-

FIGURE 3. Scenario 2, with lock and file server 
resources, showing the resource context for each 

activity.
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ously. The overall execution has a series of resource con-
texts with transitions between them, due to acquisition and
release of individual resources. From the viewpoint of the
resources, we can collect any sequence of operations
within one resource context together, and call it a context-
operation. The same context may also be used again for
other context-operations. One way to relate the resources
to the software is to identify the context-operations in the
program. This may or may not reveal a structure we could
call “architectural”.

In some important cases resource use is highly structured: 

• Layered: A common class of systems provides
resources and services on demand. A request for a
resource causes the program to add that resource to its
context. 

If resources are released in the reverse order to which they
are obtained, as in Figure 3, this gives a kind of procedure-
call or client-server resource style. The role of server in
the interaction is taken by the resource, and the role of cli-
ent is taken by the process requesting the resource. This
gives a set of nested contexts, as shown in Figure 3. 

This may be described as a “layered” resource style. In
this style, outer contexts are at a higher layer and inner
ones at a lower layer. Lower level resources are held for
shorter time spans nested within the holding times of
higher level resources. The “bottom” or innermost
resource in any context is normally the device that is actu-
ally executing the current operation.

• Separated: In real-time systems a program is often
divided into distinct “tasks” (like the activities in Sce-
nario 1), which are scheduled separately. Deadlines are
enforced by the scheduler, backed up with calculations
of schedulability, and mechanisms like priority inherit-
ance (see, e.g. [12]). The scheduler allocates the neces-
sary resources to a task before it is launched, and they
are released when it ends.

We may call this a “separate” or “operation-centred”
resource style; a sequence of separate non-overlapping
resource contexts are created. Figure 4 gives an illustration
in which each task has its own operating system thread,
and a physical resource (RC, RE, or RF in Figure 4), and
each task also has its own collection of logical resources
(RA, RB, RD, RX). Even though RA is used again in
Task2, it is released after Task1 and then reacquired; this is
in contrast with the case in Figure 3. 

• Pipeline: Pipelines are widely recognized and used, in
hardware and software, and in their classic form they
are a “one-at-a-time” resource style. However they
may also appear in a generalized form as a sliding
series of overlapping contexts, as shown in Figure 5, in
which resources are acquired in some order and
c) 2001 IEEE 3
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released later in the same order, while operations are
carried on. As an example, a file may be opened in one
stage and closed in some later stage, with ownership
passed along the pipe.

3.1  Use of System Views
The discussion so far has been based on a path-oriented
view of the system, as described in the three-view model
for performance engineering in [28] (with views of Maps
or modules, Paths or scenarios, and Resources). The fol-
lowing discussion will develop the corresponding
Resource view. The Path view is similar to the execution
view of Hofmeister, Nord and Soni [6] (and the Map view
is similar to their module view). In [28] it is argued that
the Resource view is essentially different from the others.

3.2  Resource-operations
In the special configurations just considered, the context-
operations can be refactored or clustered into operations
associated with each resource, initiated when the resource
is obtained and covering the span of time the resource is
held. These will be called resource-operations.

A resource-operation collects together all the software
operations, that are executed in the context of a given
resource. The resource-operation can be characterized by

FIGURE 4. Separate resource context for each activity
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FIGURE 5.  Resource pipeline (above), and sliding 
overlapping resource contexts over time
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its workload, which includes its immediate execution (if it
is a device that can execute programmed instructions, such
as a CPU), and demands for other resource-operations.
Thus the resource R1 in Figure 6 has the operation R1-op,
which makes demands on CPU and on R2 (and R2-op).
The CPU operation is to execute the code of other opera-
tions such as R1-op, and it is usually clear (and less clut-
tered) to not show the CPU-operations separately in a
diagram. A request for a resource is shown by an arrow;
the execution path goes to the resource or the  resource
operation (like a procedure call). When the resource is
released the execution path follows the arrow backwards
to the calling (or requesting) context.  

This view of resource-operations matches very well with
the layered style of resource architecture and also with
several other styles. Figure 7 uses it to show the layered
resource architecture involved in Scenario 2, and the
nested contexts of Figure 3.   In the case of the file server
there are two resource-operations, Read and Write, and the
request arrow for the resource goes to the particular opera-
tion being requested.  In the case of the lock, there is only
one shown but others might exist, so the request is also
shown going to the operation. In the case of the CPU, file-
server processor FS-CPU, and the disk there are multiple
operations with the details suppressed, and the request is
shown going to the resource itself. 

The shaded resources and path in Figure 7 show the
resource context of one kind of disk operation, as a path
down through the model from the root resource (the pro-
gram thread) to the active execution resource (the disk).

The layered graph notation has the advantage of com-
pactly representing quite complex patterns of resource use,
provided they are nested. It will be shown that it can also,
with a few additional conventions, represent other struc-
tured patterns.

FIGURE 6. A Resource-operation

Resource R1

CPU resource Resource R2

operation R1-op

operation R2-op
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3.3  Layered resource architecture notation
There is not space here for a full definition of a notation
for resource architecture, but Figure 7 shows the key fea-
tures. Each resource has one or more resource-operations,
within each of which there is one activity or a sequence of
activities, which may in turn make requests for other
resource-operations. Resource-operations may be hidden
(as for the Disk) if there is only one, or to hide detail. This
notation provides a basis for describing structured
resource architectures. It looks like a call graph, and like a
call graph it implies that the requesting resource-operation
is blocked until the resource it has requested is released. A
full notation needs additional features, such as non-block-
ing operations and request-frequency parameters. 

Figure 7 has a superficial resemblance to the software
architecture, a resemblance which may have substance, if
resource-operations are embodied exactly in the software
components. Then there is a one-to-one correspondence of
resources to the software components. On the other hand
the boundaries of software components could be quite dif-
ferent, and have no relationship to the resource-operations.
For example the Processdata operation associated with the
Lock is actually performed in the Program software mod-
ule. The software architecture corresponding to Figure 7
might look like Figure 8, which is much simpler:  

FIGURE 7. Resource architecture, with highlighting 
of the resource-operations in Scenario 2

processdata reportinit

compute writeread

cache,reply writeread

Thread

Lock

FileServer Thread

Program

Processdata operation

Read              Write

DiskCPU FS-CPU
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A notation for performance modeling, called layered
queueing networks (LQNs), has been developed based on
the ideas in Figure 7. The models and tools have been
developed by several authors and are described in
[26][27][16][4][5][15]. An LQN determines the delay in
waiting for all resources, at every level in the layered hier-
archy. It accounts for how the holding time of a resource
includes waiting and holding for lower level resources.
The acyclic request graph of a layered architecture has the
advantage of imposing a condition which avoids resource-
based deadlock. That is, because two concurrent programs
within the same architecture request their resources in the
same order, they cannot deadlock in a situation where each
is waiting for  a resource already held by the other (a con-
sequence which is well known in the use of an acyclic
graph to establish or maintain a  locking order). 

Applications of LQNs include client-server systems, web
servers [3], transaction processing [7], distributed data-
bases [21], telecom connection management [8] and intel-
ligent network (IN) servers [23].

A single-layer LQN, such as would arise from Scenario 1
of Figure 2, is just an ordinary queueing network model.
The Program resource in Figure 2 would be the customer
or customers, and the other resources would be the serv-
ers. 

Our resource architecture model can benefit from some
generalizations that have been made in LQNs, beyond
what was described in the previous section. These include:

• non-blocking requests, in which the execution path
goes on to a new context when it releases a resource,
rather than back to a previous one,

• early release of the requester, while the requested
resource continues to be used,

• forwarded requests, which are asynchronous at a low
level while holding some set of higher level resources.

• multiple copies of a resource, all identical and man-
aged as a resource pool.

FIGURE 8. Software architecture that might 
correspond to Figure 7, as a box-connector diagram

Program

Lock Server File Server

Processdata
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3.4  Resource pipelines and non-blocking 
interactions
In a classic pipeline a package of data is passed from one
resource to the next, as a buffer or message or file. As it
arrives at the next stage it releases the one before. The
resource-operations are exactly mapped to the pipeline
resources. 

Passing data like this will be termed a non-blocking inter-
action between the resource operations. Non-blocking
interactions are not limited to pipelines; they also occur
when a series of resources is triggered one at a time to
work on a job, in any order.

Also,  a chain of non-blocking interactions can occur in
the midst of a layered system, with some blocked
resources also being held throughout the sequence. In this
case we may interpret that the request to the first resource
in the chain is being forwarded through the sequence, and
these are called forwarding interactions. They are remark-
ably common, for example where an input thread dis-
patches requests to a set of worker threads.

3.5  Early release of the requester
We say a requester is released early if the resource-opera-
tion making a request can resume while the requested
resource is still busy. The two resources can then be active
in separate concurrent resource contexts, which increases
the system concurrency levels. 

In one kind of early release interaction, when the requester
releases a resource R the execution path splits and an inde-
pendent resource context is started up, based on R, in par-
allel with the continuation in the context of the requester.
This pattern of resource behaviour compactly captures a
fairly common behaviour, for instance:

• a server returns a result to an RPC client, and then does
any work which is not in the critical path of the reply,
such as buffer clean-up, or logging, 

• a pipeline stage accepts its input from a blocked
upstream stage (perhaps using a shared buffer), and
then releases the upstream stage and continues on by
itself,

• a task is handed off to a server to be performed inde-
pendently. 

In layered queueing terminology the part of the resource-
operation after the early release is called a “second phase”.

3.6  “Real-time” separable architectures
In schedulable real-time systems the resource contexts of
activities are separate, and a scheduler allocates all the
resources it needs to a task when it is time for it to run.
Resources are acquired atomically, all or none, which
means that order is not significant. This requires a single
0-7695-0981-9/01 $10.00 (
all-knowing scheduler (although some aspects of its oper-
ation may be distributed), which limits the applicability of
this architecture. This architecture is used in real-time con-
trol and real-time databases and networks (e.g. [12]).

3.7  Resources with delayed release
A common pattern of resource holding, which breaks the
layered structure, makes an interesting study. Consider a
layered system with one exception, a resource which is
obtained in a deeply layered context, and retained when
other resources “above” it are released. For instance, a
system might obtain rights to a buffer on a remote system,
through the use of remote resources which are then
released, and then later pass the buffer rights to an agent
on the remote system, to use. The agent might then use the
buffer and then pass it back, release it or pass it on. The
resource contexts for such a system are shown in Figure 9,
and we can see that they are not nested. This thoroughly
breaks the layered resource pattern.   

If resources are layered except for a subset, the subset can
be shown as exceptions. For one isolated delayed-release
resource, the request and entry into the resource-operation
are just as before, but the resource-operation completes
without releasing the resource; this must be indicated as a
special class of resource. Then the release is a separate
interaction, which could be indicated graphically by a spe-
cial class of arc. Figure 10 shows a Buffer in such a special
class of resources, labelled (DR) for delayed release, and
the release interaction indicated by an arc labelled
Release. There could be multiple alternative release
points.   A weakness of this notation is that the scope of
the resource contexts covered by the Buffer is not clearly
identified.

3.8  Multiple copies (multiple threads)
A resource may be provided in multiple copies. For
instance, the buffer described just above would normally
be one of a pool all managed by the Buffer Manager. A
server process may be multi-threaded; a processor may be

FIGURE 9. Delayed release of a Buffer resource, 
with non-nested resource contexts.
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a multiprocessor. Multiplicity should be a parameter of a
resource. Sometimes a resource is multiple without any
limit, for example a server process which creates a thread
per request.

4.0  Consequences of resource architecture
The resource architecture, with the parameters of the
resource-operations, governs the performance of the sys-
tem. Models based on the architecture can be used for
evaluation. This has limitations deriving from the degree
of abstraction in the architecture; if the architecture is
abstract and misses some fine-grained resources, a predic-
tion based on it will miss the effect of those resources.
This should not be seen simply as an error; it is an aspect
of abstraction. The predictions  have to be understood as
abstract; it is not intended as a joke to say that abstractions
in predictions just look like errors. Financial budgets, for
instance, contain similar abstractions. They are correct at
their given level of abstraction.

4.1  Resource overhead
Acquiring and releasing resources incurs overhead which
is part of every resource-operation. Fine-grained resource
manipulation can cause explosive overhead costs. A nice
example is data access under the Simple Network Man-
agement Protocol (SNMP), where the protocol states that
every remote value is retrieved separately from a Manage-
ment Information Base (MIB). This can cause heavy data
traffic to be visible in the parameters of the resource archi-
tecture [22].

Thread

Program

Thread

Thread

CPU1

CPU2

Buffer(DR)

AgentServer

Buffer

Manager

(Release)

FIGURE 10. Delayed-release resource shown as an 
exception within a layered architecture

Thread
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4.2  Software bottlenecks
One consequence of a software architecture may be a soft-
ware resource bottleneck. Layered queuing has been used
to investigate this phenomenon, as it relates to process
threads, in [14]. A process thread remains “busy” when it
is blocked, waiting for an event or message or reply from
some other process or device. A typical source of blocking
is waiting for disk I/O to complete. While one thread is
blocked, another one could be using the processor, if there
is one ready to run. An insufficient thread pool is an exam-
ple of a software bottleneck, which can relieved by
changes which are entirely in the software. Another cause
of thread starvation is that all threads are blocked, no mat-
ter how many are provided; in this situation the bottleneck
is in the lower subsystem (e.g. in the file server or the
disk). In [14] a measure of “bottleneck strength” was
described, to identify where the cause of the bottleneck is
located.

Other similar software bottlenecks due to logical
resources may occur at flow control windows (provide a
larger window) or at a lock (provide finer-grained lock-
ing). Similar bottleneck patterns occur in layered hardware
resources, for instance a bus bottleneck when the bus is
used to access memory and various interfaces [13].

Patterns in resource relationships that lead to bottlenecks,
and strategies for relieving them, have common forms in
very different kinds of system. The resource architecture
can be the same, with a role taken by a process in one sys-
tem, filled by a critical section or a bus in another. 

5.0  Relationship to software architecture
In a given system, how do the resources relate to the soft-
ware architecture? We can look at this question in three
ways: resources as an emergent property, software deliber-
ately designed around its resources, or resources deliber-
ately kept orthogonal to the software structure. There is
also the real-time separated-resource-context case, where
there is effectively no resource architecture as such.

5.1  Emergent resource architecture
The software architecture is determined using a variety of
relevant criteria, including performance and resources. A
wide-ranging discussion of methods for creating and eval-
uating architectures is given by Bass, Clements and Kaz-
man [1], and real-time system software architecture
evaluation is addressed directly by Kazman et al. in [9].
Some resource issues are dealt with explicitly but other
resources for controlling data access, for storing tempo-
rary data, for concurrent threads, and so forth may just
accumulate from the totality of considerations. In this way
a resource architecture emerges, and it may or may not
 (c) 2001 IEEE 7
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have a recognizable structure. How can it be recognized
and extracted?

Kazman and Carriere have considered a similar question
for software architecture, and found the relationships from
static analysis [10]. For resources, it is clear that scenarios
or traces must be analyzed to identify resource demands
and holding times of higher level resources. This is the
basis of classic software performance engineering recom-
mendations by Smith [24], for instance. However Smith
concentrated on demands from hardware devices, and
gave only limited assistance for dealing with logical
resources and concurrent execution. In [25] Smith and
Williams considered software architecture and perform-
ance, but the architecture was at a very fine-grained level
(data objects) and mainly affected the hardware demands.
Hrischuk et al. [7] have described an approach for finding
resource contexts and layered performance models from
traces, even when objects have been dynamically created
and linked.

Emergent resource architecture partly follows software
structure. Concurrent processes involve resources, for
instances. Semaphores can be identified, but the requests
may be buried in low level modules even though they gov-
ern higher-level operations by other modules. Thus the
scope of a resource-operation  may be difficult to deter-
mine. Buffer resources pose similar questions. 

5.2  “Resources first” development
Systems with critical performance requirements, that are
not amenable to separate-context design  may be designed
around the critical resources. Internet routers come to
mind as an example, with the routing table as one critical
resource. 

In designing reactive software systems (systems where the
function is mainly to respond in a timely way, and in the
correct order, to external events) Selic et al.  have insisted
that architecture should not only identify components and
interactions, but must also describe behaviour [18]. This is
certainly also true where resources are considered first. It
is implied by the central position of resource-operations
and their interactions, in the architecture. Scratchley and
Woodside have considered concurrency-related architec-
ture decisions within an integrated scenario specification
in [17], and have evaluated substantial alternatives in soft-
ware architecture for a group communications system.
Some ideas for generating architectural alternatives
around performance concerns were described in [28].

A general approach is to develop the resource architecture
first, from an analysis of scenarios, then to estimate budg-
ets for operation times, validate the performance measures
on the basis of the budgets, and finally go on to develop all
the other aspects of the software within the budgets. This
0-7695-0981-9/01 $10.00 (
process mimics the way projects are managed to fit within
financial budgets, and allows for iterations and adjust-
ments as problems are revealed. This is a subject of cur-
rent research.

5.3  Resources orthogonal to software
This name is applied here to systems in which the soft-
ware design avoids resource commitments, so it can be
deployed in many different situations, with different
resources. This approach appears to be implicit in many
theoretical ideas of distributed systems. Ideally, resources
can be completely ignored in the software, and included in
a configuration step which specializes the system to a par-
ticular deployment option.

In practice, there are still resource roles in the design, or
implied by it. They may be employed only in some ver-
sions of the system. For instance semaphores to protect
data shared by multiple threads are not needed in a small-
scale single-threaded deployment. The resource architec-
ture is a property of the deployment, and is effectively iso-
lated from the software architecture. However the
semaphore programming has to be provided in the system,
even if its use is made optional.

In this situation there may be many resource architectures
that could be used with a single software architecture, and
they may be quite different. For instance a series of opera-
tions in a subsystem might be configured as a resource
pipeline in one deployment and a hierarchical master-slave
style in another. The possibility exists of optimizing the
deployments within a general plan, and some of these
issues were explored in a recent study of scalability of
software architectures [8]. 

The programming to support multiple resource configura-
tions is likely to be complex, which is a negative aspect of
this concept.

5.4  Separate resource contexts
The approach of separating the resource contexts of opera-
tions or “tasks” is distinctive, and has been described ear-
lier as characteristic of real-time and embedded systems.
Design of these systems is a large subject, and the way
resources are treated is a side effect of the design philoso-
phy. In one approach, resources and operations together
are put (as much as possible) under a single system-wide
layer of control, instead of having the control dispersed to
separate controllers for each resource. The resource
behaviour is analyzed by schedulability analysis and
enforced by the controlling layer. Resource relationships
once discovered are embodied in the analysis and the con-
trol. 
c) 2001 IEEE 8
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For some resources (especially in hardware), dispersed
request-based control may remain, and may cause difficul-
ties in the analysis and control. Priority inheritance can
sometimes be used to mitigate these problems. 

Software architecture may still be influenced directly by
the raw hardware demands. For instance in [9], perform-
ance issues which arose in evaluating a real-time embed-
ded software architecture centred around a hardware
limitation (a channel bandwidth).

As a general solution, system wide resource control and
resource context separation has the attraction that it estab-
lishes some control over timing of execution of operations.
However systems built this way are circumscribed in their
applications and may be sensitive to changes.  For instance
the design may depend critically on a clock rate, or on how
many functions have to be executed in an execution cycle.
Once any aspect of these tightly controlled solutions
breaks down the system must be reconsidered from the
beginning. The composition of systems into larger systems
has to be done with great care and may not be possible. So
this approach does not appeal to designers of systems in
which it is not  essential, for instance in telecommunica-
tions.

5.5  Styles
It is not the intention of this paper to go into architectural
styles in depth, but it has already been pointed out that a
resource architecture may have a pipelined style, or a heir-
archical (call-return) style, etc. There is usually some sim-
ilarity between the style of software architecture and the
resource architecture, but it is not necessary. This point
needs further consideration.

6.0  Conclusions
A concept of resource architecture has been described,
which applies to software resources as well as hardware.
There are resource-operations attached to each resource,
and resource interactions between the operations. This
kind of structure can be found in many software systems.
The form of the architecture model description is backed
up by a performance modeling methodology called lay-
ered queueing.

Resource architecture may be imposed on a system from
the beginning, or may be identified as an emergent prop-
erty of a mature system. Identifiable styles of resource
architecture include pipelines, hierarchies and layers, and
operation-centred styles. A chaotic architecture, with
resource relationships that have no particular structure,
may be subject to inefficient resource use and to resource
deadlock.
0-7695-0981-9/01 $10.00 (
For understanding performance issues, and adapting
designs to solve performance problems, software
resources will usually be considered together with hard-
ware resources, in a system resource architecture, which
could in principle be described by the approach of this
paper. The integrated study of software and hardware
resources is essential for understanding the operation of
the system. However a given software system is likely to
be deployed in many different environments, so its soft-
ware resource architecture should be developed first and
used as a component in many system architectures.
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