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ABSTRACT

The theory of Software Science was developed by the late Prof.
M. H. Halstead of Purdue University during the early 1970's. It was
first presented in unified fOfm in the monograph Elements of
SOftware Science. pUblished by Elsevier in 1977. Since it claimed
to apply the methods of science to the very complex and important
problem of software production, and since experimental evidence
supplied by Halstead and others seemed to support the theory, it
drew widespread attention from the computer science community.

Some researchers have raised serious questions about the
underlying theory of Software Science. At the same time.
experimental evidence supporting some of the metrics continues
to mount. This paper is a critique of the theory as presented by
Halstead and a review of experimental results concerning Software
Science metrics published since 1977.

Keywords and Phrases: Software science, software management.
software metrics, software engineering, software measurement,
software complexity,

CR Categories: 4,0, 4.6

1. Introduction

The ever-increasing cost of program development has made the

measurement of software compleXity more important than it has ever been

before, The critical role that software metrics can play in analyzing and

evaluating software is emphasized in the recent book SOftware Metrics: .An

Analysis and Evaluation [PerIB!] produced by a stUdy panel commissioned by.

en
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the Office of Naval Research. This book and numerous studies reported in the·

literature indicate the inadequacy of simple measures such as lines of code in

predicting programming effort. It is generally agreed that there are a multitude

of factors that affect programmer productivity. These include the type of

program being developed, the interface complexity among modules_in the

program, the experience of the programmers involved. the computer

envirorunent, etc. (cf. [MahaS!]). However. it is not evident that the inclusion of

a great many factors in a measure, either intuitively or by using regression

methods, leads to a useful estimator of total programming effort [Farr65,

Wolv74. Jame??, Basi79, MahaB!]. In our opinion what is needed is a model of the

programming process based upon a manageable number of major factors that

affect programming. This will, we believe, lead to reasonable estimators that

can be useful to software project managers.

Software Science, as presented in [Hats77], was purported to be such a

model. It was an attempt to analyze the complex problem of software

production using established scientific methods. It drew the immediate

attention of many researchers. Papers supporting the theory were pUblished in

numerous journals and conference proceedings (see, for example, [Fitz7B] and a

collection of papers in IEEE Transa.r:tio11S on SOftware Engineering, March

1979). As interest in Software Science mounted, some evidence was reported

which supported some of the metrics while other results raised serious

questions about them.

This paper is a critical review of the current state of Software Science both

as a theory and as a practical tool for software management. We focus

especially on research that has appeared since the publication of Halstead's

book in 1977, and on studies done by the Software Metrics Research Group at

Purdue.

o
o



- 3-

2. The Theory of Software Science

We begin with a brief summary of the theory of Software Science as

presented by Halstead in his 1977 monograph Elements of Software Science

[Hals?7]. A computer program is considered in Software Science to be a series

of tokens which can be classified as either "operators" or "operands""'. All

Software Science measures are functions of the counts of these tokens. The

basic metrles are defined as:

1} I =number of unique operators

T}2=number of unique operands

N1=total occurrences of operators

N2=total occurrences oj operands

Generally, any symbol or keyword in a program that specifies an algorithmic

action is considered an operator, and a symbol used to represent data is

considered an operand. Most punctuation marks are also considered as

operators. The Length of a program is defined as

and the Vocabulary of a program is defined as

Additional metrics are defined using these basic terms, Of interest is

another measure for the size of the program, called the Volume:

tThis is based on the fact that all programs can be reduced into Ii sequence of machine
language instructions each of which contains an operator and a number of operand
addresses.

(1)

(2)

(3)

(4)

(5)

(6)
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(7)

The unit of measurement of Volume is the common unit for size -- "bits", It is

the actual size in a computer if a uniform binary encoding for the Vocabulary is

used. Volume may also be interpreted as the number of mental comparisons

needed to write a program of Length N, assuming a binary search method is

used to select a member of the Vocabulary of size 7]. Since an algorithm may be

implemented by many different but equivalent programs, a program that is

minimal in size is said to have the Potential Volume V.., Any given program with

Volume V is considered to be implemented at the Program Level L, which is

defined by

L=V'/ V (8)

The value of L ranges between zero'and one, with L=l representing a program

'Written at the highest possible Level (i.e .. with minimum size). The inverse of

the Program Level is termed the Difficulty. That is,

D=lI L (9)

As the Volume of an implementation of a program increases, the Program Level

decreases and the Difficulty increases. Thus, programming practices such as

the redundant usage of operands, or the failure to use higher level control

constructs will tend to increase the Volume as well as the Difficulty.

The effort required to implement a computer program increases as the size

of the program increases. It also takes more effort to implement a program at a

lower Level (higher Difficulty) when compared with another equivalent program

at a higher Level (lower Dltriculty). Thus the Effort in Software Science is

defined as

N,
C) :

;

"
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E=V/ L=DxV

The unit of measurement of E is "elementary mental discriminations".

A sound theory should have not only an intuitive set:of definitions, but

(10)

should also contain an intuitive model for which a useful set of hypotheses may

be derived and validated. The modeL although never explicitly stated by

Halstead, is that most programs are produced by concentrating programmers

through a process of mental manipulation of the unique operators and operands.

The basic assumption that leads to the hypotheses presented in the following

subsections is an implicit limit on the mental capacity of a programmer.

2.1. Length equation

The first hypothesis of Software Science is that the Length of a well-

structured program is a function only of the number of unique operators and

operands. It is caned the "Length equation" where it is the predicted Length of

the program•.

-N=1h xlog217t + '1J2xlog2'1J2

The Length equation, like many other software metrics, may not be a precise

equality tor a specific program yet may be considered valid in a statistical

(11)

sense. Such relationships are common in experimental sciences dealing with

human subjects. Since programming is a very demanding human activity, it

certainly falls into the realm of activities that must be approached with the idea

of explaining "typical" performance while perhaps failing to achieve precision in

specific instances. It is also known that certain poor programming practices,

"The Length equation estimates the totallenglh, nol the individual estimates of N 1 and N 2 ,
as some have believed [Mohll.7e].

(Y)

Cl
"<:1":
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referred to as the "introduction of impurities" in Software Science. can make

the Length

equation a very poor predictor of N .

2.2. Potential Volume

As we have discussed earlier, a program that implements an algorithm in its

most succinct form has the Potential Volume V". If the desired operation on

data is already defined in the programming language or .its subroutine library as

a "built-in" procedure. the Potential Volume is achieved by specifying the name

of the procedure and by giving a list of input/output parameters. The

Vocabulary of this program consists of two operators and 17a" operands. One

operator is the name of the procedure, since it defines some action; the other

operator is a grouping symbol needed to separate the list of parameters from

the procedure name. Thus

(12)

where 712 ~ is the number of input/output parameters to the procedure. This

formula, although useful for many programs, is not applicable universally since

there are programs that do not have an explicit list of input/output parameters.

An example is a compiler whose output consists of several tiles and messages to

the operating system. Moreover. as Halstead himself observed, the concept of

712 ~ may have to be extended to include certain "information~packed"constants

and, perhaps, other implicit variables.
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2.3. Program Level (llilliculty) estimator

The Level of a particular implementation depends on the ratio of the

Potential Volume and the actual Volume (equation (B», Since the Potential

Volume is usually not available, an alternate formula which estimates the Level

is defined as

(13)

~'

An intuitive argument for this formula is that programming difficulty increases

if additional operators are introduced ('111/2 increases) and if an operand is used

repetitively (N2/7J2 increases). Every parameter in equation (13) may be

obtained by counting the operators and operands in a computer program. The

Potential Volume V'I' may then be deduced using equation (8) with L equal to i.

This formula can also be used with equation (10) to determine the Software

Science Effort estimate for a given program.

2.4. Programming time

A major claim for Software Science is its ability to relate the basic metrics

to actual implementation time. A psychologist, John Stroud, suggested that the

mind is capable of making a limited number of elementary discriminations per

second [Stro67]. Stroud claimed that this number S (now called the "Stroud

number") ranges between 5 and 20. Since EffortE has as its unit of measure the

"number of elementary mental discriminations", the Programming Time T of a.

program in seconds is simply

T=EI S. (14) tn'
o

"""S is normally set to 18 since this seemed to give the best results in.Halstead's
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experiments comparing the predicted times using equation (14) with observed

programming times. The Software Science claim is that this formula can be

used to estimate programming time when a given problem is solved by a single,

proficient, concentrating programmer writing a single-module program

[Hals??].

2.5. The Language Level

The proliferation of programming languages suggests the need for a metric

that expresses the power of a language. Halstead hypothesized that if the

programming language is kept fixed. then as V"" increases, L decreases in such a

way that the product L x V'" remains constant. Thus tWs product, called the

Language Level A. can be used to characterize a programming language. That is,

(15)

"

,~,
~i '

•

Analyzing a number of programs written in different languages using equation

(13) for L. Language Levels were determined to be 1.53 for PL/l, 1.21 for AlgoL

1.14 for Fortran, and 0.88 for CDC assembly language. These average values

follow most programmers' intuitive rankings for these languages, but they aU

have large variances. Such fluctuations in a hypothesized fixed value are not

entirely unexpected since the Language Level depends not only on the language

itself, but also on the nature of the problem being programmed as well as on the

profLciency and style of the programmer. Equation (15) can be useful in

comparing programming languages if the same set of problems is programmed

in different languages by the same programmer. Algebraic manipulation of

equations (10) and (15) yields another formula for E:

(18)
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This formula can be used for Effort prediction if the Potential Volume V.. and the

Language Level are known. Thus, for a given problem, the Effort (and the

resulting implementation time) varies according to the squared inverse of the

Language Level.
• , 1"1,

3. Criticisms of Software Science

The publications of [Hals77] and [Fitz7B] generated significant interest in

the research community. Criticism of Software Science first appeared as letters

and later as papers [see, for example, Mora7B, Feni79, MaleBO, LassBl]. Some of

the objections concerned the theory: others reported empirical results that

.,

, ., ~ I"
•. .• ••"1
~', ;r L

·'Il.~",,! l·,;~~'t;
..-:,.'/0 ",' ""'~ • ,

ifi : ~,
"'.' 1\'-", ',,

failed to support Software Science formulas. These criticisms are summarized

in the following subsections.

3.1. Defining and counting operators and operands

The original theory of Software Science was intended for analyzing

algorithms (not programs). Most supporting data was drawn from algorithms

written in Algol and Fortran. It was not difficult to accept that "an algorithm

consists of operators and operands, and of nothing else" ([Hals7?], p.B). Nor did
'; •• ' "I ~11" > •

it seem very difficult to classify the tokens used in Algol and Fortran programs.

into operators and operands. Variable declaration sections and other non-

executable statements were excluded from the counts in computer programs.

However. in other languages it is sometimes impossible to determine

whether a token is to be interpreted as an operator or operand [LassBl]. The

meaning may depend on the use of the token at execution time, or it may

, '
"

;:: ".,..
I'
"J

" ;
,;~

depend on the information given in the declaration section. A function

reference may serve as both an operator and an operand at the same time. The

inconsistent results from counting the same program on different occasions in.
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[Hals77] further illustrate the difficulty in classifying tokens [Male80l Since the

variable declaration section in some languages (e,g., Data Division in Cobol)

takes a significant portion of the programming effort, it does not appear

..

"

'r! ""

, .

. ,

reasonable to ignore it [Elsh7B. Fits79, ShenBl]. Some (cf., [MaleBO]) have

,lUggested that operators should be divided into two groups - control operators

and process operators - because of their significantly different impact.

Another objection raised by [LassBl] questions the count of GO TO's in

Fortran. Halstead proposed that each "GO TO label" be counted as a unique

operator for each unique label. On the other hand n IF statements are

considered to be n occurrences of one unique IF operator. Ambiguities. both.

theoretical and practical, in the classification and treatment of some operators

and operands may lead to substantially different values of some Software

Science metrics. These ambiguities are normally resolved by the designer of

automatic counting tools or analyzers using some convenient strategy (see. for

example, [Fits79] for a strategy on counting IBM's assembly language and PL/S).

3.2. The derivation of formulas

Rigorous algebraic derivations are given in [Hals??] for all the Software

Science formulas. However, several implied assumptions are made .for which

there seem to be no theoretical justifications. For example, in deriVing the

,-.1.;4Length equation in chapter 2 of [Hals77]. Halstead divides a program of Length

'-- '-,-"---,' N into N /17 substrings of Length 17. Assuming there are no duplications of these

substrings and assuming that operators and operands alternate, he concludes

that 1'1 must satisfy the inequality

(17) 00
o
~-

No reason is given for dividing a program of Length N into N /1] SUbstrings of
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Length 77. The assumption that operators and operands alternate seems

reasonable, but this would imply that for all programs N 1~N2 which has not been

observed in general. Furthermore, the derivation of (17) assumes that an

operator or operand (which one is not made clear in the text) always comes

first. Allowing either operators or operands to appear first would double the

upper limit in (17). Thus, the Length equation cannot be justified on theoretical

grounds from these considerations, although its use and value as an

experimental metric may still be valid.

Another example is the derivation of the relationship between operators

and operands. After defining V·· as the Boundary Volume

at the end of chapter 3 of [Hals7?], Halstead sets

(16)

(19)

in chapter 4. No justification for this formula is given in the book. Furthermore,

since 7J is a discrete variable, treating it as a continuous variable in order to

differentiate it is higWy questionable.

In deriving equation (14) for programming time, Halstead relies on the work

of [Str067] to convert Effort, given in "elementary mental discriminations", into

time in seconds. Among psychologists there is no general acceptance of

Stroud's hypothesis that the mind is capable of making a constant number (8)

of mental discriminations per second. As a theoretical concept, the Time

equation must therefore be considered suspect.

The presence of these and other unverifiable assumptions in the derivation

of formulas in [Hats??] casts serious doubt on the underlying theoretical

foundations of Software Science.

m
o
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3.3. Validity of experimental data

Even though the theoretical foundations of Software Science are weak, it is

still possible that the Software Science metries may be useful. In order to

decide if the formulas are acceptable approximations to reality, it is necessary

to examine the empirical work that has been conducted.

A first observation is that the validating data reported in [Hats??] and in

some early papers that followed were not presented in the classical form of

hypothesis testing [Zweb79]' Indeed. Halstead frequently and incorrectly

inferred that because two sels of numbers were Wghly correlated, one can be

used as a substitute for the other.

Secondly, the experiments conducted by Halstead and others to validate his

claims have been criticized on the following grounds:

i. The sample sizes in most cases were too small. Good experimental

technique requires as many data points as possible (at least on the

order of 20 to 30) before making an inference from a sample. Many of

Halstead's conclusions were based on sample sizes less than 10.

ii. The programs involved: were small (especially in the programming.

time experiments). All except one were single modules of less than 50

statements. It is probably not possible to generalize results with such

programs to large, multi-module industrial programs.

iii. Many of the experiments, especially those concerning

programming time, involved only single subjects. Unless the single

subjects were perfectly "typical", the results may not generalize to

other programmers.
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iv. The subjects (even when there were several) were generally college

students. There is a real concern that results based on this type of

subject may not generalize to professional programmers.

These criticisms of the experimental results contained in [Hals??] are

certainly valid. However. we recognize that this pioneering work was done in a

university environment, which made it difficult to conduct experiments involving

large software projects. Additional research since [Hals??] has provided more

data of better quality. The follOWing sections contain discussions of each of the

hypotheses (or claims) of Software Science in light of recent research results.

4. The Length Equation

Software Science claims that the length of a program is a function of the

unique operators and operands. This is the hypothesis that has received the

most attention, since it can be easily tested. Such extensive testing leads to the

results outlined in the follOWing subsections.

4.1. The effects of counting rules on the Length equation

Although it is easy to construct a pathological program to make N a poor

predictor of N, there is overwhelming evidence using existing analyzers to

suggest the validity of the Length equation in several languages. A

misclassification of any token has virtually no effect on the final estimate since

(20)

regardless of how the Vocabulary of size 7J is divided into operators and

operands.
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The Length equation indicates that the total length of a program is a

function of the counts of its basic tokens. As the number of unique operators

and operands increases, the Length estimator (N) increases as well. It will

significantly over-estimate the Length if each unique token is used only once or

twice in the body of the program. This, in fact. is somewhat characteristic of

many Cobol programs. The Length equation yields much better estimates if we

include the counts for the declarations [ShenS!]. The same observation has

been made in constructing automatic counting tools or analyzers for PL/l and.

PL/S [Elsh78, Fits79]. Far consistency. we suggest that all Software Science

analyzers should count operators and operands in declaration sections as well as

procedure sections. Software Science theory also excluded input/output

statements from the counts. However, since a significant portion of many

programs deal with input and output. we feel that these statements should be

considered by Software Science analyzers as well.

4.2. The derivation of the Length equation

The problems in the derivation were discussed in the previous section. The

derivation as given in [Hals??] was actually established after the relationship

(Le., equation (11)) was proposed and tested. Since the Length equalionhas

been found to be a valid and useful formula in many different environments,

there should be a better way to support it theoretically than that offered by

Halstead.
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4.3. The prediction of program Length using unique operands

It is likely that a complicated program will use nearly all of the predefined

operators or keywords in the language. Thus, for large enough programs the

COtult for 111 should be a constant plus the COWlt of procedure calls. function

references, and direct transfer (i.e .. GO TO) statements. In languages such as

Pascal and PL/S, where the use of direct transfers are discouraged, 111 should be

nearly constant for large programs. An analysis of 490 PL/S modules shows that

7]1 has a mean value of 46 with a standard deviation of 18 (FilsBO]. Thus, for

programs written in languages in which the use of direct transfers are

restricted, it may be possible to predict the eventual program length using

equation (11) after the declaration section is completed, since at that time an:

estimate of 1]2 will also be available [ChriBl].

4.4. The error of the Length equation

The metric N has proven to be an acceptable estimator of N when applied l

to a wide range of programs [FitsBO]. In an analysis of 1637 modules the relative

error between N and Nwas less than 6%, although this error can be much larger

for individual modules [SmitBO]. The usefulness of the estimator it does appear

to be somewhat sensitive to the actual program Length N; i.e., it tends to

overestimate for small programs and underestimate for large ones. It appears

to work best for programs in the range 2000 < N :=;; 4000 [SmitBO. ShenBl]. For

programs of size N > 4000 the average relative error is -20% in the analysis of

231 modules. and for 100 < N ~ 2000 the error is 40% from 1032 modules. Under

these circumstances the relative error of the Length equation can be minimized

by dividing a program into modules of reasonable size and then summing the

individual estimates.
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5. The Program. Level I Difficulty

The Program Level (L) was intended to be a measure related to the effort:in

writing a program, the error-proneness of a program, and the ease of

understanding a program. Although it depends to some extent on the language

being used. the Program Level might vary greatly even for equivalent programs

written in the same language since it is dependent on the experience and style

of the programmer. Thus the validity of the concept as defined in equation (8)

and the computation formula as defined in equation (13) can only be tested

indirectly. We shall comment on the derivation of the Level estimator and its

use as a complexity metric for error-proneness, The etIects of using equation

(13) in the computation of the Potential Volume. the Effort, and the Language

Level will be discussed in later sections.

5.1. The derivation of the Program Level estimator

Equation (13) for Zestablishes the Program Level as the product of two

terms. The first term, 2/111' decreases as the number of unique operators

increases. The Program Level L exhibits the same behavior; i.e., L decreases as

111 increases. Similarly, the second factor in L, namely 112/ N 2• decreases as

operand redundancy increases. Since operand redundancy also increases the

Volume, it is evident that L too will decrease. Halstead decided to use the

product of these two factors as the Level estimator. He considered other

possible combinations of these two factors, but discarded them because they did

not agree as well with available data. The data presented in [Hals??] showing the

validity of the. Level equation depend on values for 112 It, which were determined

using a subjective method.

We cannot test the Level equation objectively on large sets of programs

since we do not have an objective method to compute 112 It. Its validity can only
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be inferred by applying the equation to other metrics, such as the Difficulty,

Potential Volume, etc., and comparing the results with observed values. The

testing problem is made more complicated since an unfavorable result may

mean either a poor Level estimator formula or an improper de.fipition of the

metric being studied. On the other hand, a positive result may not be

conclusive, since errors in the Level estimator may be compensated by errors_in

the metric definition.

5.2. D as a complexity metric for error-proneness

It is very difficult to define an error in a program. Certain errors are

simple and may require the change of only one statement. Others are more

complex and may require changes in many different places in order to eliminate

the errors. There are even errors which are denoted as errors only after some

specification is changed, However, it is generally believed that if a programmer

is careful in the design phase, a program will be easy to understand and will

contain few errors. If a program is easy to understand. it should also be easy to

correct if an error is discovered. The inverse of the LeveL called the Difficulty

(D). is a candidate for a measure of "error-proneness". An equivalent of

equation (13) is the follOWing:

.... 111 N 2D=-x-­
2 '72

Equation (21) is the product of two ratios, The first ratio, ~l , increases

when more unique operators are used. Although programming languages in

general have a fixed set of operators. it is still possible to increase this ratio

arbitrarily by introducing a large number of direct transfer (Le., GO TO)

(21)

statements, if they are counted as unique operators. Advocates of structured
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programming generally agree that the use of direct transfers is a harmful

practice [Dijk6B]. Thus, this intuition of difficulty is supported as Dincreases

when the program uses more transfer statements. The second ratio. on the

other hand. is the average operand usage. It is 1 if each operand is used only

once. The more times an operand is referenced in a program, the more

candidates there are for changing its value, possibly requiring more mental

effort to remember its current meaning at any point during programming. Thus

a program with a high value of Jj is likely to be more difficult to construct and

this may lead to more errors in the future.

There have been a number of recent studies comparing complexity metries

that are potentially related to program maintenance. A study of 197 PL/l

-programs for which error data was available showed that. the D metric yielded a

better correlation with both the error density and the average number of errors

-
than did cyclomatic complexity, the nesting structure of control flow, or the

Software Science E metric [Feue79]. Another study using 30 program modules

at IBM (for which there are records on the reported errors after release) showed

that jj is a good measure of relative error-proneness [Smit79]. The latter study

suggested the establishment of threshold values of jj which could be used by

programmers as a guide for developing software products. For example, for

PL/S programs, the average value of 11I was found to be 46, and the ratio N 2/7J2

was less than 5 [FitsBO]. Two threshold values for the Difficulty metric can be

determined as follows:

- 46 ~5 =115 (22)D1 =
2

(JJ

rl- 46+16 ~5 =160 (23) -,"D2 =
2
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(The value 18 used in equation (23) is the standard deviation of 7]1)' If, for a

certain module. 115<Lk16Q, the programmer is advised to review his code for'

certain poor programming practices such as the use of too many GO TO

statements, too much embedded assembly language code. or unwarranted

redlUldant usage of operands. If ik:160, more-drastic action such as a team

review would be recommended. The IBM study suggests that similar threshold

values may be established for other high-level languages.

6. The Invariance of the Potential:Volumc/Intelligence,Content

Equation (8) suggests that for a given algorithm. different implementations

may have different Volumes and Levels: yet the product of those two may remain

constant. That is, the PotenliaLYolume V""=LxVis dependent only on the

algorithm. not on the characteristics of a particular implementation. When Z

from equation (13) is used to estimate £. the product LVis called the

Intelligence Content; Le..
•

I=Lx v:

The Intelligence Content I is also expected to remain constant over di.1Ierent

(24)

implementations of the same problem since it is an estimate of V.., In chapter 6

of [Hals??] there are some examples in which all of the I values are within 10%

of the average value for six or seven implementations of the same problem. If

this invariance of I could be shown to be universal. it would establish an

extremely important complexity metric,

The invariance of such a quantity can be tested on programs that all solve

the same problem using essentially the same algorithm. We have analyzed

hundreds of student programs written in Fortran and Cobol. The range of I
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values are normally far more variable. For example. in the analysis of 237 Cobol

programs from four separate assignments. the best result we found- for I is a

standard deviation about 13% of the average [ShenBl]. It is not unusual to find

individual cases where the Intelligence Conlent varies almost 100% from the

average. There are also four versions of twelve programs presented (for another

purpose) in Table 8.1 of [Hals??]. Only two of the twelve cases have Intelligence

Conlents within 10% of the average [MaleBO]. The worst case (Algorithm 24) has

one version that differs by 51% from the average. Thus, this data fails to support

the claim of the invariance of I, although student programs admittedly will show

greater variability than professionally-written programs. Furthermore,

percentage variations on small programs tend to be more pronounced. The

data, however, does not invalidate the hypothesis that V'" is invariant since it

uses equation (13) for the Program Level and this equation depends on some

additional assumptions. But it does suggest that if the Potential Volume as

originally defined does exist. it should be computed in some way other than that

proposed by Halstead.

7. The Effort Measure

An important role for software complexity measures is to predict the cost

of software development. If there are two designs to solve a particular problem,

then a complexity measure is very useful if it can identify the design that wilt

take less time to program. It is even better if the complexity measure can be

used to predict the actual time required to implement each design.

The software metrics area is now replete with a large number of complexity

measures. These may be divided into three classes: (1) those that are

dependent on the size of the program, called extensive measures; (2) those that

are dependent on the structure of the program, called intensiv~measures; and
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(3) those that are dependent on a combination of a number of factors. For most

complexity measures, statistically-derived constants are required to relate the

complexity measures to actual programming times. The limited number of data

points and the variable quality of data points used in deriving these constants

frequently restrict the application of these measures to very limited types of

programs and environments. For example, a cornmon complexity measure is

the simple size measure lines of code (LOC). It is generally accepted that a

program requiring more lines of code will take proportionally longer to

implement than another program requiring fewer lines. To relate the lines~Qf- .

code measure to actual programming time. a formula of the following type can

be derived using regression analysis:

T = a.xLOCb + c

The formula is of limited usefulness, since different environments lead to

different constants. There are published reports that stipulate the value of b

from as low as .91 [Wals?7] to as high as 1.83 [BoehB1].

The Software Science Effort measure depends on the number of unique

operators and operands and how they are used. It can be related directly to

(25)

programming. time using the so-called "Stroud constant". It can also be related

to the effort needed to comprehend an existing program [Gord79]. The E

metric has the potential of being an effort predictor; i.e., the factors that it

depends upon may be available before the program is constructed.
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7.1. The derivation of the E metric

Implementing an algorithm of Length N can be considered to be the

selection of N tokens from a Vocabulary of size 1]. According to Hick's law

[Hick52], the selection process in humans approximates that of the binary

search. Thus the definition of the program Volume V=Nxlogt77 (equation (7)) is

directly related to the effort required to implement the algorithm. which is

measured in the number of "mental comparisons". The time to make each

mental comparison is not constant, however. It depends upon how difficult it is

for the particular implementation; thus it is dependent on the D or L measure

(equation (10)). These considerations led Halstead to hypothesize that the Effort

E is the product of D and V. Since D was interpreted as the number of

elementary mental discriminations' per comparison, Halstead made the unit of

measurement of E "elementary mental discriminations".

The conversion from mental comparisons to elementary mental

discriminations has no theoretical basis. The conversion from elementary

mental discriminations to time using 8=18 is also controversial as mentioned in

Section 3. Even if these assumptions are valid, one would expect a large range

in time estimates since S ranges from 5 to 20 according to Stroud,

The measure E is basically an extensive measure. Although it includes the

count of unique operators, it cannot take into account the different functions of

these operators. Thus, a program using a proportiona~y large number of

conditional instructions (implying a more complex internal structure) may not

yield a higher value for E. This was considered as a weakness in using E as a

measure of control fio\'{ compleXity [BakeBO].
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7.2. Programming effort

The experiments reported in [Hals??] showing the comparison of actual

programming times and estimated programming times using E involved only

one subject. Another small experiment conducted later in which four subjects

built eight modules also found S = 18 to be a reasonable factor to convert E to

programming time (see Table 1, which is taken from [WoodBO]).

Table 1

Sorting Experiment Results

Program Actual Time Est. Time

Number (minutes) (minutes)

1 6 7

2 12 6

3 13 10

4 14 14

5 15 15

6 95 44

7 127 164

8 173 174

This second experiment supports E as a metric for programming effort when

indiVidual programmers construct small modules.

When the Effort measure is applied to large programs with multiple

modules, it consistently overestimates programming time [WoodBO]. A study of
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four projects with a total of 416 modules showed that the correlation of the E

metric with actual time was only about .65 [BasiSl]. This was not better than

the correlation coefficients of other traditional measures such as lines of code.

A recent se t of experiments suggests that larger modules in multi-module

programs should be conceptually broken into smaller parts (called "logical

modules") before applying the E measure [WoodBlb]. Using 8=18 to convert

the E measure to T works best for modules which take less than two hours to

produce and which are less than 50 lines of code in length. Under these

circtunstances. the E measure is a better effort measure than those produced

by regression formulas using only lines of code or cyclomatic complexity (v(G»

[McCa76] (Table 2).

Table 2

A Comparison of Several Models

for Estimating Programming Times

Pearson Avg. Avg. Mean- Regression

Model Corr-. Relative Abs.Re!. Squared Coetr.

Coeff. Error(%) Error(%) Error Used

• .' RE IREI MSE

TV(G) .66 .43 -37 53 .59 Yes

T1ac .78 .60 -22 37 .39 Yes

h .83 .69 16 26 .40 No

The last row in Table 2 is the E measure converted to times based on the

"logical module" concept. It is a better estimator of programming time since E

is a highly nonlinear function of program length. For example, Schneider

"I:

~I
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[Schn7B] showed that E as a function of N behaves like

E:::::laxN L.BS

Thus, for large programs it is necessary to first modulartze the program, obtain

E for each module, and then sum these to obtain the total Effort estimate. Of

course this then raises questions about what module size to choose as well as

the role of module interconnection complexity.

Although the modules produced in the Woodfield experiments [WoodBlb]

were small according to industry standards, the data were nonetheless difficult

and costly to collect. The lack of controlled experiments on the production of.

larger software is the main factor preventing more extensive tests of the E

metric.

7.3. Program. comprehension

A large portion of a programmer's time is spent in modilying existing

programs to correct errors or to meet new specifications [see, for example,

DonaBO]. This activity, popularly called "maintenance", requires a thorough

lUlderstanding of at least part of the existing code before modifications or

additions can be made. The effort required to understand a piece of software is

often non-trivial. As a result, there are those who advise reprogramming from

scratch when the effort to comprehend an existing program is believed to be

comparable to the effort to start anew.

The importance of writing programs which are easy to comprehend led to

the publication of many books on good programming style [see, for example,

Kern78]. In these books examples are normally given as two alternate means of

implementing a program segment: one poorly written, the other significantly

improved. In an analysis of 46 pairs of program segments written in Fortran,

(Y)
(\J

"'"
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Cobol, Pascal, Algol, and PL/l, it was discovered that the E measure decreased

when 40 of the 46 program segments were improved -- implying that E is higWy

correlated with good programming practice. The number of executable

statements, on the other hand. decreased in only 31 of the 46 cases suggesting

that size alone is not a good predictor of comprehensibility [Gord79].

When the E measure was used by the Software Management Research group

at General Electric in a small experiment designed to measure software

maintenance effort, it produced unimpressive results but differences that were

in the expected direction [Curt79a]. Another experiment using more

programmers and larger programs was conducted by the same group several

months later. It showed that the E metric was better thanv(G) or lines of code

in estimating the maintenance effort [Curt79b]. Specifically. the correlation

between maintenance performance and E was. 75 while for v (G) and LOC the

correlations were .65 and .52 respectively.

Another experiment was conducted at Purdue University by asking 48

programmers to study eight versions of the same program for a fixed amount of

time [WoodBla]. The subjects then were asked to answer a twenty-question quiz

designed to measure comprehension [WoodBla]. The subjects who studied the

version with the lowest predicted effort (using an E-based measure) had the

highest quiz scores [WoodBO]. Thus. these two studies tentatively support the

conclusion that a program with a lower E measure is easier to comprehend than

an equivalent program with a higher E value.
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7.4. Etl'ort prediction

Most suggested effort measures depend on factors that are available only

after the completion of the program; e.g .. lines of code. cyclomatic number. and

counts of operators and operands. Such measures are only useful for

determining whether actual programming time is close to the "predicted" time.

An effort measure would be more useful if the factors it depends upon were

available before the program was completed. One approach is to try to estimate

these factors at earlier milestones in the development process and then to try

to predict the remaining effort. For example. a total time estimate might be

made at the end of the design phase or at the first time when the program

compiles correctly (called the "first clean compile"). 1n a study conducted at

Purdue University, we analyzed the first clean-compiled version of 27 programs

for which the total programming time was known. We predicted total

programming. time from measures based on lines of code, cyclomatic

complexity, and the Software Science Effort measure, The E measure was the

best at predicting total programming time using the first- clean-compiled

versions. Its correlation with total time was .84 compared to .77 for v (G), .82

for lines of code, and .22 for ntunber of runs [WangBl].

Software science also permits a priori ef[ort estimation based on E= V-a/ 'A:~

(equation (16)). The use of E as a predictor from this formula requires

knowledge of 112" (the number of conceptually-unique input variables) and of the

constant Language Levell\.. Unfortunately this formula is of limited usefulness

since 112" cannot always be determined precisely and any errors in 112" will be

magnified in computing E. In addition, as will be shown in the next section, the

Language Level I\. as proposed by Halstead is subject to large variability.
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8. The Language Level

It is an interesting hypothesis of Software Science that it should be possible

to rank languages on a linear scale based on a simple count of operator and

operand usage. Such a Language Level metric, if it eXists, could be used in

selecting a language for a new application, in testing the potential power of a

proposed language, and even in predicting relative effort to produce software in

different programming languages. For example. equation (16) shows that for a

fixed problem (te., fixed V"). the Effort measure varies inversely as the square

of the Language LeveL. Thus, if one language has a>.. twice that of another. then

the E measure associated with the program in the first language would be 1/4 of

that for the second language.

8.1. The derivation of the Language Level

The generic equation for the Language Level in [Hals??] was

A = L' V (28)

Regression analysis using some sample sets of programs in different languages

seemed to indicate that b:::::t2. (Note that the formula for L (equation (13)) was

used in the study). This result led Halstead to hypothesize that X=L2Vwould

remain essentially constant for all programs written in a fixed language. Using

this formula Halstead determined the Language Level for various languages

using essentially the same sample sets of programs and arrived at the Language

Levels shown in Table 3. Although the Avalues follow most programmers'

intuitive ranking of the powers of these languages, the large standard deviations

relative to the mean values lend only weak support to the hypothesis that Ais

essentially constant for a fixed language.

c.o
N
'<1-
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Table 3

Language Levels

Language

FLll 1.53 ,92

Algol 1.21 ,74

Fortran 1.14 .81

CDC assembly ,B8 ,42

B.2. The Length. dependency of A

There have been a number of recent studies of Language Level in several

languages [SmileD, ShenBl] based on much larger sels of data. Table 4

comparing the Language Levels of IBM Assembly Language and PL/S is taken

from [SmilBO]. It is evident from Table 4 that the wide range of Avalues within

each language and their large standard deviations do not support the claim of

Language Level constancy. TWs particular study also indicated that the average

Language Level exhibited a strong inverse dependence on the Length of the

program. If the sample programs used in the study are grouped according to

their N values, the average A's are shown in Table 5. From these results it

seems that the Language Level is a strongly exponentially decreasing funclion:of

the program Length, shattering the validity of the claim for constancy. Such

Length dependency was also observed in Fortran [ContSl], in Cobol [Shen8l],

and in the ESS programming language [Bail8l].
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Table 4

Language Levels for IBM Projects

Project #Modules Language Avg.1. u

A 211 BAL .51 .53

B 514 BAL .90 .76

C 176 BAL 1.49 .76

J 93 BAL .79 .94

D

E

F

G

H

8.3. Alternate formulas. for A

63

82

54

354

90

PL/S

PL/S

PLIS

PL/S

PL/S

1.59

2.71

4.08

2.13

1.47

.87

1.16

1.98

1.16

.80

Although experimental evidence has failed to confirm the hypothesis of

Language Level constancy based on the formula i\ ;:: £2 V, the cause may again lie

with the use of equation (13) for the Program Level (see Section 5).

Nevertheless, it may still be possible that a generalized version of this

hypothesis of the form

(27)

00 i

N
~-
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Table 5

Length Dependence of Language Level

Language N~100 100<N.s;2000 2000<N.s4000 N>4000

BAL 2.5 1.2 0.4 0.3

PL/S 4.2 2.2 1.8 1.2

might be statistically valid. Indeed an investigation currently underway

[Contel] shows that constants a and (J can be found such that equation (27)

leads to statistically-valid Language Level metrics.

9. Summary and Conclusion

In this paper we have presented criticisms (both ours and other

researchers) of the theory of Software Science. We have also examined Software

Science measures in light of recent data that has been published. We have

concentrated on the basic properties and relations of Software Science (Part I of

[Hals??]), since there has been little interest demonstrated in some of the more

esoteric claims made in Part 11 (the error equation, application to hardware,

etc.).

The early experiments to validate Software Science claims have been

criticized on grounds of sample sizes and programs that were very small. It has

also been suggested that the very base of Software Science (COWlting operators

and operands) is shaky due to ambiguities concerning what should be counted

(J)

':\j
",-j-
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and how. We concluded that serious deficiencies have been the failure to

consider declarations and input/output statements, and (possibly) counting a

"GO TO label" as a unique operator for each unique label.

Furthermore, we have shown that the Length equation (11) cannot be

justified theoretically in the manner proposed by Halstead. On the other hand"

there is a large amount of empirical evidence to suggest its validity, although it

appears to work best in the range of N between 2000 and 4000. The Intelligence

Content I was claimed to be constant over different implementations of the

same problem. but this does not appear to be supported empirically. Published

data does seem to sustain the usefulness of D (the sowcalled Ditriculty metric) as

a measure of error-proneness.

Results also suggest that the Software Science E is a better effort measure

than most others being used. The Time equation. (14) is suspect in theory

because it relies on the very questionable hypothesis that the mind Is capable of

making a constant number of elementary mental discriminations per second.

However, we report some results that support its utility. Other data suggests·

that the Language Level A is anything but invariant. but recent work [ContS!]

may lead to a formulation for A that is statistically constant for a language

regardless of programmer or problem.

Thus, the current state of Software Science seems to be that of a still-

evolving theory. There are those who question (With good reason in most cases)

some of its underlying assumptions. However, there is a large body of published

data that suggest that Software Science metrics may be useful. It is possible

that several of the lormulas (eg. (11). (12), (14). (16)) may only be first

approximations of the real relationships concerning program length, potential

volume, programming effort. and programming time.
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To our knowledge Software Science is the only complete theory which

attempts to explain the programming development process. As such it is

deserving of continued investigation by researchers in spite of the many

theoretical shortcomings that have been described in this paper. In practice,

we conclude that the "real world" use of Software Science measures in their

current slate must be done very carefully. On the other hand, we believe that

researchers should continue to refine these metrics (and to eliminate those that

appear unsalvageable). The goal should be a set of measures that can be

justified theoretically, that can be supported empirically, and that can be used

with confidence by programmers and project managers,
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