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ABSTRACT

The theory of Software Science was developed by the late Prof.
M. H. Halstead of Purdue University during the early 1870's. It was
first presented in unified form in the monograph Elements of
Software Science published by Elsevier in 1977. Since it claimed
to apply the methods of seience to the very complex and important
problem of software production, and since experimental evidence
supplied by Halstead and others seemed to support the theory, it
drew widespread attention from the computer science community.

Some researchers have raised serious guestions about the
underlying theory of Software Science. Al the same time,
experimental evidence supporting some of the metrics continues
to mount. This paper is a critique of the theory as presented by
Halstead and a review of experimental results concerning Software
Science rmetrics published since 1977.

Keywords and Phrases: Software science, software management,
software metrics, software engineering, software measurement,
software complexity,

CR Categories: 4.0, 4.6

1. Introduction

The ever-increasing cost of program development has made the
measurement of software complexity more important than it has ever been

before. The critical role that software metrics can play in analyzing and o

]
evaluating software is emphasized in the recent book Soffware Melrics: An

Analysis and Fvaluation [PerlB1] produced by a study panel commissioned by.
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the Office of Naval Research. This book and numerous studies reported in the-
literature indicate the inadequacy of simple measures such as lines of code in
predicting programming effort. It is generally agreed that there are a multitude
of factors that affect programnmer productivity. These include the type of
program being developed, the interface complexity among modules.in the
program, the experience of the programmers involved, the computer
envirenment, ete. (ef. [MohaB1]). However, it is not evident that the inclusion of
a great many factors in a measure, either intuitively or by using regression
methods, leads to a useful estimator of total programming effort [Farré5,
Wolv74, Jame77, Basi79, MchaB81]. In our opinion what is needed is a model of the
programming process based upon a manageable number of major factors that
affect programming. This will, we believe, lead to reasonable estimators that

can be useful to software project managers.

Software Science, as presented in [Hals77], was purported to be such a
model. It was an attempt to analyze the complex problem of software
production using established seientific methods. It drew the immediate
attention of many researchers, Papers supporting the theory were published in
numerous journals and conference proceedings (see, for example, [Fitz78] and a
collection of papers in JEEE Transactions on Software Fngineering, March
1979). As interest in Software Science mounted, some evidence was reported
which supported some of the metrics while other resulls raised serious

questions about them,

This paper is a critical review of the current state of Software Science both
as a theory and as a practical tool for software management. We focus
especially on research that has appeared since the publication of Halstead's

book in 1977, and on studies done by the Software Metrics Research Group at

400

Purdue.



2. The Theory of Software Science

We begin with a brief summary of the theory of Software Science as
presented by Halstead in his 1977 monograph Elements of Software Science
[Hals?7]. - A computer program is considered in Software Science to be a series
of tokens which can be classifled as either "operators"” or "operands”*. All
Software Science measures are functions of the counts of these tokens. The

basic metrics are defined as:

n,=number of unique operators (1)
nz=number of unigue operonds {2)
N=totel oceurrences of operators (3)
Ny=total occurrences of operands (4)

Generally, any symbol or keyword in a program that specifies an algorithmic
action is considered an operator, and a symbol used to represent data is
considered an operand. Most punctuation marks are alseo considered as

operators. The Length of a program is defined as

N=N,+Ng (5)
and the Vocabulary of a program is defined as

n=11+12 (8)

Additional metrics are defined using these basic terms. Of interest is

another measure for the size of the program, called the Volume:

*This is based on the fact that all programs can be reduced into a sequence of machine
language instruetions each of which contains an operator end a number of operand
addresses,

401



V=Nxlog,n _ (7}

The unit of measurement of Volume is the commeoen unit for size -- "bits". It is
the actual size in a computer if a uniform binary encoding for the Yocabulary is
used. Volume may also be interpreted as the number of mental comparisons
needed to write a program of Length ¥, assuming a binary search method is
used to select a member of the Vocabulary of size . Since an algorithm may be
implemented by many different but equivalent programs, a program that is
minimal in size ig said to have the Potential Yolume V*. Any given program with
Volume V is considered to be implemented at the Program Level /., which is

defined by
L=Ve/V (8)

The value of L ranges between zero and cone, with Z.=1 representing a program
written at the highest possible Level (i.e., with minimum size). The inverse of

the Program Level is termed the Difficulty. That is,
D=1/ (9)

As the Volume of an implementation of a program increases, the Program Level
decreases and the Difficulty increases. Thus, programming practices such as
the redundant usage of operands, or the failure to use higher level control

constructs will tend te increase the Volume as well as the Difficulty. |

The eflort required to implement a computer program increases as the size
of the program increases. It also takes more effort to implement a program at a

lower Level {higher Difficulty) when compared with another equivalent program

at a higher Level (lower DifTiculty). Thus the Efort in Scftware Science is

102

defined as
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E=Vs/ L=DxV (10)

The unit of measurement of £ is "elementary mental discriminations".

A sound theory should have not only an intuitive set:of definitions, but
should also contain an intuitive model for which a useful set of hypotheses may
be derived and validated. The model, although never explicitly stated by
Halstead, is that most programs are produced by concentrating programmers
through a proc.ess of mental manipulation of the unique operators and operands.
The basic assumption that leads te the hypotheses presented in the following

subsections is an implicit limit on the mental capacity of a programmer.

2.1. Length equation

The first hypothesis of Software Science is that the Length of a well-

structured program is a function only of the number of unique operators and

operands. It is called the "Length equation” where N is the predicted Length of

the program®™.

N=n,xlogzn, + nzxlogane (11)

The Length equation, like many other software metrics, may not be a precise
equality for a specific program yet may be considered valid in a statistical
sense. Such relationships are common in experimental sciences dealing with
human subjects. Since programming is a very demanding human activity, it
certainly falls into the realm of activities that must be approached with the idea ' J;
of explaining "typical” performance while perhaps failing to achieve precision in '

specific instances. It is also known that certain poor programming practices, ;
|

o
The Length equation estimates the total length, not the individual estimates of N | and Np, o
as some have believed [Moha78]. oo
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referred to as the "introduction of impurities” in Software Science, can make
the Length

equation a very poor predictor of N.

2.2. Potential Volume

As we have discussed earlier, a program that implements an algorithm inits
most suceinet form has the Potential Velume V*. If the desired operation on
data is already defined in the programming language or its subroutine library as
a "built-in" procedure, the Potential Volume is achieved by specifying the name
of the procedure and by giving a list of input/output parameters. The
Vocabulary of this program consists of two operators and #; * operands. One
operator is the name of the procedure, since it defines some action; the other
operator is a grouping symbol needed to separate the list of parameters from-

the procedure name. Thus

Vr=(2+nz*)xloga(R+n2*) (12)

where 772 % is the number of input /output parameters to the procedure. This
formula, although useful for many programs, is not applicable universally since
there are programs that do nct have an explieit list of input/cutput parameters.
An example is a compiler whose output consists of several files and messages to
the operating system. Moreover, as Halstead himself observed, the concept of

72 ¥ may have te be extended to include certain "information-packed” constants

and, perhaps, other implicit variables.

404
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2.3. Program level {Difliculty) estimator

The Level of a particular implementation depends on the ratio of the
Potential Volume and the actual Volume (equation (B)). Since the Potential
Velumne is usually not available, an alternate formula which estimates the Level

is defined as

E:-l-c—z—x-n—a— (13)
b T 2

An intuitive argument for this formula is that programming difficulty increases
if additional operatera are introduced {7,/ 2 increases) and if an operand is used
repetitively (Ng/ 7z increases). Every parameter in equation {13) may be

obtained by counting the operators and operands in a computer program. The

Potential Volume V* may then be deduced using equation (8) with L equal to I
This formula can also be used with equation (10} to determine the Software

Science Effort estimate for a given program.

2.4. Programming time

A major claim for Seftware Science is its ability to relate the basic metrics
to actual implementation time. A psychologist, John Stroud, suggested that the
mind is capable of making a limited number of elementary discriminations per
second [Stro67]. Stroud claimed that this number S (now called the "Stroud
number") ranges between 5 and 20. Since Effort# has as its unit of measure the
"number of elementary mental discriminations”, the Programming Time T of a

pregram in seconds is simply
T=E/S. (14)

S is normally set to 18 since this seemed to give the best results in Halstead's
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experiments comparing the predicted times using equaticn (14) with observed
programming times. The Software Science claim is that this formula can be
used to estimate programming time when a given problem is solved by a single,
proficient, concentrating programmer writing a single-module program

[Hals77].

2.5. The Language Level

The proliferation of programming languages suggests the need for a metric
that expresses the power of a l'anguage. Halstead hypothesized that if the
programming language is kept fixed, then as V* increases, L decreases in such a
way that the product LxV? remains constant. Thus this product, called the

Language Level A, can be used to characterize a programming language, That is,
A=LXV*=L2V (15)

Analyzing a number of programs written in different languages using equation
(13) for L, Language Levels were determined to be 1.53 for PL/1, 1.21 for Algol,
1.14 fer Fortran, and 0.B8 for CDC assembly language. These average values
follow most programmers’ intuitive rankings for these languages, but they all
have large variances. Such fluctuations in a hypothesized fixed value are not
ehtirely unexpected since the Language Level depends not only on the language
itself, but also on the nature of the problem being programmed as well as on the
proflciency and style of the programmer. Equation {18) can be useful in
comparing programming languages if the same set of problems is programmed
in different languages by the same programmer. Algebraic manipulation of

equations (10) and (15) yields another formula for £:

06

E=V¥/ )2 (18}

4
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This formula can be used for Lffort prediction if the Potential Volume V* and the
Language Level are known. Thus, for a given problem, the Effort (and the
resulting implementation time) varies according to the squared inverse of the

Language Level.

L, 3. Criticisms of Software Science

|’| I;'.E- '
B ‘%{E The publications of [Hals?7] and [Fitz78] generated significant interest in

L

T e the research community. Criticism of SBoftware Science first appeared as letters
and later as papers [see, for example, Mora78, Feni?9, Male80, LassB1]. Some of
the cbjecticns concerned the theory: others reported empirical results that

failed to support Software Science formulas. These criticisms are summarized

in the following subsections.

3.1. Defining and counting operators and operands

":'Fﬁ,:f ;"? Co The original theory of Software Science was intended for analyzing
‘ ';f-_'- o algorithms (not programs). Most supporting data was drawn from algorithms
written in Algol and Fortran. It was not difficult to accept that "an algorithm
l -consists of operators and operands, and of nothing else" {{Hals77], p.8). Nor did
wet 'it seem very difficult to classify the tokens used in Algol and Fortran programs.

inte operators and operands. Variable declaration sections and other non-

executable statements were excluded from the counts in computer programs.

However, in other languages it is sometimes impossible to determine

T A R
whether a token is to be interpreted as an operator or operand [LassB1]. The
meaning may depend on the use of the token at executicn time, or it may

. .s» depend on the information given in the declaration section. A function

reference may serve as both an operator and an operand at the same time, The

inconsistent results from counting the same program on different occasions in.

B ?

e
LR

407
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[Hals77] further illustrate the difficulty in classifying tokens [Male80]. Since the
variable declaration section in some languages (e.g., Data Division in Cobel)
takes a significant portion of the programming effort, it does not appear
reasonable to ignore it [Elsh78, Fits79, ShenB8i]. Some (cf., [MaleBO]) have
suggested that operators should be divided into two groups - control operators

and process operators - because of their significantly different impact.

Another objection raised by [LassB81] questions the count of GO TO's in
Fortran. Halstead proposed that each "GO TO label"” be counted as a unique
operator for each unique label. On the other hand n IF statements are
considered te be n ocecurrences of che unique II" operator. Ambiguities, both .
theoretical and practical, in the classification and treatment of some operators
and operands may lead to substantially different vaiues of some Scftware
Seience metrics. These ambiguities are normally resolved by the designer of
automatic counting tools or analyzers using some convenient strategy (see, for

example, [Fits79] for a strategy on counting IBM's assembly language and PL/S).

3.2. The derivation of formulas
Rigorous algebraic derivations are given in [Hals77] for all the Software
Science formulas. However, several implied assumptions are made for which

there seem to be no theoreticeal justifications. For exarnple, in deriving the

‘-,—f‘gLength equation in chapter 2 of [Hals?77], Halstead divides a program of Length

N into N/ 7 substrings of Length 7. Assuming there are no duplications of these
substrings and assuming that operators and ecperands alternate, he concludes

that N must satisfy the inequality

N < n"xn,™ (17)

08

4

No reason is given for dividing a program of Length N into N/ substrings of
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Length 7. The assumption that operaters and operands alternate seems
reasonable, but this would imply that for all programs N,8N, which has not been
observed in genersl. Furthermore, the derivation of (17) assumes that an
operator or operand (which one is not made clear in the text) always comes

first. Allowing either operators or operands to appear first would double the
upper limit in (17). Thus, the Length equation cannot be justified on thecretical
grounds from these considerations, altheugh its use and vah_le as an

experimental metric may still be valid.

Another example is the derivation of the relaticnship between operators

and operands. After defining V** as the Boundary Volume
V= (247, *xlogana *)Xloga(R+n2 *) (18)
at the end of chapter 3 of [Hals7'7], Halstead sets

dn - prr
a7 v (19)

in chapter 4. No justification for this formula is given in the book. Furthermore,
since 7 is a discrete variable, treating it as a continuous variable in order to

differentiate it is highly questionable.

In deriving equation (14) for programming time, Halstead relies on the work
of [Stro67] to convert Effort, given in "elementary mental discriminations”, into
time in seconds. Among psychologists there is no general acceptance of
Stroud’s hypothesis that the mind is capable of making a constant number (5)
of mental discriminations per second. As a theoretical concept, the Time

equation must therefore be considered suspect.

The presence of these and other unverifiable assumptions in the derivation

09

4

of formulas in [Hals77] casts seriocus doubt on the underlying theoretical

foundations of Software Science.



_12_

3.3. Validity of experimental data

Even though the theoretical foundations of Software Science are weak, it is
still possible that the Seftware Science metrics may be useful. In order to
decide if the formulas are acceptable approximations to reality, it is necessary

to examine the empirical work that has been conducted.

A first observation is that the validating data reported in [Hals77] and in
some early papers that followed were not presented in the classical form of
hypothesis testing [Zweb79]. Indeed, Halstead frequently and incorrectly
inferred that because two sets of numbers were highly correlated, one can be

used as a substitute for the other,

Secondly, the experiments conducted by Halstead and others to validate his

claims have been criticized on the following grounds:

i. The sample sizes in most cases were too small. Good experimental
technique requires as many data points as possible (at least on the
order of 20 to 30) before making an inference from a sample. Many of

Halstead's conclusions were based on sample sizes less than 10.

ii. The programs involved were small (especially in the programming.
time experiments). All except one were single modules of less than 50
statements. It is probably not possible to generalize results with such

programs to large, mulli-module industrial programs.

iii. Many of the experiments, especially those concerning
programming time, involved only single subjects. Unless the single
subjects were perfectly "typical", the results may not generalize to

other programmers.
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iv. The subjects (even when there were several) were generally college
students. There is a real concern that results based on this type of

subject may not generalize to professional programmers.

These criticisms of the experimental results contained in [Hals77] are
certainly valid. However, we recognize that this pioneering work was done in a
university environment, which made it diffieult to conduct experiments involving
large software projects. Additional research since [Hals?77] has provided more
data of better quality. The following sections contain discussions of each of the

hypotheses (or claims) of Software Science in light of recent research results.

4. The Length Equation

Software Science claims that the length of a program is a function of the
unique operators and cperands. This is the hypothesis that has received the
meoest attention, since it can be easily tested. Such extensive testing leads to the

results outlined in the following subsections.

4.1. The effects of counting rules on the Length equation

Although it is easy to construct a pathological program to make Na pocr
predictor of N, there is overwhelming evidence using existing analyzers to
suggest the validity of the Length equation in several languages. A
misclassification of any token has virtually no effect on the final estimate since

N=1,xlogan, +nexlogama~inxlog, g— (20)

regardless of how the Vocabulary of size % is divided into operators end

—
operands, —,
=3
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The Length equation indicates that the total length of a program is a

function of the counts of its basic tokens, As the number of unigque operators

and operands increases, the Length estimator (E’) increases as well. It will
sighificantly over-estimate the Length if each unique token is used only once or
twice in the body of the program. This, in fact, is somewhat characteristic of
many Cobol programs. The Length equation yields much better estimates il we
include the counts for the declarations [ShenB1]. The same observation has
been made in constructing automatic counting tools or analyzers for PL/1 and.
PL/S [Eish78, Fits79)]. For consistency, we suggest that all Software Science
analyzers should count operators and operands in declaration sections as well as
procedure sections. Software Science theory also excluded input/output
statements from the counts. However, since a significant portion of many
programs deal with input and ocutput, we feel that these statements should be

considered by Software Science analyzers as well.

4.2. The derivation of the lLength equation

The problems in the derivation were discussed in the previous section. The
derivation as given in [Hals77] was actually established effer the relationship
(i.e., equation (11)) was proposed and tested. Since the Length equation has
been found te be a valid and useful formula in many different environments,
there should be a better way to support it theoretically than that offered by

Haistead.



-15-

4.3, The prediction of program Length using unique operands

It is likely that a complicated program will use nearly all of the predefined
operators or keywords in the language. Thus, for large enough programs the
count for 1, should be a constant plus the count of procedure calls, function
references, and direct transfer {i.e., GO TO) statements. Inlanguages such as
Pascal and PL/S, where the use of direct transfers are discouraged, 7, should be
nearly constant for large programs. An analysis of 480 PL/S modules shows that
7; has a mean value of 48 with a standard deviation of 1B {Fits80]. Thus, for
programs written in languages in which the use of direct transfers are
restricted, it may be possible to predict the eventual program length using
equation (11) after the declaration section is completed, since at that time an.

estimate of 773 will also be available [ChriB1].

4.4 The error of the Length equation

The metric N has proven to be an acceptable estimator of N when applied:

to a wide range of programs [Fits80]. In an analysis of 1637 modules the relative
error between N and N was less than 6%, although this error can be much larger
for individual modules [Smit80]. The usefulness of the estimator N does appear

to be somewhat sensitive to the actual program Length N; i.e., N tends to
overestimate for small programs and underestimate for large cnes. It appears
to work best for programs in the range 2000 < N < 4000 [SmitB0, ShenB1]. For
programs of size N > 4000 the average relative error is -207% in the analysis of
231 moedules, and for 100 < N < 2000 the error is 40% from 1032 modules. Under
these circumstances the relative error of the Length equation can be minimized
by dividing a program into modules of reasonable size and then summing the

individual estimates.

413
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5. The Program Level / Difliculty

The Program Level (L) was intended to be a measure related to the effort:in
writing 2 program, the error-proneness of a program, and the ease of
understanding a program. Although it depends to some extent on the language
being used, the Program Level might vary greatly even for equivalent programs
written in the same language since it is dependent on the experience and style
of the programmer. Thus the validity of the concept as defined in equation (8)
and the computation formula as deflned in equation (13) can only be tested
indirectly. We shall comment on the derivation of the Level estimator and its
use as a complexity metric for error-proneness. The effects of using equation
(13) in the computation of the Potential Volume, the Effort, and the Language

Level will be discussed in later sections.

5.1. The derivation of the Program Level estimator

Equation (13) for 7 establishes the Program Level as the preduct of two
terms. The first term, 2/ 7,, decreases as the number of unique operators

increases. The Program Level L exhibits the same behavior; i.e., L decreases as

7)) inereases. Similarly, the second factor in E, namely 772/ N2, decreases as
operand redundancy increases. Since operand redundancy also increases the
Volume, it is evident that [ tooe will decrease. Halstead decided to use the
product of these two factors as the Level estimator. He considered other
possible combinations of these two factors, but discarded them because they did
not agree as well with available data. The data presented in [Hals77] showing the
validity of the Level equation depend on values for 772 ¥, which were determined

using a subjective method. g
—l

We cannot test the Level equation objectively on large sets of programs

since we do not have an objective method to compute 7, ¥. Its validity can only
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be inferred by applying the equation to other metries, such as the Difficulty,
Potential Volume, ete., and comparing the results with observed vaiues, The
testing problem is made more complicated since an unfavorable result may
mean either a poor Level estimator formula or an improper definition of the
metric being studied. On the other hand, a positive result may not be
conclusive, since errors in the Level estimator may be compensated by errors.in

the metric definition.

5.2. D as a complexity metric for errorproneness

It is very difficult to define an error in a program. Certain errors are
simple and may require the change of only one statement. Others are more
complex and may require changes in many difierent places in order to eliminate
the errors. There- are even errors which are denoted as errors only after some
specification is changed. However, it is generally believed that if a programmer
is careful in the design phase, a preogram will be easy to understand and will
contain few errors. If a program is easy to understand, it should also be easy to
correct if an error is discovered. The inverse of the Level, called the Difficulty
(D). is a candidate for a measure of "error-proneness”. An equivalent of

equation (13) is the following:

D= -—é--x-—-- (21)

Equation (21) is the product of two ratios. The first ratio, 1—?2-1- increases

when more unique operators are used. Although programming languages in
general have a fixed set of operators, it is still possible to increase this ratio
arbitrarily by introducing a large number of direct transfer (i.e., GO TO)

statements, if they are counted as unique operators. Advocates of structured

415
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programming generally agree that the use of direct transfers is a harmful

practice [Dijk68]. Thus, this intuition of difficulty is supported as D increases
when the program uses more transfer statements. The second ratio, on the
other hand, is the average operand usage. It is 1 if each operand is used only
once. The more times an operand is referenced in a program, the more
candidates there are for changing its value, possibly requiring more mental

effort to remember its current meaning at any point during programming. Thus

a program with a high value of Dis likely to be more difficulf to construct and

this rnay lead to more errors in the future.

There have been a number of recent studies comparing complexity metries

that are potentially related to program maintenance, A study of 197 PL/1

programs for which error data was available showed that. the D metric yielded a
better correlation with bolh the error density and the average number of errors
than did cyclomatic complexity, the nesting structure of control flo\w, or the
Software Science £ metric [Feue?9]. Another study using 30 program modules

at IBM (for which there are records on the reported errors after release) showed
that Dis a good measure of relative error-proneness [Smit79)]. The latter study

suggested the establishment of threshold values of D which could be used by
programmers as a guide for developing soltware products. For example, for
PL/3 programs, the average value of 7, was found to be 48, and the ratio Ng/ 72
was less than 5 {FitsB0]. Two threshold values for the Difficulty metrie can be

determined as follows:

b, = -‘%‘a—xs =115 (22)
w0
‘.....-.l
Do = i%-lixs = 160 (23) =r
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(The value 1B used in equation (23) is the standard deviation of 77,}. If, for a

certain medule, 115<D<160, the programmer is advised te review his code for-
certain poor programming practices such as the use of too many GO TO

statements, too much embedded assembly language code, or unwarranted

redundant usage of operands. If D>160, more-drastic action such as a team
review would be recommended. The IBM study suggests that similar threshold

values may be established for other high-level languages.

6. The Invariance of the Potential Yolume /Intelligence:Content

Equation (8) suggests that for a given algorithm, different implementations
may have different Volumes and Levels; yel the product of those two may remain

constant. That is, the Potential Yolume V*=LXV is dependent only on the
algorithm, not on the characteristics of a particular implementation. When y?

from equation (13) is used to estimate L, the product LV is called the

Intelligence Content; i.e.,

I=IxV. (24)

The Intelligence Content 7 is also expected te remain constant over different
implementations of the same problem since it is an estirnate of ¥V*, In chapter &
of [Hals77] there are some examples in which all of the [ values are within 10%
of the average value for six or seven implementations of the same problem. If
this invariance of { could be shown to be universal, it would establish an

extremely important complexity metrice.

The invarianee of such a quantity can be tested on programs that all solve

417

the same problem using essentially the same algorithm. We have analyzed

hundreds of student programs written in Fortran and Cobol. The range of 1
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values are normally far more variable. For example, in the analysis of 237 Cobol
programs from four separate assignments, the best result we found for [ is a
standard deviation about 13% of the average [Shen81]. It is not unusual to find .
individual cases where the Intelligence Content varies almost 100% from the
average. There are also four versions of twelve programs presented (for another
purpose) in Table 8.1 of [Hals?7)]. Only two of the twelve cases have Intelligence
Contents within 10% of the average [MaleB0]. The worst case (Algorithm 24) has
one version that differs by 51% from the average. Thus, this data fails to support
the claim of the invariance of [, although student programs admittedly will show
greater variability than professionally-written programs. Furthermeore,
percentage variations on small programs tend to be more pronounced. The
data, however, does not invalidate the hypcthesis that V* is invariant since it
uses equation (13) for the Program Level and this equation depends on some
additional assumptions. But it does suggest that if the Potential Volume as
originally defined does exist, it should be computed in some way other than that

proposed by Halstead.

7. The Effort Measure

An important role for software complexity measures is to predict the cost
of soltware development. If there are two designs to solve a partlcular problem,
then a complexity measure is very useful if it can identify the design that will
take less time to program. It is even better if the complexity measure can be

used to predict the actual time required to implement each design.

The software metrics area is now replete with a large number of complexity
measures. These may be divided into three classes: (1) those that are
dependent on the size of the program, called exfensive measures; (2) those that

are dependent on the structure of the pregram, called infensive measures; and

418
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(3) those that are dependent on a combination of a number of factors. For most
compleXity measures, statistically-derived constants are required to relate the
complexity measures to actual programming times. The limited number of data
points and the variable quality of data points used in deriving these constants
frequently restrict the application of these measures to very limited types of
programs and environments. For example, a common complexily measure is
the simple size measure lines of code (LOC). It is generally accepted that a
program requiring more lines of code will take proportionally longer Lo
implement than another program requiring fewer lines. To relate the lines-of--
code measure to actual programming time, a formula of the following type can

be derived using regression analysis:
T =axlL0C? +c (e5)

The formula is of limited usefulness, since different environments lead to
different constants. There are published reports that stipulate the value of &

from as low as .91 [Wals77] to as high as 1.83 [BoehB81].

The Software Science Effort measure depends on the number of unique
operators and operands and how they are used. It can be related directly to
programming time using the so-called "Stroud constant”. It can also be related
to the eflort needed to comprehend an existing program [Gord?79)]. The &
metric has the potential of being an effort predictor; i.e., the factors that it

depends upon may be available before the program is constructed.

419



-2 -

7.1. The derivation of the F metric

Implementing an algorithm of Length ¥ can be considered to be the
gelection of N tokens from a Vocabulary of size 7. According to Hick's law
[Hick5R2], the selection process in humans approximates that of the binary
search. Thus the definition of the program Volume V=N xlogzn {equation (7)) is
directly related to the effort required to implement the algorithm, which is
measured in the number of "mental comparisons”, The time te make each
mental comparison is not constant, however. It depends upon how difficult it is
for the particular implementation; thus it is dependent on the 2 or I measure
(equation (10)). These considerations led Halstead to hypothesize that the Effort
I is the product of D and V. Since D was interpreted as the number of
elementary mental discriminations per comparison, Halstead made the unit of

measurement of & "elementary mental discriminations".

The conversion from mental comparisons to elementary mental
discriminations has no theoretical basis. The conversion from elementary
mental diseriminations to time using 5=18 is also controversial as mentioned in
Section 3. Even if these assumptions are valid, one would expect a large range

in time estimates since S rapnges from B to 20 according to Stroud.

The measure £ is basically an ezfensive measure. Although it includes the
count of unique operators, it cannct take into account the different functions of
these operators. Thus, a program using a proporticnally large number of
conditional instructions {implying a more complex internal structure) may not
yield a higher value for £. This was considered as a weakness in using 7 as a

measure of control flow complexity [BakeB0].

/]
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7.2. Programming effort

The experiments reported in [Hals?7] showing the comparison of actual
programming times and estimated programming times using £ invelved only
one subject. Another small experiment conducted later in which four subjects
built eight modules also found § = 1B to be a reasonable facter to convert £ to

programming time (see Table 1, which is taken from [Wood80]).

Table 1

Sorting Ixperiment Results

Program Actual Time Est. Time

Number {minutes) {minutes)

1 6 7

g iR 8
3 13 10
4 14 14
) 15 15
6 95 44
7 127 164
8 173 174

A

This second experiment supports F as a metric for programming effort when

individual programmers construct small moedules.

When the Effort measure is applied to large programs with multiple

modules, it consistently overestimates programming time [WoodB0]. A study of

A69
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four projects with a total of 416 modules showed that the correlation of the £
metric with actual time was only about .85 {BasiB1]. This was not better than

the ceorrelation coefficients of other traditional measures such as lines of code.

A recent set of experiments suggests that larger modules in multi-module-
programs should be conceptually broken inte smaller parts (called "logical
modules") before applying the £ measure [WoodB1b]. Using $=18 to convert
the £ measure to 7 works best for modules which take less than two hours to
produce and which are less than 50 lines of code in length. Under these
circumstances, the & measure is a better effort measure than those produced
by regression formulas using only lines of code or cyclomatic complexity {v(G))

(McCa'8] (Table 2).

Table 2

A Comparison of Several Models

for Estimating Pregramming Times

Pearson Avg, Avg. Mean- Regression

Model Corr. Relative  Abs.Rel. Squared Coeff,

Coeff. Error(%) Error(%) FError Used
r RE |RE | MSE
Toe) 66 .43  -37 53 - .59 Yes
Tioc 78 .80 22 37 .39 Yes
Ty, .83 .69 18 26 .40 No

The last row in Table g is the £ measure converted to times based on the
"logical medule” concept. It is a better estimator of programming time since &

is a highly nonlinear function of program length. For example, Schneider o
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[Sehn78] showed that F as a function of N behaves like
ENEXNLHs

Thus, for large programs it is necessary to first modularize the program, obtain
E for each module, and then sum these to obtain the total Effort estimate. Of
course this then raises questions about what module size to choose as well as

the role of module interconnection complexity.

Although the modules produced in the Woodfield experiments [WoodB1b]
were small according to industry standards, the data were nonetheless difficult
and costly to collect. The lack of controlled experiments on the production of.
larger software is the main factor preventing more extensive tests of the ¥

metric,

7.3. Program comprehension

A large portion of a programmer's time is spent in modilying existing
programs to correct errors or to meet new specifications [see, for example,
DonaB0]. This activity, popularly called "maintenance”, requires a thorough
understanding of at least part of the existing code before modifications or
additions can be made. The eflort required to understand a piece of software is
often non-trivial. As a result, there are these who advise reprogramming from
scratch when the effort to comprehend an existing program is believed te be

comparable to the efiort to start anew.

The importance of writing programs which are easy to comprehend led to.
the publication of many books on good programming style [see, for example,

Kern78]. In these books examples are normally given as two alternate means of

423

implementing a program segment: one poorly written, the other significantly

improved. In an analysis of 46 pairs of program segments written in Fortran,
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Cobol, Pascal, Algol, and PL/1, it was discovered that the # measure decreased
when 40 of the 46 program segments were improved -- implying that £ is highly
correlated with good programming practice. The number of executable

statements, on the other hand, decreased in only 31 of the 46 cases suggesting

that size alone is not a good predictor of comprehensibility [Gord79].

When the 7 measure was used by the Software Management Research group
at General Electric in a small experiment designed tc measure software
maintenance effort, it produced unimpressive results but differences that were
in the expected direction [Curt?79a]. Another experiment using more
programmers and larger programs was conducted by the same group several
months later. It showed that the £ metric was better than ¥ (&) or lines of code
in estimating the maintenance effort [Curt79b]. Specifically, the correlation
between maintenance performance and £ was .75 while for v (&) and LOC the

correlations were .65 and .62 respectively.

Another experiment was conducted at Purdue University by asking 48
programmers to study eight versions of the same program for a fixed amount of
time [WoodB1a]. The subjects then were asked Lo answer a twenty-question quiz
designed to measure comprehension [Wood81a]. The subjects who studied the
version with the lowest predicted effort (using an £-based measure)} had the
highest quiz scores [WoodBC]. Thus, these two studies tentatively support the
conclusion that a program with a lower £ measure is easier to comprehend than

an equivalent program with a higher F value,
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7.4. Tffort prediction

Most suggested effort measures depend on factors that are available only
after the completion of the program; e.g., lines of code, cyclomatic number, and
counts of operators and operands. Such measures are only useful for
determining whether actual programming time is close to the "predicted” time. :
An effort measure would be more useful if the factors it depends upon were
available before the program was completed. One approach is to try to estimate
these factors at earlier milestones in the development process and then to try
to predict the remaining effort. For example, a total time estimate might be
made at the end of the design phase or at the first time when the program
compiles correctly (called the "first clean compile"). In a study conducted at
Purdue University, we analyzed the first clean-compiled versien of 27 programs
for which the total programming time was known. We predicted Lotal
programring time from measures based on lines of code, cyclomatic
commplexity, and the Software Science Effort measure. The E measure was the-
best at predicting total programming time using the first clean-compiled
versions. Its correlation with total time was .B4 compared to .77 for v (&), .B2

for lines of code, and .22 for number of runs [Wang81].

Software science also permits a priori effort estimation based on F=V*#/A%
(equation (18)). The use of £ as a predictor from this formula requires
knowledge of 772 * (the number of conceptually-unique input variables) and of the
constant Language Level A. Unfortunately this formula is of limited usefulness
since 773 * cannot always be determined precisely and any errors in n; * will be
magnified in computing Z. In additien, as will be shown in the next section, the

Language Level A as proposed by Halstead is subject to large variability.
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B. The Language Level

It is an interesting hypothesis of Software Science that it should be possible
to rank languages on a linear scale based on a simple count of operator and
operand usage. Such a Language Level metric, if it exists, could be used in
selecting a language for a new application, in testing the potential power of a
proposed language, and even in predicting relative effort to produce scftware in
different programrning languages. For example, equation (18) shows that for a
fixed problem (i.e., Aixed V*), the Gffort measure varies inversely as the square
of the Language Level. Thus, if one language has a A twice Ehat of another, then
the # measure associated with the program in the first language would be 1/4 of

that for the second language.

B.1. The derivation of the Language Level

The generic equation for the Language Level in [Hals77] was
A=LPY (26)

Regression analysis using some sample sets of programs in different languages

seemed to indicate that 8~2, (Note that the formula for T (equation (13)) was
used in the study). This result led Halstead to hypothesize that A=L?V would
remain essentially constant for all programs written in a fixed language. Using
this formula Halstead determined the Language Level for various languages
using essentially the same sample sets of programs and arrived at the Language
Levels shown in Table 3. Although the A values follow most programrmers’
intuitive ranking of the powers of these languages, the large standard deviations
relative to the mean values lend only weak support to the hypothesis that X is

essentially constant for a fixed language. o
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Table 3

Language Levels

Language A g

PL/1 1.53 .92
Algol 1.21 .74
Fortran 1,14 .B1

CDC assembly .BB .48

8.2. The Length dependency of A

There have been a number of recent studies of Language Level in several -
languages [Smit80, ShenB1] based on much larger sets of data, Table 4
comparing the Language Levels of IBM Assembly Language and PL/S is taken
from [Smit80]. It is evident from Table 4 that the wide range of A values within
each language and their large standard deviations do not support the claim of
Language Level constancy. This particular study alseo indicated that the average
Language Level exhibited a strong inverse dependence on the Length of the
program. If the sample programs used in the study are grouped according to
their N values, the average A's are shown in Table 5. From these results it
seems that the Language Level is a strongly exponentially decreasing function.:of
the program Length, shattering the validity of the claim for constancy. Such —
Length dependency was also observed in Fortran [ContB1], in Cobol [Shen81], C::]\_]

and in the ESS programming language [Bail81].
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Table 4

Language Levels for IBM Projects

Project #Modules Language Avg. A g

A 211 BAL .81 .53
B 614 BAL .90 76
C 176 BAL 1.49 76
J 93 BAL .79 84
D 63 PL/S 1.59- .87
biX B2 PL/3 g.71 1.16
F 54 PL/S 4.08 1.98
G 354 PL/S 2.13 1.16
H 80 PL/S 1.47% .BO

B.3. Alternate formulas for A

Although experimental evidence has failed to confirm the hypothesis of
Language Level constancy based on the formula A = L®V, the cause may again lie
with the use of equation (13) for the Program Level (see Section 5).
Nevertheless, it may still be possible that a generalized version of this

hypethesis of the form

=4

A=1L VP (27)

A28
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Table &

Length Dependence of Language Level

Language AN=100 100<N=R2000 2000<N<4000 N>4000

BAL 2.5 1.2 0.4 0.3

PL/S 4.2 2.2 1.8 1.2

might be statistically valid. Indeed an investigation currently underway
[ContB1] shows that constants & and § can be found such that equation (27)

leads to statistically-valid Language Level metrics.

9, Summary and Conclusion

In this paper we have presented criticisms (both ours and other
researchers) of the theory of Software Science. We have also examined Software
Science measures in light of recent data that has been published. We have
concentrated on the basic properties and relations of Software Science (Part I of
[Hals77]). since there has been little interest demonstrated in some of the more
esoteric claims made in Part 11 {the error equation, application to hardware,

ete.),

The early experiments to validate Software Science claims have been
eriticized on grounds of sample sizes and programs that were very small. It has
also been suggested that the very base of Software Science (counting operators ot

and operands) is shaky due to ambiguities concerning what should be counted
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and how. We concluded that serious deficiencies have been the failure to
consider declarations and input/output statements, and (possibly) counting a

"GO TO label”" as a unique operator for each unique label.

Furthermore, we have shown that the Length equation (11) cannot be
justified theoretically in the manner proposed by Halstead. On the other hana'
there is a large amount of empirical evidence to suggest its validity, although it
appears to work best in the range of N between 2000 and 4000. The Intelligence
Content [ was claimed to be constant over different implementations of the
same problem, but this does not appear to be supported empirically. Published
data does seem to sustain the usefulness of P (the so-called DifTiculty metric) as

a measure of error-proneness.

Results also suggest that the Software Science £ is a better effort measure
than most others being used. The Time equation, (14) is suspect in theory
because it relies on the very questionable hypothesis that the mind is capable of
making a constant number of elementary mental discriminations per second.
However, we report some results that support its utility. Other data suggests -
that the Language Level A is anything but invariant, but recent work [Cont81]
may lead to a formulation for A that is statistically constant for a language

regardless of programmer or problem.

Thus, the current state of Software Science seems to be that of a still-
evolving theory. There are those who question (with good reason in most cases)
some of its underlying assumptions. However, there is a large body of published
data that suggest that Software Science metrics may be useful. 1 is possible
that several of the formulas {(eg. (11), (12), (14). (16)) may only be first
approximations of the real relationships concerning program length, potential

volume, programming effort, and programming time. e
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To our knowledge Software Science is the only complete theory which
attempts to explain the programming development process. As such it is
deserving of continued investigation by researchers in spite of the many
theoretical shortcomings that have been described in this paper. In practice,
we conclude that the "real world” use of Scftware Science measures in their
current state must be done very carefully. On the other hand, we believe that
researchers should continue to refine these metrics (and to eliminate those that
appear unsalvageable). The goal should be a set of measures that can be
justified theoretically, that can be supported empirically, and that can be used

with confidence by programmers and project managers.
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