
 

Software Similarity and Classification 

 

 

 

By 

Silvio Cesare, BIT, M.Info 

 

 

 

 

Submitted in fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

Deakin University 

June, 2013 





sfol
Retracted Stamp





sfol
Retracted Stamp





 

Acknowledgments 

I would like to thank the people who made writing this thesis possible. A special thanks to 

my partner, Kylie, who has supported me greatly. Thanks to Dani, Joe, and Eva who 

always add a degree of the unexpected to life. Thanks to my mother, Maxine, who enabled 

me early on to pursue academia. Thanks to my sister, Paloma, who knows too well the life 

of academic pursuits. Finally, thanks to my supervisor, Prof. Yang Xiang, who has 

supported me for many years during my Masters degree and PhD. 





 

Publications 

Books 

1. Silvio Cesare, Yang Xiang, “Software Similarity and Classification”, Springer, 2012. 

Refereed Journal Papers 

1. Silvio Cesare, Yang Xiang, Wanlei Zhou, "Control Flow-based Malware Variant 

Detection", IEEE Transactions on Dependable and Secure Computing, IEEE, 

2013, (in press). (ERA A) 

2. Silvio Cesare, Yang Xiang, Wanlei Zhou, “Malwise - An Effective and Efficient 

Classification System for Packed and Polymorphic Malware”, IEEE Transactions 

on Computers, IEEE,  vol. 62, no. 6, pp. 1193-1206, 2013. (ERA A*) 

3. Yini Wang, Sheng Wen, Silvio Cesare, Wanlie Zhou, Yang Xiang, "Eliminating 

Errors in Worm Propagation Models", Communication Letters, IEEE, vol. 15, no. 9, 

pp. 1022-1024, 2011. (ERA A) 

4. Yini Wang, Sheng Wen, Silvio Cesare, Wanlie Zhou, Yang Xiang, "The 

Microcosmic Model of Worm Propagation", The Computer Journal,  vol. 54, no. 10, 

pp. 1700-1720, 2011. (ERA A*) 

5. 5. Yongrui Cui, Mingchu Li, Yang Xiang, Yizhi Ren, Silvio Cesare, "A Quality-of-

Service based Fine-grained Reputation System in the Grid Economy", 

Concurrency and Computation: Practice and Experience, 2011. (ERA A) 

Refereed Conference Papers 

1. Silvio Cesare, Yang Xiang, Jun Zhang, "Clonewise - Detecting Package-level 

Clones Using Machine Learning", 9th International Conference on Security and 

Privacy in Communication Networks (SecureComm 2013), 2013. (ERA A) 

2. Silvio Cesare, Yang Xiang, "Simseer and Bugwise - Web Services for Binary-level 

Software Similarity and Defect Detection", 10th Australasian Symposium on 

Parallel and Distributed Computing (AusPDC 2012), 2012. 

3. Silvio Cesare, Yang Xiang, “Wire – A Formal Intermediate Language for Binary 

Analysis”, IEEE Trustcom, IEEE, 2012. (ERA A) 



 

 

2 

 

4. Silvio Cesare, Yang Xiang, "Malware Variant Detection Using Similarity Search 

over Sets of Control Flow Graphs", IEEE Trustcom, IEEE, 2011. (ERA A) 

Industry Conferences 

1. Black Hat, 2013 -  Bugalyze.com - Detecting Bugs Using Decompilation and Data 

Flow Analysis 

2. AusCERT, 2013 - Simseer.com - Malware Detection in a Cloud 

3. Ruxcon, 2012 - FooCodeChu - Web Services for Software Analysis, Malware 

Detection, and Vulnerability Research 

4. Ruxcon Breakpoint, 2012 - Detecting Bugs in Binaries Using Decompilation and 

Data Flow Analysis 

5. Black Hat, 2012 - Clonewise – Automated Package Clone Detection 

6. AusCERT, 2012 - Effective Flowgraph-based Malware Variant Detection 

7. Ruxcon, Professional Delegates Event, 2011 - Faster, More Effective Flowgraph-

based Malware Classification 

8. Ruxcon, 2011 - Automated Detection of Software Bugs and Vulnerabilities in Linux 

Media Articles and Interviews 

1. "AusCERT 2013: Cloud-based scanner identifies new malware by its ancestry" 

CSO 

2. "Scanner Identifies Malware Strains, Could Be Future of AV" Slashdot 

3. "“Tool detects software plagiarism, theft and malware outbreaks” SC Magazine 

4.  “Research offers software salvation from AV friendly-fire” SC Magazine 

5.  “Tool kills hidden Linux bugs, vulnerabilities” Slashdot 

6. "'Clonewise' Security Service Helps Identify Vulnerable Code" Dark Reading 

7. Risky Business #177 -- Silvio Cesare discusses his AV PhD 

8. Risky Business #203 -- LulzSec: They're baaaaaaaack 

 



 

 

Software Similarity and Classification 

 

 

This thesis identifies the key topics in software similarity and classification. It examines the 

task of detecting software variants, clones, derivatives, and classes of software. From this 

theory, we propose a novel system to detect package-level clones of software using 

pattern classification techniques enabling us to discover software vulnerabilities in Linux. 

We also propose a formal language to aid binary analysis and using this framework, 

propose a novel system to detect malware variants through unique malware signatures, 

database indexing, and searching algorithms. These systems have been evaluated on real 

data sets including over 10,000 Linux packages making up the Debian Linux distribution 

where 34 previously unknown clones and over 30 previously unknown vulnerabilities were 

identified. Our malware system was evaluated on over 15,000 real malware and is 

demonstrated to be more effective and efficient than previous systems maintaining a near 

real-time scan performance. 

 





T A B L E  O F  C O N T E N T S  

 

1 

 

Contents 

Chapter 1: Introduction 1 

1.1 Background 1 

1.2 Motivation 2 

1.3 Problem Formulization 3 

1.4 Problem Overview 4 

1.5 Aims and Scope 5 

1.6 Contributions 6 

1.7 Thesis Organization 7 

Chapter 2: Related Work 9 

2.1 Taxonomy of Program Features 9 

2.1.1 Syntactic Features 10 

2.1.2 Semantic Features 15 

2.1.3 Taxonomy of Features in Program Binaries 16 

2.1.4 Case Studies 17 

2.2 Program Transformations and Obfuscations 18 

2.2.1 Compiler Optimisation and Recompilation 18 

2.2.2 Program Obfuscation 20 

2.2.3 Plagiarism, Software Theft, and Derivative Works 21 

2.2.4 Malware Packing, Polymorphism, and Metamorphism 22 

2.2.5 Features under Program Transformations 28 

2.3 Formal Methods of Program Analysis 28 

2.3.1 Static Feature Extraction 28 

2.3.2 Formal Syntax and Lexical Analysis 29 

2.3.3 Parsing 29 

2.3.4 Intermediate Representations 30 

2.3.5 Formal Semantics of Programming Languages 32 

2.3.6 Theorem Proving 33 

2.3.7 Model Checking 34 

2.3.8 Data Flow Analysis 34 

2.3.9 Abstract Interpretation 36 

2.3.10 Intermediate Code Optimisation 37 

2.3.11 Research Opportunities 37 

2.4 Static Analysis of Binaries 37 

2.4.1 Disassembly 38 

2.4.2 Intermediate Code Generation 40 

2.4.3 Procedure Identification 41 

2.4.4 Procedure Disassembly 42 

2.4.5 Control Flow Analysis, Deobfuscation and 
Reconstruction 42 

2.4.6 Pointer Analysis 43 

2.4.7 Decompilation of Binaries 43 



T A B L E  O F  C O N T E N T S  

 

2 

 

2.4.8 Obfuscation and Limits to Static Analysis 46 

2.4.9 Research Opportunities 46 

2.5 Dynamic Analysis 47 

2.5.1 Relationship to Static Analysis 47 

2.5.2 Environments 48 

2.5.3 Debugging 48 

2.5.4 Hooking 48 

2.5.5 Dynamic Binary Instrumentation 49 

2.5.6 Virtualization 49 

2.5.7 Application Level Emulation 49 

2.5.8 Whole System Emulation 51 

2.6 Feature Extraction 52 

2.6.1 Processing Program Features 52 

2.6.2 Strings 53 

2.6.3 Vectors 53 

2.6.4 Sets 53 

2.6.5 Sets of Vectors 53 

2.6.6 Trees 53 

2.6.7 Graphs 53 

2.6.8 Embeddings 54 

2.6.9 Kernels 54 

2.6.10 Research Opportunities 54 

2.7 Software Birthmark Similarity 55 

2.7.1 Distance Metrics 55 

2.7.2 String Similarity 56 

2.7.2.3 Longest Common Subsequence (LCS) 57 

2.7.3 Vector Similarity 57 

2.7.4 Set Similarity 58 

2.7.5 Set of Vectors Similarity 59 

2.7.6 Tree Similarity 59 

2.7.7 Graph Similarity 60 

2.8 Software Similarity Searching and Classification 61 

2.8.1 Instance-based Learning and Nearest Neighbour 61 

2.8.2 Statistical Machine Learning 63 

2.8.3 Research Opportunities 64 

2.9 Applications 65 

2.9.1 Malware Classification 65 

2.9.2 Software Theft Detection (Static Approaches) 67 

2.9.3 Software Theft Detection (Dynamic Approaches) 69 

2.9.4 Plagiarism Detection 69 

2.9.5 Code Clone Detection 70 

2.9.6 Critical Analysis 71 

2.10 Future Trends 72 

Concluding Remarks 73 

Chapter 3: Clonewise – Detecting Package-level Clones Using 
Machine Learning 74 



T A B L E  O F  C O N T E N T S  

 

3 

 

3.1 Introduction 74 

3.1.1 Motivation for Package-level Clone Detection 75 

3.1.2 Motivation for Automated Approaches 76 

3.1.2 Generability 77 

3.1.3 Innovation 78 

3.1.4 Structure of the Chapter 79 

3.2 Problem Definition and Our Approach 79 

3.2.1 Problem Definition 79 

3.2.2 Our Approach 79 

3.3 Initial Attempts 80 

3.3.1 Containment for Embedded Package Clone Detection 80 

3.3.2 Intersection for Shared Package Clone Detection 81 

3.3.3 Motivations for Other Approaches 81 

3.4 Package Clone Detection 81 

3.4.1 Shared Package Clone Detection 82 

3.4.2 Shared Package Clone Classification 86 

3.4.3 Embedded Package Clone Detection 86 

3.4.4 Classification Using Asymmetric Bagging 87 

3.5 Inferring Security Problems 88 

3.5.1 Use-case of Clone Detection to Detect Vulnerabilities 88 

3.5.2 Standardization Efforts 89 

3.5.3 Debian Linux Security Tracking 89 

3.5.4 Automated Vulnerability Inference 89 

3.6 System Implementation 91 

3.6.1 Software 91 

3.6.2 Scaling The Analysis 93 

3.7  Evaluation 95 

3.7.1 Filenames as Features 95 

3.7.2 Establishing the Ground Truth for Training and 
Evaluation 95 

3.7.3 Accuracy of Shared Package Clone Detection 97 

3.7.4 Accuracy of Embedded Package Clone Detection 98 

3.7.5 Practical Package Clone Detection 99 

3.7.6 Vulnerability Detection 99 

3.7.7 Automated Vulnerability Detection 99 

3.8 Discussion 102 

3.8.1 Practical Consequences of Our Research 103 

3.8.2 Referencing CVEs in an advisory. 104 

Concluding Remarks 104 

Chapter 4: Wire - A Formal Intermediate Language for Binary 
Analysis 105 

4.1 Introduction 105 

4.1.1 Motivation 105 

4.1.2 Innovation 107 

4.1.3 Structure of the Chapter 108 

4.2 Translating Native Code 108 



T A B L E  O F  C O N T E N T S  

 

4 

 

4.2.1 Disassembly 108 

4.2.2 Abstract Machines 109 

4.2.3 Intermediate Code Generation 109 

4.2.4 Register Mapping between Native Architectures and 
Wire 110 

4.2.5 Label Generation 110 

4.2.6 Condition Code Generation 110 

4.2.7 Decompilation 111 

4.2.8 Intermediate Code Optimisation 112 

4.3 Formal Syntax and Semantics 112 

4.3.1 Syntax 112 

4.3.2 Functions 115 

4.3.3 Abstract Machine State 115 

4.3.4 Operational Semantics of Core Instructions 116 

4.3.5 Operational Semantics of Decompiled Instructions 120 

4.3.6 Three Address Code 122 

4.4 Applications in Semantic Equivalence 123 

4.4.1 Semantic Equivalence of Obfuscated Code 123 

4.4.2 Assisted and Automated Theorem Proving 130 

4.5 Applications in Software Similarity and Classification 131 

4.5.1 Software Isomorphism 131 

4.5.2 Software Similarity and Classification 132 

4.5.3 Software Embedding 135 

Concluding Remarks 135 

Chapter 5: Malwise II - Control Flow-based Malware Variant 
Detection 137 

5.1 Introduction 137 

5.1.2 Motivation 140 

5.1.3 Innovation 140 

5.1.4 Structure of the Chapter 141 

5.2 Problem Statement and Our Approach 142 

5.2.1 Problem Statement 142 

5.2.2 Our Approach 142 

5.3 Unpacking and Static Analysis 143 

5.3.1 Unpacking 143 

5.3.2 Dissasembly and Control Flow Reconstruction 144 

5.3.3 Structuring 145 

5.4 String Based Signatures 145 

5.4.1 Feature Extraction 146 

5.4.2 Indexing Using String Metric Access Methods 146 

5.4.3 Indexing Using Genome Strings and Blast 147 

5.4.4 Indexing Using the NCD Metric Access Method 147 

5.5 Vector Based SIgnatures – Pre-filtering 148 

5.5.1 The K-Subgraph Feature 148 

5.5.2 The Control Flow Q-Gram Feature 149 



T A B L E  O F  C O N T E N T S  

 

5 

 

5.5.3 Feature Selection 150 

5.5.4 Dimensionality Reduction 150 

5.5.5 Feature Vector Distance 150 

5.5.6 Indexing and Searching the Feature Vectors 151 

5.6 Set of Strings Based Signatures – Malware Classification 152 

5.6.1 A Distance Function for Programs Based On the Linear 
Sum Assignment Problem 152 

5.6.2 Solutions to the Assignment Problem 153 

5.6.3 Similarity Search of Malware 154 

5.7 Nearest Neighbour Similarity Searches 154 

5.7.1 Metric Distance Functions 154 

5.7.2 Similarity Search Using Metric Access Methods 155 

5.8 Implementation and Evaluation 155 

5.8.1 Implementation 155 

5.8.2 Effectiveness of String Signatures 155 

5.8.3 Evaluation Setup 156 

5.8.4 Evaluation of False Positives in Pre-filtering 156 

5.8.5 True Positives of the System Compared to Previous 
Researc 158 

5.8.6 Evaluation of the System’s False Positives 160 

5.8.7 Algorithmic Complexity Analysis 162 

5.8.8 Efficiency 163 

5.9 Limitations and Discussion 164 

5.9.1 Code Packing 164 

5.9.2 Obfuscation 165 

Concluding Remarks 166 

Chapter 6: Software Similarity and Classification in the Cloud 167 

6.1 Introduction 167 

6.1.1 Services 167 

6.1.2 Structure of the Chapter 168 

6.3 System Design and Implementation 168 

6.3.1 The Web Frontend 169 

6.3.2 Cluster-based Load Balancing 171 

6.3.3 Backend Clustering and Work Scheduling 171 

6.3.4 Network Infrastructure 173 

6.3.5 DevOps Infrastructure 173 

6.3.5 Service Specific Processing 173 

6.3.6 Updating the Malware Database 175 

6.4 Availability 176 

Concluding Remarks 176 

Chapter 7: Future Work and Conclusion 177 

7.1 Future Work 177 

7.1.1 Clonewise 177 

7.1.2 Wire 177 



T A B L E  O F  C O N T E N T S  

 

6 

 

7.1.3 Malwise II 178 

7.1.4 Cloud Services 178 

7.2 Conclusion 178 

References 181 

 



T A B L E  O F  C O N T E N T S  

 

7 

 

Table of Figures 

Fig. 1. The software similarity problem. .................................................................. 4 

Fig. 2. Recommended order of reading chapters................................................ 8 

Fig. 3. Raw code for a binary (left) and source code (right). .......................... 10 

Fig. 4. An abstract syntax tree (AST). ................................................................... 11 

Fig. 5. Typical pointer operations. .......................................................................... 12 

Fig. 6. Assembly instructions and basic blocks. ................................................ 14 

Fig. 7. A control flow graph (left) and a call graph (right). ............................... 15 

Fig. 8. The output of objdump on a PE executable. ......................................... 17 

Fig. 9.  A semantic nop .............................................................................................. 23 

Fig. 10.  Instruction substituion. .............................................................................. 23 

Fig. 11.  Register reassignment. ............................................................................. 23 

Fig. 12.  An indirect branch. ..................................................................................... 24 

Fig. 14.  Branch flipping. ........................................................................................... 25 

Fig. 13.  Branch inversion. ........................................................................................ 25 

Fig. 15. The traditional code packing transformation. ...................................... 26 

Fig. 16. Code packing using the shifting decode frame. ................................. 27 

Fig. 17. Code packing using instruction virtualization. ..................................... 27 

Fig. 18. Implementation of lexical analysis. ......................................................... 30 

Fig. 19. Implementation of parsing. ....................................................................... 31 

Fig. 20. Linear sweep disassembly. ...................................................................... 38 

Fig. 21. Recursive traversal disassembly. ........................................................... 39 

Fig. 22. Speculative disassembly. .......................................................................... 40 

Fig. 23. Procedure disassembly. ............................................................................ 41 

Fig. 24. A control flow graph and its linearized form. ....................................... 45 

Fig. 25. The software similarity search to detect malware. ............................ 62 

Fig. 26.  A linear classifier separating two classes. .......................................... 64 

Fig. 27. Shared package clone detection (above) and embedded package 

clone detection (below). ............................................................................................ 76 

Fig. 28. Graph of Fedora 13 package relationships. ........................................ 77 

Fig. 29. The assignment problem. .......................................................................... 85 



T A B L E  O F  C O N T E N T S  

 

8 

 

Fig. 30. An NVD CVE summary. ............................................................................. 90 

Fig. 31. Use-case of clone detection. .................................................................... 91 

Fig. 21. Automated vulnerability inference. .......................................................... 92 

Fig. 33. Multicore. ........................................................................................................ 94 

Fig. 34. Clustering. ...................................................................................................... 95 

Fig. 35. Dead code insertion. ................................................................................. 124 

Fig. 36. Code reordering .......................................................................................... 126 

Fig. 37. An opaque predicate. ................................................................................ 129 

Fig. 38. The grammar of a structured string. ..................................................... 144 

Fig. 39. The k-subgraph feature. ........................................................................... 149 

Fig. 40. Malware and benign sample processing times ................................. 163 

Fig. 41. The cloud services infrastructure. ......................................................... 169 

Fig. 42. Simseer landing page. .............................................................................. 170 

Fig. 43. Simseer results. .......................................................................................... 170 

Fig. 44. Simseer Cluster landing page. ............................................................... 172 

Fig. 45. Simseer Cluster results. ........................................................................... 172 

Fig. 46. Simseer Search landing page. ............................................................... 174 

Fig. 47. Simseer Search results. ........................................................................... 174 

Fig. 48. Clonewise results. ...................................................................................... 176 

  



T A B L E  O F  C O N T E N T S  

 

9 

 

Tables 

Table 1. Accuracy of Shared Package Clone Detection ................................. 96 

Table 2. Accuracy of Shared Package Clone Detection ................................. 96 

Table 3. Accuracy of Embedded Package Clone Detection .......................... 97 

Table 4. Accuracy of Embedded Package Clone Detection .......................... 97 

Table 5. Adhoc Detection of fedora Linux vulnerabilities .............................. 100 

Table 6. Adhoc Detection of Debian Linux vulnerabilities ............................ 101 

Table 7. Automated Vulnerability Inference ...................................................... 102 

Table 8. Automated Detection of Potential Vulnerabilities............................ 103 

Table 9. Similarity matrices for Roron malware. .............................................. 157 

Table 10. Similarity matrices for Roron malware............................................. 158 

Table 11. False positives using k-subgraphs and q-grams. ......................... 159 

Table 12. Malware detection .................................................................................. 160 

Table 13. False positives. ....................................................................................... 161 

Table 14. Algorithmic Complexity Comparisons .............................................. 162 

  





  C H A P T E R  1  

 

1 

 

Chapter 1: Introduction 

This thesis introduces the major applications related to software similarity and classification 

and proposes novel contributions to the theory and practice of malware detection and 

clone detection. The topic of software similarity and classification covers the areas of 

detecting software variants, clones, derivatives, and classes of software. The literature of 

those individual areas can be combined into a cohesive topic that we examine in a unified 

manner. We demonstrate that considering these applied problems as a software similarity 

and classification problem enables techniques to be shared between areas. 

1.1 Background 

The software similarity problem is to determine the similarity between two pieces of 

software. Software that is similar has a common origin. This allows for relationships 

between software to be inferred such as when used in evolutionary trees to identify a 

software’s ancestry and derivatives. The software classification problem is to assign 

classes to software. For example, software may be labelled as belonging to the class of 

malicious programs, or the class of non malicious programs. Software similarity and 

software classification are closely related and based on the problem of feature extraction. 

Feature extraction concerns itself with identifying invariant properties of a program. 

A number of applications make use of identifying program features including malware 

classification, software theft detection, plagiarism detection, and code clone detection. 

Malware classification is the process of determining if a program is malicious. One 

approach to perform classification is to obtain a fingerprint of the malware based on 

program feature extraction. This fingerprint creates an invariant signature that can be used 

to identify evolutionary malware variants. For detection of completely novel malware, 

program features can be extracted to create feature vectors which can be subsequently 

used in machine learning algorithms and statistical classification. 

Software theft detection identifies unauthorized copying of a program in binary form. An 

example of this is if a software library is illegally being used with regards to its license. One 
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approach to detect software theft is to identify birthmarks in the software. A birthmark is a 

program feature or feature set that is invariant when the software is illegally copied. 

Plagiarism detection identifies similar or identical copying of source code. An example of its 

use would be to detect student cheating in programming assignments. Plagiarism detection 

works by extracting program features that are invariant when plagiarised. The program 

features are then detected in plagiarised copies. 

Code clone detection [1] seeks to identify duplicate fragments of code in a source tree. The 

value in detecting code clones is that it is often bad software development practice to have 

redundant or duplicate code fragments. By refactoring the code to eliminate clones, the 

software becomes easier to maintain and is less likely to have bugs. Code clone detection 

works by identifying program features for code fragments and identifying those features in 

other locations. 

1.2 Motivation 

Malware classification helps fight the threat of malicious software. Such malicious software 

presents a significant challenge to modern desktop computing. According to the Symantec 

Internet Threat Report [2], 499,811 new malware samples were received in the second half 

of 2007.  In 2010, over 1.5 billion malicious code detections were identified [3] by the same 

vendor. F-Secure published, “As much malware [was] produced in 2007 as in the previous 

20 years altogether“ [4]. This trend is continuing and makes the detection of malware 

before it adversely affects computer systems highly desirable. To achieve this, static 

detection of malware is still the dominant technique to secure computer networks and 

systems against untrusted executable content. 

Detecting malware variants improves signature based detection methods. The size of 

signature databases is growing exponentially, and detecting entire families of related 

malicious software can prevent the blowout in the number of stored malware signatures. 

 Detecting malware variants improves signature based detection methods. The size of 

signature databases is growing exponentially, and detecting entire families of related 

malicious software can prevent the blowout in the number of stored malware signatures. 
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Detecting entire families of malware by using similarity measures instead of exact matching 

makes malware detection less fragile and more robust in the face of malware evolution and 

change. 

Software theft detection is an important problem with serious consequences. In 2005, a 

federal court determined that the independent software vendor Compuserve be paid $140 

million by IBM to license its software or $260 million to purchase its services because it 

was discovered that IBM products had illegitimately used code from Compuware without 

authorization [5]. The software theft problem is growing as the internet and software 

companies become more ubiquitous. For example, in SourceForge.net there were over 

230,000 registered open source projects as of February 2009 [5]. Clearly, an automated 

approach to detecting software theft is the only way to scale with the problem. 

Plagiarism detection is an important task to ensure that students do not cheat when 

submitting assignments. Without plagiarism detection systems, teachers rely on their own 

memory when marking. If the number of assignments is high, or the cheating occurs from 

previous years, or the assignments are divided between markers, plagiarism may go 

undetected. An automated approach to detecting plagiarism is therefore an important 

component in a teacher’s arsenal against student cheating. 

Code clone detection helps improve the maintainability of large software systems. Several 

studies have shown this that duplicated copy and paste fragments of code make code 

harder to maintain [6, 7]. This increases the cost of developing and maintaining software. 

Therefore, an effort to detect clones and refactor solutions leads to less cost in the 

software life cycle. 

1.3 Problem Formulization 

The static feature extraction problem is related to identifying invariant properties or 

approximations of the program. 

Definition 1. Let r be a property for program p if for all possible executions r is true. 

The software similarity problem is to determine if program p is a copy or derivative of 

program q. We use an extended definition based on software theft detection [8]. 
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Definition 2. A program q is a copy of program p if it is exactly the same as p or it is the result of a 

semantic preserving transformation (e.g., obfuscation, recompilation, or optimisation) over p. 

Definition 3.  Programs p and q are similar if they are derived from the same works. 

Definition 4. Let p, q be programs. Let f be a method for extracting a set of characteristics extracted 

from p. We say f(p) is a birthmark of p, only if both of the following conditions hold. 

 f(p) is obtained only from p itself 

 Program q is a copy of p  f(p) = f(q) 

Definition 5. Let p, q be programs or program components. Let f(p)  a and f(q)  b be the 

birthmarks extracted from p and q. Let s(a,b)  [0,1] be a similarity function and a value e < 1. The 

birthmarking system is resilient if p and q are similar and 1 - s(a,b) < e.   

Definition 6. Let p and q be independently written programs. The software birthmarking system is 

credible if the system can discriminate between the two programs; that is s(f(p),f(q)) < 1-e 

The software classification problem uses the birthmark feature to identify class 

membership of software. 

Definition 7.  Given a set of programs and their classes {(p1,c1),...(pn,cn)}, the software classification 

function c’=h(f(p)) will yield a similar classification as close as possible to the true data set. 

1.4 Problem Overview 

The problem of software similarity and classification is approached by constructing a 

software birthmark for a program and then using a similarity function on that birthmark for 

comparisons. Program features are used to construct a birthmark. Different program 

features enable different birthmarks, so taxonomy of program features is useful. Different 

features have different properties which are better or worse at different qualities. A simple 

breakdown is to divide the features into syntactic and semantic properties. Syntax 

describes the structure or form of a program whereas the semantics describe the meaning 

Program p

Program q

Birthmark

Birthmark

Similar?

MATCH!

Different

Fig. 1. The software similarity problem.  
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of a program’s instructions. Semantics are sometimes more useful than syntax when 

constructing birthmarks due to the fact that obfuscations and transformations applied to 

programs can modify that syntax while maintaining equivalent semantics. There are 

different approaches in extracting features such as extracting properties from execution of 

the program or extracting properties statically. For static analysis, program analysis 

techniques offer benefit. Decompilation is a specific program analysis technique that 

recovers high level source-like information from a binary. Decompilation offers some 

benefits to birthmark construction that we examine in this thesis. If program features are 

used to construct birthmarks, they must be represented in mathematical form. Different 

features are naturally represented using different structures. Once a birthmark is 

constructed, they can be compared using mathematical measures and metrics. The final 

result is a measure of similarity, or classification of birthmarks into classes using statistical 

machine learning. 

1.5 Aims and Scope 

The aim of this thesis is to review state-of-the-art literature and propose advances in the 

field of software similarity and classification. The thesis makes cohesive much of the 

disparate literature and surveys software feature extraction, similarity, classification, and 

their applications by investigating the principal concepts that constitute the construction of 

algorithms that tackle these problems. The intended purpose is to provide an opportunity 

for researchers and software engineers to understand the state-of-the-art, lay foundation 

for the creation of extended works, and then use that foundation to propose new ideas, 

concepts, and algorithms to extract software features, determine software similarity, and 

perform software and classification.  

The scope of this thesis is limited to the theory of software feature extraction, similarity, 

and classification. The applied areas surveyed in software similarity and classification are 

limited to: 

 Software Theft Detection 

 Plagiarism Detection 
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 Software Clone Detection 

 Malware Variant Detection and Classification 

For applications that fall outside of this scope, readers are advised to find other relevant 

sources and references. 

The novel research proposed and implemented in this thesis is limited to 3 research works 

which improve specific state-of-the-art techniques to detect clones, analyse binary 

executables, and detect malware variants. While, not improving all the state-of-the-art in 

software similarity and classification, the proposed work contributes significantly to 

knowledge and the cohesive literature review lays foundation for future advances. 

1.6 Contributions 

This thesis makes the following contributions to advance the state-of-the-art in the field of 

software similarity and classification: 

1. The literature of software similarity and classification is combined into a unified 

field. 

2. We propose the concept of package-level clones which has immediate practical 

benefit to Linux vendors, package repositories operating systems. 

3. We propose considering package-level clone detection as a pattern classification 

problem. 

4. We propose over 30 features for the purposes of package-level clone detection. 

5. We formulate a solution for Debian Linux in identifying security vulnerabilities 

based on package-level clones. 

6. We propose a formal intermediate language to analyse binary-level executables. 

7. We propose combining high level information obtained through decompilation into 

our low-level language. 
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8. We apply our language to a number of tasks related to code equivalence, software 

similarity, and classification in a formal context. 

9. We propose new ways of representing graph-based signatures of programs that 

enable more efficient processing. 

10. We propose string, set of strings, and vector based signatures to approximate a 

set of control flow graphs. 

11. We propose new ways of comparing, indexing, and searching those signatures 

very efficiently. 

1.7 Thesis Organization 

The structure of this thesis is as follows: 

 Chapter 2 gives a survey of state-of-the-art literature. 

 Chapter 3 proposes, implements, and evaluates a novel system to identify 

package-level clones and infer security problems in Linux distributions. 

 Chapter 4 proposes and implements a novel system to analyse binary-level 

executables. 

 Chapter 5 proposes, implements, and evaluates a novel system to detect malware 

variants. 

 Chapter 6 proposes and implements a novel cloud-based system for exposing the 

research systems presented in this thesis. 

 Chapter 7 examines future work and concludes the thesis. 

The thesis may be read in different manners. A recommended order to read the chapters is 

shown in the following workflow. 
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1. Introduction

2. Related Work

3. Clonewise – Detecting

Package-level Clones

Using Machine Learning

4. Wire -A Formal

Intermediate Language for

Binary Analysis

5. Malwise II – Control

Flow-based Malware

Variant Detection

6. Software Similarity and

Classification in the Cloud

7. Future Work and

Conclusion

5. Malwise II – Control

Flow-based Malware

Variant Detection

4. Wire -A Formal

Intermediate Language for

Binary Analysis

Fig. 2. Recommended order of reading chapters. 
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Chapter 2: Related Work 

This chapter examines related work in the area of software similarity and classification. 

Extracting program features, processing those features into suitable representations, and 

constructing distance metrics to define similarity and dissimilarity are the key methods to 

identify software variants, clones, derivatives, and classes of software. This chapter 

reviews the literature of those core concepts, in addition to relevant literature in each 

application and demonstrates that considering these applied problems as a similarity and 

classification problem enables techniques to be shared between areas. Additionally, in-

depth case studies are presented using the software similarity and classification 

techniques developed throughout the chapter. 

2.1 Taxonomy of Program Features 

All programs have common features and abstractions which are used to create birthmarks. 

Features can be divided into syntactic and semantic groups. Syntactic features concern 

themselves with program structure and program form. Semantic features examine the 

meaning of the program. In this chapter we examine those syntactic and semantic features 

of programs. 

Syntactic Features include: 

 Raw Code 

 Abstract Syntax Trees 

 Variables 

 Pointers 

 Instructions 

 Basic Blocks 

 Procedures 
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 Control Flow Graphs 

 Call Graphs 

 Object Inheritances and Dependencies 

Semantic features include: 

 API Calls 

 Data Flow 

 Procedure Dependency Graphs 

 System Dependency Graphs 

2.1.1 Syntactic Features 

2.1.1.1 Raw Code 

The raw code of the program can be analysed directly. For source code this is the textual 

stream, possibly normalized by removing comments and whitespace. For binaries, the raw 

code is the byte sequences. 

Definition 8. Let be an alphabet of symbols .The raw code of program p is defined by the function r 

that evaluates to a string over the alphabet. 

 
*,

:

ssp

SPr

 

2.1.1.2 Abstract Syntax Trees 

Abstract syntax trees (AST) examine the syntax of source code and construct a tree 

representing the syntactical structure. For binaries, decompilation is required to reconstruct 

Fig. 3. Raw code for a binary (left) and source code (right). 

00000000 00000000 00000000 00000000  ................

00000000 00000000 00000000 00000000  ................

00000000 00000000 00000000 00000000  ................

63796767 63635f73 2d312e64 6c6c005f  cyggcc_s-1.dll._

5f726567 69737465 725f6672 616d655f  _register_frame_

696e666f 00637967 67636a2d 392e646c  info.cyggcj-9.dl

6c005f4a 765f5265 67697374 6572436c  l._Jv_RegisterCl

61737365 73005f5f 64657265 67697374  asses.__deregist

65725f66 72616d65 5f696e66 6f000000  er_frame_info...

55736167 653a2025 73205b4f 5054494f  Usage: %s [OPTIO

*

* - THE SOFTWARE IS PROVIDED "AS-IS", WITHOUT ANY 

WARRANTIES,

* EXPRESSED OR IMPLIED.  USE IT AT YOUR OWN RISK.

*******************************************************

*************/

// -*- c++ -*-

#ifndef _cvcl__include__c_interface_h_

#define _cvcl__include__c_interface_h_
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an abstract syntax tree. 

2.1.1.3 Variables 

Variables represent the state of data. Programs typically maintain separate regions of 

memory for different classes of data handled by the run time environment. Run times may 

separate the stack from the heap to store data. The stack is used for local variables in a 

procedure and survives for the scope of that procedure or activation record. The run time 

creates a stack segment to achieve this outcome. In contrast, the heap is used for 

dynamically generated memory. Global variables conceptually belong to a different region 

than the heap, but for practical purposes are normally grouped together at run time in a 

data segment. 

2.1.1.4 Pointers 

Pointers are a type of variable that contain links or pointers to other variables. Pointers can 

be dereferenced, which allows for referencing the data the pointer is pointing to. Pointers 

may allow pointer arithmetic to be performed which allows for such operations as 

incrementing the value of a pointer. Some languages allow seemingly arbitrary pointer 

arithmetic, while other languages heavily restrict their use. Restricting pointer arithmetic 

allows for easier automated analysis. 

 

2.1.1.5 Instructions 

if

== return =

x 0 x 1

condition then else

Fig. 4. An abstract syntax tree (AST). 
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Instructions capture the basic unit of computation. Computations can include such things 

as unary and binary operations, procedure or library calls. An instruction is defined by its 

operand and opcodes. 

Definition 9. Let I be set of all instructions such that I={(opcode,operand1,...,operandn)}  

Definition 10. Let InstrSequence be a string of instructions such that

InceInstrSeque *,  

Assembly 

Assembly is a low level instruction format that can be executed on the native processing 

unit. It consists of opcodes which describe the type of operation to perform, and operands 

which are the arguments or parameters. Assembly language can be roughly divided into 

Complex Instruction Set Computing (CISC) architectures, or Reduced Instruction Set 

Architectures (RISC). RISC architectures favour simplified and small instruction sets while 

CISC architectures favour a rich and large instruction set. x86 is the dominant architecture 

for personal computing and is a CISC based architecture. 

Intermediate Representations 

Instructions can be abstracted into intermediate representations. A common representation 

is Three-Address-Code which consists of three operands and one opcode. Typically, two 

fixed operands are inputs and the remaining operand is the output. For unary operations, 

the extra operands are ignored. Using intermediate representation has the advantage of 

normalizing a complex instruction set into a series of simpler standardized operations. 

p = malloc 

*p = q 

p = *q 

p = &q 

p = q 

Fig. 5. Typical pointer operations. 
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Definition 11. Let TAC=(opcode, operand1, operand2, operand3) 

2.1.1.6 Basic Blocks 

A basic block is a sequence of instructions that satisfy the following conditions: 

 Execution flow can only enter the basic block through the first instruction. 

 Execution flow can only exit the block at the last instruction. 

A basic block can also be represented as s directed cyclic graph showing the data 

dependencies between instructions. 

Definition 12. Let InstrSequence(b) be a string of instructions such that

InceInstrSeque *, for basic block b. 

2.1.1.7 Procedures 

Procedures and functions are found in structured programming which allows for making 

modular maintainable code. A program uses a set of procedures F=procedures(P)={f1,...,fn} 

2.1.1.8 Control Flow Graphs 

The control flow graph is a directed graph representing the possible flow of execution 

within a procedure. The nodes in the graph represent basic blocks.  

Definition 13. The control flow graph of procedure f is the directed graph C=(B,E) such that B is the set 

of basic blocks and E is the set of edges between them. 

Alternative representations of control flow are possible using graphs such as dominator 

trees or control dependency graphs. 

Definition 14. d dom n or node d dominates a node n if every path from the start node to n must go 

through d. 

Definition 15. A node d strictly dominates a node n if d dominates n and d does not equal n. 

Definition 16. The immediate dominator or idom of a node n is the node that strictly dominates n but 

does not strictly dominate any other node that strictly dominate n. 

Definition 17. A dominator tree is a tree where each node’s children are those nodes it immediately 

dominates. 

2.1.1.9 Call Graphs 

The call graph represents the control flow between procedures and is again represented by 

a directed graph. If the program does not have recursive procedures, then the graph is 
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acyclic. Like the control flow graph, dominator trees can be equally representative of the 

call graph. 

Definition 18. The call graph of a program is the directed graph CallGraph=(F,E) such that F is the set 

of procedures and E is the set of edges between them. 

The interprocedural control flow graph combines the control flow graphs with the call 

graph. It is defined as ICFG=(B’,E): 

 The set of control flow graphs. 

 Each control flow graph is given an additional exit node, which is successor to the 

set of return nodes in the cfg. 

 For all basic blocks, a call instruction divides the block into two parts. The first part 

is connected to a call_return node, and that in turn is connected to the remaining 

basic block part. 

 For each basic block that now ends with a call instruction, the block’s successor is 

additionally the control flow graph of the call target. The successor of the exit node 

of the target control flow graph is additionally the call_return node. 

2.1.1.10 Object Inheritances and Dependencies 

8d 4c 24 04             

83 e4 f0                

ff 71 fc                

55                      

89 e5                   

51                      

83 ec 24                

e8 6a 00 00 00          

c7 45 f8 00 00 00 00    

eb 10                   

c7 04 24 a0 20 40 00    

e8 5d 00 00 00          

83 45 f8 01             

83 7d f8 09             

7e ea                   

83 c4 24                

59                      

5d                      

8d 61 fc                

c3            

lea    0x4(%esp),%ecx

and    $0xfffffff0,%esp

pushl  -0x4(%ecx)

push   %ebp

mov    %esp,%ebp

push   %ecx

sub    $0x24,%esp

call   4011b0 <___main>

movl   $0x0,-0x8(%ebp)

jmp    40115f <_main+0x2f>

movl   $0x4020a0,(%esp)

call   4011b8 <_puts>

addl   $0x1,-0x8(%ebp)

cmpl   $0x9,-0x8(%ebp)

jle    40114f <_main+0x1f>

add    $0x24,%esp

pop    %ecx

pop    %ebp

lea    -0x4(%ecx),%esp

ret    

movl   $0x4020a0,(%esp)

call   4011b8 <_puts>

addl   $0x1,-0x8(%ebp)

lea    0x4(%esp),%ecx

and    $0xfffffff0,%esp

pushl  -0x4(%ecx)

push   %ebp

mov    %esp,%ebp

push   %ecx

sub    $0x24,%esp

call   4011b0 <___main>

movl   $0x0,-0x8(%ebp)

jmp    40115f <_main+0x2f>

add    $0x24,%esp

pop    %ecx

pop    %ebp

lea    -0x4(%ecx),%esp

ret    

cmpl   $0x9,-0x8(%ebp)

jle    40114f <_main+0x1f>

Fig. 6. Assembly instructions and basic blocks. 
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Objects come from object oriented languages which group procedures (known as 

methods) and data into modular units. Objects are related to other objects via inheritance 

of their functionality. 

2.1.2 Semantic Features 

2.1.2.1 API Calls 

API calls represent calls to libraries and other imports. 

2.1.2.2 Data Flow 

Data flow statically represents the data at run time entering and leaving each basic block. 

Many types of data flow analyses [9] are possible including reaching definitions, liveness, 

available expressions, and very busy expressions. 

2.1.2.3 Procedure Dependence Graphs 

The control dependencies and data dependencies of a procedure can be represented in a 

single graph using a procedure dependence graph [10]. 

2.1.2.4 System Dependence Graph 

The system dependence graph combines the set of procedure dependency graphs of each 

procedure into a unified representation. 

movl   $0x4020a0,(%esp)

call   4011b8 <_puts>

addl   $0x1,-0x8(%ebp)

lea    0x4(%esp),%ecx

and    $0xfffffff0,%esp

pushl  -0x4(%ecx)

push   %ebp

mov    %esp,%ebp

push   %ecx

sub    $0x24,%esp

call   4011b0 <___main>

movl   $0x0,-0x8(%ebp)

jmp    40115f <_main+0x2f>

add    $0x24,%esp

pop    %ecx

pop    %ebp

lea    -0x4(%ecx),%esp

ret    

cmpl   $0x9,-0x8(%ebp)

jle    40114f <_main+0x1f>

Proc_0

Proc_2

Proc_1

Proc_4

Proc_3

Fig. 7. A control flow graph (left) and a call graph (right). 
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2.1.3 Taxonomy of Features in Program Binaries 

Programs may begin as source code, but are typically compiled into a target binary for 

execution on the native platform or in another run time environment. The target binary is a 

container for all the information necessary for its execution in the target environment. This 

container is known as the object file format [11]. 

2.1.3.1 Object File Formats 

Object File Formats contain five types of data: 

 Headers 

 Object  Code 

 Symbols 

 Debugging Information 

 Relocations 

Most modern object files also contain: 

 Dynamic Linking Information 

2.1.3.2 Headers 

The object file format is often described by a variety of headers. Headers may be used to 

define where the object code, symbols, debugging information, etc, is present in the binary. 

2.1.3.3 Object Code 

Object code contains the code and data of the program. For native executables the object 

code can consist of assembly or machine code. For object file formats such as Java class 

files, the object code contains byte code which is the instruction set architecture of the 

Java Virtual Machine. 

2.1.3.4 Symbols 

Parts of the code, data and binary may be associated with symbolic names. These 

associations are organized and stored in a Symbol Table. 
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2.1.3.5 Debugging Information 

The binary may contain debugging information such as line numbers of source code 

associated with object code, or naming of information for different codes or data. 

2.1.3.6 Relocations 

If the binary has not been associated with a specific load address at compile time, the 

binary may need to be link edited at runtime. Relocations or fixups contain the necessary 

information to bind the object code to a specific load address. 

2.1.3.7 Dynamic Linking Information 

If the binary requires the use of external libraries, then the names of the required library 

functions must be present. Likewise, if the binary's functions are being exported as a 

library, then this information must also be present. 

2.1.4 Case Studies 

2.1.4.1 Portable Executable 

The Portable Executable (PE) format [12] is the native object file format for the Windows 

family of operating systems. It is a modern file format which can contain all the information 

we have described in this section. It is identified by a series of magic bytes in its headers. 

Object code is defined in PE sections and an Import Address Table allows for dynamic 

linking. 

2.1.4.2 Executable and Linking Format 

The Executable and Linking Format [13] is the object file format in use on Linux and other 

operating systems. It replaced the previous a.out object file format in Linux. The a.out 

/bin/ls:     file format pei-i386 

architecture: i386, flags 0x00000102: 

EXEC_P, D_PAGED 

start address 0x00401000 

Sections: 

Idx Name          Size      VMA       LMA       File off  Algn  

  0 .text         00019528  00401000  00401000  00000400  2**4 

Fig. 8. The output of objdump on a PE executable. 
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object file format did not natively support dynamic linking and ELF brought a much more 

modern format to Linux and enabled the transition to shared libraries using dynamic 

linking. An ELF binary is identified by a magic sequence in its header. There are three 

types of ELF object files. 

 Executable Objects 

 Relocatable Objects 

 Dynamic Objects 

Executable objects have been linked and bound to an address. Relocatable objects have 

not been bound to a load address and require linking. Dynamic objects have both a 

relocatable view and an executable view - shared libraries use this format. 

Dynamic linking is slightly different to the PE format and uses a Global Offset Table (GOT) 

and a stub call to the runtime linker to resolve imports. 

2.1.4.3 Java Class File 

Java class files [14] contain object code in sections defined in the file's headers. The object 

code is in the instruction format for execution on the Java Virtual Machine. Like the 

previous object file format, a sequence of marker bytes (the magic bytes) in the header 

identifies the file format. 

2.2 Program Transformations and Obfuscations 

Software feature extraction must cope with transformations that are intended to obscure, 

evolve, or rewrite the program. For example, malware polymorphism and metamorphism 

are transformations applied to the malicious code to evade signature detection. Robust 

signatures must identify the invariant birthmarks under these transformations. This chapter 

focuses on analysing these types of program transformations and obfuscations including 

compiler optimsations, recompilation, plagiarism, software theft, derivative works, malware 

packing, malware polymorphism and malware metamorphism. 

2.2.1 Compiler Optimisation and Recompilation 

Compiler optimisations and recompilation are semantic preserving transformations. These 

transformations rewrite the program but do not alter the behavioural properties of the 
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software. Compiler optimisations make feature extraction more difficult. Even very minor 

changes to a program’s source code can result in significant changes to the program’s 

instruction stream once recompiled. 

Many compiler optimisations are possible. We examine some in this section. Typical 

classes of code optimisation that may affect the birthmarks and feature extraction are: 

 Instruction Reordering 

 Loop Invariant Code Motion 

 Code Fusion 

 Function Inlining 

 Loop Unrolling 

 Branch/Loop Inversion 

 Strength Reduction 

 Algebraic Identities 

 Register Assignment 

2.2.1.1 Instruction Reordering 

Instructions can be reordered or scheduled in such a way that they are semantically 

equivalent but perform faster due to caching. To determine if instructions inside a basic 

block can be reordered, a directed acyclic graph can be drawn of the data dependencies. 

Only instructions that have data dependencies between each other require strict ordering 

between those instructions. 

2.2.1.2 Loop Invariant Code Motion 

Code that is inside a loop may be moved to outside the loop if no semantic change occurs. 

This improves the efficiency of the code. 

2.2.1.3 Code Fusion 

Code inside loops in sequence can be fused into a single loop. 
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2.2.1.4 Function Inlining 

Functions can be inlined to improve performance. Inlining a function means that a clone or 

copy of that function replaces the function call. This means that a function call is avoided 

and therefore improves performance. 

2.2.1.5 Loop Unrolling 

It can improve efficiency to unroll the loop by duplicating the loop body and termination 

condition. 

2.2.1.6 Branch/Loop Inversion 

Branching on equality or non equality can be inverted and may improve efficiency in some 

cases. 

2.2.1.7 Strength Reduction 

Strength reduction replaces expensive operations with equivalent but less expensive 

operations. 

2.2.1.8 Algebraic Identities 

Algebraic identities take note that some expressions are algebraically equivalent to other 

less expensive operations. For example, x+0 is equivalent to the less expensive 

expression x. 

2.2.1.9 Register Reassignment 

Register allocation is the process of assigning specific registers to instructions. The 

assignment of these registers can change while maintaining semantically equivalent code. 

2.2.2 Program Obfuscation 

Program obfuscation obscures the workings of a program [15]. 

Definition 19. Let 'PP T
be a transformation of a source program P into a target program P’. 

'PP T
is an obfuscating transformation, if P and P’ have the same observable behaviour. 

More precisely, in order for 'PP T
to be a legal obfuscating transformation the following 

conditions must hold: 

 If P fails to terminate or terminates with an error condition, then P’ may or may not 

terminate. 

 Otherwise, P’ must terminate and produce the same output as P. 
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2.2.3 Plagiarism, Software Theft, and Derivative Works 

An incomplete list of source code plagiarism techniques is described in [16]. The authors 

state that such a list is never ending, so a comprehensive list is impossible. Nevertheless, 

they identified the following forms of plagiarism: 

 Lexical Changes 

o Comments can be reworded, added and omitted 

o Formatting can be changed. 

o Identifier names can be modified. 

o Line numbers can be changed (e.g., in Fortran programs). 

 Structural Changes 

o Loops can be replaced (e.g, replacing a while loop with a for loop) 

o Nested if statements can be replaced by case statements and vice versa. 

o Statement order can be changed. 

o Procedures can be replaced by functions (e.g., in Pascal) 

o Procedures may be inlined 

o Ordering of operands may be changed (e.g., x < y becomes x >= y) 

2.2.3.1 Semantic Changes 

An extension to syntactic changes is that of semantic changes where the new variant is a 

derived work of the original malware. Semantic changes occur due to the software authors 

modifying the original source code or functionality. This can occur to a natural evolution of 

the software during its development life cycle. Additionally, it can occur when a software 

author reuses existing code in a new program instance.  

2.2.3.2 Code Insertion 

Code insertion occurs when new functionality is added to the malware. 
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2.2.3.3 Code Deletion 

Code deletion occurs when functionality is removed from the malware. 

2.2.3.4 Code Substitution 

Code substitution occurs when functionality in the malware is replaced by an alternative 

algorithm or code. 

2.2.3.4 Code Transposition 

Code transposition occurs when specific code and functionality of the malware is removed 

from its initial location and inserted into a semantically different location in the malware. 

2.2.4 Malware Packing, Polymorphism, and Metamorphism 

The two categories of malware obfuscation are syntactic and semantic changes. Semantic 

changes include those described for plagiarism and software theft. A syntactic polymorphic 

malware technique is a method that changes the syntactic structure of the malware [17]. 

Though the syntactic structure changes in polymorphic malware, the malware semantically 

remains identical. The technique is predominantly used to evade byte level signature 

based detection and classification that is routinely employed by traditional Antivirus. 

Polymorphism borrows many of the techniques from the field of program obfuscation.  

Polymorphism is sometimes described by the similar term of metamorphism. In that usage 

it is used to describe the automated syntactic mutation of the malware’s code and 

instructions. Under such terminology, polymorphism is used to describe syntactic mutation 

of limited parts of the malware’s instruction content. The remaining parts of the malware 

are encoded at the byte level without regard to the instruction syntax or semantics. In this 

book we treat polymorphism and metamorphism as identical to each other. 

Syntactic malware obfuscations and transformations include: 

 Dead Code Insertion 

 Instruction Substitution 

 Variable Renaming 

 Code Reordering 

 Branch Inversion and Flipping 
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 Opaque Predicate Insertion 

 Code Packing 

2.2.4.1 Dead Code Insertion 

Dead code is also known as junk code and a semantic nop [17]. Dead code is semantically 

equivalent to a nil operation. Insertion of this type of code has no semantic impact on the 

malware. The insertion increases the size of the malware and modifies the byte and 

instruction level content of the malware. 

2.2.4.2 Instruction Substitution 

Instruction substitution replaces specific instructions or sequences of instructions with 

semantically equivalent, but differing instructions and instruction sequences. The size of 

the malware may grow or shrink in this procedure. 

2.2.4.3 Variable Renaming 

Variable renaming [18] and the associated technique of register reassignment alters the 

use of variables and registers in a sequence of code such that the instructions are 

semantically equivalent but use different variables and registers when compared to the 

original code.  

2.2.4.4 Code Reordering 

Code reordering [18] changes the syntactic order of the code in the malware [17]. The 

actual or semantic execution path of the program does not change. However, the syntactic 

order as present in the malware image is altered. Code reordering includes the techniques 

of branch obfuscation, branch inversion, branch flipping, and the use of opaque predicates. 

mov $0,%eax

mov $1,%ebx

add %eax,%ebx

push %ebx

call $0x80482000

mov $0,%ebx

mov $1,%ecx

add %ebx,%ecx

push %ecx

call $0x80482000

Fig. 11.  Register reassignment. 

mov $0,%eax xor %eax,%eax

Fig. 10.  Instruction substituion. 

push %ebx

pop %ebx

Fig. 9.  A semantic nop  
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2.2.4.5 Branch Obfuscation 

Branch obfuscation attempts to hide the target of a branch instruction. Examples include 

the use of Structured Exception Handling (SEH) on the Microsoft Windows platform. The 

use of SEH to obscure control flow is common in modern malware. Similar techniques 

involve indirect branching. Indirect branching uses data content as the target of a branch. 

This translates control flow identification into a harder data flow analysis problem. The use 

of a branch function [19] extends this approach and dispatches multiple branches through 

a single routine. The main purpose of branch obfuscation is to make the static analysis of 

the malware by an analyst or automated system harder to perform.  

2.2.4.6 Branch Inversion and Flipping 

Branch inversion inverts the branch condition in conditional branches. Whereas the branch 

may originally transfer control when the condition is true, branch inversion alters the 

condition to branch when false. To maintain the original semantics of the program the 

branch instruction is also inverted. For example, a branch on condition true statement can 

be changed to a branch on condition false statement. Additionally, the condition being 

tested would also be inverted. Branch inversion is effectively a form of instruction 

substitution on control flow statements. 

Branch flipping [19] is a similar technique to branch inversion and rewrites the branch 

instruction by substituting it with semantically equivalent code with different control flow 

properties. For example, if the original code is to branch on condition true then the new 

code branches on condition false to the original fall-through instruction. The new fall-

through instruction then unconditionally branches to the original conditional branch target.  

mov $0x8048200,%eax

jmp *%eax

Fig. 12.  An indirect branch. 



  C H A P T E R  2  

 

25 

 

2.2.4.7 Opaque Predicate Insertion 

An opaque predicate [19] is a predicate that always evaluates to the same result. An 

opaque predicate is constructed so that it is difficult for an analyst or automated analysis to 

know the predicate result. Opaque predicates can be used to insert superfluous branching 

in the malware’s control flow. They can also be used to assign variables values which are 

hard to determine statically. The use of opaque predicates is primarily for code 

obfuscation, and to prevent understanding by an analyst or automated static analysis.  

2.2.4.8 Malware Obfuscation Using Code Packing 

Code packing [20, 21]  is the dominant technique used to obfuscate malware and hinder an 

analyst’s understanding of the malware’s intent. In one month during 2007, 79% of 

identified malware from a commercial Antivirus vendor was found to be packed [22]. 

Additionally, almost 50% of new malware in 2006 were repacked versions of existing 

malware [23]. 

Code packing, in addition to obfuscating the understanding of the malware by an analyst, is 

also used by malware to evade an Antivirus system’s detection. Polypack [24] evaluated 

the effectiveness of code packing against Antivirus detection by providing a service to pack 

malware using a variety of code packing tools. Antivirus systems often have the 

capabilities of unpacking known code packing tools, and unpacking unknown tools has 

also had commercial interest [25]. However, Polypack demonstrated that packing can be 

an effective tool to defeat an Antivirus system with many commercial malware detection 

systems failing to identify the packed versions of existing malware. 

Code packing is used in the majority of malware, but code packing also serves to provide 

compression and software protection for the intellectual property contained in a program. It 

is not necessarily advantageous to flag all occurrences of code packing as being indicative 

of malicious activity. Code packing tools are freely available [26] and commercially sold to 

jc $0x80482000
cmc # complement carry flag

jnc $0x80482000

Fig. 13.  Branch inversion. 

jz $0x80482000

L:

jnz L

jmp $0x80482000

L:

Fig. 14.  Branch flipping. 
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the public as legitimate software [27]. For this reason, unpacking of packed programs 

provides benefit. It is advisable to determine if the packed contents are malicious, rather 

than identifying only the fact that unknown contents are packed. 

2.2.4.9 Traditional Code Packing 

From [28]: The most common method of code packing is described in [20] and [28]. 

Malware employing this method of code packing transforms executable code into data as a 

post-processing stage in the malware development cycle. This transformation may perform 

compression or encryption, hindering an analyst's understanding of the malware when 

using static analysis. At runtime, the data, or hidden code, is restored to its original 

executable form through dynamic code generation using an associated restoration routine 

[29]. Execution then resumes as normal to the original entry point. The original entry point 

marks the entry point of the original malware, before the code packing transformation is 

applied. Execution of the malware, once the restoration routine is complete and control is 

transferred to the original entry point, is transparent to the fact that code packing and 

restoration had been performed. A malware may have the code packing transformation 

applied more than once. After the restoration routine of one packing transformation has 

been applied, control may transfer another packed layer. The original entry point is derived 

from the last such layer. The process of this form of malware packing is shown in Fig. 15. 

2.2.4.10 Shifting Decode Frame 

From [28]: An extension to traditional code packing is to maintain as much of the packed 

image in an encrypted form at run-time. During execution of the malware, blocks of 
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Original Code = 
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Fig. 15. The traditional code packing transformation. 
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Fig. 15. The traditional code packing transformation. 



  C H A P T E R  2  

 

27 

 

memory can be decrypted as needed and subsequently re-encrypted to prevent an analyst 

or automated system from having access to all the hidden code at any single moment in 

time. This technique is known as the shifting decode frame [30]. The granularity of 

encryption can occur at the page level, the basic block level, and the instruction level. This 

type of code packing is not often used in wild malware, and in practice, traditional code 

packing and instruction virtualization are the dominant techniques used in real malware. 

The process of this form of malware packing is shown in Fig. 15.. 

2.2.4.11 Instruction Virtualization and Malware Emulators 

From [28]: Code packing may employ the use of instruction virtualization also known as a 

malware emulator [21]. An emulator used by a malware should not be confused with an 

emulator used for automated unpacking of the malware. This type of code packing 

transformation employing an emulator is used in a minority of malware. In this form of code 

packing, packing translates the original native code into a byte-code which is subsequently 

emulated by the malware at run-time. Using this form of code packing, the hidden code in 

Shifting Decode 

Frame Restoration 

Routine

Hidden Code = 

f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Hidden Code
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Frame Restoration 

Routine
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Fig. 16. Code packing using the shifting decode frame. 
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Fig. 17. Code packing using instruction virtualization. 
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its original form is never revealed. The process of this form of malware packing is shown in 

Fig. 16. 

2.2.5 Features under Program Transformations 

Program features may change under program transformations and obfuscation. The 

challenge then is in choosing features which remain invariant under these conditions. The 

raw or byte level content deals poorly with program transformations. Small changes in high 

level source code may result in large changes in the raw content. Instruction level content 

is also prone to large changes under transformations such as when registers are 

reassigned or the instruction stream is modified. Control flow is more invariant than most 

syntactic features and can be a good choice. At a source code level, program and system 

dependency graphs have been popular. The APIs used by a program represent a good 

choice and have been widely used in behavioural analysis of malware. For static analysis 

of malware, the malware must be unpacked to reveal its hidden code. Unpacking of 

malware is not addressed in this book.  

2.3 Formal Methods of Program Analysis 

Feature extraction is a necessary component to construct a birthmark, show similarity and 

classify a program as belonging to a particular class. Program analysis is an important 

component in feature extraction. The analysis reveals information on the syntax, 

semantics, and behaviour of the program being inspected. This section focuses on formal 

methods of program analysis which can be used for the purpose of property and feature 

extraction. 

2.3.1 Static Feature Extraction 

The majority of formal methods we will examine in this section are based on analysing a 

static view of a program without performing execution of it. A number of possible choices 

exist to perform feature extraction statically from a program. There is some equivalence 

between source code and binary feature extraction, however differences also exist. 

The possible stages to extract static features from source code are: 

 Raw Code Analysis 
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 Lexical Analysis 

 Parsing 

 Static Program Analysis 

For binary only software, analyses can be divided into: 

 Raw Code Analysis 

 Object File Parsing 

 Static Program Analysis of Binaries 

 Decompilation 

Static program analysis is an approximation of program behaviour. For an analysis to be 

sound, then no behaviour should be omitted. For an analysis to be precise, the over-

approximation should be close to the actual behaviour. This over approximation leads to 

false positives in the case of bug detection, or conservation optimisations in the case of 

compiler techniques. A perfectly precise analysis is undecidable due to Rice’s theorem 

[31], however even without perfect precision the results are still practical and useful. 

2.3.2 Formal Syntax and Lexical Analysis 

Lexical analysis is the process of producing a sequence of tokens given a sequence of 

characters. Lexical analysis is performed before parsing. The parser uses the tokens 

generated from the lexical analysis. 

2.3.3 Parsing 

Definition 20. A context-free grammar G is defined by the 4-tuple: 

G=(V, ,R,S) where 

V is a finite set of non terminal variables. 

 is a finite set of terminals. 

R is a finite set of rules or productions of the grammar. 

S is the start variable. 

Rules are of the form wV  where V is a non terminal symbol and w is a string of 

terminals and/or non terminals. 
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Context-free grammars are the basis for recognizing and representing programming 

languages in source code. However, in practice, a number of widely used languages such 

as C++ are not strictly context-free in all cases. 

The process of parsing in static analysis is to transform source code into a concrete or 

abstract syntax tree. 

2.3.4 Intermediate Representations 

2.3.4.1 Intermediate Code Generation 

The process of code generation is typically performed by traversing the abstract syntax 

tree and generating intermediate code for each unit in the tree. 

2.3.4.2 Abstract Machines 

The intermediate language used for the intermediate code runs on an abstract machine 

that has a correspondence to the actual machine. Typical models of computation for the 

digit         [0-9] 

letter        [a-zA-Z] 

%% 

"<="                 { return LEQ;        } 

">="                 { return GEQ;        } 

"begin"              { return BEGINSYM;   } 

"call"               { return CALLSYM;    } 

"const"              { return CONSTSYM;   } 

"do"                 { return DOSYM;      } 

"end"                { return ENDSYM;     }  

Fig. 18. Implementation of lexical analysis. 
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abstract machine are register machines or random access machines. A typical 

implementation useful for static analysis consists of: 

 An unlimited number of uniquely labelled registers. 

 A small number of instruction prototypes to make an instruction set. 

 An instruction pointer. 

 A sequence of labelled instructions. 

 A random access memory. 

 An entry point. 

 The instruction set can further be divided into: 

 Data (arithmetic etc) 

 Control (conditional and unconditional branching etc) 

input:  

        expr { ((SParserParam*)data)->expression = $1; } 

        ; 

 expr: 

      expr TOKEN_PLUS expr { $$=createOperation( ePLUS, $1, $3 ); } 

    | expr TOKEN_MULTIPLY expr { $$=createOperation( eMULTIPLY, $1, $3 ); } 

    | TOKEN_LPAREN expr TOKEN_RPAREN { $$=$2; } 

    | TOKEN_NUMBER { $$ = createNumber($1); } 

;  

Fig. 19. Implementation of parsing. 
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 API Calls (operating system and library interface etc) 

2.3.4.3 Basic Blocks 

To partition the intermediate code into basic blocks [32] we determine instructions that are 

leaders. Leaders are the first instruction in each basic block. An instruction is a leader 

when it satisfies one of the following properties: 

 The first instruction in the intermediate code. 

 Any instruction that is the target of a branch. 

 Any instruction that follows a branch. 

2.3.4.4 Control Flow Graph 

The successors of a basic block b, succ(b), are: 

 The target of the basic block’s branch instruction. 

 The basic block immediately following the current basic block in the instruction 

stream. 

Thus, a control flow graph [32] is defined as the directed graph C=(B,E) such that B is the 

set of basic blocks, and )}(,|),{( usuccvBuvuE  

2.3.4.5 Call Graph 

The successors of a procedure f, call_succ(f), are: 

 The set of call targets in the procedure body. 

Thus, a call graph is defined as the directed graph CallGraph=(F,E) such that F is the set 

of procedures, and )}(_,|),{( usucccallvFuvuE  

2.3.5 Formal Semantics of Programming Languages 

The formal semantics of programming languages aims to rigourously reason about 

program meaning by having a strict mathematical representation of a program’s semantics. 

Multiple methods are available to represent program semantics and the three main 

techniques are: 
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 Operational Semantics 

 Denotational Semantics 

 Axiomatic Semantics 

Other approaches are also possible, including algebraic semantics [33] which has been 

used successfully to show equivalence between code fragments of metamorphic malware. 

2.3.5.1 Operational Semantics 

Operational semantics capture the state transition that occurs when a program instruction 

is executed. It can be thought of as defining an interpreter for a language [34]. Operational 

semantics can be expressed using the following notation: 

NAME
PPi

premise

premise

n

'),(

...

1

 

Where i is the current instruction, P is the current state and P’ is the next state following 

execution of the instruction i. 

2.3.5.2 Denotational Semantics 

Denotational semantics transform instructions to mathematical objects [34]. It can be 

thought of as defining a compiler for a language. 

2.3.5.3 Axiomatic Semantics 

Axiomatic semantics give an axiomatic basis for a program. Typically this is achieved by 

using preconditions and postconditions for instructions. These preconditions and 

postconditions can be analysed with logic, typically first order logic. The most common use 

of axiomatic semantics is to prove program correctness using Hoare logic [35] and its 

variants. 

2.3.6 Theorem Proving 

2.3.6.1 Hoare Logic 

Hoare logic is a means for proving the correctness of structured programs [35]. It is based 

on axiomatic semantics. Hoare logic provides a deductive method for proving correctness, 
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however loop invariants must be synthesised and this represents a significant challenge in 

developing program proofs. 

2.3.6.2 Predicate Transformer Semantics 

Predicate transformer semantics [36] provide a method to generate verification conditions 

through the weakest precondition. This is a form of axiomatic semantics and reformulates 

Hoare logic to provide an automated construction of first order logic formula to prove 

program correctness. 

2.3.6.3 Symbolic Execution 

Symbolic execution [37] is the process of executing a program using symbolic represents 

for variables and data. The program executes by generating constraints of the symbols for 

each instruction. Mixed symbolic execution [38] allows a more efficient implementation by 

concretely executing part of the program using native computations, and symbolically 

execution those variables of interest. Symbolic execution is path based execution. At every 

control transfer point, a decision must be made of which path to follow. The feasibility of 

paths and the symbolic constraints are modelled using an SMT decision procedure. The 

decision procedure can report if a set of constraints is feasible, or provide a counter 

example to prove otherwise. Symbolic execution has been applied to binaries for 

applications such as malware analysis [39]. 

2.3.7 Model Checking 

Model checking is used to verify that a model meets the properties of a specification [40]. It 

achieves this by enumerating the state space of the model to verify the specification. 

2.3.8 Data Flow Analysis  

Data flow analysis tries to statically determine the behaviour of data [9]. Perfectly precise 

data is undecidable so data flow analysis seeks to find an approximation of the data by 

discovering conservative program invariants. Data flow analyses are flow-sensitive which 

means the ordering of instructions is taken into account. The solution of data flow problems 

is based on lattice and order theory. The problems are represented as monotone functions 

which can be approximated and computed using fixed point solutions. 
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2.3.8.1 Dataflow Equations 

Dataflow analysis is performed by reaching a fixpoint solution in a semilattice for a system 

of monotone equations that describe the dataflow. Typical data flow analyses require 

control flow information to perform the analysis. The basic approach is to set up data flow 

equations to track data entering and leaving each node in the control flow graph. In a 

forward flow analysis, a transfer function is applied on the data entering a basic block 

which results in the data leaving the basic block. Merging of control flow edges is applied 

using a join operator. The analysis can be forwards or backwards merging successor or 

predecessor nodes. In some literature a meet operator is used instead of a join. This is 

arbitrarily dependent on  whether a meet-semilattice or join-semilatice is used for analysis. 

In a forward analysis using a join-semilattice, for each block b: 

)},|({

)(_

bbb

bb

outrpredecessoppjoinin

infunctiontransferout
 

A backwards analysis replaces in with out, and out with in. It also uses the successor 

blocks instead of the predecessor blocks in the join. 

Typical join operators include union or intersection. Data flow analyses are usually 

constructed to be conservative so that precision is sacrificed to capture all possible 

behaviours. The analysis proceeds by iteratively computing the functions for all blocks until 

a fixed point is reached. 

2.3.8.2 Dataflow Analysis Examples 

Common data flow analyses include reaching definitions and live variable analysis. These 

analyses are use-def analyses. They resolve the problem of identifying which instructions 

subsequently use a variable as in the case of liveness and upwards exposed uses, or 

which variable definitions reach an instruction as in the case of reaching definitions. There 

may be more than one reaching definition of the same variable at an instruction if multiple 

paths lead to that instruction and the same variable is defined along those separate paths. 

If an accurate control flow graph is available, then data flow analysis performs equally 

accurate. Data flow analyses has been heavily used in the decompilation of binaries [41]. If 
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data flow analyses is performed interprocedually, then the call graph must be accurately 

generated. 

2.3.8.3 Reaching Definitions 

The lattice for reaching definitions is the power set of definitions ordered by set inclusion. 

The data flow equations for reaching definitions are: 

}{][)],...,(:[

}{)],...,(:[

][][

])[(][][

1

1
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where DEFS[y] is the set of all definitions that assign to variable y. d is a unique label 

attached to the assigning instruction. 

2.3.8.4 Live Variables 

The lattice for live variable analysis is the power set of used variables ordered by set 

inclusion. The data flow equations for live variable analysis are: 
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2.3.9 Abstract Interpretation 

Abstract interpretation [42] is closely related to data flow analysis. Abstract interpretation 

concerns to the sound approximation of programs. A classic example of abstract 

interpretation used for pedagogical purposes is the abstract domain of signs which 

represents numerical variables by the possible sign they have. A variable may be positive, 

negative, possibly both, or zero. Abstract interpretation has been applied to, in amongst 

other things, malware detection. 
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2.3.10 Intermediate Code Optimisation 

Data flow analysis is used in intermediate code optimisation. A very small set of possible 

optimisations are: 

 Dead Store Elimination  

 Constant Folding  

 Copy Propagation 

For example, in dead store elimination, if a variable is defined, but is not live, then the 

definition can be safely removed from the code. 

2.3.11 Research Opportunities 

Algebraic semantics [43] have been used to show equivalence between metamorphic 

malware. However, the general approach of using formal semantics to show semantic 

equivalence between programs is under-utilised. We believe this presents an opportunity 

for researchers looking at the software similarity problem in future work. We tackle part of 

this problem and propose using operational semantics to analyse malware codes in 

Chapter 4. The notion of non exact matching of semantics is an area that needs 

investigation if we are to detect similar but not identical program copies. 

2.4 Static Analysis of Binaries 

Static binary analysis is more difficult than if source code is available. In many cases, the 

analyses are unsound and behaviours are omitted to make problems feasible. Heuristics 

may be required to separate code and data in a disassembly or pointer behaviour may be 

weakly modelled to make statically analysing programs feasible. Nevertheless, static 

analysis of binaries is an important area of research with a number of practical applications 

including the detection of software theft and the classification and detection of malware. 

This section examines static analysis of binaries with the intent that properties and features 

of binary programs can be extracted to create useful birthmarks for software similarity and 

classification. 
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2.4.1 Disassembly 

Disassembly is the process of translating machine code to assembly language [44]. This is 

typically the first stage of a static analysis. Static disassembly parses the entire binary 

image statically without execution. In static disassembly, there are two main algorithms. In 

the Linear Sweep algorithm, the instructions are disassembled one instruction after 

another, starting from the beginning of code. The disadvantage of this method is that data 

introduced into instruction stream may be erroneously disassembled. 

disassemble_program(program) 

{ 

  address = disassemble_linear_sweep(start(program), end(program)) 

} 

 

disassemble_linear_sweep(start, end) { 

  address = start 

  while (address < end) { 

    instruction = Disassemble(program, address) 

    if (error) { 

      address += 1; 

    } else {   

      disassembly[address] = instruction; 

      address += length(instruction); 

    } 

  } 

} 

Fig. 20. Linear sweep disassembly. 
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The other main algorithm to perform disassembly is the Recursive Traversal algorithm. 

This algorithm decodes each instruction following the order of the control flow. This 

resolves the issue of embedded data, but may miss decoding instructions that are the 

target of indirect jumps or other situations when it is hard to resolve control flow statically. 

disassemble_program(program) { 

  disassemble(entry_point(program)) 

} 

disassemble_recursive_traversal(address) { 

  while (has_address(program, address)) { 

    if (disassembly[address] not null) 

     return 

    instruction = Disassemble(program, address) 

    if (error) 

      return 

    disassembly[address] = instruction 

    if (is_return_instruction(instruction)) 

      return 

    if (is_transfer_instruction(instruction)) 

       disassemble(transfer_target(instruction); 

    address += length(instruction); 

  } 

} 

Fig. 21. Recursive traversal disassembly. 
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Speculative Disassembly attempts to remedy the problems of the Recursive Traversal 

algorithm problem by first performing the Recursive Traversal, and then performing a 

Linear Sweep in regions that are not decoded. 

Disassembly results in the following data. 

},...,,,{ 1 noperandoperandopcodeaddressydisassembl  

2.4.2 Intermediate Code Generation 

A simple approach to transforming assembly into an intermediate language is to translate 

each instruction without maintaining intermediate state. This approach has been used 

successfully in the Reverse Engineering Intermediate Language (REIL) [45]. Other popular 

intermediate languages are Vex as used in the Valgrind binary instrumentation framework 

[46] and Vine as used in the BitBlaze project [47]. An example to translate native assembly 

into three address code is shown below. 

),...(__ 1 nTACTACninstructioassemblynative  

disassemble_speculative(program) { 

  disassemble_recursive_traversal(entry_point(program)) 

  for all intervals in  

    [start(program), end(program)] and not in disassembly 

  { 

    disassemble_linear_sweep( 

      start(interval), end(interval)) 

  } 

} 

Fig. 22. Speculative disassembly. 
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2.4.3 Procedure Identification 

An important stage in reconstruction the control flow of an executable is identifying 

procedures. There are roughly four approaches that can be employed. 

 Using object file format information (e.g., symbols and exports) 

 Using static targets of call site

}),_,(|{ ydisassemblfdirectcalladdressfF  

 Using idioms to identify procedure prologues 

disassemble_procedure(address) { 

  while (has_address(program, address)) { 

    if (disassembly[address] not null) 

     return 

    instruction = Disassemble(program, address) 

    if (error) 

      return 

    disassembly[address] = instruction 

    if (is_return_instruction(instruction)) 

      return 

    if (is_transfer_instruction(instruction) 

        and not is_call_instruction(instruction)) 

      disassemble_procedure(transfer_target(instruction); 

    address += length(instruction); 

  } 

} 

Fig. 23. Procedure disassembly. 
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 Using static analysis and data flow analysis to reconstruct indirect call targets 

The main hindrance to generating accurate representations is when a program uses 

indirect branches and procedure calls. The analysis of indirect targets requires data flow 

analysis. A number of approaches have been employed [48-50]. Using idioms to identify 

procedures requires string matching algorithms to identify common byte sequences. 

2.4.4 Procedure Disassembly 

Procedures consist of a body of instructions which must be recovered from the 

disassembly. The algorithm is a very slight variation of the recursive traversal disassembly 

algorithm. The difference is that inter procedural control flow is not traversed. 

2.4.5 Control Flow Analysis, Deobfuscation and Reconstruction 

Control flow analysis is more difficult on binaries because of the difficultly in separating 

code and data. Likewise, the presence of indirect branch and call targets in assembly 

language makes precisely determining the static control flow undecidable. 

The simplest approach is to ignore indirect targets completely. The edges of the graphs 

representing the call graph control flow can be constructed by connecting the call site to 

the static call target. For control flow graphs the approach is similarly applied to branch 

targets. 

Control flow may also be obfuscated. An opaque predicate [19] is a predicate that always 

evaluates to the same result. An opaque predicate is constructed so that it is difficult for an 

analyst or automated analysis to know the predicate result. Opaque predicates can be 

used to insert superfluous branching in a binary’s control flow. They can also be used to 

assign variables values which are hard to determine statically. The use of opaque 

predicates is primarily for code obfuscation, and to prevent understanding by an analyst or 

automated static analysis.  

The presence of opaque predicates in a control flow graph reduces the accuracy of the 

graph because of misleading branch targets. In [51] it was proposed to use the program 

analysis technique of abstract interpretation to detect specific classes of opaque predicate 

algorithms. 
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2.4.6 Pointer Analysis 

Pointer and alias analysis tries to determine the variables that a pointer may point to. In 

assembly this problem is difficult. A conservative approach to alias analysis of assembly 

using datalog constraints was proposed in [52], however this work was to introduce formal 

rigour and is not practical to deploy. Value-Set Analysis [53] has been proposed as an alias 

analysis, suitable for binary programs and assembly language. Value-Set Analysis has 

been used in malware detection [54] and the automated static unpacking of malware [55]. 

2.4.7 Decompilation of Binaries 

Decompilation [41] is the process of recovering source code from executable binaries. In 

general, decompilation can be seen as a form of static analysis of a binary that recovers 

additional information from its intermediate representation. Research connecting the type 

of static analysis a compiler performs to the requirements of a decompiler was proposed in 

[41] and [56].  

2.4.7.1 Condition Code Elimination 

In Instruction Set Architectures such as x86, many arithmetical instructions modify a status 

flag or condition code. For example, determining if two variables are equal is divided into 

two computations. An arithmetic instruction over the two variables that sets a condition 

code, and then a branch based on the resulting condition code. Decompilation requires 

these two computations be reduced to one conditional test. 

An approach to solve this is by maintaining a reaching definition of the various conditions 

code set by each arithmetic instruction. At the point of a conditional branch based on the 

condition code, the reaching definitions are combined into a single condition. 

2.4.7.2 Stack Variable Reconstruction 

Stack variable reconstruction transforms variables allocated on the stack into native 

variables in the intermediate representation. The stack can be accessed in two main ways. 

The first method is by referencing variables relative to the top of the stack, or stack pointer. 

The second method accesses the stack relative to the frame pointer. The frame pointer is 

unique for each procedure or activation record. It points to the top of the stack as set on 

function entry. During procedure execution the stack pointer may change, but the frame 

pointer remains constant. This simplifies access to variables on the stack and is often used 
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in debug builds of application. It is clear that for a decompiler to be effective, it must handle 

both methods of accessing the stack. Both frame and stack based addressing may be 

intermixed in real life applications. 

Another complication to using the stack pointer is that callees may or may not change the 

stack pointer. It is the responsibility of the caller to push arguments onto the stack, but the 

callee may or may not unwind these arguments based on the calling convention being 

used. 

One approach [57] to reconstruct stack based variables takes advantage of the fact that in 

compiled programs, the position of the stack pointer in each basic block remains constant. 

The stack pointer can be modified within a basic block when calls are made or values or 

pushed and popped on or from the stack. Using this information, a set of constraints over 

the control flow graph can describe the stack pointer. Solving the constraints identifies the 

relative position of the stack pointer at the entry and exit of each basic block. Frame pointer 

relative addressing uses fixed offsets from the top of the stack at the beginning of the 

procedure, and knowing the position of the stack pointer at each basic block enables 

knowing exactly which memory location on the stack is being referenced. This enables a 

unified approach to modelling stack and frame based addressing. 

Pointers and arrays complicate the process of stack variable reconstruction. In these 

cases, the stack variable may only be referencing the beginning of an array or pointing to 

the beginning of the object. Heuristics must be used to estimate the size of the object. An 

approach to estimate this is by looking at the size of the stack frame or looking at the next 

adjacent stack reference to predict a bounds on the object in question. 

2.4.7.3 Preserved Register Detection 

A typical problem that arises is determining if the register is modified in the life time of a 

procedure. If the register is used in procedure, but maintains its original value once 

returning from the procedure’s callsite then the register is preserved. The process of 

preserving a register is to copy the register into a temporary variable and then restore it 

before leaving the function. Detecting preserved registers is important in the process of 

identifying which registers are arguments or return values from a procedure. 
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Data flow analysis and a suitable intermediate representation can help solve the preserved 

register problem. If we ignore calls within a procedure, we can identify a preserved register 

by the fact that the reaching definitions for that register at each function exit, is the value of 

a copy of the register on function entry. To determine where the value is copied on entry to 

the function we can use a liveness analysis to identify where the register is used and check 

that instruction for a copy instruction. 

This process of identifying preserved registers requires that local variable reconstruction be 

performed. The reason is that the temporary variable used to save a copy of the preserved 

register is typically represented by a local variable. 

2.4.7.4 Procedure Parameter Reconstruction 

The parameters to procedures may be passed on the stack, or passed via registers. The 

return values are typically passed by registers. The exact semantics are defined the calling 

convention on a particular procedure. The arguments used by a procedure can be 

determined by the procedure accessing variables outside the current stack frame. Once 

the arguments are known, at call sites, the stack is statically unwound to the required depth 

to retrieve them. 

Registers may also be passed as arguments. Ignoring calls, arguments are registers that 

are live on procedure entry that aren’t preserved. To take into account calls, the analysis is 

performed on inner calls first as defined by their depth first order in the call graph. 

Recursive calls require further analysis. 

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

proc(){

L_0:

while (v1 || v2) {

L_1:

if (v3) {

L_2:

} else {

L_4:

}

L_5:

}

L_7:

return;

}

Fig. 24. A control flow graph and its linearized form. 
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2.4.7.5 Reconstruction of Structured Control Flow 

A standard technique in decompilation is transforming a control flow graph into higher level 

structured control flow [41, 58, 59]. This is the process of structuring. Identifying conditions, 

loops, and parts of the control flow graph that cannot be structured is required. Conditions 

may be compound conditional statements involving conjunction and disjunction. The higher 

the quality of structuring means the less the number of gotos in the generated code. Some 

graphs cannot be structured and the reducibility of the graph identifies these cases.  

Structuring of control flow graphs was proposed in [60, 61] to generate string signatures 

that were later used to identify malware variants. 

2.4.7.6 Type Reconstruction 

Type information is lacking from binaries. Reconstruction of types enables higher quality 

code in the decompiled output. An approach to type reconstruction using the unification 

algorithm was proposed in [62]. A data flow analysis approach based on lattices and using 

single static analysis was proposed in [56]. 

2.4.8 Obfuscation and Limits to Static Analysis 

It is known that perfectly precise disassembly is undecidable [63]. Branch targets can be 

indirect, and precise understanding of those run-time values can be problematic. In [64] an 

analysis of some limits to static analysis of malware were identified. The use of opaque 

predicates was shown to confound the problem of precise program representation. 

Determining whether two programs are semantically equivalent is also known to an 

undecidable problem which is why for example malware detection is often based on 

heuristic and unsound solutions. Likewise, perfect decompilation, for all possible binaries, 

is undecidable. If the binary does not originate from high level source then it is unlikely 

decompilation will give meaningful results. 

2.4.9 Research Opportunities 

Decompilation presents potential research opportunities when combined with other 

techniques such as static analysis or malware classification. Very little research has been 

performed on decompilation-based applications. The main application of decompilation 

thus far has been source code recovery. However, the high level information it recovers 

makes it a suitable abstraction for useful software features. In Chapter 5, we propose 
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extending decompilation-based approaches to malware variant detection. To achieve this 

task, we propose in Chapter 4 a novel formal intermediate language for binary analysis. 

Our intermediate language uses high level concepts from decompilation and bridges the 

gap between binary and higher level analyses. 

2.5 Dynamic Analysis 

In the previous sections we have examined static extraction of program features for the 

purpose of birthmark construction. Dynamic analysis is examined in this section. It is an 

alternative approach to static analysis that can be used for birthmark construction. 

Dynamic analysis concerns itself with analysing a running program. The program being run 

is typically isolated in an environment which allows its behaviour to be inspected. Typical 

behaviours that are extracted are the API call sequence. Instruction sequences, basic 

block sequences and control flow are amongst other behaviours that can also be identified. 

2.5.1 Relationship to Static Analysis 

There are roughly two approaches to extract program features from software. In the static 

approach, the software is never executed and the features are extracted from a static view 

of the program. In dynamic analysis the software is executed, possibly in a virtual machine, 

and its run-time behaviour examined. The run-time behaviours exhibit the properties or 

features being extracted. 

Static analysis is effective because it is able to examine to represent the set of all possible 

execution paths by approximating program behaviour. This is important because 

behaviours of specific programs may be hard to trigger dynamically. It is often difficult to 

trigger corner cases in programs and as a result a number of dynamic analysis testing 

methodologies exist to address this such as the use of analysing code coverage during 

execution. In the case of malicious code, malware authors actively change the behaviour of 

the code when under analysis. 

The main advantage of dynamic analysis is that the semantics of the program are 

exhibited, and obfuscations applied to the program have less effect on these exhibited 

semantics. Attempting to identify run-time behaviour properties for multiple paths of 

execution has been researched [39]. It is still a new area, but using symbolic execution to 
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trigger different behaviours has had some success. The results of exploring these multiple 

paths can be accumulated into a final report to infer the intent or potential behaviour of a 

piece of software. 

2.5.2 Environments 

Dynamic analysis requires an environment in which to run and isolate the program being 

analysed. The environment in which to run a program can be categorized in the following 

list: 

 Hooking 

 Dynamic Binary Instrumentation 

 Virtualization 

 Application Level Emulation 

 Whole System Emulation 

2.5.3 Debugging 

An operating system typically provides an API to debug processes. Debugging can allow 

for operations including single stepping through execution an instruction at a time, or 

setting a breakpoint at a particular code address. Debugging can be useful to monitor non 

malicious programs, however most malware today implements anti-debugging functionality 

which can detect the presence of a debugger. 

2.5.4 Hooking 

Hooking is the process of intercepting API calls allowing for possible instrumentation. 

Hooks can be placed in user space or kernel space. Hooking is commonly used by 

commercial Antivirus software to monitor process behaviour and detect possible misuse. 

Detours [65] is an implementation of hooking for the Windows operating system. The basic 

mode of operation is to overwrite the function in memory with a trampoline to the intercept 

handling code. The intercept handling code performs any instrumentation or monitoring as 

necessary then restores control back to the original function. Another method of hooking is 

overwriting dispatch tables such as system call tables or import addresses. It is also 
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possible in Linux to natively intercept API calls to dynamic libraries by preloading another 

library. Malware today often can detect the presence of hooking by implementing 

checksums over their executable code. 

2.5.5 Dynamic Binary Instrumentation 

Dynamic binary instrumentation is an approach that instruments native code on the fly. The 

binary being executed is controlled from a dispatcher which analyses the code, instruments 

it, and then rewrites it for execution. Some examples of dynamic binary instrumentation 

include PIN [66], DynamoRIO [67], and Valgrind [46]. Dynamic binary instrumentation 

based on PIN has been used for malware unpacking and analysis in [68, 69]. 

2.5.6 Virtualization 

Virtualization is a technique that supports native execution of a guest operating system by 

exploiting separation and isolation mechanisms implemented by the native hardware 

architecture or software. A number of methods are available to implement virtualization 

including paravirtualization which must be supported by both the host and the guest 

operating systems. The most important type of virtualization for providing an environment 

to perform feature extractions is hardware assisted virtualization. In the x86 architecture, 

hardware assisted virtualization was not always supported and detection of the virtualized 

environment was implemented by many strains of malware [68]. Hardware assisted 

virtualization has been used for malware analysis [70]. This type of analysis is harder to 

detect but attacks still exist to detect virtualization from a guest [71]. For example, it is 

known that memory caching between guests and hosts are different in the virtualized 

environment. However, as virtualization becomes a standard tool on the desktop, malware 

authors might no longer be able to associate virtualization with threat analysis. 

2.5.7 Application Level Emulation 

Application level emulation emulates the operating system and instruction set architecture 

for specific applications. This approach has been predominantly employed in Antivirus 

systems to perform real-time analysis of malware and automated unpacking [60]. Its main 

disadvantage is its inability to faithfully emulate the desired system which makes it 

susceptible to detection as has been the case with modern malware. 
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The typical features emulated in an application level emulator on the x86 Windows platform 

for the purposes of malware detection include: 

 Instruction Set Architecture (ISA). 

 Virtual Memory. 

 Windows API emulation. 

 Linking and Loading. 

 Thread and Process Management. 

 OS Specific Structures. 

The instruction set architecture (ISA) must be faithfully emulated. In practice, most 

deployed emulators only simulate part of the complete x86 ISA. Malware authors have 

responded by using uncommon instructions such as those associated with MMX and FPU 

to detect and thwart the emulation process. 

Virtual memory must be emulated. 32-bit x86 employs a segmented memory architecture. 

In Windows the segment registers are utilised to reference thread specific data. This data 

is additionally used by Windows Structured Exception Handling (SEH). SEH is used to 

gracefully handle abnormal conditions such as division by zero and is routinely used by 

packers and malware to obfuscate control flow. 

The Windows API is the official system call interface provided by Windows. There are too 

many Windows API functions to full emulate in a typical environment so only the most 

common APIs are implemented. This also presents a method for malware to detect and 

thwart an emulator using uncommon API calls. 

Linking and loading must be implemented by an emulator. Program loading entails 

allocating the appropriate virtual memory, loading the program text, data and dynamic 

libraries. Relocations must be performed and run-time linking performed. 
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Threads and process management must be performed. Malware can sometimes try to 

detect and thwart a debugger or emulator by being multi-process or multi-threaded. 

OS specific structures must also be simulated. Windows has a number of these including 

the Process Environment Block, the Thread Environment Block and the Loader Module. 

These structures are visible to applications and can be used by malware. 

2.5.8 Whole System Emulation 

A whole system emulator emulates the hardware of a PC. This allows an operating system 

to be installed as a guest. There are roughly two approaches to implement a whole system 

emulator or any emulator in general: 

 Interpretation 

 Dynamic Binary Instrumentation 

An example of whole system emulators includes QEMU [72] which is based on dynamic 

binary translation. Bochs is another whole system emulator that uses interpretation instead 

of dynamic binary translation. Bochs has been used for malware unpacking and analysis 

[30]. Interpretation is slower than dynamic binary translation which makes QEMU a popular 

choice. 

Interpretation works by implementing a fetch, decode and execute loop inside the 

emulator. Dynamic binary translation translates sequences of code from the guest into 

native code on the host. It can perform optimisations on these blocks of code which 

improves efficiency. The blocks are also cached reducing the costs of translation. In 

general, dynamic binary translation offers significant performance improvements over an 

interpretation based emulator. 

It is possible to modify a whole system emulator to monitor or instrument guest execution 

[73]. The BitBlaze project [47] is a project for binary analysis that makes heavy use of 

whole system emulation to perform tasks including malware analysis. Whole system 

emulation is effective for behavioural analysis of code but attacks exist to detect its 

presence from the guest [71].  
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2.6 Feature Extraction 

To recap the survey so far, we have examined static and dynamic methods of program 

analysis. These features must be translated into mathematical representations and 

birthmarks to be useful. Furthermore, mathematical representations may be embedded in 

other mathematical types to make birthmarks more amenable to similarity comparisons 

and for use in classification algorithms. Another approach is to represent features using 

kernels. This allows for the use of classification algorithms including the support vector 

machine for complex data types. This section examines the mathematical representations 

that we use to describe program features. 

2.6.1 Processing Program Features 

Program features are the basis of software similarity and classification, but must be 

transformed or into a meaningful representation that allows for similarity comparisons and 

indexing. Different representations are possible ranging from highly efficient but least 

expressive, to highly expressive but least efficient. For example, representing birthmarks 

as vectors allows for very efficient comparisons, but tends to lose structural information 

that is present in graph based representations. 

Combining features into a unified form may result in the establishment of software metrics. 

Attribute counting is one approach. Attributes that can be tallied might include the number 

of specific keywords, the number of conditionals, the number of loops and so forth. The 

final metric is the set of counted attributes. Processing might be done on these counted 

attributes to result in other measures. The Halstead complexity measures [74] are a set of 

software metrics that uses attribute counting at its core to give a measure on a programs 

complexity. Its initial use was for the purpose of software maintenance metrics but it has 

also been applied to software similarity. 

Another approach to combine the expressiveness of complex objects, such as graphs, is to 

transform or embed one representation into another. For example, a graph can be 

transformed into a vector based representation. Information is lost, but in many cases this 

is still useful as a birthmark. 
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2.6.2 Strings 

A string describes a sequence of tokens or characters. An example of a string could be a 

sequence of instruction opcodes making up a program path. 

Definition 21. Let be an alphabet of symbols .Let s be a string over the alphabet where *s . 

2.6.3 Vectors 

Vectors are one of the simplest representations and are efficient to work with. A vector is 

an an ordered list or tuple of a fixed number of elements or dimensions. A feature vector 

describes the frequency of particular features occurring. If the number of features is very 

large then dimensionality reduction can be used to filter unimportant features, or combine 

features together such as when using Principle Component Analysis (PCA).  

Examples of using vectors include describing features based on the occurrence of a 

specific n characters or n-grams.   

2.6.4 Sets 

A set is a collection of unique objects. A set of features is sometimes a useful 

representation. It ignores ordering of those features. An example use of sets is to describe 

the set of API calls a program makes. 

2.6.5 Sets of Vectors 

A set of vectors may sometimes be useful. If we consider that a procedure can be 

represented as a vector, then the set of procedures can be represented as a set of vectors. 

2.6.6 Trees 

Trees capture the structure of data, but are not as general as graphs. A tree is a connected 

undirected graph without cycles. Abstract syntax trees and parse trees are naturally 

represented by trees. Structured control flow can also be represented by trees. Trees can 

have a defined ordering of child nodes or be unordered. 

2.6.7 Graphs 

Graphs model structure in the data. Many program features are naturally represented as 

graphs include control flow graphs, call graphs, and dependency graphs. 

Definition 22. A graph is g=(V,E) where V is a set of vertices. VVVvuvuE },|),{(  
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Definition 23. A labelled graph ),,(Vg where V is a set of vertices LV: is the node 

labelling function, and LVV: is the edge labelling function. 

2.6.8 Embeddings 

Strings may be embedded in vectors. To reduce the string problem into an n-gram vector 

problem, a string may be divided into n-grams where the specific n-grams represent 

features. 

Definition 24. Given a set of strings L, and a set of vectors V there is a function f  such that 

VLf :  

Strings may be embedded in sets. To reduce the string problem into a set problem, a string 

may be divided into n-grams or shingles where the unique n-grams represent set elements. 

Definition 25. Given a set of strings L, and a set of sets S there is a function f such that SLf :  

Trees may be embedded in vectors. A tree may be decomposed into fixed sized subtrees. 

These subtrees can represent features in a feature vector. 

Definition 26. Given a set of trees T, and a set of vectors V there is a function f such that 

VTf :  

2.6.9 Kernels 

Kernels are most used in kernel based statistical machine learning classifiers. A kernel 

function operates in feature space which is typically of much higher dimensionality. A string 

kernel based on the subsequences in the string known as a subsequence kernels was 

proposed in [75]. A kernel for sets of features was proposed in [76]. A kernel for vector sets 

was proposed in [77]. A kernel for trees was proposed in [78]. A kernel based on random 

walks in a graph was proposed in [79]. Subtree kernels have been proposed. A kernel 

based the set of all paths in a graph has also been proposed. A kernel based on the 

shortest paths in a graph was proposed in [80]. 

2.6.10 Research Opportunities 

Embeddings and kernels present a significant opportunity for researchers. Embeddings 

have been investigated somewhat, but a comprehensive treatment of different embeddings 

for different structures has not been performed in the context of software similarity. In 

Chapter 5, we propose new methods of embedding structured data into vectors. We 
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propose approximating graphs as vectors and this allows us to implement a very efficient 

malware variant detection system. Kernel methods are effectively unused in software 

similarity and this presents many opportunities for researchers to apply kernel methods to 

so the software similarity and classification problem. Graph kernels could be used to 

perform software classification in applications such as malware classification. 

2.7 Software Birthmark Similarity 

Comparing birthmarks is necessary to identify similarities between software. If two 

birthmarks are similar, then the software is similar. Birthmarks may be compared to show 

similarity, or an alternative to showing similarity is to show dissimilarity or distance. 

Similarity measures and metrics exist for the different types of data such as strings, 

vectors, trees, graphs, etc. This section examines the different similarity measures and 

metrics for the different classes of birthmarks. 

Keywords: Software similarity, birthmark similarity, distance metrics, string similarity, 

vector similarity, set similarity, set of vectors similarity, tree similarity, graph similarity. 

2.7.1 Distance Metrics 

Definition 27. A metric on a set X is a function (known as the distance function or distance): 

DXd :

For all x, y, z in X, this function is required to satisfy the following conditions: 

1. 0),( yxd  

2. 0),( yxd iff x=y
 

3. ),(),( xydyxd  

4. ),(),(),( zydyxdzxd (triangle inequality) 

If the distance function has the properties of a distance metric then indexing and searching 

a database can be performed more efficiently. Therefore it is beneficial to compare 

software using distance functions that are metric. Examples of metric access methods are 

in [81-83]. 
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2.7.2 String Similarity 

Strings can be compared using string metrics. The Levenshtein distance between two 

strings defines the number of edit operations that must be performed to transform one 

string to the other. An edit operation includes character insertion, deletion, and substitution. 

Other string metrics include the Smith-Waterman algorithm which is used to perform local 

string alignment, or using the longest common subsequence. Optimal solutions to edit 

distance and alignments are normally O(n.m) where n and m are the lengths of each 

respective string. The solutions are typically implemented using dynamic programming. 

The Levenshtein distance, Smith Waterman distance and Normalized Compression 

Distance are all metric. 

2.7.2.1 Levenshtein Distance 
Definition 28. For two strings s and t, the Levenshtein distance is measured as follows: 

D(i,0)=0 )(0 sleni  

D(0,j)=0 )(0 tlenj  

deletionjiD

insertionjiD

onsubstitutitjsidjiD

jiD

1)1,(

,1),1(

),,()1,1(

min),(  

d(i,j) is a function whereby d(c,d)=0 if c=d, 1 else. 

The Levenshtein distance is metric. 

Definition 29. A method of normalizing the edit distance to give a similarity in [0,1] is: 

))(),(max(

),(
1),(

tlenslen

tsed
tssim  

2.7.2.2 Smith-Waterman Algorithm 
Definition 30. For two strings s and t, the Smith-Waterman similarity score is measured as follows: 

D(i,0)=0 )(0 sleni  

D(0,j)=0 )(0 tlenj  

If ai=bj w(ai,bj)=w(match) or ai≠bj w(ai,bj)=w(mismatch) 
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insertionbjwjiH

deletionaiwjiH

mismatchmatchbjaiwjiH
jiD

),()1,(

),(),1(

/),()1,1(

0

max),(

 

The Smith-Waterman algorithm when constructed as a distance instead of a similarity is 

known to be metric. The similarity algorithm is known as an optimal local string alignment.

 

2.7.2.3 Longest Common Subsequence (LCS) 

Definition 31. For two strings X and Y, the LCS is found as follows: 

yjxiifYjXiLCSYjXiLCSlongest

yjxiifxiYjXiLCS

joriif

YiXiLCS

)),1(),1,((

)),1,1((

000

),(

 

The similarity between two strings X and Y is defined as ),( YXLCS
 

2.7.2.3 Normalized Compression Distance 
Definition 32. For two strings x and y where C(x) is the length of a compressed x, the normalized 

compression distance (NCD) [84] is: 

))(),(max(

))(),(min(),(
),(

yCxC

yCxCyxC
yxNCD  

The NCD is metric. 

2.7.3 Vector Similarity 

Vector distance can be performed using metrics such as the Euclidean distance or 

Manhattan distance. Non metric similarity measures can include the cosine similarity which 

is often used in text mining. 

2.7.3.1 Euclidean Distance 
Definition 33. The Euclidean distance between vectors p and q is: 

n

i

pq
ii

qpd
1

2

)(),(  



 C H A P T E R  2  

 

58 

 

The Euclidean distance is metric. 

2.7.3.2 Manhattan Distance  
Definition 34. The Manhattan distance between vectors p and q is: 

n

i
ii
pqqpd

1

),(

 

The Manhattan distance is metric. 

2.7.3.3 Cosine Similarity  
Definition 35. The cosine similarity between vectors A and B is: 

BA

BA
similarity )cos(

 

The cosine similarity is not metric. 

2.7.4 Set Similarity 

Two sets can be compared using a variety of measures. The Dice coefficient and Jaccard 

Index are two such measures. The Jaccard Index is not metric, but its parallel the Jaccard 

Distance is, which allows for efficient indexing and searching. Containment and the 

Tversky index are examples of asymmetric similarity measures. Because they are 

asymmetric, they do not qualify as metric distance functions. 

2.7.4.1 Dice Coefficient 
Definition 36.  The Dice coefficient betweens sets A and B is: 

BA

BA
s

2

 

The Dice coefficient is not metric. 

2.7.4.2 Jaccard Index 
Definition 37. The Jaccard Index between sets A and B is: 

BA

BA
BAJ ),(

 

The Jaccard Index is not metric, however the Jaccard distance is. 
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2.7.4.3 Jaccard Distance  
Definition 38. The Jaccard distance between sets A and B is: 

),(1),( BAJBAJ d  

The Jaccard distance is metric. 

2.7.4.4 Containment 
Definition 39. The Containment of set B in A is: 

A

BA
BAC ),(

 

Containment is an asymmetric measure and therefore not metric. 

2.7.4.5 Overlap Coefficient  
Definition 40. The overlap coefficient between sets A and B. 

),min(
),(

YX

BA
YXoverlap

 

The overlap coefficient is not metric. 

2.7.4.6 Tversky Index  
Definition 41. The Tversky Index of sets X and Y is: 

XYYXBA

YX
YXS ),(

 

The Tversky index is an asymmetric measure and therefore not metric. 

2.7.5 Set of Vectors Similarity 

A set of vectors can be compared using the minimum matching distance [85], which 

constructs a minimum weight matching between pairs of vectors in each set. This distance 

is metric and can be evaluated in polynomial time. We extend this problem in Chapter 5 to 

our novel set of strings problems. 

2.7.6 Tree Similarity 

Trees can be compared for equality using tree isomorphism. Ordered trees are trees such 

that the children of each node are in a specific sequence. Ordered trees are significantly 
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more efficient to process than unordered trees. Approximate matching and similarity 

between trees can also be found using the tree edit distance [86]. The tree edit distance is 

metric. Alternatives to the tree edit distance include using the largest common subtree as 

an indicator of similarity. These are similar to the graph based version of the problem and 

are shown in the next section. 

Definition 42.  The tree edit distance between two graphs TTd 21
:  is the minimum 

number of edge or vertex insertions, deletions, and substitutions to transform one tree to the other.  

2.7.7 Graph Similarity 

2.7.7.1 Graph Isomorphism 

Graphs can be tested for structural equality by graph isomorphism testing. Graph 

isomorphism has not been demonstrated to belong to the complexity class P but it has not 

been proven to be in NP either. 

Definition 43. Let ),,(
1111 Vg and ),,(

2222 Vg be two graphs. A graph 

isomorphism between g1 and g2 is a bijective mapping VVf 21
: such that 

VV

V
yxyfxfyx

xxfx

1121

121

),()))(),((()),((

))(()(
 

If V1=V2=0 then f is called the empty graph isomorphism 

2.7.2.2 Graph Edit Distance 

A harder problem is calculating the approximate similarity or distance between two graphs. 

The two main approaches are the graph edit distance and using the maximum common 

subgraph. The graph edit distance is metric. These problems are proven not to belong to 

P. However, polynomial time approximate solutions exist to the graph edit distance.  

Definition 44. The graph edit distance GGd 21
:  between two graphs is the minimum sum 

cost of basic edit operations to transform one graph to another. 

2.7.2.3 Maximum Common Subgraph 

Definition 45. Let 
),,(

1111 Vg
and

),,(
2222 Vg

be two graphs and 

gggg
2211

','
. If there exists a graph isomorphism between g1’ and g2’, then both g1’ 

and g2’ are called a common subgraph of g1 and g2. 
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Definition 46. Let g1 and g2 be two graphs. A graph g is called the maximum common subgraph of g1 

and g2 if g is a common subgraph of g1 and g2 and there exists no other common subgraph of g1 and 

g2 that has more nodes than g. 

Definition 47.  The distance between graphs g1 and g2 is: 

1

),(
),(

21

21
g

ggMCS
ggd where |g|=|V|+|E| 

Definition 48.  The distance between graphs g1 and g2 is: 

),max(

),(
),(

21

21

21
gg

ggMCS
ggd  where |g|=|V|+|E| 

An approximate or inexact maximum common subgraph is also possible. 

Definition 49. The graph edit distance between two graphs GGd 21
:  is the minimum 

number of edge or vertex insertions, deletions, and substitutions to transform one graph to the other.  

Distances based on the maximum common subgraph are not metric. 

2.8 Software Similarity Searching and Classification 

The ultimate problem of this chapter is to search for similar software to our query from a 

database and to classify a program as belonging to a particular class. This section 

examines how we transform the pair-wise similarity problem into a similarity search 

problem over a database. Moreover, we examine statistical classification of birthmarks to 

identify the class of software it belongs to. 

2.8.1 Instance-based Learning and Nearest Neighbour 

Instance-based learning is a form of machine learning used in classification. To classify an 

object, it is compared to known instances of that object. If the query is similar to a known 

instance, or alternatively closest to an instance, known as its nearest neighbour, then it is 

classified as belonging to the same class. Nearest neighbour and range searches are the 

fundamental basis for software similarity using software features. If a piece of software 

represented as an object is in very close range or distance to known software instances, 

then it is declared a variant. 
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2.8.1.1 k Nearest Neighbours query 
Definition 50. Given a set of objects P and a query Q, and an integer k > 0, the k nearest neighbours 

(kNN) query is to find a result set kNN that consists of k objects such that for any 

)( kNNPp and any ),(),'(,' qpdistqpdistkNNp  

2.8.1.2 Range query 
Definition 51. Given a set of objects P and a query Q, and a range r > 0, the range query is to find a 

result set rNN that consists of objects such that for any rqpdistrNNp ),'(,'  

2.8.1.3  Metric Trees 

Metric trees allow similarity searches (nearest neighbour and range searches) for objects 

that have a metric distance function. A number of algorithms have been proposed such as 

BK Trees [87], Vantage Point trees [81], M-Trees [83], Slim trees [88], or DBM Trees [82]. 

Metric access methods can be categorized by different qualities such as whether the data 

structures allow for efficient insertion and deletion of objects allowing for dynamic access, 

or whether the data structures are kept in main memory or on disk. 

2.8.1.4  Locality Sensitive Hashing 

Locality sensitive hashing [89] is a scheme whereby similar objects are hashed to the 

same buckets. This allows a similarity search to perform nearest neighbour searches by 

hashing. 

Definition 52. Let d be a metric distance function. Let }.),(|{),( rqvXqrvB A family

}:{ UShH is called {r1,r2,p1,p2} sensitive for D if for any Sqv,  

 If ),( 1rqBv then 1)]()([Pr pvhqhH  

 If ),( 2rqBv then 2)]()([Pr pvhqhH  

q

Query Malicious

Query Benign

d(p,q)

p

r

Malware

Query

Fig. 25. The software similarity search to detect 
malware. 
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In order of a locality-sensitive hash (LSH) family to be useful, it has to satisfy inequalities 

p1 > p2 and r1 < r2. 

2.8.1.5 Distributed Similarity Search 

Scalability becomes a problem when database sizes increase. For example, malware 

databases have been growing exponentially [4] and efficient algorithms are required to 

handle the problem. Distributed algorithms are one solution to scale similarity searches. 

Distributed metric space similarity search algorithms include M-Chord [90] and GHT* [91, 

92]. An approach based on Locality Sensitive Hashing is proposed in [93]. 

2.8.2 Statistical Machine Learning 

Statistical classification is the process of assigning objects to classes. A typical example is 

the malware classification problem which is the process of assigning an unknown 

executable to the class of malicious or non malicious software. 

Machine learning can be supervised or unsupervised. In the unsupervised model, none of 

the objects are labelled, and their class designation is unknown. The usual approach is to 

perform clustering to identify separate classes. In the supervised approach, a training set 

of data is labelled and used to build a model of classes in relation to their characteristics. 

After training, the system classifies unlabelled data and determines their classes. 

Statistical classifiers include the popular and efficient Bayesian classifiers. Artificial Neural 

Networks (ANN) are another popular choice. The classifiers can also be grouped into linear 

and non linear systems. In a linear classifier, the input space can divide the classes using 

hyperplanes. 

Vectors are used in many machine learning algorithms so often it is most useful to 

represent software as feature vectors. Features that are extracted from software can be 

used to construct feature vectors. Kernel machines provide an alternative approach to 

using feature effects and the most popular kernel method based classifier is the Support 

Vector Machine [94]. In this approach, a kernel for a particular object must be constructed. 

For classification of objects such as graphs, a variety of graph kernels can be used.  

2.8.2.1 Vector Space Models 
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In the vector space model, a feature vector is constructed in n and classes are separated 

by partitioning over that space. The original feature vectors may have a high 

dimensionality, but in reality many of these features may be of low importance or 

redundant. Dimensionality reduction reduces the size of the feature vector. 

2.8.2.2 Kernel Methods 

The most well known kernel based classifier is the support vector machine (SVM) [94]. It is 

a linear classifier and works by constructing a hyperplane that maximally separates the 

margins between each class. 

2.8.3 Research Opportunities 

Nearest neighbour searches using metric distance functions to perform similarity searches 

has been employed in some malware detection literature. Much existing literature on 

software similarity has only focused on pairwise similarity and ignored the indexing and 

searching problem. Opportunities exist to transfer existing techniques into metric indexing 

methods. In Chapter 5, we make the novel application of metric indexing methods to our 

malware indexing and searching system. 

Locality sensitive hashing also represents an opportunity as this indexing and searching 

technique has not been employed in all areas such as malware detection. Likewise, 

distributed similarity search algorithms are still to be exploited in the domain of software 

similarity. 

Class B

Class A

Fig. 26.  A linear classifier separating two classes. 
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The use of kernel methods for graph and tree based features is an area which is 

unexplored. The use of graph kernels to enable graph based classification presents much 

opportunity for researchers in future work. 

2.9 Applications 

This section surveys the application specific literature in software similarity and 

classification. It examines malware classification, software theft detection, plagiarism 

detection and code clone detection. We group the literature based on the class of program 

feature that is used to construct birthmarks. Finally, we critically analyse the approaches 

used. 

2.9.1 Malware Classification 

2.9.1.1 Raw Code 

An approach employed by commercial Antivirus avoids static analysis by automatically 

extracting string signatures [95, 96].The main problem with this approach is that 

polymorphic malware makes string signatures prone to failure when the byte level content 

changes due to mutation, recompilation, and source code modification.  

Kolmogorov complexity is a theoretical measure of the computational complexity, or 

minimum string length in a universal description language, required to represent an object 

or set of data. It is a theoretical measure that is not computable. To estimate the 

Kolmogorov complexity, an object may be compressed and concatenated with the 

associated decompression routine, to give the approximate minimum string length to 

describe the object. The observation, when this theory is related to malware, is that similar 

malware have similar measures of Kolmogorov complexity. This form of analysis occurs on 

the malwares raw file or section content. 

Estimating Kolmogorov complexity was proposed in peHash [97] by identifying the 

compression ratio of a malicious sample that was subsequently used for clustering 

malware families. Another measure of similarity related to Kolmogorov complexity is the 

Normalized Compression Distance (NCD). The NCD was used in [98] to cluster worms into 

families. This approach, like peHash [97], was not used to classify samples as being 

benign or malicious, but to cluster malicious samples only. 
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It was the observation in [99] that malware and benign programs can be classified 

according to a likeness to a compression model for each of the malicious and benign 

classes. In this research, it was proposed that two compression models be constructed 

from a two training sets, one of malicious samples, and one of benign samples. To classify 

a query sample as being malicious or benign, the number of bits required to encode the 

query was calculated for each compression model. The query was classified by identifying 

the class that requires the least data to encode the query. 

2.9.1.2 Instructions 

An approach that employs static analysis is code normalization [17, 100]. Code 

normalization canonizes malware before Antivirus string scanning. In [17], static analysis 

eliminated superfluous control flow by merging redundant control flow nodes together. 

Instruction sequences within basic blocks that had no effect were also removed using an 

SMT decision procedure. The malware normalization approach improves on Antivirus 

detection but does not always effectively canonize a program to a unique form. This can 

affect the effectiveness and efficiency of malicious code detection.  

A simple approach requiring only disassembly is fingerprinting malware based on opcode 

distributions [101]. An improved approach was proposed by using n-gram analysis of 

opcode and byte sequences. N-grams and n-perms can identify similarity between 

malicious programs and build evolutionary trees [102]. N-gram based feature vectors were 

used in instance-based learning and statistical classification. Statistical classification 

allowed for the detection of novel and unknown malware in [103, 104]. These systems 

improve the effectiveness of static string signatures, but instruction level classification has 

similar problems when the instruction stream changes to any significant degree.  

2.9.1.3 Basic Blocks 

Malware classification using the basic blocks of a program has been investigated in [105]. 

This approach requires disassembly and ideally a reasonable control flow analysis to 

identify targets of branchs and calls. The edit distance can be used between basic blocks 

to identify similarity. Existence of a basic block in a malicious sample can be determined 

using an inverted index or bloom filters. The main problem with this approach is 

polymorphic malware that changes the instructions within a basic block. 
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2.9.1.4 API Calls 

The static ordering of system API calls can be extracted and used for malware 

classification. Association mining was proposed in [106] proposed to detect unknown 

malicious programs. Dynamic analysis of API calls or the combination of API calls and data 

flow can also be used as proposed in [107]. 

2.9.1.5 Control Flow and Data Flow 

Control flow has been shown to be one of the more invariant features of a polymorphic 

malware and is resistant to byte and instruction level changes. Combining data flow 

analysis and control flow analysis was proposed in [108, 109]. Annotated flowgraphs 

combining data flow were compared to signatures, or automata, that describe the malware. 

2.9.1.6 Data Flow 

A data flow analysis was proposed in [54] where value set analysis was used to construct 

signatures.  

2.9.1.7 Call Graph 

Interprocedural control flow using the call graphs of a program have been compared to 

show similarity to existing malware [110-113]. An approach to transform the interprocedural 

control flow information into a context free grammar, allowing for homomorphism testing 

using string equality was also proposed in [24].  

2.9.1.8 Control Flow Graphs 

Control flow graphs have also been employed in [60, 61, 114, 115] using graph edit 

distances, maximum common subgraphs and decomposition of graphs into small fixed 

sized subgraphs. 

2.9.2 Software Theft Detection (Static Approaches) 

2.9.2.1 Instructions 

Considering the static instruction sequences in control flow graphs was proposed for Java 

programs in [116]. This approach proposed using control flow graphs to build static 

instruction traces. The traces were constructed by imposing a tree structure on the control 

flow graphs and performing tree traversals to generate an ordering of the instructions. To 

compare traces a sequence alignment algorithm was used. The similarities between traces 

in control flow graphs were accumulated to generate a program level similarity score. 
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K-grams were proposed in [117] to compare two programs. In this work, a k-gram was 

defined as a unique sequence of k instructions as laid out in the executable. The resulting 

birthmark is a set of k-grams. To compare two programs, set similarity measures were 

used which parallel the Jaccard index and the detection of subsets. 

The operands of instructions have also been proposed as a useful birthmark in Java 

programs. [118] proposed four birthmarks, one being the sequence of constant values in 

field variables. Operand stack patterns were proposed in [119] [120]. Operand stack 

patterns looked at sequences of bytecode that shared operands through the operand 

stack. 

2.9.2.2 Control Flow 

Control flow has been proposed as a static feature from which birthmarks can be 

constructed [121, 122]. In the proposed approaches, the edges in the control flow graph 

were used. The instructions in the basic blocks making up the edge were concatenated 

with each other to construct a possible execution sequence of code. To compare two of 

these features, the longest common subsequence (LCS) algorithm was used. To compare 

two sets of these features, as when all the control flow edges are considered, a maximum 

weight matching was performed on the set of all pairwise comparisons of those features. 

This matching sum allows for a calculation of similarity. 

2.9.2.3 API Calls 

Static API calls were proposed as birthmarks in [123, 124]. The API calls made in each 

procedure of a program were grouped together in sets. To compare two sets, the Dice 

coefficient which measures the similarity between two sets was used. To compare two 

programs, where each program consists of multiple sets, a maximum weight matching was 

used on the set of all pairwise comparisons between those sets. This matching allows for 

calculation of similarity. 

2.9.2.4 Object Dependencies 

Object inheritance graphs in Java programs and the objects other objects used was 

proposed in [118] as a birthmark. This paper proposed a total of four birthmarks that could 

be used for software theft detection. 
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2.9.3 Software Theft Detection (Dynamic Approaches) 

2.9.3.1 Instructions 

Dynamic extraction of instruction N-grams was proposed in [125]. This is analogous to k-

grams and n-grams in the static approach. 

2.9.3.2 Control Flow 

An interesting approach to capture the dynamic nature of control flow was proposed in 

[126]. The control flow is dynamically traced, and the edges in the associated control flow 

graph labelled. The execution trace generates a sequence of those labels. The sequence 

is converted into a context free grammar using the SEQUITUR algorithm which is useful in 

capturing the repetitive nature of dynamic control flow. The grammar produces a graph and 

the terminal nodes are removed. This final graph is the birthmark. To compare two 

birthmarks, a maximum common subgraph is used to identify similarity. 

2.9.3.3 API Calls 

Dynamic tracing of API class has had a considerable amount of research [8, 127-130]. The 

dynamic API trace exhibits properties of the programs semantics and is less prone to the 

problems of obfuscation that static API call traces have. However, triggering all behaviours 

can be difficult. 

2.9.3.4 Dependence Graphs 

A dynamically generated system call dependence graph  approach to building a birthmark 

was employed in [5]. Nodes in the graph represented system calls and control and data 

dependencies were represented by edges. The graphs, or birthmarks, were compared to 

show similarity using subgraph isomorphism testing. 

2.9.4 Plagiarism Detection 

Plagiarism detection systems often make the distinction between attribute counting and 

structure based techniques. Attribute counting is based on software metrics, or the 

frequencies of particular features occurring. Typical approaches include Halstead metrics 

and other metrics which take into account attributes including the number of tokens, the 

number of operators, the number of variables, or the number of source lines [131]. 

Structure based techniques rely on using program structure which typically include the use 

of dependency graphs or parse trees. 
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2.9.4.1 Raw Code and Tokens 

JPlag [132] and YAP3 [133] consider tokens from source code as features and perform 

similarity comparisons using greedy string tiling. Another approach [134] considers 

tokenization and linearization of the source code and uses an adaptive sequence 

alignment to construct a similarity measure. 

2.9.4.2 Parse Trees 

Parse trees are related to abstract syntax trees and have been proposed for plagiarism 

detection [135] by using tree comparisons to identify similarity. Tree similarity can be based 

on algorithms including tree edit distances or largest common subtrees. 

2.9.4.3 Program Dependency Graph 

GPLAG used program dependency graphs of programs [136]. Similarity between program 

dependency graphs uses similarity metrics such as the graph edit distances. 

2.9.5 Code Clone Detection 

Large scale manual attempts at auditing specific Linux distributions for embedded 

packages-level clones have occasionally occurred in the past. In 2005, the Debian 

package repository was scanned for vulnerable zlib fingerprints based on version strings 

[137]. Antivirus signatures were generated and ClamAV performed the scanning. We 

extend this work significantly with a completely automated approach in Chapter 3. Work 

has been done on detecting higher-level clones, including file-level clones [138]. 

Additionally, clone detection has been used on industrial sources like the Linux kernel [139] 

or as used by Microsoft engineers [140]. An interesting semantic approach to clone 

detectioni is to use the memory states of a program [141]. . In [142], trees were used to 

represent sourcecode, and subtrees transformed to a vector representation. This allowed 

for the Euclidean distance and clustering to identify clones. 

2.9.5.1 Raw Code and Tokens 

Clone detection can be performed on the textual stream in a source file once whitespace 

and comments are removed [143]. The key concept is that a fingerprint of a code fragment 

is obtained and then the remainder of the source scanned for possible matching 

duplicates. More recently [144, 145] has used the token approach with good success in 

large scale evaluations. Large scale copy and paste clones using a data mining approach 

was investigated in [146, 147]. 
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2.9.5.2 Abstract Syntax Tree 

An alternative approach is to use the abstract syntax tree of the source to generate a 

fingerprint [148]. Tree matching can subsequently be used to discover software clones. 

Abstract syntax trees are more impervious to superficial changes to the textual stream and 

textual organization of the code. 

2.9.5.3 Program Dependency Graph 

Other program abstractions can be used to fingerprint code fragments such as the program 

dependency graph which is a graph combining control and data dependencies [149]. 

2.9.6 Critical Analysis 

All applications of software similarity and classification share common themes 

of feature extraction, similarity functions and statistical classification. The 

literature reviewed in this section on applications should be in the context of 

the theory presented in this chapter. Initial work on malware detection was 

based primarily on the raw code contents. As noted in earlier sections, raw 

code is ineffective when trying to detect malware variants including 

polymorphic and metamorphic samples. Instruction opcodes and sequences 

also face similar problems. Control flow has been used successfully in most of 

the above applications when perform static analyses. The danger of including 

data flow as a feature is that the birthmarks created become too specific to 

the instance of code and therefore suffer the same fate as using byte-level 

content. Therefore, control flow might be the best choice for the time being. 

Control flow can be obfuscated however using packing and other techniques 

so a trend has been to perform dynamic analysis by running the sample 

program in a virtualized environment. The feature of choice has been the API 

calls the program makes. Dynamic analysis is not without fault though and 

that has also been discussed in earlier sections. Of note, there is a distinction 

in the literature between the software similarity problem and the software 

classification problem. Some applications such as software theft detection will 
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always be based upon software similarity. However, applications such as 

malware detection only care for a signature-less binary classification. 

Nevertheless, software similarity is still useful for identifying families of 

malware and attributing authorship of those malicious executables.  
 
 

2.10 Future Trends 

Software similarity and classification may see the unification of malware classification with 

other technologies such as software theft detection or software clone detection. These 

topics will see sharing of concepts and techniques and the use of program features will 

become comprehensive. It may indicate that a combination approach to software similarity 

and classification is appropriate. Many of the features are useful at representing a 

particular property of software, but obfuscations or transformations may alter these 

properties. Using a variety of properties in combination may be a suitable response for 

increasing accuracy. 

Static binary analysis is an emerging field and continues to improve. The analyses are 

becoming stronger and able to model more complex behaviour without gross under-

approximations or over-approximations. This will continue to improve as this area of static 

analysis becomes more recognized. In particular, malware classification and software theft 

detection are driving forces of the need for analyses. 

Static binary analysis is used in academic malware classification. It has not seen 

widespread use in commercial Antivirus. We believe this situation will change due to the 

more effective signatures and the ability to use machine learning and statistical 

classification to detect novel samples of malware. The trend in malware classification is to 

use higher level of abstractions and more emphasis is placed on combining data flow 

analysis with control flow analysis. Appropriate database technologies are being used 

more as the problem is becoming how to effectively perform indexing and searching of 

program features for an instance-based signature approach of malware variant detection. 

Statistical classification continues to improve on the effectiveness of program features 

used. We are likely to see the combination of program features, and the combination of 
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different classifiers to improve system accuracy. Complex objects such as graphs will 

continue to be used with an emphasis on problems in graph mining. 

Software theft detection is not widely used by all vendors, but as technology improves and 

matures, this may become more common. Software theft detection is a program variant 

detection problem and therefore uses instance-based learning. Database technology as in 

the case of malware variant detection will take important roles. 

Network speeds are improving and cloud services are becoming more popular. Antivirus 

vendors have already taken advantage of this and have provided an initial set of offerings 

for cloud based malware detection. Services already exist that provide AV scanning on 

demand using a large number of commercial scanners. A hybrid scheme may also be used 

where some of the processing and feature extraction is done on the endpoint. We expect 

that as bandwidth becomes less of an issue, cloud Antivirus will become popular. Placing 

malware classification in the cloud allows the use of huge signature databases along with 

correlation not possible when end users are disconnected. Mobile platforms are less 

powerful than their desktop counterparts, so these devices would benefit from cloud 

services where the majority of processing is done away from the user’s device. Finally, 

cloud services may provide an opportunity to detect attackers, through service misuse, 

from tuning their malware or plagiarised code to evade detection.  

Concluding Remarks 

In conclusion of this chapter, software similarity and classification is an important topic that 

unifies and tackles the problems of malware classification, plagiarism detection, software 

theft detection and code clone detection. Many techniques are pioneered or formalized in 

one topic but only later applied, if at all, to other domains. We have presented the core 

concepts of how to approach this problem and identify new areas of research. Much 

research is possible simply by applying existing research across domains. 
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Chapter 3: Clonewise – Detecting Package-level 

Clones Using Machine Learning 

Developers sometimes maintain an internal copy of another software or fork development 

of an existing project. This practice can lead to software vulnerabilities when the embedded 

code is not kept up to date with upstream sources. As a result, manual techniques have 

been applied by Linux vendors to track embedded code copies and identify vulnerabilities. 

We propose an automated solution to identify clones of packages without any prior 

knowledge of these relationships. We then correlate clones with vulnerability information to 

identify outstanding security problems. This motivates package maintainers to avoid using 

cloned packages and link against system wide libraries. Our approach identifies similar 

source files based on file names and content to identify relationships between packages. 

We propose over 30 novel features that enable us to use to use pattern classification to 

accurately identify package-level clones. To our knowledge, we are the first to consider 

clone detection as a classification problem. Our results show Clonewise compares well to 

manually tracked databases. These results are now starting to be used by Linux vendors to 

track embedded packages. Red Hat started to track clones in a new wiki, and Debian are 

planning to integrate Clonewise into the operating procedures used by their security team. 

Based on our work, over 30 unknown package clones and vulnerabilities have been 

identified and patched. 

3.1 Introduction 

Developers of software sometimes embed code from other projects. They statically link 

against an external library, maintain an internal copy of an external library’s source code, 

or fork the development of an external library. A canonical example is the zlib compression 

library which is embedded in much software due to its functionality and permissive 

software license. In general, embedding software is considered a bad development 

practice, but the reasons for doing so include reducing external dependencies for 

installation, or the need to modify functionality of an external library. The practice of 

embedding code is generally ill advised because it has implications on software 

maintenance and software security. It is a security problem because at least two versions 
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of the same software exist when it is embedded in another package. Therefore, bug fixes 

and security patches must be integrated for each specific instance instead of being applied 

once to a system wide library. Because of these issues, for most Linux vendors, package 

policies exist that oppose the embedding of code, unless specific exceptions are required. 

In the example of zlib, each time a vulnerability was discovered in the original upstream 

source, all embedded copies required patching. However, in the past, uncertainty existed 

in Linux distributions of which packages were embedding zlib and which packages required 

patching. In 2005, after a zlib [150] vulnerability was reported, Debian Linux [151] made a 

specific project to perform binary signature scans against packages in the repository to find 

vulnerable versions of the embedded library. To create a signature the source code of zlib 

was manually inspected to find a version string that uniquely identified it. This manual and 

time consuming approach still finds vulnerable embedded versions of software today. We 

constructed signatures for vulnerable versions of compression and image processing 

libraries including bzip2, libtiff, and libpng. We performed a scan of the Debian and Fedora 

Linux [152] package repository and found 5 packages with previously unknown 

vulnerabilities. Even for actively developed projects such as the Mozilla Firefox web 

browser, we saw windows of exploitability between upstream security fixes and the 

correction of embedded copies of the image processing libraries. Even in mainstream 

applications such as Firefox, these windows of opportunity sometimes extended for periods 

of over 3 months. 

The traditional approach for discovering duplicated fragments of insecure code has been 

through the use of code clone detection. However, clone detection is sometimes too fine 

grained to be of practical benefit for Linux vendors and package maintainers. 

3.1.1 Motivation for Package-level Clone Detection 

Clone detection theoretically solves the problem of insecure code fragments propagating to 

other locations. However, in practice the number of code clones is significantly high. For 

developers of individual projects, clone information may be useful. Yet, package 

maintainers and operating system distributions have no realistic actions to take with such 

clone information since they are not the primary developers of the software they release. 

What package maintainers and operating system vendors want is the ability to repackage 
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or build the software in such a way that improves security and eliminates clones. If vendors 

know that an entire package is cloned in another, then they can modify the build process to 

use the operating system's system wide library package. This is an achievable goal and 

improves the security and stability of the system. This is our motivation and the reason we 

see package-level clone detection as an important addition to software engineering that 

traditional clone detection does not address. 

3.1.2 Motivation for Automated Approaches 

The approach of manually searching for embedded copies of specific libraries deals poorly 

with the scale of the problem. According to the list of tracked embedded packages in 

Debian Linux, there are over 420 packages which are embedded in other software in the 

repository. This list was created manually and our results show that it is incomplete. Other 

Linux vendors were not even tracking embedded copies before our research supplied them 

with relevant data. It is evident from this that an automated approach is needed for 

identifying embedded packages without prior knowledge of which packages to search for. 

This would aid security teams in performing audits on new vulnerabilities in upstream 

sources. This identifies the motivation for our system named Clonewise to identify 

package-level clones. 
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Fig. 27. Shared package clone detection (above) and embedded 
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Previous systems that automate and address part of the problem are software provenance 

systems. Our system extends such suck by recognising more features in software that can 

be used to fingerprint it. Our system also addresses the problem of software being 

implemented in multiple languages, even within the same package. Our work is language 

agnostic. We also address the problem of requiring every version of a software to match it 

against a query. Our system can determine if a package is embedded, irrespective of 

which version number is used. This has advantages, but also makes identifying security 

problems in specific versions harder. We overcome this by using side-information that 

tracks the necessary information and is maintained by operating system vendors. 

Our work is also similar to the concept of structural or higher-level clones as proposed in 

[138]. We are much more specific in the type of structure we are searching for. That is, 

package-level clones. Likewise, the structural clones in [138] use directory-level clones to 

simulate module-level clones which is not as accurate. 

3.1.2 Generability 

At first glance, package-level clone detection may appear to be a Linux distribution specific 

problem. However, this problem applies to any vendor who maintains a repository of 

software packages and shares common code amongst packages. It also applies to any 

vendor which for legal reasons needs to know the provenance of embedded packages 

such as open source libraries.  Finally, this problem applies to any vendor who needs to 

know what open source libraries have been embedded so as to keep up-to-date with 

upstream releases. It is quite conceivable that any large software project may incorporate 

some permissively licensed open source software as an embedded library or package. For 

Fig. 28. Graph of Fedora 13 package relationships. 
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all of these reasons, software engineering needs to incorporate automated means to 

provide assurance that the state of software and the existence of package-level clones is 

known. 

3.1.3 Innovation 

Our approach is to consider code reuse detection as a binary classification problem 

between two packages. The classification problem is ‘do these two packages share code?’ 

We achieve this by performing feature extraction from the two packages and then 

performing statistical classification using a vector space model. The features we use are 

based on the filenames, hashes, and fuzzy content of files within the source packages 

To identify security vulnerabilities we associate vulnerability information from public 

vulnerability advisories to vulnerable packages and vulnerable source files. We then 

discover all clones of these packages in a Linux distribution. Finally, we check the 

manually tracked vulnerable packages that Debian Linux maintain for each vulnerability 

and report if any of our discovered clones are not identified as being vulnerable. 

In this chapter we make the following contributions: 

We define the problem of package clone detection, and the sub-categories of shared and 

embedded package clone detection. 

We are the first ones to formulate code reuse detection as a pattern classification problem. 

Then, it is feasible to apply traditional pattern classification algorithms to achieve accurate 

clone detection. We employ a novel asymmetric bagging based classifier combination 

method to address the specific classification problem. 

We propose over 30 new features for the purpose of clone detection, which are 

fundamental to solve the specific pattern classification problem. In particular, the proposed 

features are basis to the accuracy of clone detection. 

We propose applications of package clone detection. We present algorithms to identify 

outstanding security vulnerabilities based on out-of-date clones. 
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We implement a complete system, Clonewise, which demonstrates our system effectively 

identifies package clones, finds vulnerabilities and is useful to vendors. For example, 

Debian Linux is planning infrastructure integration of Clonewise.  

3.1.4 Structure of the Chapter 

The structure of this chapter is as follows: Section 3.2 defines the problem of package 

clone detection and outlines our approach. Section 3.3 discusses some early attempts we 

made to perform package-level clone detection. Section 3.4 describes how Clonewise 

detects shared and embedded package clones using machine learning. Section 3.5 

describes the algorithms we use to identify vulnerabilities based on clone information. 

Section 3.6 gives an outline of our implementation and Section 3.7 evaluates our system. 

Section 3.8 is discussion. Finally we present our concluding remarks. 

3.2 Problem Definition and Our Approach 

3.2.1 Problem Definition 

A package clone is the duplication of one package’s code in another package. It is the 

presence of code reuse between packages. How do we find these package clones? 

A package can be embedded in another package. How do we determine this knowing that 

a package clone exists? 

A package clone may contain vulnerabilities or other security problems because the clone 

is out of date. How do we find these? 

3.2.2 Our Approach 

Our approach for detecting clones is based on binary classification. This approach is 

shown in Fig. 27 and described below. A key point is that if two packages share code, one 

is not necessarily embedded in the other. We therefore detect code reuse and embedding 

as related but distinct problems. 

Our approach is to consider code reuse detection as a binary classification problem 

between two packages. The classification problem is ‘do these two packages share code?’ 

We achieve this by performing feature extraction from the two packages and then perform 
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statistical classification using a vector space model. The features we use are based on the 

filenames, hashes, and fuzzy content of files within the source packages. 

A package clone consisting of two packages can be analysed to determine if one package 

is embedded in the other. We use a binary classification problem to answer this. The 

features we use are based on the size of the cloned code relative to the size of each 

package, and other features such has how many packages are dependent on the 

packages we are analysing. 

We determine vulnerable packages by correlating security tracking information with our 

package clone detection analysis. 

3.3 Initial Attempts 

Clonewise has been under development over a period of time and we have experimented 

with a number of approaches before deciding to use the machine learning-based system 

we currently employ. 

3.3.1 Containment for Embedded Package Clone Detection 

In our first attempts, we recognized that shared filenames can be used to identify 

commonality between two software packages. We experimented with using set theory 

proposed in related work to show that one package was embedded in another: 

Definition 53.  Package containment is: 

where A and B are the sets of filenames in each package and t is a threshold of similarity. 

This equation is similar to the containment similarity measure [153] to show that one object 

is embedded in another. This is the same similarity measure as used to determine software 

provenance.  

The first point we noticed was that some filenames are very common and skewed our 

results. We decided to exclude the most frequent filenames from our analysis to address 

this problem. 

t
A

BA
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3.3.2 Intersection for Shared Package Clone Detection 

A failure with the previous approach is that almost the entire package must be embedded 

for detection to occur. It is often the case that only the core code is embedded. We then 

tried the following:  

Definition 54. Package clone intersection is: 

This equation shows us the number of shared filenames between two packages which 

indicates sharing, not embedding, of code. We chose a low threshold and analysed the 

Fedora 13 Linux distribution. We made a directed graph where each node was a package, 

and an edge between nodes indicated the above equation was true. The graph is shown in 

Fig 28. 

The graph gives us insight into package relationships. Cliques, or fully connected 

subgraphs, are packages that all share code with each other. If we relax clique detection to 

detect quasi-cliques or detect densely connected subgraphs, as in community structure 

[154], we can reveal even more relationships. It is likely, that one of the nodes in the clique, 

quasi-clique, or community is a library that is embedded in the other nodes. 

3.3.3 Motivations for Other Approaches 

We chose not to continue along this line of research for a number of reasons. 1) Choosing 

thresholds can be difficult and machine learning to select these values is a sound 

alternative. 2) All filenames should be considered, but it would be ideal if they were 

weighted based on their frequency. 3) Other features besides filenames should be 

considered. The set theory approach fails at this point without significant redesign. 

3.4 Package Clone Detection 

Clonewise is based on machine learning and we have found this approach to be most 

versatile and successful. We employ statistical classification to learn and then classify two 

packages as sharing or not sharing code. 

tBA
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Classification is a well-studied problem in machine learning and software is available to 

make analyses easy. Weka [155] is a popular data mining toolkit using machine learning 

that Clonewise uses to perform machine learning.  

3.4.1 Shared Package Clone Detection 

Feature extraction is necessary to perform shared package clone classification. We need 

to select features that reflect if two packages share or do not share code. The feature 

vector we extract is obtained from a pair of packages that we are testing for sharing of 

code. The 26 features we use  are discussed in the following subsections. 

3.4.1.1 Number of Filenames 

Our first set of features is simply the number of filenames in the source trees of the two 

packages being compared. 

3.4.1.2 Source Filenames and Data Filenames 

In Clonewise, we distinguish between two types of filename features. Filenames that 

represent program source code and programs that represent non program source code. 

We distinguish these two types of filenames by their file extension. The list of extensions 

used to identify source code are c, cpp, cxx, cc, php, inc, java, py, rb, js, pl, m, mli, and lua. 

Almost all of the features in Clonewise are applied for both source and data filenames. 

3.4.1.3 Number of Common Filenames 

To identify that a relationship exists between two packages such that they share common 

code, we use common filenames in their source packages as a feature. Filenames tends to 

remain somewhat constant between minor version revisions, and many filenames remain 

present even from the initial release of that software. For our purposes we can ignore 

directory structure and consider the package as a set of files, or we can include directory 

structure and consider the package as a tree of files. We noted several things while 

experimenting with this feature: 

Many files in a package do not contribute to the actual program code. 

C code is sometimes repackaged as C++ code when cloned. For example, lib3ds.c might 

become lib3ds.cxx. 
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The filenames of small libraries can often be referred to as libfoo.xx or foo.xx in cloned 

form. 

Some files that are cloned may include the version number. For example, libfoo.c might 

become libfoo43.c. 

We therefore employ a normalization process on the filenames to make this feature 

counting the number of similar filenames more effective. 

Normalization works by changing the case of each filename to be all lower case. If the 

filename is prefixed with lib, it is removed from the filename. The file extensions .cxx, .cpp, 

.cc are replaced with the extension .c. Any hyphens, underscores, numbers, or dots 

excluding the file extension component are removed. 

3.4.1.4 Number of Similar Filenames 

It is useful to identify similar filenames since they may refer to nearly identical source code. 

A fuzzy string similarity function is used that matches if the two filenames are 85% or more 

similar in relation to their edit distance. 

Definition 55. Our similarity measure is: 

We chose the edit distance as our string metric after experimenting with other metrics 

including the smith-waterman local sequence alignment algorithm and the longest common 

subsequence string metric. 

3.4.1.5 Number of Files with Identical Content 

We perform hashing of file content using the ssdeep software and do a comparison of 

hashes between packages to identify identical content without respect to the filenames 

used. Like the previous class of feature, we have a feature for the number of files having 

identical content that are all program source code, and a feature for the number of files 

having identical content that are non-program source code. 
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3.4.1.6 Number of Files with Common Filenames and Similar Content 

To increase the precision of file matching from the previous feature, we employ a fuzzy 

hash of the file contents and then perform an approximate comparison of those hashes for 

files with similar filenames. While the previous approach is based on file names alone, this 

approach is a combination of file names and content. Fuzzy hashing can be used to 

identify near identical data based on sequences within the data that remain constant using 

context triggered piecewise hashing [156]. The result of fuzzy hashing file content is a 

string signature known as its fuzzy hash. Approximate matching between hashes is 

performed using the string edit distance known as the Levenshtein distance. The distance 

is then transformed to a similarity measure. The similarity is a number between 0 and 100 

indicates the hashes are not at all similar, and 100 indicates that the hashes are equal. 

We have features for the number of files of similar content with a similarity greater than 0 of 

program source code and non-program source code. We also count the number of similar 

files having a similarity greater than 80. 

3.4.1.7 Scoring Filenames 

Not all filenames should be considered equal. Filenames, such as README or Makefile 

that frequently occur in different packages should have a lower importance than those 

filenames which are very specific to a package such as libpng.h. We account for this by 

assigning a weight for each filename based on its inverse document frequency [157]. The 

inverse document frequency lowers the weight of a term the more times it appears in a 

corpus and is often used in the field of information retrieval. 

Definition 56. The inverse document frequency is: 

where D is the set of packages, d is a package, and t is a filename in a package. 

We use features scoring the sum of matching filename weights to the number of similar 

files, the number of similar files and similar content with similarity greater than 0 and 80, for 

both program source code and non-program source code.  
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3.4.1.8 Matching Filenames between Packages 

If filename matching between two packages was performed as an exact match, then the 

number of filenames shared would be the cardinality of the intersection between the two 

sets of filenames. However, in Clonewise the filename matching is approximate based on 

the string edit distance. This means that some filenames such as Makefile.ca could 

potentially match the filenames Makefile.cba and Makefile.cb. Moreover, the scores for 

each filename as discussed in the previous section can be different depending on which 

filename is deemed to be a match. We solve this problem by employing an algorithm from 

combinatorial optimization known as the assignment problem as shown in Fig. 29. 

The assignment problem is to construct a bijective mapping between two sets, where each 

possible mapping has a cost associated with it, such that the mappings are chosen so that 

the sum of costs is optimal. Formally, the assignment problem is defined as: 

Definition 57. Given two sets, A and T, of equal size, together with a weight function C: A × T → R. 

Find a bijection f: A →T such that the cost function (below) is optimal. 

In our work the sets are the two packages and the elements of each set are the filenames 

in that package. The cost of the mapping between sets is the score of the matching 

filename in the second set according to its inverse document frequency. Our use of the 

assignment problem seeks to maximize the sum of costs. 

The assignment problem can be solved in cubic time in relation to the cardinality of the 

sets using the Hungarian or Munkres [158] algorithm. 

Aa
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Fig. 29. The assignment problem. 
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The Munkres algorithm is effective, however for large N, a cubic running time is not 

practical. We employ a greedy solution that is not optimal but is more efficient when N is 

large. 

4.1.9 Features Selected. 

We experimented with using a subset wrapper and a genetic search algorithm for feature 

selection. We did not arrive at a good feature set within a practical amount of time. 

Therefore, we chose not to perform feature selection in classification. 

3.4.2 Shared Package Clone Classification 

The output of Clonewise is the set of packages where the classification determines the 

package pairs share code. Clonewise also reports the filenames between the packages 

and the weights of those filenames. 

Clonewise uses supervised learning to build a classification model. We use the manually 

created Debian embedded-code-copies database that tracks package clones to train and 

evaluate our system. We employ a number of classifiers to evaluate our system as 

described in Section 3.7. 

3.4.3 Embedded Package Clone Detection 

To detect embedded package clones we use the results of shared package clone detection 

and apply a filtering stage to exclude packages where the first package is not embedded in 

the second package. We solve this problem by considering the problem as a binary 

classification problem.  

Similar to the shared package clone detection approach, we perform feature extraction 

before using statistical classification. The 18 features we use are summarized in the 

following: 

3.4.3.1 Number of Filenames 

As in shared package clone detection, the number of filenames that are source and data 

are used. 

3.4.3.2 Percent of X embedded in Y 

These features say how much of one package is embedded in the other package. 
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3.4.3.3 Package X has Lib in name 

These features are useful in identifying if a package is a library, which increases its 

likelihood that it is an embedding. If the package name is prefixed with ‘lib’, then the feature 

is assigned a value of 1. If the prefix is not that, then the value is 0. The prefix is compared 

without regard to case. 

3.4.3.4 A to B Ratio 

These features inform us on how big the packages are relative to each other. It is typical 

that an embedded library is smaller than the software it is embedded in. 

3.4.3.5 Package Dependents 

These features inform us on how many other packages depend on the package in 

question. Libraries are typically used by many other packages and so the value for this 

feature will also be high. As explained earlier, that the package is library indicates that the 

package is more likely to be embedded. 

3.4.4 Classification Using Asymmetric Bagging 

For training our classifier, we have a finite set of labelled positive cases as obtained from 

vendor generated databases and we are able to arbitrarily generate labelled negative 

cases. We have many more negative cases than we have positive cases, wherein a 

positive case indicates an embedded package clone. This scenario represents the 

imbalanced class problem [159] where many classifiers favour the majority class. We 

decided to improve our detection rate of the positive class by addressing the imbalanced 

class problem by performing asymmetric bagging [160]. 

Asymmetric bagging uses all the labelled positive cases and use an equivalent number of 

negative cases obtained from a random sampling. This extends traditional bagging which 

uses a random and equal sampling from both classes. The asymmetric bagging approach 

described generates a single bag upon which a classification model is built from training. 

Many bags are created and classification models are built for each bag. When performing 

classification of an unlabelled instance, each bag makes a prediction and the results are 

aggregated using a majority vote. This has the effect or improving the accuracy when 

detecting positive cases. We implemented the asymmetric bagging algorithms by 

extending the bagging meta-classifier in the Weka machine learning toolkit. 
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3.5 Inferring Security Problems 

In this section, we discuss standardization and tracking efforts by vendors. We then 

examine algorithms and approaches to detect software vulnerabilities. Package-level clone 

detection is not strictly the best method to discover security problems through code 

cloning. However, it is almost impossible in practice to apply code-level clone detection 

across tens of thousands of packages with potentially hundreds of thousands of clones and 

expect developers to integrate fixes. The reality is, a vendor's security team can fix high 

impact bugs and push package maintainers to build their software using system wide 

package-level libraries. In effect, the only practically used system of bug fixing on a large 

scale in regards to clones, is by fixing package-level clones. Yet the problem still exists of 

how to motivate package maintainers or security teams to apply these fixes. The current 

practice is to highlight that the cloned package contains known security problems and 

pointing out that there is less cost in rebuilding the software to eliminate the higher-level 

clone than it is to apply individual patches. Therefore, we see value in Clonewise as being 

a tool that can bring about good practices of eliminating package clones by highlighting 

vulnerabilities. To achieve the task of vulnerability detection, we propose use-cases for 

clone detection by Linux security teams. We also propose a completely automated solution 

to find out-of-date clones that have outstanding security vulnerabilities. 

3.5.1 Use-case of Clone Detection to Detect Vulnerabilities 

One method which we initially tried, for the purpose of vulnerability detection, was to look 

at packages that had reported vulnerabilities against them. We considered this to be a list 

of security sensitive packages. We used this list of packages as input to our clone 

detection analysis. Anytime a security sensitive package was cloned, we verified that the 

clone was not out of date. This is an effective method to detect vulnerabilities, but it 

requires manual analysis.  Even though the technique we described is manual, it still has 

benefits today and can be used in an on-going basis to detect new vulnerabilities. 

If a new vulnerability is found in a package, then clone detection should be performed on 

the complete Linux distribution because it is likely the same vulnerability is present in the 

cloned software. For example, if a vulnerability is reported for libpng, then clone detection 

should be performed and each libpng clone checked to see if the vulnerability is present as 
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is shown in Fig. 31. This method can be used by Linux security teams, but for old 

vulnerabilities it is not advisable since many clones would be patched but not reported by a 

Linux vendor. Therefore, we looked at other automated methods to detect out-of-date 

clones which we describe in the following sub-sections. 

3.5.2 Standardization Efforts 

Common Vulnerabilities and Exposure (CVE) is a standardization effort for public reporting 

of vulnerabilities. CVEs are maintained in the National Vulnerability Database (NVD). Each 

unique vulnerability is given a unique CVE identifier. In version 2 of the NVD content, the 

CVE information is stored as an XML database. CVE reports a vulnerability and gives a 

canonical name of the package or packages affected using the Common Platform 

Enumeration (CPE). Documented in the CVE entry is also a summary of the vulnerability in 

the package or program. This summary often includes a reference to the program's 

vulnerable function and vulnerable source file, if it exists. CVE makes it possible for 

different vendors to talk a common language of vulnerabilities and remediation when the 

same vulnerability affects multiple vendors. This is common because vulnerabilities often 

occur from upstream sources that are pushed downward and used by different vendors. 

3.5.3 Debian Linux Security Tracking 

Debian Linux make a significant effort to track security information and maintain a publicly 

accessible repository known as the security tracker for tracking security problems in their 

distribution. 

A useful database that is unique to Debian is a manually generated list that is used to 

associate CPE names to Debian package names. This is done so Debian can check native 

packages against new vulnerabilities that appear as a CVE in the NVD. 

Debian Linux also use CVE internally to track vulnerabilities. They maintain a database of 

every CVE. They then list every package in Debian affected by each particular CVE. 

3.5.4 Automated Vulnerability Inference 

In Clonewise, we can use clone detection in addition to the above information to identify 

untracked vulnerabilities. 
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Clonewise takes a CVE number as input and extracts the vulnerable package from the 

report. The CPE package name is translated to a native Debian package name. 

Clonewise then parses the summary to find the vulnerable source files. It is possible to 

extract theses vulnerable source files from the summary (Fig. 30) by tokenizing the 

summary into words and extracting words that have a file extension of known programming 

languages. 

Clonewise then looks at all the clones of the vulnerable package and trims the list by 

ensuring one of the vulnerable source files is present in the clone and that the fuzzy hash 

between the vulnerable package’s source is similar to the clone’s. 

We also trim the list by ignoring clones that we believe have been patched to use the 

system wide dynamic library. We did this by checking if in the binary version of the 

package the embedded package was a package dependency. If the embedded package is 

a dependency, then the main package almost certainly uses it for dynamic linking. 

Dynamic linking is the normal approach vendors use to address the security implications of 

package clones. 

Finally, Clonewise checks to see if Debian Linux is tracking this package clone as being 

affected by that particular CVE. If it is not being tracked, then Clonewise will report the 

package as being potentially vulnerable as shown in Fig. 32. 

Summary: Off-by-one error in the __opiereadrec function in 

readrec.c in libopie in OPIE 2.4.1-test1 and earlier, as used 

on FreeBSD 6.4 through 8.1-PRERELEASE and other 

platforms, allows remote attackers to cause a denial of 

service (daemon crash) or possibly execute arbitrary code via 

a long username, as demonstrated by a long USER 

command to the FreeBSD 8.0 ftpd. 

Fig. 30. An NVD CVE summary. 
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This process of finding outstanding vulnerabilities is applied to every CVE of interest in the 

database, and a final report is generated. The normal process is that a security analyst 

then verifies each reported vulnerability and eliminates any false positives. 

One feature that we didn’t implement was using the CVE summary’s reference to 

vulnerable functions. We could potentially parse the sentence containing the vulnerable 

source filename to extract the vulnerable function and then check for the presence of this 

string in the source file. We did not do this because it requires the contents of each source 

tree to be maintained as signatures. This would increase the data storage requirements of 

Clonewise which we thought to be impractical. Potentially we could download the source 

as required, but this would cause issues doing analyses between distributions. 

3.6 System Implementation 

In this section we discuss the implementation. 

3.6.1 Software 

We implemented all of the above proposals in a complete system named Clonewise to 

identify package clones in Linux distributions.  Clonewise automatically downloads a Linux 

distribution package repository and builds a database of signatures for each package. It 

then trains a model and uses statistical classification to perform clone detection for both 

the shared and embedded cases. We employ the Weka machine learning toolkit to perform 

the data mining aspects of our system. Our implementation uses C++ and shell scripting. It 

Fig. 31. Use-case of clone detection. 
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consists of about 4,500 lines of code (LOC) to perform the package clone detection and 

security problem inference. 

We performed an analysis of the Ubuntu Linux distribution and also performed some 

analysis of other distributions including Fedora 13 and Debian Linux. The package count in 

each distribution was in excess of 10,000. 

Clonewise consists of multiple components. The components are divided into: 

 Parsing Debian’s package clone database 

 Building the Clonewise database 

 Training the classification models 

 Clone detection 

Fig. 21. Automated vulnerability inference. 
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 Building a clone detection cache 

 Querying the cache 

 Finding cloned files 

 Inferring vulnerabilities 

We parse Debian’s package clone database and convert it to XML or a text based format. 

We can optionally filter the results to ignore statically linked clones, or we can filter those 

clones which have been fixed, or those clones which remain unfixed. This component is 

necessary for generating the labelled training data to build a machine learnt model for 

classification. We can also find clones of files given as input. The output is the set of 

packages that have a similar file in their source trees. To build the Clonewise database, we 

download the entire source package repository for a Linux distribution, unpack the sources, 

and generate signatures. The signatures are the ssdeep signatures of the source trees for 

each package. We also build a package index relating binary packages to source 

packages. Finally we build a package dependency list for the purpose of identifying fixed 

clones. Clone detection is performed as explained earlier by using machine learning. XML 

output is optional. The clone detection cache is built using a cluster and the results of clone 

detection are stored to disk. The cache can be queried so that clone detection does not 

need to be performed again. XML output is optional. Finally, vulnerability inference relates 

clones in the cache to Debian’s security tracker and the NVD CVE information. 

3.6.2 Scaling The Analysis 

Our system is effective and reasonably efficient at identifying clones in a single Linux 

package. However, in a typical Linux distribution there exist more than ten thousand 

individual packages. Our system would be impractically long if we performed clone 

detection on all packages without taking advantage of multicore and cluster computing. 

3.6.2.1 Multicore 

Given an input package to perform clone detection, Clonewise pairs that package with 

every other package in a Linux distribution. These package pairs are the input to a binary 

classification problem. Each binary classification problem can be evaluated independently 
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of the other binary classification problems. This model of evaluation is embarrassingly 

parallel and leads to efficient parallel and distributed computing. The workflow is shown in 

Fig. 33. 

We chose to solve this problem using multicore computing. We used the OpenMP 

multicore programming model [161] to implement our solution. OpenMP is a shared 

memory model based on the use of compiler directives. We parallelize the feature 

extraction and classification for each package pair. This process improves the speed it 

takes to perform clone detection on an individual package. 

3.6.2.2 Clustering 

Our multicore implementation improves the performance of clone detection on a single 

package. We use cluster computing to distribute clone detection of multiple packages. 

Each package can be scanned in parallel without regard to other packages and is also an 

embarrassingly parallel problem. The workflow is shown in Fig. 34. 

We implemented our system using message passing with Open MPI [162]. In our 

implementation, a job is defined as performing clone detection on a single package. Since 

we have many packages to analyse, a master node distributes jobs to slave nodes. When 

the slaves complete a job they signal the master node requesting more work. 

3.6.2.3 Running the Analysis 

We analysed our Linux distribution using a high performance compute cluster. We 

purchased 4 hours of cluster computing time from the Amazon EC2 cloud computing 

Clone Detection –

Package_X

Classify(Package_X, Package_1)

Classify(Package_X, Package_N)

Classify(Package_X, Package_2)

Fig. 33. Multicore. 
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service. We built a 4 node cluster with dual CPUs per node, Intel Xeon E5-2670, eight-core 

"Sandy Bridge" architecture), 60.5G of memory per node, and CPU performance identified 

as 88 EC2 compute units. 

3.7  Evaluation 

In this section we evaluate Clonewise using vendor labelled data and evaluate Clonewise's 

ability to discover security vulnerabilities. 

3.7.1 Filenames as Features 

In our first experiment we wanted to determine the distribution of unique filenames in a 

large Linux distribution. We tallied the frequency of filenames occurring in the Ubuntu Linux 

sources. We identified 3,077,363 unique filenames and ranked them according to their 

frequency of occurring. We sampled this distribution and performed a regression analysis. 

We observed that the frequency of filenames follows an inverse power law distribution with 

multiplicative constant 777892.740 and multiplicative exponent constant of 1.207. The R 

square value from the regression analysis was 0.928 

3.7.2 Establishing the Ground Truth for Training and Evaluation 

Debian Linux maintain a manually created database of packages that are cloned in their 

security tracker. We use this list of entries to establish the ground truth for our labelled 

data. 

Clone Detection

Clone Detection – Package_1

Clone Detection - Package_N

Clone Detection - Package_2

Fig. 34. Clustering. 
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The Debian database was not originally created to be processed by a machine, so some of 

the data is not consistent in referencing packages with their correct machine readable 

names. Instead, shorthand or common names for packages and libraries are sometimes 

used. We cull all those entries which do not reference package sources and are therefore 

not suitable for our system. 

We had two types of negative labeled entries. One case was for shared package clone 

detection, and the other was for embedded package clone detection. To establish true 

negatives for shared package clone detection, we randomly selected pairs of packages not 

in our true positive list. We label these package pairs as negatives. This data can be 

unclean since we observe the labeled true positives are incomplete, but even so, the true 

TABLE 1. ACCURACY OF SHARED PACKAGE CLONE DETECTION 

CLASSIFIER PRECISION RECALL ACCURACY F-MEASURE 
Naïve Bayes 0.47562 0.57687 0.98599 0.52137 

Multi. Perceptron 0.80555 0.26806 0.98948 0.40225 

C4.5 0.85878 0.68725 0.99436 0.76349 

Random Forest 0.89881 0.70039 0.99499 0.78728 

Rand. Forest (0.8) 0.96746 0.58607 0.99426 0.72994 

 

 

TABLE 2. ACCURACY OF SHARED PACKAGE CLONE DETECTION 

CLASSIFIER TP/FN FP/TN TP RATE FP RATE 
Naïve Bayes 439/322 484/56296 57.69% 0.85% 

Multilayer Perceptron 204/557 48/56732 26.81% 0.08% 

C4.5 523/238 86/56694 68.73% 0.15% 

Random Forest 533/228 60/56720 70.04% 0.11% 

Random Forest (0.8) 446/315 15/56765 58.61% 0.03% 
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negatives we label are still useful for training our statistical model.  In total, we obtained 

761 labelled positives and 56780 negatives. 

To generate true negatives for the embedded package clone detection, we paired up all 

packages that were reported as being embedded in X, ignoring those cases where X was 

the embedded code. This is what we expect our system to report – that X is embedded in 

Y and Z, but Y is not embedded in Z, and Z is not embedded in Y. In total, we were able to 

label 9149 negative cases. 

3.7.3 Accuracy of Shared Package Clone Detection 

We employed 10-fold validation from our labeled dataset to evaluate the accuracy of our 

system and experimented with a number of classifiers including Naïve Bayes [163], 

Multilayer Perceptron, C4.5 [164], and Random Forest  [165]. Our results are shown in 

TABLE 3. ACCURACY OF EMBEDDED PACKAGE CLONE DETECTION 

CLASSIFIER PRECISION RECALL ACCURACY F-MEASURE 
Naïve Bayes 0.10171 0.94349 0.35580 0.18362 

Multi. Perceptron 0.75229 0.43101 0.94540 0.54802 

C4.5 0.89235 0.75164 0.97396 0.81597 

Random Forest 0.89067 0.72798 0.97225 0.80114 

Asym. Bagging 0.53196 0.91852 0.93168 0.67372 

 

 

TABLE 4. ACCURACY OF EMBEDDED PACKAGE CLONE DETECTION 

CLASSIFIER TP/FN FP/TN TP RATE FP RATE 
Naïve Bayes 718/43 6341/2808 94.35% 69.31% 

Multilayer Perceptron 328/433 108/9041 43.10% 1.18% 

C4.5 572/189 69/9080 75.16% 0.75% 

Random Forest 554/207 68/9081 72.80% 0.74% 

Asymmetric Bagging 699/62 615/8534 91.86% 6.72% 
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Table 1 and Table 2. The data is very imbalanced and this skews the accuracy, which 

easily achieves better than 99%, because we can identify negative cases more easily than 

positive cases. We obtained the best result using the Random Forest classification 

algorithm. This classification algorithm performed significantly better than all other 

algorithms we evaluated. The true positive rate is 70.04%, the precision is 89.88%, the 

recall is 70.05%, and the f-measure is 78.73%, which we think is quite reasonable for the 

first implementation of an automated system for package clone detection. The false 

positive rate must be very low for our system to be used by Linux security teams. Our initial 

false positive rate is 0.11%. We then modified the decision threshold of the random forest 

algorithm to consider false positives as more significant than false negatives. Our false 

negative rate is 0.03% with a decision threshold of 0.8 which represents that 3 in every 

10,000 package pairs is mislabeled as a positive. The true positive rate is lower with a 

higher decision threshold and is 58.61%. This is the trade-off we accept for a low false 

positive rate. There are about 18,000 source packages, so there are 18,000 package pairs 

that are classified when performing clone detection on an individual package. Therefore, if 

our training data were not noisy, we would predict 4 to 5 false positive per complete clone 

detection on an individual package. However, our labelled negatives are noisy, and some 

negatives are actually positives. Therefore, we think between 4 to 5 false positives is closer 

to an upper limit. This is reasonable for a manual analyst to verify and we think it will not 

cause significant burden on Linux security teams. 

3.7.4 Accuracy of Embedded Package Clone Detection 

We evaluated the embedded package clone detection using a number of classifiers 

including Naïve Bayes, Multilayer Perceptron, C4.5, and Random Forest. Our results are 

shown in Table 3 and Table 4. We obtained the best result using the C4.5 classification 

algorithm. The true positive rate was 75.16%, the false positive rate was 0.75%, the 

precision was 89.24%, the recall was 75.16%, and the f-measure was 81.60%. We then 

used this algorithm as a base classifier for our asymmetric bagging meta-classifier with 50 

bags. This improved the true positive rate to 91.86% but also increased the false positive 

rate to 6.72%. We see this as an acceptable trade-off to improve the true positive rate. 
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3.7.5 Practical Package Clone Detection 

As part of the practical results from our system we contributed 34 previously untracked 

package clones to Debian Linux’s embedded code copies database. Thus, we feel that the 

package clone detection provides tangible benefit to the Linux community. We also verified 

if the embedded packages we detected were not in fact patched by the Linux vendors to 

link dynamically against a system wide library.  

3.7.6 Vulnerability Detection 

A consequence of package clone detection is determining if a clone is out of date and if it 

has any outstanding and unpatched vulnerabilities. As part of our work we detected over 

30 vulnerabilities in Debian and Fedora Linux because of package clone issues by 

checking security sensitive packages manually, or using adhoc identification of out-of-date 

clones. The vulnerabilities in each package we found using clone detection are shown in 

Table 5 and 6. 

3.7.7 Automated Vulnerability Detection 

We performed a more recent evaluation of completely automated vulnerability inference 

over the years of 2010, 2011, and 2012. Clonewise reported 132 vulnerabilities across 19 

packages. We submitted bug reports against each package to Debian Linux. Not all our 

submitted bug reports were actual vulnerabilities. Some reports were erroneous because 

Clonewise falsely identified a package clone when one did not exist. Another source of 

errors was that some bugs we reported as vulnerabilities could not be triggered, even 

though the clone was correctly identified and had unpatched CVEs. This was true of libpng 

image processing library being embedded in the syslinux boot loader package. Boot 

loading displays an image, but does not allow an attacker to control that image to trigger 

the vulnerability. A high number (64) of vulnerabilities were found in the ia32-libs package. 

This package contains a list of embedded libraries and is only updated by Debian on point 

releases. Debian informed us that this package would invariably contain vulnerabilities, but 

in the unstable release of Debian an alternative approach will be employed which resolves 

these issues by not embedding libraries. 
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Debian have not yet confirmed all our bug reports so we investigated each package 

manually to check that a package clone existed, and that the internal version number of the 

library was a version vulnerable to the CVE Clonewise reports. The results are shown in 

TABLE 5. ADHOC DETECTION OF FEDORA LINUX VULNERABILITIES 

PACKAGE EMBEDDED PACKAGE 

OpenSceneGraph lib3ds 

mrpt-opengl lib3ds 

mingw32-OpenSceneGraph lib3ds 

libtlen expat 

centerim expat 

mcabber expat 

udunits2 expat 

libnodeupdown-backend-ganglia expat 

libwmf gd 

Kadu mimetex 

cgit git 

tkimg libpng 

tkimg libtiff 

ser php-Smarty 

pgpoolAdmin php-Smarty 

Sepostgresql postgresql 
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Table 7. It should be noted that the high number of true positives is largely accounted for 

by the 64 vulnerabilities we marked as such once Debian informed us that ia32-libs was by 

TABLE 6. ADHOC DETECTION OF DEBIAN LINUX VULNERABILITIES 

PACKAGE EMBEDDED PACKAGE 
boson lib3ds 

libopenscenegraph7 lib3ds 

libfreeimage libpng 

libfreeimage libtiff 

libfreeimage openexr 

r-base-core libbz2 

r-base-core-ra libbz2 

lsb-rpm libbz2 

criticalmass libcurl 

albert expat 

mcabber expat 

centerim expat 

wengophone gaim 

libpam-opie libopie 

pysol-sound-server libmikod 

gnome-xcf-thumnailer xcftool 

plt-scheme libgd 
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nature collecting vulnerabilities until point releases. Nonetheless, we detected unverified 

vulnerabilities in more than 50% of the packages Clonewise reported. We performed this 

manual analysis stage of all vulnerabilities, except for those in ia32-libs, in less than 2 

hours. Our results are shown in Table 8. In the case that these potential vulnerabilities are 

not confirmed by Debian, then Debian will still need to update their internal CVE database 

to report that those packages are unaffected. Therefore, our work still remains beneficial. 

The results of our system demonstrate that we effectively identify vulnerabilities with a 

false positive rate that is practical for manual verification in a feasible amount of time. 

3.8 Discussion 

In this section we examine points of discussion, focusing on how our work has had 

practical consequence to Linux vendors. We also discuss how we think vulnerability 

reporting could be improved to take into account package cloning and embedding. 

TABLE 7. AUTOMATED VULNERABILITY INFERENCE 

TP + FP (Packages) 19 

TP (Packages) 10 

FP (Packages) 9 

TP + FP (CVEs) 132 

TP (CVEs) 81 

FP (CVEs) 51 
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3.8.1 Practical Consequences of Our Research 

Key results of our research are the consequences and responses by Linux vendors in 

using our data. Linux vendors responded well and are using our results. Another 

consequence of our research was that we were given access to modify and update the 

Debian Linux embedded packages database and to enter vulnerabilities and other 

information in their security tracker. Debian Linux have also sought us to integrate our 

system into the security team’s standard operating procedures and have offered access to 

a subdomain on the Debian website to offer a clone detection web service. We feel this 

validates our work and completing this integration is our next immediate focus. Red Hat 

Linux did not maintain an equivalent embedded packages list like Debian’s, but have since 

created a database on their public wiki based on our research results. We believe similar 

TABLE 8. AUTOMATED DETECTION OF POTENTIAL VULNERABILITIES 

PACKAGE EMBEDDED PACKAGE 
freevo feedparser 

hedgewars freetype 

ia32-libs * (see text) 

libtk-img tiff 

likewise-open curl 

luatex poppler 

planet-venus feedparser 

syslinux libpng 

vnc4 freetype 

vtk tiff 
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data would be useful for other Linux vendors, and non-Linux vendors such as the BSD 

family of operating systems and distributions. 

3.8.2 Referencing CVEs in an advisory. 

Ideally, CVE would include package relationships of vulnerabilities it reports. For example, 

if Firefox has a libpng vulnerability assigned a CVE, then libpng would be referenced as the 

canonical upstream package. The Common Platform Enumeration which canonically labels 

software and enables upstream tracking of packages may provide a useful system for 

tracking these related package clone vulnerabilities. 

Concluding Remarks 

In addition to the number of reported vulnerabilities and subsequent patching and 

resolution of vulnerabilities, we believe our research has much value in the practical 

approach of coping with embedded code and packages that may or may not be known 

about. We believe all vendors benefit in creating and maintain databases of embedded 

code and package-level clones in their package repository and our research fills a gap 

when the manual task of auditing in excess of 10,000 packages per distribution is too time 

consuming to be practical. There is much work as a consequence that could be applied to 

current practice to aid operating system security and we feel our work is a good step 

towards this goal. 
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Chapter 4: Wire - A Formal Intermediate Language 

for Binary Analysis 

Wire is a intermediate language to enable static program analysis on low level objects such 

as native executables. It has practical benefit in analysing the structure and semantics of 

malware, which is a key topic in software similarity and classification. In this chapter we 

describe how an executable program is disassembled and translated to the Wire 

intermediate language. We define the formal syntax and operational semantics of Wire and 

discuss our justifications for its language features. We use Wire in Malwise, our malware 

variant detection system described in Chapter 5. We also examine applications for when a 

formally defined intermediate language is given. Our results include showing the semantic 

equivalence between obfuscated and non obfuscated code samples and identifying 

similarity between software programs . These examples stem from the obfuscations 

commonly used by malware and the areas of software theft detection, plagiarism detection, 

and code clone detection. 

4.1 Introduction 

Static program analysis is a useful tool that provides many benefits and applications. In 

summary, static analysis identifies the runtime behaviour of software. It does this analysis 

statically, meaning that the program is not executed. Applications of static analysis include 

detecting plagiarism of software code, optimising code during compilation, verifying 

software by proving the absence of certain bug classes, or in a weakened form, to identify 

software bugs. Static analysis is generally performed at the source level, but applications 

exist when we only have access to low level object code. The applications of low level 

static analysis include the analysis and detection of malware, detecting the theft of 

proprietary or licensed software, or detecting bugs in binaries which are the result of 

compilation or link-time conditions. 

4.1.1 Motivation 

Malware analysis and detection is a large motivation for why low level static analysis is 

required. Traditional static malware detection employed in commercial Antivirus has 

ignored program structure and semantics. Instead, pattern recognition on the raw byte-
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level content has been the dominant technique in signature based detection. However, 

program structure such as that exhibited by the static control and data flow of the malware 

results in more robust and predictive characteristics. These characteristics or fingerprints 

are often invariant in large malware families and strains. Thus, by employing static analysis 

techniques, signature based detection is much more robust in the detection of variants 

such as polymorphic and metamorphic malware. Moreover, the use of program structure 

and semantics to extract robust features allows machine learning to detect novel samples 

of malware that we can predict as being malicious, but not belonging to known families of 

malicious software. Malware is almost always in binary form so a low level static analysis 

system that examines the binary form of executables content is required. 

Software theft detection is another motivation for why low level static analysis is needed. 

Detecting unauthorized use of software code is desirable to protect industry investment. 

Similar to the malware variant detection problem, software theft detection extracts program 

structure and semantics and identifies unauthorized software copies by finding those same 

features in illegitimate software. It is necessary then to be able to examine closed source 

software by using low level static analysis. 

More motivation is that of detecting the presence of software bugs in binaries. The purpose 

of this form of bug detection is not to replace traditional source level analysis, but 

complement it by providing an increased level of assurance. Source level analysis by 

definition is the unfinished form of a software that is lacking detail of how the program will 

be physically executed after assembly and linking. Bug detection in binaries by nature has 

access to the final form of the program where assembling and link time editing has been 

performed. This also provides additional assurance that the compiler has done what it was 

designed to do. This type of assessment is not only useful for development and quality 

assurance; it is also beneficial to system auditors who by requirements do not have access 

to software source. 

Analysing binaries is hard. Many simple problems such as separating code from data are 

undecidable. Our first motivation stems from the desire of representing a binary in a 

manner that makes analysis easier. The native assembly in a binary is unfavourable for 

analysis. The reasons that native assembly is difficult to use are: 
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 Native CISC assemblies such as x86 have hundreds of instructions which requires 

significant and duplicate efforts to model for each class of static analysis. 

 Native assemblies have instructions with side effects which make analyses require 

hidden information and assumptions. 

 Native assemblies are platform dependent which requires separate static analysis 

implementations for each architecture. 

This motivates us to use an intermediate language to represent native assembly. The 

intermediate language should be low level enough so that translation from assembly is not 

complex. It should also be high level enough so that traditional static analysis techniques 

can be applied. 

We have implemented Wire and use it as the intermediate representation in performing 

static analysis on binaries and to detect malware variants in our research system Malwise. 

This chapter represents the formal description of the intermediate language we have 

implemented. 

4.1.2 Innovation 

The contributions of this chapter are as follows: 

 We propose a new low level intermediate language and define its formal 

operational semantics. 

 We propose methods to translate native assembly into our intermediate language. 

 We propose applications of a formally defined intermediate language and 

demonstrate operational semantics can be used to show equivalence between 

metamorphic malware codes. 

 We use our language as the basis for Malwise – our malware variant detection 

system. 
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4.1.3 Structure of the Chapter 

The structure of this chapter is as follows: Section 4.2 explains how to translate native 

code into our intermediate language. Section 4.3 defines the formal syntax and operational 

semantics of our language. Section 4.4 demonstrates applications of our language to 

semantic equivalence. Section 4.5 demonstrates applications in software similarity and 

classification. Finally we present our concluding remarks. 

4.2 Translating Native Code 

The input to our system is an object file. The most typical case is an x86 binary. For 

Windows this is a portable executable (PE) object or an Executable and Linking format 

object under Linux. The system can also partially process Java class files, and C source 

code for the GNU compiler (GCC), however these aspects are experimental and not 

described in this chapter. Our system is designed as modular software that allows plugin 

extensions to inspect or modify the object file or the results of a static analysis. An XML 

configuration file determines which plugins will be loaded, the order in which they are 

processed, and at which stage of object file processing and static analysis they will be 

called. 

The first stage is object file parsing. PE and ELF binaries contain information on how to 

access the object code and the dynamic linking information such as imported and exported 

functions. The object code is extracted and code is processed. For x86 binaries, a 

disassembly is performed. 

The native representation contains instruction level information. These native instructions 

are translated to an intermediate language. All further static analyses operate on the 

intermediate language which by its construction is easier to analyse. Our implementation 

consists of 10,000 lines of C++ code for the disassembly to be translated to the 

intermediate language. 

4.2.1 Disassembly 

Disassembly is the process of translating machine code to assembly language [44]. This is 

the first stage of a static analysis. We employ the use of speculative disassembly in our 

framework as described in Section 2.4.1. 
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The set of addresses for a machine is defined by A. A native instruction in an executable is 

located in memory and is defined by the ordered pair. A disassembly is the set of ordered 

pairs. 

 

Execution transfers from one instruction to another and is identified using speculative 

disassembly in Wire. There are two types of control transfers. The first type is the when 

execution transfers from one instruction to the subsequent or fall through instruction 

without following a branch or a call. The second type is when a branch or call is taken.  

 

 

4.2.2 Abstract Machines 

The intermediate language used for the intermediate code runs on an abstract machine 

that has a correspondence to the actual machine. Typical models of computation for the 

abstract machine are register machines or random access machines. In Wire we use a 

register machine which has the following components: 

 An unlimited number of uniquely labelled registers (in practice this number is 

limited by a 32 bit representation). 

 A small number of instructions roughly into divided into arithmetic and control. 

 An instruction pointer. 

 A sequence of labelled instructions. 

 A random access memory. 

 An entry point. 

4.2.3 Intermediate Code Generation 

As described in Section 2.4.2, one approach to transform assembly into an intermediate 

language is to translate each instruction without maintaining intermediate state. We use 
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this approach also and in our framework we translate native assembly into three address 

code. This part of our system is not formally verified and we assume the translation is 

correct. The generated three address code is a list of ordered intermediate instructions. 

 

4.2.4 Register Mapping between Native Architectures and Wire 

Wire assigns registers labels using a 32 bit number. Wire’s registers overlap the native 

registers for the x86 architecture. That is, the 8 x86 registers numbered 0 to 7 in the native 

disassembly are reserved and map to the first 8 registers of the Wire intermediate 

language. 

4.2.5 Label Generation 

Native assembly memory addresses are not used in the intermediate language. Nor do all 

instructions have a memory location. Instead, a label is assigned at the beginning of a 

basic block. The labels contain an address to identify the location of a basic block. We 

make two passes over the assembly to generate label addresses. In the first pass, all 

branch targets are identified, and then a Wire label address is assigned to each native 

address. Finally, the native addresses are eliminated and labels are used to replace them. 

 

 

Like the execution flow in disassembly, labelled basic blocks in the intermediate language 

have an execution flow. 

 

 

4.2.6 Condition Code Generation 

Condition codes represent arithmetic conditions. For example, an arithmetic instruction 

performing an assignment may store the fact that the operand is zero. In x86 assembly, 

arithmetic instructions such as subtraction also store information on inequalities such as 

one operand being less, greater, or equal to the other. In Wire, each possible condition is 

stored in a separate register. That is, there is a register storing equality, less than, zero 
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status etc. Each arithmetic instruction sets the set of these registers based on the 

operands of the instructions. These registers are set using Wire’s mkbool instructions 

which can assign a register a Boolean value (a numeric 1 or 0) based on an inequality and 

its parameters. 

4.2.7 Decompilation 

Native instructions are translated into the Wire intermediate language, but after 

construction, the intermediate code is analysed to generate additional or replacement 

code. For example, Wire uses the PUSHARG instruction to give procedure calls 

arguments, however this requires decompilation to generate this information. 

Decompilation is used for the following components: 

 Local variable reconstruction 

 Procedure argument reconstruction 

 Condition code elimination 

The use of decompilation to generate IL instructions enables high level static analysis to be 

employed. Traditional source level analyses such as bug detection can use the decompiled 

results. This feature distinguishes itself from most other intermediate languages for reverse 

engineering except those specifically used for decompilation. 

Local variable reconstruction transforms stack based memory access into much simpler 

register based variables. Procedure argument reconstruction extends the stack based 

memory analyses to identify arguments which are on the stack at call sites. This is done by 

reconstructing what the stack looks like at a call site and unwinding values from it. 

Condition code elimination transforms explicit use of condition codes and a branch on a 

condition code into a simpler branch on condition. The approach is to look at the reaching 

definition of the condition code at a branch on condition code and then to propagate the 

definition and transform the branch into the branch on condition. 
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4.2.8 Intermediate Code Optimisation 

The generation of the intermediate language produces a very verbose and inefficient code. 

We transform this into a simpler code by using compiler style optimisations. The 

optimisations we employ are: 

 Dead code elimination 

 Constant propagation 

 Constant Folding 

 Copy Propagation 

Dead code elimination or more correctly dead store elimination removes stores which are 

never subsequently read before they are redefined. Constant propagation and constant 

folding simply expressions and assignments using constants such that their result is 

calculated when possible during the optimization pass. Copy propagation eliminates 

extraneous copies/assignments that are often used to has temporary placeholders for 

further expressions. 

4.3 Formal Syntax and Semantics 

In this section we define our intermediate language’s syntax, the abstract machine it runs 

on, and its operational semantics. We believe formally defining Wire is important because it 

allows formal reasoning about the assembly language it represents. One application that 

becomes possible is the ability to prove semantic equivalence between two different 

syntactical representations. The problem of semantic equivalence is central to the problem 

of metamorphic malware detection. We give a detailed description of the Wire language to 

make these proofs and to also give insight into the language features required to represent 

assembly language. 

4.3.1 Syntax 

Program  p ::= p i | i 
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Instruction  i ::= m| m t 

 

Type   t ::= u8_t 

     | u16_t 

     | u32_t 

     | s8_t 

     | s16_t 

     | s32_t 

 

Instructions  m ::= *(r3) := r1 

     | r3 := (*r1) 

     | r3 := r1 

     | r3 := n 

     | r3 := uop r1 

     | r3 := r1 bop r2 

     | r3 := r1 bop n 

     | mkbool r1 ucond 

     | mkbool r1 bcond r2 

     | nop 

     | halt 
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    | label l 

    | jmp l 

    | ijmp r 

    | if r1 cond1 jmp l 

    | if r1 cond2 r2 jmp l 

    | lcall s 

    | cast(r1, t) 

    | r3 := getpc() 

    | r3 := returnaddress() 

    | pusharg(n, r) 

    | r3 := malloc(r) 

    | free(r) 

    | r3 := alloca(r) 

     

Operations uop  ::= -|~|! 

  bop  ::= +,-,*,/,%,>>,<<,|,&,^ 

Conditions ucond  ::= == 0|!= 0  

  bcond  ::= ==|!= | >|>=|<|<=  

Operands v  ::=  n (an integer literal) 

     r (a register) 
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    l (a label) 

    s (a symbol) 

4.3.2 Functions 

Instructions  I  ::= n  i 

Heap   H ::= nxn  n 

Memory   M ::=  n  n 

Register  R ::= r  n 

Labels   L ::= l  pc 

AllocAMemory  V ::= nxn n 

 

Instructions: (maps instruction number to instruction) 

Heap: (maps heap address and memory size to non overlapping memory addresses) 

Register: (maps register name to numeric value) 

Memory: (maps address to numeric value) 

Labels: (maps label to instruction address pc) 

AllocAMemory: (maps alloca address and memory size to non overlapping memory 

addresses) 

 

Note that we assign each instruction a unique program counter address that is used 

internally to describe the semantics. 

4.3.3 Abstract Machine State 

Call Stack       C ::= stack of (l,pc,A,V)  
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Argument Stack  A ::= stack of (n,r) 

Process State       P ::= (I,L,H,M,C,A,V,pc) 

 

CallStack: Where l is the current function label, pc is the return address, A is the argument 

stack for function l, and V is the alloca memory mappings for function l. 

ArgumentStack: (argument stack for callee of current function) Where n is the argument 

index and r is the register argument. 

4.3.4 Operational Semantics of Core Instructions 

Operational semantics [34] describe the state transitions that occur from execution of a 

program. We follow the following format: 

 

Where i is the current instruction, P is the current state and P’ is the next state following 

execution of the instruction i. 

For simplicity, in this section we only show instructions of a single typing. In practice we 

have separate instructions for 8, 16, and 32 bit types. 

4.3.4.1 Control Flow Instructions 

The control flow instructions handle conditional and unconditional branches. 

 

 

The JMP instruction implements an unconditional branch. It simply changes the program 

counter to the target of the branch. In the case above, it is a direct branch to a label. 
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The IJMP instruction also implements an unconditional branch, but uses register contents 

as the branch target. 

 

 

 

The CJMP-T instruction implements a conditional branch on a true condition to a branch 

target specified by a label. There are a number of possible conditions including less than, 

greater than, less than or equal to and so forth. 

 

The CJMP-F implements a conditional branch on condition false. 

 

The LABEL instruction specifies a location in the instruction sequence. Wire does not 

assign individual addresses to instructions to specify locations, so whenever an instruction 

is the target of a branch a label must be specified. 
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The NOP instruction implements a no operation. 

4.3.4.2 Arithmetic Instructions 

The arithmetic instructions handle unary and binary operations. The binary operation 

instructions have a version where one of the arguments is a constant. 

 

 

 

The OP instruction implements the arithmetic instructions. It is a function that takes 3 

operands and modifies those operands as necessary. In practice, the 3rd operand is kept 

as a destination register when possible. 

 

The OPC instructions implements the OP instruction except 2 of the operands are registers 

and the 3rd operand is a constant. 

4.3.4.3 Boolean Instructions 
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4.3.4.4 Transfer Instructions 

The transfer instructions handle assignments of either registers or constants. 

 

 

4.3.4.5 Memory Access Instructions 

The memory access instructions handle reading and writing to memory. 

 

 

The LOAD instruction implements a memory read. 

 

The STORE instruction implements a memory write. 

4.3.4.6 Casting Instructions 

The CAST instruction is an assignment instruction between operands of different types. 
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4.3.4.7 Procedural Instructions 

 

The LCALL instruction implements an API or library call. 

 

The CALL instruction implements a procedure call instruction to a label target. The return 

address (pc+1) is pushed onto the call stack. 

 

The ICALL instruction implements an indirect procedure call to a register target. 

 

The RETURN instruction implements a return from a procedure. The return address is 

stored at the top of the call stack. The memory allocated by ALLOCA instructions becomes 

freed after a return. Likewise, the argument stack is emptied. 

4.3.5 Operational Semantics of Decompiled Instructions 

A number of instructions in Wire are only generated after a stage that decompiles the 

specified object file. 

4.3.5.1 Address Instructions 
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The GETPC instructions returns the address of the current instruction in the binary being 

analysed. 

 

The RETURNADDRESS returns the return address of the current procedure. 

4.3.5.2 Memory Allocation Instructions 

 

The MALLOC instruction implements dynamic memory allocation. It stores the allocation 

information on the heap (H). 

 

The FREE instruction frees dynamically allocated memory. 

 

The ALLOCA instruction performs dynamic memory allocation for the current procedure. 

The memory does not require freeing and will be done so automatically when the 

procedure returns. 
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4.3.5.3 Procedural Instructions 

 

The PUSHARG instruction pushes the contents of a register onto the argument stack. The 

argument stack is passed into the next called procedure. The PUSHARG instructions are 

generated as a result of decompilation to identify procedure arguments. 

4.3.6 Three Address Code 

The high level syntax we have described is not used internally by Wire. For that we employ 

a three address code. The semantic equivalence between the high level syntax and three 

address code is shown using the semantic function A for the high level syntax and the 

semantic function B for the three address code. 
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4.4 Applications in Semantic Equivalence 

One application of a formally defined language is to prove properties of its programs. One 

type of proof that can be performed is an equivalence proof. Equivalence proofs are useful 

and we will examine the particular case of equivalence between obfuscated codes which is 

a commonly seen occurrence in malware. Our proofs work on the intermediate code only 

and assume the intermediate code generation has been performed correctly. 

4.4.1 Semantic Equivalence of Obfuscated Code 

A syntactic metamorphic malware technique is a method that changes the syntactic 

structure of the malware [17]. Though the syntactic structure changes in polymorphic 

malware, the malware semantically remains identical. The technique is predominantly used 

to evade byte level signature based detection and classification that is routinely employed 

by traditional Antivirus. Metamorphism borrows many of the techniques from the field of 

program obfuscation.  
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4.4.1.1 Dead Code Insertion 

Dead code is also known as junk code and a semantic nop [17]. Dead code is semantically 

equivalent to a nil operation. Insertion of this type of code has no semantic impact on the 

malware. The insertion increases the size of the malware and modifies the byte and 

instruction level content of the malware. 

An example of dead code insertion is shown below. The intermediate code is also shown. 

For simplicity we assume that the condition codes are not required as is the case when a 

future arithmetic instruction overrides earlier ones. 

In the proof that we perform we show the equivalence between code using dead code and 

code that is not using dead code. The proof is carried out by simulating execution of each 

code sample and showing that the program states for both sequences are the same once 

complete. 

Firstly, we map register names to register indices that will be used in all proofs in this 

section of the paper. 

 

BOPCADD 

%eax,$50,%eax 

BOPCSUB 

%eax,%50,%eax 

ASSIGNC $0,,%eax 

ASSIGNC $0,-,%eax 

mov $0,%eax
add $50,%eax

sub $50,%eax

mov $0,%eax

Fig. 35. Dead code insertion. 
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Reg_name(“eax”) = 0 

Reg_name(“ebx”) = 1 

Reg_name(“zf”) = 100 

In the first part of the dead code equivalence proof we execute the instructions without the 

dead code. 

 

 

 

In the second part of the proof we execute the instructions with the dead code. 
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Now we can see that t’’’-pc = s’-pc which means they are semantically equivalent when 

ignoring the effect the code has on the program counter. We also note that s’ and s’’ are 

semantically equivalent. We have thus proven the obfuscated and deobfuscated code 

samples are equivalent. 

This approach to proving semantic equivalence between code samples is useful to a 

malware researcher who wants to identify malware instances and variants. 

4.4.1.2 Code Reordering 

Code reordering [18] changes the syntactic order of the code in the malware [17]. The 

actual or semantic execution path of the program does not change. However, the syntactic 

order as present in the malware image is altered.. 

ASSIGNC $0x2,,%eax 

ASSIGNC $1,,%ebx 

BOPADD %ebx,%eax,%ebx 

ASSIGNC $0x1,-,%ebx 

ASSIGNC $2,-,%eax 

BOPADD %ebx,%eax,%ebx 

mov $2,%eax

mov $1,%ebx

add %eax,%ebx

mov $1,%ebx

mov $2,%eax

add %eax,%ebx

Fig. 36. Code reordering 
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We show an example of code reordering and the intermediate code generated from each 

sequence above. 

For the first part of the proof we execute the first instruction sequence. 

 

 

 

 

 

 

 

 

 

For the second part of the proof we execute the second instruction sequence. 
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Thus we see that t’’’-pc = s’’’-pc and therefore the two instruction sequences are 

semantically equivalent. 

4.4.1.3 Opaque Predicate Insertion 

An opaque predicate [19] is a predicate that always evaluates to the same result. An 

opaque predicate is constructed so that it is difficult for an analyst or automated analysis to 

know the predicate result. Opaque predicates can be used to insert superfluous branching 

in the malware’s control flow. They can also be used to assign variables values which are 

hard to determine statically. The use of opaque predicates is primarily for code 

obfuscation, and to prevent understanding by an analyst or automated static analysis. The 

opaque predicate we are examining is shown on the next page in Fig. 23. 

In the first part of the proof we execute the first code sequence. 
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In the second part of the proof we execute the second code sequence. 

BOPXOR %eax,%eax,%eax 

UMKBOOLIsZero %eax,,%zf 

ASSIGNC $2,-,%eax 

BOPXOR %eax,%eax,%eax 

UMKBOOLIsZero %eax,,%zf 

UCJMPIsNotZero %zf,,$target 

ASSIGNC $2,-,%eax 

xor %eax,%eax

mov $2,%eax

xor %eax,%eax

jnz $0x80482000

mov $2,%eax

Fig. 37. An opaque predicate. 
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We see that register 100 is set which makes the conditional branch in the following 

instruction use a false condition. 

 

 

 

 

 

Thus we see that s’’-pc=t’’’’-pc and this proves semantic equivalence. 

4.4.2 Assisted and Automated Theorem Proving 

The manual proofs shown in the previous section are useful. However, a more automated 

approach is beneficial. Algebraic specification [43] has been used in previous research to 

combine algebraic semantics [33] and theorem proving. Our work is different and uses 

operational semantics. Proof assistants may be used by an analyst. An alternative is to use 

automated theorem provers such as those for Satisfiability over Modulo Theories (SMT). 

These solvers can solve 1st order logic problems in a number of theories including bit 
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vectors. Public solvers are freely available [166]. SMT solvers have been used in the past 

to perform semantic NOP detection [17] and show equivalence between the code in basic 

blocks of two programs [167]. Our work gives a semantic basis and theory for these 

solvers to be used. 

4.5 Applications in Software Similarity and Classification 

Another application of our intermediate language is the detection of similar software. This 

has uses in malware variant detection, plagiarism detection, and software theft detection. 

4.5.1 Software Isomorphism 

L is an intermediate language representing a translation of assembly code. For each three 

address code, the label associated with its basic block is also maintained. 

 

4.5.1.1 Interprocedural Control Flow Graph (ICFG) 

The interprocedural control flow graph (ICFG) represents both control flow graphs of each 

procedure (the intraprocedural control flow) and the call graph (the interprocedural control 

flow). In our intermediate language we can define it as: 

 

 

 

This definition of the ICFG is not conservative since we ignore indirect calls and branches. 

However, it is suitable for the purposes of software similarity detection. 

To detect if two programs are equal, we can approximate this by testing for isomorphism 

between their interprocedural control flow graphs. 

An isomoprhism of graphs G and H is a bijection between the vertex sets of G and H 
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such that any two vertices u and v of G are adjacent in G if and only ig f(u) and f(v) are 

adjacent in H. 

No polynomial time algorithm has been constructed for isomoprhism testing, however it 

has not been formally proven that the algorithm is exclusively outside of complexity class 

P. In practice, graph invariants can be used to speed up testing. A graph invariant is a 

property of a graph that remains constant amongst its isomorphisms. One graph property 

of interest is the degree sequence of a graph.  The degree sequence of an undirected 

graph is the non-increasing sequence of its vertex degrees. Using this graph invariant we 

can apply set equality testing to definitely show two graphs are non isomorphic. This allows 

us in the software isomorphism problem to show that two programs are not equivalent with 

respect to their interprocedural control flow graphs. 

4.5.1.2 Call Graph 

The call graph shows the control flow between procedures and intraprocedural control flow. 

Formally, we can define an approximation of the call graph using our intermediate 

language. 

 

 

 

We can then apply our graph isomorphism testing to show equivalence between programs 

based on their call graphs. 

4.5.2 Software Similarity and Classification 

The software similarity problem extends the software isomorphism problem to show that 

two programs are approximately equal to each other to some degree. The similarity 

between two programs is typically represented as a real number [0,1] where 0 identifies the 

programs as being totally dissimilar and 1 shows that the programs are isomorphic. 

There are a number of approaches to showing the similarity between two programs. The 

general idea is to use specific features of the program and then to construct a signature out 
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of these features. Once a signature has been constructed, a similarity function solves the 

pairwise similarity problem between these signatures. 

4.5.2.1 Instructions 

For this problem we use the instructions of our intermediate code as a feature to construct 

a signature. 

The intermediate language disassembly is: 

 

The 'birthmark' of the program is a fingerprint or signature. In this case we use a bag of 

opcodes of the instruction listing as our birthmark. The birthmark is represented 

mathematically as a vector. 

 

where Natural is a bijective mapping between the opcodes and a natural number. 

The similarity between two birthmarks can be defined in terms of the Euclidean distance 

between two vectors representing the programs. 

 

4.5.2.2 The Small Primes Product 

Sometimes it is useful to represent a sequence of instructions and compare them to 

another sequence of instructions irrespective of the instruction ordering. This is beneficial 

when facing malware which reorders its code without changing the semantics. Although we 

earlier showed a semantic method to identify equivalence, we note that there are syntactic 

methods as well. 

The Small Primes Product [113] was proposed to tackle this problem. Each possible 

opcode is represented by a unique prime number. Given an instruction sequence, the 
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primes associated with each opcode are multiplied together. The resulting prime product is 

unique for a given set of unique instructions. 

 Formally, for a sequence of instructions I, the Small Primes Product (SPP) is: 

 

 

We can use the small primes product to create a set of basic blocks, where each basic 

block is represented by the small primes product of the basic block's instructions. We can 

then use all of the set similarity measures described in Chapter 2 to show the similarity 

between two programs. 

4.5.2.3 API Calls 

The API calls made by a program are another type of feature that can be used when 

creating birthmarks to show similarity between programs. API Calls can also be 

represented using vectors and the similarity between two programs determined by the 

Euclidean distance as is the same when using opcodes. 

The birthmark is thus represnted as: 

 

where Natural is a bijective mapping between the API call target and a natural number. 

4.5.2.4 Control Flow 

We can define the similarity the similarity between two interprocedural control flow graphs 

in terms of their edit distance. We can also apply the same to the call graph. 

The graph edit distance (GED) between two graphs is defined as the minimum number of 

graph edit operations to transform one graph to the other. 
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For two graphs G=(V1,E1) and H=(V2,E2), the similarity between those graphs can b e 

defined as: 

 

4.5.2.5 Classification and Clustering 

Representing programs by feature vectors allows for the traditional application of machine 

learning techniques. Classification is the task of assigning a class to an object, after a 

period of training with a labelled data set. Classification can be used for instance to detect 

the difference between malicious and non malicious programs. Clustering is an 

unsupervised machine learning method which groups together similar objects according to 

some definition of closeness or similarity. The Euclidean distance is one such measure of 

similarity. 

The typical input to a classification or clustering algorithm is a feature vector. The feature 

vectors described earlier in this section is exactly the kind of input that these algorithms 

work on. Therefore, machine learning can be directly applied to these objects. 

4.5.3 Software Embedding 

Another software similarity related problem is to determine if one program is embedded in 

another. A typical example of this is in the virus detection problem. A formal approach to 

tackle this problem is by using the maximum common subgraph. 

Formally, given two graphs G and H, the maximum common subgraph (MCS) is the largest 

subgraph, S, of G that is isomorphic is a subgraph of H. 

To determine if V is a viral infection in G, we can test if V is the maximum common 

subgraph of G where the graphs represent call graphs or interprocedural control flow 

graphs. Formally, V is a viral infection of G if V=MCS(G).  We can allow for approximate 

solutions potentially accounting for mutations of V using the graph edit distance. V is a viral 

infection of G if ged(V,MCS(H)) > e. 

Concluding Remarks 
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Wire is an intermediate language that enables analysis of executable programs. Wire has 

unique features including the ability to integrate the results of decompilation into the core 

language. While this makes the translation possibly unsound, for the majority of programs 

the translation is effective and useful for analysis. A formal definition of the operational 

semantics of the language enables researchers to formally reason about assembly code. 

We demonstrated proofs of program equivalence between obfuscated and non obfuscated 

code samples. We also demonstrated that using the syntax and semantics lets us formally 

model software similarity problems. These applications reinforce our belief that a formal 

approach to describing Wire has practical benefits. 
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Chapter 5: Malwise II - Control Flow-based Malware 

Variant Detection 

Static detection of polymorphic malware variants plays an important role to improve system 

security and is an important area in software similarity and classification. Control flow has 

shown to be an effective characteristic that represents polymorphic malware instances and 

construction of which was shown formally in the last chapter. In this chapter, we propose a 

similarity search of malware using novel distance metrics of malware signatures based on 

control flow. We describe a malware signature by the set of control flow graphs the 

malware contains. We first experiment with string based signatures. We then try using 

vector and set of strings based signatures. We propose two approaches and use the first to 

perform pre-filtering. Firstly, we use a distance metric based on the distance between 

feature vectors. The feature vector is a decomposition of the set of graphs into either fixed 

size k-subgraphs, or q-gram strings of the high-level source after decompilation. We also 

propose a more effective but less computationally efficient distance metric based on the 

minimum matching distance. The minimum matching distance uses the string edit 

distances between programs’ decompiled flow graphs, and the linear sum assignment 

problem to construct a minimum sum weight matching between two sets of graphs. We 

implement the distance metrics in a complete malware variant detection system. The 

evaluation shows that our approach is highly effective in terms of a limited false positive 

rate and our system detects more malware variants when compared to the detection rates 

of other algorithms. 

5.1 Introduction 

Malware classification and detection can be divided into the tasks of detecting novel 

instances of malware, and detecting copies or variants of known malware. Both tasks 

require suitable feature extraction, but the class of features to be extracted is often 

dependant on which problem is trying to be solved. Detecting novel samples primarily uses 

statistical machine learning. On the contrary, malware variant detection uses the concept 

of similarity searching to query a database of known instances. These similarity queries or 

nearest neighbour searches are known in machine learning as instance-based learning. 
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Instance-based learning uses distance functions to show dissimilarity and hence similarity 

between objects. If the distance function has the mathematical properties of a metric, then 

algorithms exist that enable more efficient searching than an exhaustive set of queries over 

the database. 

Traditional and commercial malware detection systems have predominantly utilised static 

string signatures [95, 96] to query a database of known malware instances. Static string 

signatures capture sections of the malwares’ raw file content that uniquely identifies them. 

String signatures have been employed because they have desirable performance 

characteristics that enable real-time use [168]. However, string signatures perform poorly 

when faced with polymorphic malware variants. Exact string matching also ineffectively 

handles closely related but non-identical signatures. 

Polymorphic malware variants have the property that the byte level content of the malware 

changes between instances. This can be the result of source code modifications or self 

mutation and obfuscation to the malware. Signatures that rely on fixed byte level content 

are unable to capture the invariant characteristics between these polymorphic instances. 

Efficient real-time systems have been proposed that examine the run-time behaviour of 

programs to identify malicious behaviour [107]. Malicious behaviour can either conform to a 

policy of malicious intent, or reassemble the behaviour of a program instance, known in 

advance to be malicious. However, static detection of malware has advantages - it does 

not require conditional, untrusted or sandboxed execution of malware once the original 

contents of the malware are visible. Unpacking is the processing of revealing that code and 

typically occurs before the malware performs its malicious intent. Many Antivirus products 

implement static unpacking for known packers, and this accounts for the majority of 

samples. However, for novel packing techniques unpacking is often a dynamic process 

making effective static analysis against novel malware a hybrid approach. Additionally, 

snapshots of process images can be taken at runtime, thus avoiding the most common 

packing issues and can be used to statically identify if those processes belong to a known 

malware family. 



  C H A P T E R  5  

 

139 

 

 A variety of algorithms have been employed to statically detect malware variants with 

superior classification compared to string based approaches. An n-gram is one of all 

possible fixed sized substring extracted from a  larger string. Our work is directly related to 

the n-gram concept. N-grams of byte level, or instruction level content, utilising machine 

learning and classification has been proposed. However, n-grams are ineffective with 

polymorphic malware because of the changes the instruction level content. 

More detailed program analysis techniques have been employed on the instruction level 

content to extract high level features. Data flow analysis reveals useful high level features 

that are more invariant than instruction content alone. Likewise, abstract interpretation 

using specific domains reveals desirable features. Efficiency still remains a concern for 

industrial usage. 

Control flow has also been used to overcome the limitations of byte level and instruction 

level classification [110]. Control flow has the desirable property that instruction level 

changes do not affect the resulting flowgraphs. Control flow is observed to be more 

invariant in polymorphic malware [115]. 

Our work is based on the set of control flow graphs of the program. In some literature, the 

individual control flow graphs are merged together into a single interprocedural control flow 

graph (ICFG). However, for our work, we represent each procedure with a separate graph 

and therefore consider the set of graphs problem. In contrast, most malware analysis using 

control flow has focused on analysing a single  call graph. The advantage of considering 

each control flow graph individually is that we can apply the decompilation technique of 

structuring which is not possible with the ICFG. 

The challenge of using graphs to show similarity is that accurately measuring similarity 

such as when using the graph edit distance does not perform in polynomial time. 

Therefore, research must investigate methods that make using graphs feasible for large 

scale malware detection. The real or near real-time constraints of Antivirus software make 

this challenge even more significant. The challenge increases again when complex graph 

based objects are considered such as the set of graphs signature our research 

investigates. 
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5.1.2 Motivation 

This work is motivated by several real-world applications that would benefit from control 

flow-based malware variant detection. 

5.1.2.1 A replacement to traditional Antivirus 

Traditional AV suffers from the inability to detect malware variants efficiently from large 

databases. Control flow is effective and our system makes such a system practically 

efficient when using large databases. Moreover, it would reduce the size of the database 

required on the end host due to requiring fewer samples to recognise a large malware 

family. 

5.1.2.2 To cluster interesting samples 

AV vendors need to know which malware families are significant enough that they require 

manual analysis. Our system could be used to identify variants and group them to their 

family. If many instances of a family are identified, then that family may require human 

analysis to determine what the real impact of the malware is. Moreover, our system could 

be used to avoid redundancy of work. In this case, a human analyst would not perform 

more work on already analysed family. 

5.1.2.3 Incident Response 

An accurate system that identifies what family of malware a sample belongs to could be 

used in incident response. An analyst could attribute authors of malware to the family it 

belongs to or identify what disinfection procedures are required and what impact a sample 

has on an infected system. 

 5.1.3 Innovation 

Our work is based on control flow classification but we make the following contributions: 

We propose a system that performs similarity searching of sets of control flow graphs. We 

perform the search in close to real-time in the expected case. No other system has 

demonstrated near real-time performance for this use of control flow based signature. 

We propose using the Levenshtein distance, the NCD and the BLAST algorithms to 

perform similarity comparisons using novel string based malware signatures. 
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We propose using fixed size k-subgraphs to construct a feature vector approximating a set 

of graphs. Using a vector representation improves efficiency significantly and has not been 

used before. 

We also propose the novel use of a polynomial time algorithm to generate q-gram features 

of decompiled control flow graphs to construct a feature vector. These features are shown 

to have more accuracy than k-subgraphs and can be constructed faster than k-subgraphs. 

K-subgraph feature construction is not known to take polynomial time. Q-grams of 

decompiled graphs have not been used before for malware classification. 

We propose a distance metric between two sets of graphs based on the minimum 

matching distance.  The minimum matching distance uses the linear sum assignment 

problem. It has been used previously with sets of vectors, but not sets of graphs. The 

minimum matching distance has not been used before in malware classification. 

We implement these ideas in a complete prototype system and perform an evaluation on a 

set of benign binaries and on real malware, including those malware that are packed and 

polymorphic. The evaluation demonstrates the system is effective and fast enough for 

potential desktop adoption. 

5.1.4 Structure of the Chapter 

The structure of this chapter is as follows: Section 5.2 defines the malware classification 

problem and our approach. Section 5.3 describes the unpacking and general static 

analysis component of the system. Section 5.4 examines string based signatures. Section 

5.5 describes the vector based pre-filtering stage used in classification. This is a course 

grained classification process. Section 5.6 describes the fine grained classification 

algorithms. Section 5.7 describes distance metrics and the nearest neighbour similarity 

search. Section 5.8 performs an evaluation using benign and malicious samples. Section 

5.9 examines limitations and discusses points of interest. Section 10 looks at future work. 

Finally, we present some concluding remarks. 
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5.2 Problem Statement and Our Approach 

5.2.1 Problem Statement 

New programs that are discovered on the host system are inspected to determine if they 

are malicious or benign. Unknown malware are detected by calculating their similarity to 

existing malware. A high similarity identifies a malicious variant. Existing malware are 

collected from honeypots and other malicious sources to construct a database of malware 

signatures. The described malware variant detection problem is equivalent to the software 

similarity search problem. 

The software similarity problem is to determine if program p is a copy or derivative of 

program q and is defined in Section 1.4. The software similarity problem is extended to 

operate over a database of programs. We use the nearest neighbour search. 

To recap Section 2.8, the nearest neighbour range search is defined as: 

Given a set of objects P and a query q, and a range r > 0, the range nearest neighbours 

(rNN) query is to find a result set rNN that consists of objects such that for any 

rqpdistPprNNp ),'(,',' . 

A slight variation is to find any nearest neighbour in range. This variation can improve 

performance. 

Definition 58. Given a set of objects P and a query q, and a range r > 0, the any range nearest 

neighbours (rNN) query is to find any object p, such that 
rqpdistPp ),(,

. 

The distance function used in the nearest neighbour search is d(p,q) =1-s(p,q). 

5.2.2 Our Approach 

Our approach builds a signature or birthmark of a malware based on the set of control flow 

graphs it has. We compare signatures using distance metrics to show similarity. In our 

experiments we evaluate constructing strings to represent signatures and then use a 

variety of string metrics to show signature similarity. We also use a vector based signature 

which we observe is more effective and efficient than our string signatures. Finally, we add 

a set of strings signature which we observe as more accurate and is used to refine the 

vector based result. 



  C H A P T E R  5  

 

143 

 

Malware is first unpacked to remove obfuscations. Control flow is reconstructed and the 

control flow graphs decompiled and structured into strings. Malware variants are detected 

by identifying existing malware the query programs are related to. Pre-filtering is used to 

provide a list of potentially related malware. The pre-filtering algorithm is based on 

constructing a feature vector to represent the query programs and malware. Either of two 

algorithms can be used to extract features. Firstly, subgraphs of size k are used to 

represent features. Alternatively, q-grams are extracted from the strings representing the 

structured graphs. Q-grams our equivalent to n-grams when using strings from decompiled 

control flow graphs. Using either algorithm for feature extraction, the most relevant features 

are used to construct a feature vector. The pairwise similarity between two feature vectors 

employs a distance function on the pair of vectors. Vectors that are close to each other are 

indexed to the same bucket. To identify candidates with high similarity to existing malware, 

a metric similarity search is performed using Vantage Point trees [81]. 

To compare the query to the candidate malware, a more accurate pairwise distance 

function is used. Each control flow graph from one program is assigned a unique mapping 

to a flowgraph from the other program. This mapping intuitively shows the flowgraphs 

represent the same procedure. The mapping is assigned a weight and the mappings 

chosen by considering it as an optimization problem. The mappings are chosen to 

minimize the sum of all weights associated with the mappings. The weight is the distance 

between flowgraphs and is based on the string distance between structured graphs. This 

sum weight is known as the minimum matching distance and is known to be metric. Metric 

Access Methods using DBM trees [82] are used to perform a similarity search. 

5.3 Unpacking and Static Analysis 

5.3.1 Unpacking 

The query program may have its real contents hidden using the code packing 

transformation [20]. Code packing encrypts, compresses, or obfuscates the code by 

dynamically generating the original program at runtime. This obfuscation layer is removed 

using automated unpacking. The unpacking process employs application level emulation 

as proposed in previous research [60].  
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5.3.2 Dissasembly and Control Flow Reconstruction 

Procedure  ::= StatementList 

StatementList ::= Statement | Statement StatementList 

Statement  ::= Return | Break | Continue | Goto 

| Conditional | Loop | BasicBlock 

Goto  ::= 'G' 

Return  ::= 'R' 

Break  ::= 'K' 

Continue  ::= 'C' 

BasicBlock ::= SubRoutineList 

SubRoutineList ::= 'S' | 'S' SubRoutineList 

Condition  ::= | ConditionTerm 

| ConditionTerm NextConditionTerm 

NextConditionTerm ::= '!' Condition | Condition 

ConditionTerm ::= '&' | '|' 

IfThenCondition ::= Condition | '!' Condition 

Conditional ::= IfThen | IfThenElse 

IfThen  ::= 'I' IfThenCondition StatementList 'H' 

IfThenElse  ::= 'I' IfThenCondition StatementList 

‘E’ StatementList 'H' 

Loop  ::= PreTestedLoop | PostTestedLoop 

| EndlessLoop 

PreTestedLoop ::= 'W' Condition 'StatementList '}' 

PostTestedLoop ::= 'D'  StatementList '}' Condition 

EndlessLoop ::= 'F' StatementList '}' 

 

Fig. 38. The grammar of a structured string. 
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In our system, an unpacked program is disassembled using speculative disassembly [44]. 

The disassembly is translated to an intermediate language using the Wire static analysis 

framework. The control flow is  reconstructed into control flow graphs for each procedure 

[60] based on the intermediate code. This and the remaining components of the static 

analysis are architecture independent. 

The control flow graphs are normalized to eliminate unnecessary jumps such as when an 

unconditional branch is used to divide a basic block in two. This is typically done by a 

malware for the purpose of changing its byte level content and static string signature. The 

result after control flow reconstruction is the set of control flow graphs associated with each 

identified program procedure 

5.3.3 Structuring 

Structuring is a reverse engineering and decompilation technique to transform a control 

flow graph into its high level source code representation. We use a structuring algorithm to 

transform the control flow graphs into strings. The intuition is that similar control flow 

graphs are structured into similar strings [60]. This effectively forms a locality sensitive 

hash. The structuring algorithm we use is based on the algorithm used in the DCC 

decompiler [41]. The grammar for the resulting string is shown in Fig. 38 using alphabet . 

Formally, for program P and for a control flow graph c, let }{ GcP . A structuring 

function for a control flow graph is defined as s and a structuring algorithm for program P is 

defined as S. 

)(

:

csc

MPS

 

5.4 String Based Signatures 

We first experimented with string based signatures. This approach was eventually 

discarded in favour of representing signatures using vectors, however insight into the 

malware detection problem is gained by examining these novel techniques. 
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5.4.1 Feature Extraction 

There is an associated string representing control flow for each procedure identified in the 

binary. These strings and ordered and concatenated to form a single string to represent the 

control flow of the entire binary. The substrings are deliminated by a specific character (eg 

‘Z’), The novelty of our approach is to order and concatenate the control flow graph strings 

into a single unified string based signature, which allows us to use traditional string 

similarity metrics for malware classification. The order of the concatenated strings is 

determined by features of the procedure, which are used as sort keys. Procedures that 

have duplicate sets of keys are removed from the analysis. The keys in order of 

importance are: 

 Number of IL instructions in procedure 

 Length of string representing decompiled control flow graph 

 Number of basic blocks in procedure 

 Number of edges in control flow graph 

 Number of procedure’s callers 

 Number of procedure’s callees 

5.4.2 Indexing Using String Metric Access Methods 

String metrics are proposed to show the similarity between a query signature and malware 

signatures. A similarity search over the malware database enables the malware variant 

classification. The string metric we propose is the Levenshtein or edit distance. The 

Levenshtein distance between two strings gives the minimum number of insertions, 

deletions and substitutions to transform one string to the other. The run-time complexity is 

O(nm) where n and m are the lengths of the strings. The Levenshtein distance forms a 

metric. A metric allows efficient indexing and searching of objects.  Sequence alignment 

algorithms also provide suitable string distances. The Smith-Waterman algorithm is an 

optimal local alignment algorithm. We propose using Metric Access Methods to perform a 

range similarity search. The similarity search finds all malware signatures similar to the 
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query with at most r edit operations to transform the query signature to the malware 

signature.  

String metrics may also be used on the byte-level content of the unpacked malware. We 

evaluate the effectiveness of using byte-level content in Section 5.9, and compare it to our 

proposed signature of using decompiled control flow graphs. 

5.4.3 Indexing Using Genome Strings and Blast 

The Smith-Waterman algorithm gives the optimal local sequence alignment between two 

strings. The local sequence alignment seeks to provide an alignment between two strings 

taking into account the alignment of substrings. Local sequence alignment is used often in 

the field of Bioinformatics to identify similarity between genome sequences. It forms a 

metric allowing for Metric Access Methods for indexing and searching. The Smith-

Waterman algorithm has quadratic run-time complexity like the Levenshtein distance. A 

quadratic running time has poor efficiency when the length of the strings becomes 

moderately large. The Basic Local Assignment Search Tool (BLAST) [169] approximates 

the Smith-Waterman algorithm using a heuristic search. BLAST is used frequently to 

improve the efficiency of genome searches. We propose using off-the-shelf BLAST 

software to perform similarity searches of our malware signatures. To do this, we translate 

our control flow graph signatures to a protein string in the FASTA format to be used as 

input to the BLAST software. To construct a protein sequence, the decompiled string is 

translated character by character to a genome identifier. The BLAST algorithm does not 

employ distance metrics for the similarity search, but uses the notion of an expected value, 

which describes the statistical probability of the occurrence of a random signature. 

The use of off-the-shelf genome similarity search software is a novel aspect used by our 

approach, and to the best of our knowledge has not been proposed in earlier research. 

5.4.4 Indexing Using the NCD Metric Access Method 

We propose using the normalized compression distance (NCD) [84] to perform a similarity 

search. The NCD utilises the notion of compressed objects being related to Kolmorogov 

complexity. The NCD takes note that when two objects are related, compressing the 

concatenated objects results in a blob of similar length to compressing only one of the 
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objects. The NCD provides a measure of dissimilarity or distance between objects without 

explicit knowledge or representation of the internal structure of the objects in question. It is 

able to provide a distance measure using many existing compression algorithms without 

modification. To recap Chapter 2, the NCD is defined as: 

 

where C(x) is the length of the compressed object, and C(xy) is the length of the 

compressed concatenated objects. 

For the NCD to perform effectively, the size of the objects must be less than the 

compressors window size. The NCD is a metric and so can employ the use of Metric 

Access Methods to index and search the signatures. To the best of our knowledge, Metric 

Access Methods have not been used in conjunction with the NCD and malware indexing by 

previous research. 

5.5 Vector Based SIgnatures – Pre-filtering 

To reduce the search space for potentially related malware, we use an initial similarity 

search to select candidate malware variants. We chose a vector based approached 

because during our evaluation we observed that this approach was more efficient and 

effective. Note that in our final system we use both vector based signatures for pre-filtering  

and the set of strings based signatures for refinement. 

We construct and search for feature vectors that are associated with malware. We propose 

two methods to extract features for the feature vector using either k-subgraphs or q-grams 

of structured control flow. Q-grams are more efficient and evaluation shows that they 

generate more accurate results. The use of approximating a set of graphs by a vector is a 

novel contribution of this thesis. 

5.5.1 The K-Subgraph Feature 
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Using subgraphs of size k to characterize control flow has been investigated in previous 

literature [115]. Subgraphs of size k are those subgraphs in the control flow graph which 

have k nodes. We use each possible subgraph of size k in the control flow graphs as 

features of the program. Our novel contribution is the use of these features in the 

construction of a feature vector which is subsequently used in a similarity search. 

For each control flow graph, we construct a depth first spanning tree to eliminate cycles. 

We then perform a traversal of all possible paths in the tree where the traversal is 

terminated when k nodes have been visited [115]. 

Given a subgraph of size k, the graph is transformed into a unique and canonical 

representation using the Bliss open-source toolkit [170]. A canonical graph labeling is 

formed and the adjacency matrix of the resulting graph is stored as a string. This string 

represents a feature of the malware. Graph canonization is not known to take polynomial 

time in the general case. An example of possible k-subgraph features from a control flow 

graph when k is 7 is shown in Fig. 39.  

5.5.2 The Control Flow Q-Gram Feature 

Q-grams can be employed to represent control flow if the control flow graph is modeled as 

a string. We use structuring to generate the strings. A q-gram is any character sequence in 

the string of length q, constructed as a sliding window. For q-grams to be an effective 

feature, the strings must satisfy the property that similar control flowgraphs have similar 

strings. Each possible q-gram in the string represents a feature. Constructing the strings 
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Fig. 39. The k-subgraph feature. 
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and the q-grams can be done in polynomial time and is more efficient than using k-

subgraphs. The use of q-grams on the structured control flow graphs is a novel contribution 

of this thesis. 

 5.5.3 Feature Selection 

The number of possible and distinct features in a program is large. To reduce the number 

of distinct features to a feasible number, the set of the 500 most frequent features are 

selected from a training set of malicious and benign programs. Feature selection works by 

counting the number of times each feature occurs in the training set and then ranking them 

in descending order. The top 500 were our selected features. Frequency of features forms 

our feature selection and is reasonable considering we are performing a nearest neighbour 

search. If we were performing malware detection using binary classification then another 

form of feature selection would be more suitable, for example, Mutual Information. The 

number of features, 500, was chosen to replicate previous work used in n-gram 

classification. We noted no significance to the accuracy of the system when this number 

was increased further. We did notice that decreasing this number using dimensionality 

reduction did decrease the accuracy as explained in section 5.6.4. Both program classes 

are used because it is our intuition that there is no significant classification difference in 

control flow between malicious and benign programs. This intuition forms the basis for our 

instance-based learning approach to classification. These features represent dimensions in 

a program’s feature vector, and the frequency of a particular feature represents the 

dimension’s magnitude. For the remaining features not in the 500 most frequent, they are 

ignored when constructing the feature vector of a program. 

5.5.4 Dimensionality Reduction 

To reduce the dimensionality of the feature vector obtained from the previous stage, 

Principal Component Analysis (PCA) [171] can be employed.  Our pilot studies performed 

more effectively when PCA was not used. We do not consider dimensionality reduction any 

further. Fig. 8 illustrates the process of feature selection and dimensionality reduction. 

5.5.5 Feature Vector Distance 

To calculate the pairwise similarity between two feature vectors, a distance metric is 

employed. Many distance metrics are possible including the Euclidean distance. We use 
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the Manhattan distance because of its efficiency when compared to the more traditional 

Euclidean distance. This distance is also reportedly more robust for high dimensional data 

when compared to the Euclidian distance. The more familiar cosine similarity measure is 

not used in our work because it is not a metric distance function and therefore does not 

allow for efficient database indexing. The Manhattan distance (Section 2.7.3) is also known 

as the city block or L1 distance. To recap Chapter 2, for n-dimensional vectors p and q, the 

Manhattan distance is: 

 

5.5.6 Indexing and Searching the Feature Vectors 

We group the feature vectors into buckets. To group the feature vectors, the neighbours of 

each feature vector that are equal to or exceed the similarity of 0.6 are placed in the same 

bucket. This threshhold was chosen empirically through experimentation. 

We pre-filter malware variants by performing a range nearest neighbour similarity search to 

our query feature vector. Given database D, query q, and threshold t, the set of nearest 

neighbours R is: 

t
q
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 The results of the similarity search are candidate matches that can be used in the 

subsequent stage of comparing programs using the assignment problem. The nearest 

neighbours of the query enable us to determine if those neighbours are variants of the 

query. All samples available are typically used for the queries once the database is 

created. The nearest neighbours of those queries, as described in the introduction, can 

identify polymorphic variants, group samples by their family, or enable incident response to 

identify clusters of infection. More discussions of the algorithms and implementation of the 

similarity search are given in Section 8. 
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5.6 Set of Strings Based Signatures – Malware Classification 

We propose a more accurate distance function to be applied to candidate malware variants 

after their identification in the pre-filtering stage. This improved distance is based on the 

distance between the control flow graphs’ structured strings and is a variant of the 

minimum matching distance. 

5.6.1 A Distance Function for Programs Based On the Linear Sum 

Assignment Problem 

The linear sum assignment problem is to match distinct pairings of elements between two 

sets. Each match or assignment has an associated weight. The assignments are made 

such that, the sum of the weights are minimized. The linear sum assignment problem is 

also known as a minimum weight perfect matching. 

The linear sum assignment problem is formally defined as: 

Given two sets, A and T, of equal size, together with a weight function C: A × T → R. Find 

a bijection f: A →T such that the cost function: 

 

is minimized. 

For each program examined by our malware classification system, there exists an 

associated set of control flow graphs. Each set is represented as a set of structured 

strings. The assignment problem is used to match control flow graphs between sets. The 

intuition is that these matched control flow graphs are shared characteristics between 

malware variants. The weight of the assignment is the string metric or distance between 

those strings. We use the Smith-Waterman algorithm. We construct a matrix containing the 

weights of all possible pairings between two programs’ sets of structured strings. If the 

number of elements in each set is not identical, then the elements that cannot be paired to 

existing elements are paired to the null element. The weight of this pairing is equivalent to 

the size of the element’s string. 

Aa
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We define the distance between programs as the minimal cost function generated by a 

solution to the assignment problem using the matrix of weights. The use of the assignment 

problem is a novel contribution used in our system to show the distance between 

programs. This cost is a variation of the minimum matching distance [85] which is known to 

be metric. 

Formally, let two programs P1 and P2 be defined as sets of control flow graphs and let S be 

a structuring function. 

We first normalize the size of the sets making them equal. The additional elements, bj, 

used in the normalization process are place holders and not used for any other purpose. 

 

 

 

 

The function ed(a,b) is defined as the distance between strings. The distance, d, between 

the programs is found as follows: 

 

 

Find a bijection such that the distance, d is minimized. 

 

5.6.2 Solutions to the Assignment Problem 

The assignment problem can be solved optimally using the Munkres or Hungarian 

algorithm [158] in time O(N3). Although an optimal solution is available, for programs that 

have a large number of control flow graphs, the time complexity required of O(N3) is 

impractical. In these cases when the number of nodes is greater than 300, we use a 
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heuristic solution based on a greedy assignment. The greedy assignment matches an 

element from one set by selecting the element from the other set with the lowest 

associated weight. The time complexity is O(N(N+1)/2). The greedy solution performs 

more efficiently, but the program distance it identifies is often significantly higher than the 

optimal solution. 

5.6.3 Similarity Search of Malware 

The similarity between two objects is given by: 

We scale the distance relative to our query so we can perform a range search relative to 

only the query using an efficient metric access method. Because we scale to the query and 

not max(|p|,|q|) we have cases where d(p,q) > |q|. In this case our similarity function would 

give us a negative result. To simplify interpretation of this result, we say that it is not at all 

similar and discard it. 

A threshold for similarity, t, is chosen as 0.6. The threshold was chosen manually after an 

empirical evaluation. We then use this to identify any nearest neighbour p to the query q in 

the set of malware, E, returned by our pre-filtering process. 
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5.7 Nearest Neighbour Similarity Searches 

5.7.1 Metric Distance Functions 

The distance between two objects shows their dissimilarity. If the distance function has the 

properties of a distance metric then indexing and searching a database can be performed 

more efficiently. The formal definition of a metric distance function is given in Section 2.7.1. 

Given metric distance functions can enable efficient database access, it is beneficial to 

compare objects or birthmarks (software fingerprints) using distance functions that are 

metric. Examples of metric access methods are in [81-83]. 
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5.7.2 Similarity Search Using Metric Access Methods 

To search for malware that are similar to our query in both the pre-filtering and 

classification stages, a metric access method is employed. Metric trees encapsulate data 

structures including BK Trees [87], VP Trees  [81] or dynamic indexing structures such as 

M-Trees [83] and Slim-Trees [88]. Our implementation uses the GBDI metric access 

method library [172]. 

 In our prototype, we use a Vantage Point Tree [81] for indexing the feature vectors used in 

the pre-filtering stage. Then, the final classification process uses DBM-Tree [82] to perform 

a similarity search. Note that our classification system uses two levels of indexing and has 

different metric access methods for each. 

In our prototype we can configure the similarity search to return either any similar objects, 

or all similar objects. We use the any range search for classification, and the all range 

search for pre-filtering. By performing a similarity search to find any similar object, the 

performance is significantly improved when there are many near duplicate malware stored 

in the database. The any range search was implemented by us into the GDBI Arboretum 

library [172].  

5.8 Implementation and Evaluation 

5.8.1 Implementation 

Our implementation is built as a set of modules in the Malwise malware and static analysis 

framework. Malwise consists of approximately 100,000 LOC of C++ and its features 

include unpacking using application level emulation and static analysis. The modules we 

developed to perform malware classification consist of approximately 3,000 LOC of C++. 

Emulation is used to perform unpacking. However, the classification process uses only 

static analysis and that is the focus of our current work. 

5.8.2 Effectiveness of String Signatures 

The first evaluation we performed was to examine the similarity matrices for our string 

based signature classification algorithms on a known family of related malware. We also 

compared these methods to the q-gram approach. The system ideally identifies high 

similarity between malware that belongs to the same family. The malware chosen was the 
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Roron family of malware to replicate previous research [60, 61, 110]. The family of 

malware variants was identified by an Antivirus vendor and may not necessarily have been 

entirely trustworthy. We obtained the malware from the Offensive Computing malware 

database [173]. Identified malware variants have similarities exceeding or equal to 0.6. 

Identified variants additionally have their table cells highlighted. The more cells highlighted 

the more effective each approach is. We also evaluate using only the byte-level content for 

similarity comparisons. The Roron malware family is not stringly polymorphic, so byte-level 

content is still somewhat effective. The most important observation is that comparing string 

based signature approaches in Table 9 to the q-gram approach in Table 10 shows that the 

q-gram vector based signature detects more malware variants. It is also noted that q-

grams are theoretically more efficient. It is for these reasons we decided to focus on vector 

based signatures. 

5.8.3 Evaluation Setup 

To perform more evaluations of the classification system,  17,430 real malware with unique 

MD5 hashes were collected between 02-01-2009 and 8-12-2009 from honeypots in the 

mwcollect Alliance [174] network. From these malware, 15,398 were found to be valid 

object files for Windows Vista – the remaining binaries were invalid, specific to Windows 

XP, and not able to be processed by our prototype’s unpacking system. In addition to the 

malware, we employed the use of 1601 benign binaries, which were obtained from the 

Windows system directory and the Cygwin [175] executable directories. The system we 

used to evaluate the prototype classification system was an Intel Q6600 Quad Core 

2.4GHz PC with 4G of memory running 32-Bit Windows Vista Home Premium, Service 

Pack 1. 

The prototype system requires training to select the 500 most common q-grams and k-

subgraphs. 1769 malware and 1601 benign binaries were used in the training set to 

generate features. 

5.8.4 Evaluation of False Positives in Pre-filtering 

To evaluate the accuracy of the q-gram and k-subgraph classification algorithms we first 

constructed a database of 10,000 malware signatures. Then, we found the similarities 

between each of 10,000 malware and 280 benign binaries from the windows system 
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directory. This evaluation is to identify how effective the pre-filtering stage is at filtering non 

matching samples. We expect that similarity found should be generally quite low, and any 

similarity found above or equal to 0.6 identifies a false positive. The size of the q-gram was 

4. The size of the k-subgraph was 10 as recommended in the existing literature. Better 

selections of the size k were not investigated. The threshold of 0.6 was chosen empirically 

through experimental testing. 

The evaluation shown in Table 11 demonstrates that false positives, or collisions, occur 

using this pre-filtering algorithm with either feature. The q-gram feature is shown to 

generate considerably less collisions and false positives compared to using k-subgraphs of 

size 10. For this reason, we excluded using k-subgraphs as part of the classification 

process in further evaluations. 

TABLE 9. SIMILARITY MATRICES FOR RORON MALWARE. 

 ao b d e g k m q a 

ao 1.00 0.60 0.35 0.38 0.45 0.74 0.60 0.60 0.73 

b 0.60 1.00 0.46 0.50 0.37 0.73 0.95 0.96 0.73 

d 0.35 0.46 1.00 0.64 0.59 0.36 0.46 0.46 0.35 

e 0.38 0.50 0.64 1.00 0.61 0.42 0.49 0.50 0.40 

g 0.45 0.37 0.59 0.61 1.00 0.47 0.37 0.37 0.46 

k 0.74 0.73 0.36 0.42 0.47 1.00 0.73 0.72 0.86 

m 0.60 0.95 0.46 0.49 0.37 0.73 1.00 0.96 0.72 

q 0.60 0.96 0.46 0.50 0.37 0.72 0.96 1.00 0.72 

a 0.73 0.73 0.35 0.40 0.46 0.86 0.72 0.72 1.00 

Levenshtein String Metric on Byte-level Content 

 ao b d e g k m q a 

ao 1.00 0.70 0.42 0.42 0.44 0.72 0.70 0.70 0.70 

b 0.70 1.00 0.47 0.47 0.48 0.94 1.00 1.00 0.93 

d 0.42 0.47 1.00 0.71 0.80 0.48 0.47 0.47 0.48 

e 0.42 0.47 0.71 1.00 0.72 0.47 0.47 0.47 0.47 

g 0.44 0.48 0.80 0.72 1.00 0.49 0.48 0.48 0.50 

k 0.72 0.94 0.48 0.47 0.49 1.00 0.94 0.94 0.96 

m 0.70 1.00 0.47 0.47 0.48 0.94 1.00 1.00 0.93 

q 0.70 1.00 0.47 0.47 0.48 0.94 1.00 1.00 0.93 

a 0.70 0.93 0.48 0.47 0.50 0.96 0.93 0.93 1.00 

Levenshtein String Metric 

 ao b d e g k m q a 

ao 0.94 0.80 0.50 0.52 0.52 0.82 0.80 0.80 0.82 

b 0.80 0.93 0.51 0.54 0.53 0.88 0.93 0.93 0.89 

d 0.50 0.51 0.93 0.77 0.83 0.52 0.51 0.51 0.52 

e 0.52 0.54 0.77 0.94 0.85 0.54 0.54 0.54 0.54 

g 0.52 0.53 0.83 0.85 0.93 0.53 0.53 0.53 0.53 

k 0.82 0.88 0.52 0.54 0.53 0.94 0.88 0.88 0.92 

m 0.80 0.93 0.51 0.54 0.53 0.88 0.93 0.93 0.89 

q 0.80 0.93 0.51 0.54 0.53 0.88 0.93 0.93 0.89 

a 0.82 0.89 0.52 0.54 0.53 0.92 0.89 0.89 0.93 

Normalized Compression Distance (NCD) Metric 
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5.8.5 True Positives of the System Compared to Previous Research 

The next evaluation we performed was to examine the similarity matrices for our complete 

classification algorithms on a known family of related malware. This evaluation 

incorporates all elements of our system and is the main evaluation we performed on the 

true positive detection rate of the system. The system ideally identifies high similarity 

between malware that belongs to the same family. We compared the q-gram classification 

TABLE 10. SIMILARITY MATRICES FOR RORON MALWARE. 

 ao b d e g k m q a 

ao  0.44 0.28 0.27 0.28 0.55 0.44 0.44 0.47 

b 0.44  0.27 0.27 0.27 0.51 1.00 1.00 0.58 

d 0.28 0.27  0.48 0.56 0.27 0.27 0.27 0.27 

e 0.27 0.27 0.48  0.59 0.27 0.27 0.27 0.27 

g 0.28 0.27 0.56 0.59  0.27 0.27 0.27 0.27 

k 0.55 0.51 0.27 0.27 0.27  0.51 0.51 0.75 

m 0.44 1.00 0.27 0.27 0.27 0.51  1.00 0.58 

q 0.44 1.00 0.27 0.27 0.27 0.51 1.00  0.58 

a 0.47 0.58 0.27 0.27 0.27 0.75 0.58 0.58  

Exact Matching 

 ao b d e g k m q a 

ao   0.70 0.28 0.28 0.27 0.75 0.70 0.70 0.75 

b 0.74  0.31 0.34 0.33 0.82 1.00 1.00 0.87 

d 0.28 0.29  0.50 0.74 0.29 0.29 0.29 0.29 

e 0.31 0.34 0.50  0.64 0.32 0.34 0.34 0.33 

g 0.27 0.33 0.74 0.64  0.29 0.33 0.33 0.30 

k 0.75 0.82 0.29 0.30 0.29  0.82 0.82 0.96 

m 0.74 1.00 0.31 0.34 0.33 0.82  1.00 0.87 

q 0.74 1.00 0.31 0.34 0.33 0.82 1.00  0.87 

a 0.75 0.87 0.30 0.31 0.30 0.96 0.87 0.87   

Heuristic Approximate Matching 

 ao b d e g k m q a 

ao   0.86 0.53 0.64 0.59 0.86 0.86 0.86 0.86 

b 0.88   0.66 0.76 0.71 0.97 1.00 1.00 0.97 

d 0.65 0.72   0.88 0.93 0.73 0.72 0.72 0.73 

e 0.72 0.80 0.87   0.93 0.80 0.80 0.80 0.80 

g 0.69 0.77 0.93 0.93   0.77 0.77 0.77 0.77 

k 0.88 0.97 0.67 0.77 0.72   0.97 0.97 0.99 

m 0.88 1.00 0.66 0.76 0.71 0.97   1.00 0.97 

q 0.88 1.00 0.66 0.76 0.71 0.97 1.00   0.97 

a 0.87 0.97 0.67 0.77 0.72 0.99 0.97 0.97   

Q-Grams 

 ao b d e g k m q a 

ao   0.86 0.49 0.54 0.50 0.87 0.86 0.86 0.86 

b 0.87   0.57 0.63 0.62 0.96 1.00 1.00 0.96 

d 0.61 0.64   0.85 0.91 0.64 0.64 0.64 0.64 

e 0.64 0.69 0.85   0.90 0.68 0.69 0.69 0.68 

g 0.62 0.68 0.91 0.91   0.68 0.68 0.68 0.68 

k 0.88 0.96 0.58 0.62 0.61   0.96 0.96 0.99 

m 0.87 1.00 0.57 0.63 0.62 0.96   1.00 0.96 

q 0.87 1.00 0.57 0.63 0.62 0.96 1.00   0.96 

a 0.87 0.96 0.58 0.62 0.61 0.99 0.96 0.96   

Optimal Distance Using Assignment Problem 



  C H A P T E R  5  

 

159 

 

algorithm and the assignment problem classification algorithm. Additionally, we made 

comparison to algorithms proposed in previous research. We compared our system to a 

real-time flowgraph based classification system that uses exact or isomorphic testing of 

control flow graphs in [61]. We expect our approximate matching algorithm to detect more 

variants than the exact matching system. The second comparison was to a previously 

proposed system that uses an approximate control flow graph matching algorithm in [60]. 

The previously proposed system uses an alternative heuristic algorithm based on greedy 

matching and string metrics of the structured control flow graphs. The system we 

compared against does not employ the assignment problem or a program distance metric. 

TABLE 11. FALSE POSITIVES USING K-SUBGRAPHS AND Q-GRAMS. 

Similarity K-Subgraphs QGrams 

0.0 1302161 2334251 

0.1 463170 413667 

0.2 356345 40055 

0.3 285202 7899 

0.4 200326 3790 

0.5 129790 327 

0.6 46320 11 

0.7 10784 0 

0.8 5883 0 

0.9 19 0 

1.0 0 0 
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The results are shown in Table 12. The results show that our prototype detects more 

malware variants in this family of malware than existing systems.  

The Netsky, Roron, and Klez, and Frethem malware were chosen to continue the 

evaluation of variant detection. For each malware family, the maximum number of possible 

variants is listed, along with the detection results of our algorithm and existing algorithms 

[60, 61]. Table 4 lists the results. Ideally, the number of variants detected would be the 

maximum, meaning all variants were related to each other. Our system detects many but 

not all variant relationships. It may be that some of the variants are quite distinct. The 

classification algorithms we proposed in this research are shown to be highly effective and 

detect more malware than previous systems. Looking at the Frethem malware family, our 

algorithm detects 217 variant relationships, while the next best system detects 144 

variants. 

5.8.6 Evaluation of the System’s False Positives 

We next evaluate the number of false positives generated by the system. The number of 

false positives gives indication of how the distance functions perform using non similar 

programs. In our first test we simply aggregated the families of malware from our true 

TABLE 12. MALWARE DETECTION 

Classification Algorithm Klez Netsky Roron Frethem 

Maximum 36 49 81 289 

Exact  20 29 17 139 

Heuristic Approximate  20 27 43 144 

Q-Grams 20 31 79 226 

Optimal Distance 22 46 73 220 

Q-Grams + Optimal Distance 20 43 73 217 
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positive testing. Our system did not report any samples as belonging to incorrect families. 

We then implemented a more thorough test of our system. We performed an  evaluation 

using a much larger malware database size of 10,000. We classified the set of 1601 

benign programs and expected that any identified malware would be  a false positive. The 

evaluation demonstrates false positives when using the q-gram as is also demonstrated in 

Table 13. For a database size of 10,000 the false positive rate is shown to be less than 

1%. We also show that using the assignment problem solution in conjunction with the q-

gram classification results in fewer false positives. 

We suspect the reason for the remaining false positives is because we do not eliminate 

statically linked functions from the analysis. Programs that share the same statically linked 

objects have a high similarity, even when the programs are generally unrelated. 

TABLE 13. FALSE POSITIVES. 

Classification Algorithm False Positives FP Percentage 

Q-Grams 10 0.62 

Q-Grams + Optimal Distance 7 0.43 
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5.8.7 Algorithmic Complexity Analysis 

The algorithmic complexity of comparing malware signatures is shown in Table 14. We 

examine our string based signature based on using the optimal edit distance, the vector-

based signature using the Manhattan distance, and the set of strings-based signature 

using the optimal and greedy approach to solving the assignment problem. We also 

compare our approach with previous work in SMIT, exact control flow graph matching in 

[61], and traditional graph algorithms. Our vector-based signature is the most efficient and 

a distance between signatures can be performed in O(1) relative to the size of the 

programs in terms of number of procedures. This is why our system performs so efficiently. 

The string-based signature performs quite slowly because each procedure incurs a cost, k, 

relative to the size of the procedures’ decompiled control flow graphs. Our set of strings-

based distance can be performed in O(N3) which is comparable to the previous research in 

SMIT [112] which uses an approximation to the graph edit distance on the programs’ call 

graphs. For large graphs we can use the approximate algorithm in our approach which 

TABLE 14. ALGORITHMIC COMPLEXITY COMPARISONS 

Algorithm Complexity 

SMIT O(N3) 

Exact Matching O(NlogN) 

Graph Edit Distance NP 

Graph Isomorphism NP 

String O((k*N)2) 

Vector O(1) 

Set of Strings-Optimal O(N3) 

Set of Strings-Approximate O(N(N+1)/2) 
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performs in O(N(N+1)/2) and is more efficient than SMIT. The exact matching algorithm 

was proposed in our previous research but does not perform approximate matching of 

control flow graphs which our current work does. The classical single graph based distance 

and equality algorithms are either in NP (graph edit distance) or believed to be in NP 

(graph isomorphism) making control flow intractable when used for a signature. 

5.8.8 Efficiency 

To evaluate the efficiency of our system, we record the execution time to classify each of 

1601 benign programs and 15,398 malware. The malware database is pre-populated with 

10,000 malware signatures. We evaluate the complete processing time of the system 

including unpacking, disassembly, control flow reconstruction and analysis. The processing 

times for the malware and benign programs are shown in Fig. 40. The malware processing 

times are higher in general. The median time for processing malicious samples is 0.84 

seconds. 90% of the samples could be processed in under 1.31 seconds. The maximum 

time taken is 585 seconds and may have resulted from excessive memory consumption 

causing thrashing. Some candidate buckets were large due to a high number of related 

malware variants, resulting in higher than average pairwise comparisons using the less 

efficient distance function. Unpacking binaries using emulation may also cause significant 

overhead in some cases. If applied in a desktop environment, the analysis may need to 

flag such binaries that impact performance and whitelist known benign programs that 

would otherwise cause false positives. In practice, we do not see these edge cases as 

reducing the effectiveness if they are handled in these ways. The median time for 

processing the benign binaries is 0.06s. 90% of samples could be processed in under 0.56 

  

Fig. 40. Malware and benign sample processing times 
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seconds. Classifying only the Windows system programs has a median time of 0.15s. 

Processing benign programs is the expected case and performs more quickly than 

classifying malware due to the extra overhead of unpacking. The slowest time is 8.06 

seconds which is still reasonable for industrial deployment. Our system improves the 

performance in classifying benign programs compared to the less effective exact matching 

algorithm proposed in [61] which has a median Windows system directory processing time 

of 0.25s. This is not due to classification performance, which is almost identical, but due to 

improvements to efficiency in the static analysis component. The general results indicate 

that the speed of classification may warrant the system suitable for real-time use for 

desktop Antivirus or on an Email gateway system. 

5.9 Limitations and Discussion 

5.9.1 Code Packing 

A malware obfuscation technique commonly employed to resist static analysis is packing. 

Malware packing that encrypts, compresses, or obfuscates the code contents and then 

later regenerates the original program needs to be removed. The majority of packed 

samples can be automatically unpacked, but there exist binaries which evade this analysis. 

Instruction virtualization [21, 176] is resistant to an entirely automated static analysis. 

Instruction virtualization implements an emulator which interprets bytecode representing 

the hidden code. Therefore, the hidden code in its original unpacked form is never 

revealed. If unpacking cannot be achieved by a malware classification system, then the 

packing tool may be classified instead of the packed contents. It is probably advantageous 

for Antivirus to blacklist programs that cannot be unpacked. Manually written static 

unpackers can be developed on a case by case basis and this is what is traditionally 

employed by commercial Antivirus. A better approach is to detect packed programs and 

flag them as suspicious. Benign programs that are packed can be whitelisted. The scope of 

our system is limited to malware that can be unpacked using the approach of application 

level emulation. Application level emulation is fast but because of its limited use of a faithful 

emulator, malware can detect its presence and therefore change its behaviour. Unpackers 

such as Renovo [29] employ whole system emulation and are more resistant to detection. 

The current problem is that such systems have poor performance in terms of real-time 
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constraints. Another approach is to unpack on the fly during program run-time by 

monitoring memory access, as is done by OmniUnpack [177]. This system claims real-time 

performance suitable for Antivirus. Such a system could be combined with our work to 

make a real-time malware classification capable of unpacking most or all non instruction 

virtualization based malware. 

5.9.2 Obfuscation 

For the most part, code packing is the obfsucating process employed by malware authors. 

Therefore, once a sample has been unpacked, analysts have access to the original 

unobfuscated image. This is becoming prevalent as malware becomes more like traditional 

software development and malware authors employ high level languages to implement 

their works. 

Control flow can be obfsucated but this is typically not present in most malware today. 

Code insertion, deletion, substitution, and reordering within a basic block does not affect 

the structured control flow that our system uses. This makes control flow a more invariant 

program representation than traditional byte-level signatures. If control flow is modified, 

then our system can perform an approximate match. The changes to the decompiled 

strings should show the changes locally. The global view of the strings should still retain 

similarity. Through the normal process of software development and evolution, decompiled 

strings of control flow graphs can identify those changes while still identifying them as 

variants. 

Obfuscations such as opaque predicates which add conditional branches which always 

evaluate to the same path but are hard to determine statically present a bigger problem. 

Unless opaque predicates account for the majority of the control flow, our system should 

still detect the malware as a variant. Other obfsucations including negating conditions and 

swapping the branches resulting in different decompiled strings. A solution to this could 

involve using an unordered Abstract Syntax Tree (AST) instead of a string. If malware in 

the future obfuscates control flow like this, we may consider using k-subtrees of the AST 

instead of q-grams of the decompiled strings. 
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Concluding Remarks 

Malware can effectively be characterized by its control flow. We proposed a malware 

classification system using approximate matching of control flow graphs. We first tried 

using string signatures to describe malware. We then used techniques to extract q-grams 

and k-subgraphs of sets of control flow graphs and created feature vectors. From these 

feature vectors we were able to construct an efficient distance metric and similarity search. 

We also used the assignment problem and the string distance to construct a distance 

metric between programs. We implemented these algorithms in a prototype and performed 

an evaluation of the system. Our evaluation showed that our work more effectively 

detected malware than previous comparable systems. The number of false positives was 

low, and the efficiency of the prototype demonstrated that the system could be used on a 

desktop system or Email gateway.  



  C H A P T E R  6  

 

167 

 

Chapter 6: Software Similarity and Classification in 

the Cloud 

Simseer and Clonewise are online web services that perform the software similarity and 

classification applications proposed in the previous chapters. There are two services 

available - Simseer and Clonewise. Simseer exposes the software implemented in Chapter 

3 and can identify similarity between submitted executables based on the similarity in the 

control flow of each binary. Simseer extends Malwise II from Chapter 5 by providing a 

search service, a clustering service, and an evolutionary tree visualisation service. 

Clonewise exposes an online version of the system in Chapter 4. Clonewise takes a tar 

ball of a software system and identifies and reports any embedded package-level clones in 

that software. Both Clonewise and Simseer are built on a scalable cloud infrastructure 

hosted by Amazon's elastic compute cloud (EC2). 

6.1 Introduction 

Cloud services offer the ability for people to use the applications developed throughout this 

thesis in an easy to use manner. The processing is offloaded to behind the scene servers 

that can be scaled up and out easily. These cloud services could potentially integrate with 

client based software, thus affording the best of cloud and traditional software services. 

6.1.1 Services 

We have implemented multiple services based on Malwise and Clonewise. These services 

are described below. 

6.1.1.1 Simseer 

This service takes as input a ZIP archive of 32-bit x86 executables. Using Malwise, the 

similarities between each sample is identified. These similarities are then passed to 

phylogenetics software to graphically visualize an evolutionary tree of relationships 

between the samples. 

6.1.1.2 Simseer Search 

This service takes as input a threshold of similarity and a 32-bit x86 executable. The 

executable is used as query to search a database of samples. The result is all samples in 
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the database that are at least the threshold of similarity similar to the query. Each sample 

submitted to the service is stored in the database for future comparison and each sample 

is scanned with traditional Antivirus. This system allows users to take an unknown sample 

and identify if it is related to any previously identified malicious samples. Additionally, code 

packing detection is performed as a heuristic to identify obfuscated samples that cannot be 

deobfuscated by Malwise. 

6.1.1.3 Simseer Cluster 

This service takes as input a number specifying the number of clusters and a a ZIP archive 

of 32-bit x86 executables. Using the feature vector approach of Malwise, the vectors 

representing each sample are clustered using hierarchical clustering and the cosine 

distance as a notion of dissimilarity. The results show the samples clustered into groups of 

similar samples. Each sample is also scanned with traditional AntiVirus which enables a 

user to identify the family name of potential malware. Like Simseer Search, if an unknown 

sample is in the same family of known malicious samples, the sample is likely to be 

malicious also.  

6.1.1.4 Clonewise 

This service takes as input an email address and a tar ball of source code. The source 

code can be of any language. Clonewise reports via E-Mail any library of 420 identified 

possible clones that are present in the tar ball. The results show which files are shared 

between the tar ball and identified clones and the importance of each file in respect to 

clone determination. 

6.1.2 Structure of the Chapter 

The structure of this chapter is as follows: Section 6.2 discusses the design and 

implementation of our system as a cloud service. Section 6.3 gives details on how to 

access our service. Section 6.4 looks at future work. Finally, Section 6.5 gives our 

concluding remarks. 

6.3 System Design and Implementation 

The system uses multiple Virtual Private Servers (VPS) in the cloud and could potentially 

be scaled to operate on large server farms. Both Simseer and Clonewise run on the same 

infrastructure. The servers can be divided into serving the frontend of the system, those 
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serving the backend of the system, and those supporting the network infrastructure. All 

servers run on the Amazon EC2 elastic compute cluster cloud infrastructure and in our 

work use the Linux Ubuntu 12.10 operating system distribution. The frontend and 

supporting infrastructure use a 64-bit platform and the backend uses a 32-bit platform. 

6.3.1 The Web Frontend 

The frontend of the system provides infrastructure to support serving the web content and 

accepting submissions to the services. Chiefly, this part of the system uses the Apache 

web server. This node is a micro instance and has 615M of memory, 1 core, and is 

specified as having up to 2 EC2 compute units for small bursts.  

The web frontend is the user interface to the Simseer and Clonewise cloud service and the 

landing pages and the final results are shown in Fig. 42 - Fig. 48. A user can submit 

executables and file archives to Simseer or tar balls to Clonewise. Our frontend 

implementation is coded in the server side PHP programming language and uses the 

Twitter Bootstrap CSS (Cascading Style Sheets) to implement the presentation. 

Both Simseer and Clonewise are currently implemented on the same web server to reduce 

the operational costs of Amazon EC2. This is achieved by separating each service on its 

own virtual host. The virtual host for Simseer is www.simseer.com and the virtual host for 
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Fig. 41. The cloud services infrastructure. 
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Clonewise is www.codeclones.com. Potentially, if the system requires to be scaled, each 

service could be placed on its own isolated host. Likewise, these nodes could be placed 

behind a load balancer for high availability and scalability. 

The PHP code in the frontend examines the files submitted to it and performs sanity 

checking. For example, Simseer for each archive submitted, it will check that the ZIP 

archive is valid, does not contain an excessive number of samples, does not contain 

symbolic links as archive members, and does not contain archive member names using 

 

Fig. 42. Simseer landing page. 

 

Fig. 43. Simseer results. 
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special characters. Clonewise performs an equivalent amount of sanity checking on tar 

balls. 

Logging is performed for each submission and a copy of the submission is made to a 

directory that is stored on the network's file server. The web submission is then relayed to 

a HTTP load balancer via a Python script which will distribute the job to a scan server. The 

scan server will then report the results as an XML document and the frontend will make a 

copy of this report on the file server and present it in a suitable form to the user. 

Additionally, all previously generated reports can be retrieved via another wbe-based 

request given their MD5 hashes. 

6.3.2 Cluster-based Load Balancing 

As described in the previous section, the frontend web server resubmits each job to a 

separate node that distributes the work. The load balancer is implemented with an Apache 

web server. The node is a micro instance and has 615M of memory, 1 core, and up to 2 

EC2 compute units for small bursts. The load balancing distributes jobs to a cluster so that 

each node in the cluster receives approximately the same number of jobs as every other 

node. The jobs to the cluster nodes are sent as web requests. 

6.3.3 Backend Clustering and Work Scheduling 

The scan nodes in the cluster backend perform the backend work for each job. There are 

currently 3 nodes in the backend cluster that perform job requests. Each node is a small 

instance and has 1.7G of memory, 1 core, and 1 EC2 compute units. 
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The backend cluster nodes run the Apache web server and accept requests via a PHP 

web interface. When a job is received, it is passed to a script on the node. This script 

launches a network client which submits the job to a network daemon listening on a local 

TCP port.  

Each scan node listens locally on a TCP port to accept scan jobs. The network daemon 

and client are implemented in C++. This daemon queues and schedules jobs. Currently, 1 

job can run on 1 node at any one time so that the server does not consume excessive 

 

Fig. 44. Simseer Cluster landing page. 

 

Fig. 45. Simseer Cluster results. 
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resources. Running multiple jobs in parallel places more pressure on memory usage per 

instance which we wanted to avoid. 

Once a job has been scheduled by the network daemon a script is launched to process the 

file and launch the Malwise or Clonewise systems.  

6.3.4 Network Infrastructure 

Simseer and Clonewise require supporting infrastructure outside of the frontend, load 

balancer and backend cluster. These requirements include a file server, syslog server 

(using rsyslog) to collect logs from all servers on the network, a mail server (using postfix), 

a domain name server (using bind9), an Apache web based reporting server for system 

process usage (using munin), web and load balancer usage, and a server to monitor the 

health of the network by submitting known jobs to the services and checking that the 

results are correct. 

6.3.5 DevOps Infrastructure 

To develop Simseer and Clonewise requires such things as source code management and 

build management. All source code is maintained in the Git source code management 

software. A build server is implemented that clones the Git repository, builds the software 

and packages it into Debian DEB archives. These can then be deployed with the use of 

deployment scripts to each necessary server. 

6.3.5 Service Specific Processing 

Although all services run on the same infrastructure, each service has its own specific 

capabilities and implementation requirements. 

6.3.5.1 Simseer Evolutionary Tree Visualization 

Simseer visualizes program relationships using an evolutionary tree. A phylogenetic or 

evolutionary tree is a visual representation of the evolutionary relationships between 

species based on similarity between features or characteristics. Species closer to the tree 

in relation to the number of branches or branch lengths are more closely related. Simseer 

uses evolutionary trees to visualize the relationships between programs and their variants. 

This visualization is useful because program variants are typically derivatives and modified 

versions of their upstream source. 
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The web frontend host is responsible for processing the XML results returned by Malwise. 

The XML returned by Malwise scores the similarity between each sample. The frontend 

transforms the XML into a distance matrix. Distance is calculated as 1 – similarity. This 

distance matrix is then analysed to create an evolutionary tree using the PHYLIP software 

package [178]. The PHYLIP package uses the neighbour joining method [179] to construct 

an evolutionary tree. The evolutionary tree is described by the Newick tree format which 

gives such information as branch lengths in the tree. The Newick tree file is processed to 

 

Fig. 46. Simseer Search landing page. 

 

Fig. 47. Simseer Search results. 
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render a figure suitable for display. The figure is then transformed to a PNG image and 

stored on the web host. An example of the tree visualization is shown in Fig. 4. 

To display the results, the Malwise XML similarity results are displayed as an HTML table. 

The background colour of the table cells are proportional to how similar the samples are. 

The lighter the colour, the more similar the programs are. If the programs are not variants 

of each other, the table cell is left unshaded. The evolutionary tree image of the programs 

is shown on the same page. 

6.3.5.2 Simseer Search 

SImseer Search uses a backend database that must be accessible by all nodes in the 

backend cluster. We met this requirement by using a network file server implementing 

NFS. To synchronize writing and reading from the database we use file locking. Simseer 

Search uses traditional AntiVirus to scan samples. We use Clam AntiVirus (ClamAV) which 

runs on Linux.  

6.3.5.3 Simseer Cluster 

Simseer Cluster uses the WEKA machine learning toolkit to perform hierarchical clustering. 

WEKA does not by default allow the use of the cosine distance in its hierarchical clustering 

algorithm. We implemented a custom distance function to achieve this capability. 

6.3.5.4 Clonewise 

Clonewise uses a database for the 420 common clones it checks for that may be 

potentially embedded. This database was generated offline on an Amazon EC2 cluster and 

is used for the Clonewise web service. 

6.3.6 Updating the Malware Database 

The Simseer Search service is entirely dependent on the quality of the database that it 

uses. Some of the samples in the database come from user submissions, but for the 

majority of samples in the database, they are uploaded automatically from an internet 

based malware feed, VirusShare. Each night the daily malware feed that VirusShare 

provides is downloaded as a ZIP archive. The ZIP archive ranges in size from 600M to 

16G. The archive consists of a variety of file types. The Windows 32-bit executables are 

extracted and passed to Simseer's web interface via a python script similar to how a user 

submission is made. This process allows the full use of the backend cluster to process 
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samples and enter them into its database. The difference between user submissions and 

submissions from the malware feed is that the requests from the feed are marked so that a 

copy of the sample's binary is not made on the servers. This is a requirement to limit the 

disk usage. Otherwise, disk space on the servers would quickly reach capacity.   

6.4 Availability 

The Simseer and Clonewise servics are free to use. Simseer can be accessed on the web 

at http://www.simseer.com. The Clonewise service can be accessed on the web at 

http://www.codeclones.com.  

Concluding Remarks 

In this chapter we have demonstrated novel services to detect and analyse malware 

variants and to detect package-level clones in software. The Simseer and Clonewise 

services are deployed as cloud services and are free to use. We are the first to make a 

public service that analyses executable binaries and software tar balls in these contexts 

and see the area of cloud based software analysis and similarity detection as having future 

growth. 

 

Fig. 48. Clonewise results. 
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Chapter 7: Future Work and Conclusion 

In this section we discuss potential areas of future work for each of our systems. FInally, 

we conclude the thsis. 

7.1 Future Work 

7.1.1 Clonewise 

In Clonewise, although we decided not to use the original set theory approach to perform 

package-level clone detection, some interesting problems can still be examined. For 

example, given a set of packages, one can build a signature of at least k filenames by 

finding k-cliques (k-bicliques) in a bipartite graph where nodes in one partition represent 

packages, nodes in the other partition represent filenames, and an edge exists when a 

package contains a filename. Another research direction could be to consider a package 

as a directory tree. Finding the maximum common subtree between two packages 

identifies common code and could be used as a signature. 

Using our classification approach, there are several ways we could see it applied to 

improve current practice. We could apply our system to more source code, including other 

Linux distributions, BSD vendors and also online source code repositories such 

Sourceforge [180]. It is conceivable that source code repositories could offer services to 

find package clones. Our system could be integrated into a package build system to 

automatically update the embedded database information or ask for validation from a 

package maintainer. Debian Linux would like our Clonewise tool to run constantly in the 

background and scan the source code repository to update a live database of clones. If we 

did this, we could enforce build recommendations that aim for avoidance of embedded 

code. The Debian Linux security team has asked us to perform this integration into their 

distribution as part of a standard operating procedure for when a vulnerability is found in a 

package and this is a focus of our current work. 

7.1.2 Wire 

An important aspect of Wire that we would like to implement is 64-bit support for x86. Most 

malware is still 32-bit so this does not present an immediate concern, but 64-bit would be 
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required at some point in the future. Another aspect we would like to work on is the data 

flow analysis framework we implemented using Wire. We see this as giving us the potential 

to go outside of the field of software similarity and classification and into bug detection. We 

have done some initial work on this and already have had some interesting results and 

found real world bugs [181]. Future work may also see theorem proving added to the 

system including weakest precondition and verification condition generation. Using proof 

assistants may also help analysts show equivalence between malware codes. 

7.1.3 Malwise II 

Malwise could be extended by using any-time, incremental, or stream clustering in addition 

to the similarity search it currently uses. In stream clustering, malware could be added to 

existing clusters in an online process as submissions are made to the system. 

Experimenting with clustering may help our system. Another aspect we have considered is 

the use of distance metric learning. A distance metric could be trained given a small set of 

labelled data. 

7.1.4 Cloud Services 

One thing we would like to do in our cloud services is replace our custom scheduling work 

queue with an enterprise messaging system such as RabbitMQ. Enterprise-level 

messaging systems have guarantees on reliabilities in the case of transmission or network 

failures. Using such a system would improve our reliability.  

An option to improve the clustering service is using any-time clustering on the stream of 

samples that are given to Simseer. In this approach, cluster analysis is performed 

incrementally as objects are given to the system sequentially. An any-time phylogenetic 

tree analysis could follow on from any-time clustering. Any-time clustering could provide 

intelligence into new families of malware that are given to Simseer.  This could benefit 

analysts in determining if a new sample relates to an existing family is something never 

seen before or relatively new. 

7.2 Conclusion 

In this thesis, we surveyed the state-of-the art in software similarity and classification. The 

thesis made disparate literature become a cohesive whole by showing that a number of 
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areas were very related. In some areas of software similarity and classification, theory is 

more developed and in other areas different algorithms and analysis techniques have been 

proposed. For example, the software similarity problem definition presented in the 

introduction stems directly from the area of software theft. This theory, which employs the 

birthmark concept, had not been used in malware similarity. This cohesive presentation of 

literature gave the foundation for this thesis to extend and propose new ideas, algorithms, 

and complete systems, all while significantly contributing to knowledge. To recap the major 

contributions of this thesis, we: 

 Proposed the concept of package-level clones and automated some of their 

applications. 

 Proposed using pattern classification to detect package-level clones 

 Proposed and formally defined a new intermediate language that combines low 

level semantics with high level information recovered from decompilation. 

 Proposed new types of graph-based malware signature that allows for efficient 

comparison, indexing, and searching. 

 Proposed and implemented a complete infrastructure for malware and clone 

detection in the cloud. 

In Clonewise, we evaluated our system using real-world data including an entire Linux 

distribution, and over 15,000 malware found in the wild. This system improves current 

practice by automating the tedious and manual practice in current use. Clonewise was 

shown to perform effectively, which was demonstrated by finding previously unknown 

clones, bugs, and vulnerabilities. 

In Wire, we presented a formal intermediate language suitable for low level binary analysis. 

We demonstrated that this language could be used in a purely theoretic context to detect 

code equivalence, software similarity and classification. We used Wire in a practical 

context when we applied it to our malware detection system to extract intermediate 

representations of programs that enabled malware variants to be detected. 
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Malwise II was shown to be effective and demonstrated to be efficient. Typical graph based 

comparisons perform in NP complexity, yet using our novel birthmark representations, we 

were able to improve the efficiency using vector-based signatures. 

We extended all the systems implemented to execute in the cloud. The cloud-based 

systems make this work available to many potential users. We used a scalable cluster-

based infrastructure allowing us to grow the services as use increases. We automated 

almost all of our builds and deployment, making our infrastructure reproducible and 

resilient.  

In summary, our systems found real bugs and vulnerabilities in Linux, gave analysts the 

capability to identify malware strains or families, and gave researchers new tools and 

techniques in software similarity and classification. The algorithms we presented were 

demonstrated to work in real environments and contributed significantly to knowledge. 
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