

Software Similarity and Classification

By

Silvio Cesare, BIT, M.Info

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Deakin University

June, 2013

sfol
Retracted Stamp

sfol
Retracted Stamp

Acknowledgments

I would like to thank the people who made writing this thesis possible. A special thanks to

my partner, Kylie, who has supported me greatly. Thanks to Dani, Joe, and Eva who

always add a degree of the unexpected to life. Thanks to my mother, Maxine, who enabled

me early on to pursue academia. Thanks to my sister, Paloma, who knows too well the life

of academic pursuits. Finally, thanks to my supervisor, Prof. Yang Xiang, who has

supported me for many years during my Masters degree and PhD.

Publications

Books

1. Silvio Cesare, Yang Xiang, “Software Similarity and Classification”, Springer, 2012.

Refereed Journal Papers

1. Silvio Cesare, Yang Xiang, Wanlei Zhou, "Control Flow-based Malware Variant

Detection", IEEE Transactions on Dependable and Secure Computing, IEEE,

2013, (in press). (ERA A)

2. Silvio Cesare, Yang Xiang, Wanlei Zhou, “Malwise - An Effective and Efficient

Classification System for Packed and Polymorphic Malware”, IEEE Transactions

on Computers, IEEE, vol. 62, no. 6, pp. 1193-1206, 2013. (ERA A*)

3. Yini Wang, Sheng Wen, Silvio Cesare, Wanlie Zhou, Yang Xiang, "Eliminating

Errors in Worm Propagation Models", Communication Letters, IEEE, vol. 15, no. 9,

pp. 1022-1024, 2011. (ERA A)

4. Yini Wang, Sheng Wen, Silvio Cesare, Wanlie Zhou, Yang Xiang, "The

Microcosmic Model of Worm Propagation", The Computer Journal, vol. 54, no. 10,

pp. 1700-1720, 2011. (ERA A*)

5. 5. Yongrui Cui, Mingchu Li, Yang Xiang, Yizhi Ren, Silvio Cesare, "A Quality-of-

Service based Fine-grained Reputation System in the Grid Economy",

Concurrency and Computation: Practice and Experience, 2011. (ERA A)

Refereed Conference Papers

1. Silvio Cesare, Yang Xiang, Jun Zhang, "Clonewise - Detecting Package-level

Clones Using Machine Learning", 9th International Conference on Security and

Privacy in Communication Networks (SecureComm 2013), 2013. (ERA A)

2. Silvio Cesare, Yang Xiang, "Simseer and Bugwise - Web Services for Binary-level

Software Similarity and Defect Detection", 10th Australasian Symposium on

Parallel and Distributed Computing (AusPDC 2012), 2012.

3. Silvio Cesare, Yang Xiang, “Wire – A Formal Intermediate Language for Binary

Analysis”, IEEE Trustcom, IEEE, 2012. (ERA A)

2

4. Silvio Cesare, Yang Xiang, "Malware Variant Detection Using Similarity Search

over Sets of Control Flow Graphs", IEEE Trustcom, IEEE, 2011. (ERA A)

Industry Conferences

1. Black Hat, 2013 - Bugalyze.com - Detecting Bugs Using Decompilation and Data

Flow Analysis

2. AusCERT, 2013 - Simseer.com - Malware Detection in a Cloud

3. Ruxcon, 2012 - FooCodeChu - Web Services for Software Analysis, Malware

Detection, and Vulnerability Research

4. Ruxcon Breakpoint, 2012 - Detecting Bugs in Binaries Using Decompilation and

Data Flow Analysis

5. Black Hat, 2012 - Clonewise – Automated Package Clone Detection

6. AusCERT, 2012 - Effective Flowgraph-based Malware Variant Detection

7. Ruxcon, Professional Delegates Event, 2011 - Faster, More Effective Flowgraph-

based Malware Classification

8. Ruxcon, 2011 - Automated Detection of Software Bugs and Vulnerabilities in Linux

Media Articles and Interviews

1. "AusCERT 2013: Cloud-based scanner identifies new malware by its ancestry"

CSO

2. "Scanner Identifies Malware Strains, Could Be Future of AV" Slashdot

3. "“Tool detects software plagiarism, theft and malware outbreaks” SC Magazine

4. “Research offers software salvation from AV friendly-fire” SC Magazine

5. “Tool kills hidden Linux bugs, vulnerabilities” Slashdot

6. "'Clonewise' Security Service Helps Identify Vulnerable Code" Dark Reading

7. Risky Business #177 -- Silvio Cesare discusses his AV PhD

8. Risky Business #203 -- LulzSec: They're baaaaaaaack

Software Similarity and Classification

This thesis identifies the key topics in software similarity and classification. It examines the

task of detecting software variants, clones, derivatives, and classes of software. From this

theory, we propose a novel system to detect package-level clones of software using

pattern classification techniques enabling us to discover software vulnerabilities in Linux.

We also propose a formal language to aid binary analysis and using this framework,

propose a novel system to detect malware variants through unique malware signatures,

database indexing, and searching algorithms. These systems have been evaluated on real

data sets including over 10,000 Linux packages making up the Debian Linux distribution

where 34 previously unknown clones and over 30 previously unknown vulnerabilities were

identified. Our malware system was evaluated on over 15,000 real malware and is

demonstrated to be more effective and efficient than previous systems maintaining a near

real-time scan performance.

T A B L E O F C O N T E N T S

1

Contents

Chapter 1: Introduction 1

1.1 Background 1

1.2 Motivation 2

1.3 Problem Formulization 3

1.4 Problem Overview 4

1.5 Aims and Scope 5

1.6 Contributions 6

1.7 Thesis Organization 7

Chapter 2: Related Work 9

2.1 Taxonomy of Program Features 9

2.1.1 Syntactic Features 10

2.1.2 Semantic Features 15

2.1.3 Taxonomy of Features in Program Binaries 16

2.1.4 Case Studies 17

2.2 Program Transformations and Obfuscations 18

2.2.1 Compiler Optimisation and Recompilation 18

2.2.2 Program Obfuscation 20

2.2.3 Plagiarism, Software Theft, and Derivative Works 21

2.2.4 Malware Packing, Polymorphism, and Metamorphism 22

2.2.5 Features under Program Transformations 28

2.3 Formal Methods of Program Analysis 28

2.3.1 Static Feature Extraction 28

2.3.2 Formal Syntax and Lexical Analysis 29

2.3.3 Parsing 29

2.3.4 Intermediate Representations 30

2.3.5 Formal Semantics of Programming Languages 32

2.3.6 Theorem Proving 33

2.3.7 Model Checking 34

2.3.8 Data Flow Analysis 34

2.3.9 Abstract Interpretation 36

2.3.10 Intermediate Code Optimisation 37

2.3.11 Research Opportunities 37

2.4 Static Analysis of Binaries 37

2.4.1 Disassembly 38

2.4.2 Intermediate Code Generation 40

2.4.3 Procedure Identification 41

2.4.4 Procedure Disassembly 42

2.4.5 Control Flow Analysis, Deobfuscation and
Reconstruction 42

2.4.6 Pointer Analysis 43

2.4.7 Decompilation of Binaries 43

T A B L E O F C O N T E N T S

2

2.4.8 Obfuscation and Limits to Static Analysis 46

2.4.9 Research Opportunities 46

2.5 Dynamic Analysis 47

2.5.1 Relationship to Static Analysis 47

2.5.2 Environments 48

2.5.3 Debugging 48

2.5.4 Hooking 48

2.5.5 Dynamic Binary Instrumentation 49

2.5.6 Virtualization 49

2.5.7 Application Level Emulation 49

2.5.8 Whole System Emulation 51

2.6 Feature Extraction 52

2.6.1 Processing Program Features 52

2.6.2 Strings 53

2.6.3 Vectors 53

2.6.4 Sets 53

2.6.5 Sets of Vectors 53

2.6.6 Trees 53

2.6.7 Graphs 53

2.6.8 Embeddings 54

2.6.9 Kernels 54

2.6.10 Research Opportunities 54

2.7 Software Birthmark Similarity 55

2.7.1 Distance Metrics 55

2.7.2 String Similarity 56

2.7.2.3 Longest Common Subsequence (LCS) 57

2.7.3 Vector Similarity 57

2.7.4 Set Similarity 58

2.7.5 Set of Vectors Similarity 59

2.7.6 Tree Similarity 59

2.7.7 Graph Similarity 60

2.8 Software Similarity Searching and Classification 61

2.8.1 Instance-based Learning and Nearest Neighbour 61

2.8.2 Statistical Machine Learning 63

2.8.3 Research Opportunities 64

2.9 Applications 65

2.9.1 Malware Classification 65

2.9.2 Software Theft Detection (Static Approaches) 67

2.9.3 Software Theft Detection (Dynamic Approaches) 69

2.9.4 Plagiarism Detection 69

2.9.5 Code Clone Detection 70

2.9.6 Critical Analysis 71

2.10 Future Trends 72

Concluding Remarks 73

Chapter 3: Clonewise – Detecting Package-level Clones Using
Machine Learning 74

T A B L E O F C O N T E N T S

3

3.1 Introduction 74

3.1.1 Motivation for Package-level Clone Detection 75

3.1.2 Motivation for Automated Approaches 76

3.1.2 Generability 77

3.1.3 Innovation 78

3.1.4 Structure of the Chapter 79

3.2 Problem Definition and Our Approach 79

3.2.1 Problem Definition 79

3.2.2 Our Approach 79

3.3 Initial Attempts 80

3.3.1 Containment for Embedded Package Clone Detection 80

3.3.2 Intersection for Shared Package Clone Detection 81

3.3.3 Motivations for Other Approaches 81

3.4 Package Clone Detection 81

3.4.1 Shared Package Clone Detection 82

3.4.2 Shared Package Clone Classification 86

3.4.3 Embedded Package Clone Detection 86

3.4.4 Classification Using Asymmetric Bagging 87

3.5 Inferring Security Problems 88

3.5.1 Use-case of Clone Detection to Detect Vulnerabilities 88

3.5.2 Standardization Efforts 89

3.5.3 Debian Linux Security Tracking 89

3.5.4 Automated Vulnerability Inference 89

3.6 System Implementation 91

3.6.1 Software 91

3.6.2 Scaling The Analysis 93

3.7 Evaluation 95

3.7.1 Filenames as Features 95

3.7.2 Establishing the Ground Truth for Training and
Evaluation 95

3.7.3 Accuracy of Shared Package Clone Detection 97

3.7.4 Accuracy of Embedded Package Clone Detection 98

3.7.5 Practical Package Clone Detection 99

3.7.6 Vulnerability Detection 99

3.7.7 Automated Vulnerability Detection 99

3.8 Discussion 102

3.8.1 Practical Consequences of Our Research 103

3.8.2 Referencing CVEs in an advisory. 104

Concluding Remarks 104

Chapter 4: Wire - A Formal Intermediate Language for Binary
Analysis 105

4.1 Introduction 105

4.1.1 Motivation 105

4.1.2 Innovation 107

4.1.3 Structure of the Chapter 108

4.2 Translating Native Code 108

T A B L E O F C O N T E N T S

4

4.2.1 Disassembly 108

4.2.2 Abstract Machines 109

4.2.3 Intermediate Code Generation 109

4.2.4 Register Mapping between Native Architectures and
Wire 110

4.2.5 Label Generation 110

4.2.6 Condition Code Generation 110

4.2.7 Decompilation 111

4.2.8 Intermediate Code Optimisation 112

4.3 Formal Syntax and Semantics 112

4.3.1 Syntax 112

4.3.2 Functions 115

4.3.3 Abstract Machine State 115

4.3.4 Operational Semantics of Core Instructions 116

4.3.5 Operational Semantics of Decompiled Instructions 120

4.3.6 Three Address Code 122

4.4 Applications in Semantic Equivalence 123

4.4.1 Semantic Equivalence of Obfuscated Code 123

4.4.2 Assisted and Automated Theorem Proving 130

4.5 Applications in Software Similarity and Classification 131

4.5.1 Software Isomorphism 131

4.5.2 Software Similarity and Classification 132

4.5.3 Software Embedding 135

Concluding Remarks 135

Chapter 5: Malwise II - Control Flow-based Malware Variant
Detection 137

5.1 Introduction 137

5.1.2 Motivation 140

5.1.3 Innovation 140

5.1.4 Structure of the Chapter 141

5.2 Problem Statement and Our Approach 142

5.2.1 Problem Statement 142

5.2.2 Our Approach 142

5.3 Unpacking and Static Analysis 143

5.3.1 Unpacking 143

5.3.2 Dissasembly and Control Flow Reconstruction 144

5.3.3 Structuring 145

5.4 String Based Signatures 145

5.4.1 Feature Extraction 146

5.4.2 Indexing Using String Metric Access Methods 146

5.4.3 Indexing Using Genome Strings and Blast 147

5.4.4 Indexing Using the NCD Metric Access Method 147

5.5 Vector Based SIgnatures – Pre-filtering 148

5.5.1 The K-Subgraph Feature 148

5.5.2 The Control Flow Q-Gram Feature 149

T A B L E O F C O N T E N T S

5

5.5.3 Feature Selection 150

5.5.4 Dimensionality Reduction 150

5.5.5 Feature Vector Distance 150

5.5.6 Indexing and Searching the Feature Vectors 151

5.6 Set of Strings Based Signatures – Malware Classification 152

5.6.1 A Distance Function for Programs Based On the Linear
Sum Assignment Problem 152

5.6.2 Solutions to the Assignment Problem 153

5.6.3 Similarity Search of Malware 154

5.7 Nearest Neighbour Similarity Searches 154

5.7.1 Metric Distance Functions 154

5.7.2 Similarity Search Using Metric Access Methods 155

5.8 Implementation and Evaluation 155

5.8.1 Implementation 155

5.8.2 Effectiveness of String Signatures 155

5.8.3 Evaluation Setup 156

5.8.4 Evaluation of False Positives in Pre-filtering 156

5.8.5 True Positives of the System Compared to Previous
Researc 158

5.8.6 Evaluation of the System’s False Positives 160

5.8.7 Algorithmic Complexity Analysis 162

5.8.8 Efficiency 163

5.9 Limitations and Discussion 164

5.9.1 Code Packing 164

5.9.2 Obfuscation 165

Concluding Remarks 166

Chapter 6: Software Similarity and Classification in the Cloud 167

6.1 Introduction 167

6.1.1 Services 167

6.1.2 Structure of the Chapter 168

6.3 System Design and Implementation 168

6.3.1 The Web Frontend 169

6.3.2 Cluster-based Load Balancing 171

6.3.3 Backend Clustering and Work Scheduling 171

6.3.4 Network Infrastructure 173

6.3.5 DevOps Infrastructure 173

6.3.5 Service Specific Processing 173

6.3.6 Updating the Malware Database 175

6.4 Availability 176

Concluding Remarks 176

Chapter 7: Future Work and Conclusion 177

7.1 Future Work 177

7.1.1 Clonewise 177

7.1.2 Wire 177

T A B L E O F C O N T E N T S

6

7.1.3 Malwise II 178

7.1.4 Cloud Services 178

7.2 Conclusion 178

References 181

T A B L E O F C O N T E N T S

7

Table of Figures

Fig. 1. The software similarity problem. .. 4

Fig. 2. Recommended order of reading chapters.. 8

Fig. 3. Raw code for a binary (left) and source code (right). 10

Fig. 4. An abstract syntax tree (AST). ... 11

Fig. 5. Typical pointer operations. .. 12

Fig. 6. Assembly instructions and basic blocks. .. 14

Fig. 7. A control flow graph (left) and a call graph (right). 15

Fig. 8. The output of objdump on a PE executable. ... 17

Fig. 9. A semantic nop .. 23

Fig. 10. Instruction substituion. .. 23

Fig. 11. Register reassignment. ... 23

Fig. 12. An indirect branch. ... 24

Fig. 14. Branch flipping. ... 25

Fig. 13. Branch inversion. .. 25

Fig. 15. The traditional code packing transformation. 26

Fig. 16. Code packing using the shifting decode frame. 27

Fig. 17. Code packing using instruction virtualization. 27

Fig. 18. Implementation of lexical analysis. ... 30

Fig. 19. Implementation of parsing. ... 31

Fig. 20. Linear sweep disassembly. .. 38

Fig. 21. Recursive traversal disassembly. ... 39

Fig. 22. Speculative disassembly. .. 40

Fig. 23. Procedure disassembly. .. 41

Fig. 24. A control flow graph and its linearized form. 45

Fig. 25. The software similarity search to detect malware. 62

Fig. 26. A linear classifier separating two classes. .. 64

Fig. 27. Shared package clone detection (above) and embedded package

clone detection (below). .. 76

Fig. 28. Graph of Fedora 13 package relationships. .. 77

Fig. 29. The assignment problem. .. 85

T A B L E O F C O N T E N T S

8

Fig. 30. An NVD CVE summary. ... 90

Fig. 31. Use-case of clone detection. .. 91

Fig. 21. Automated vulnerability inference. .. 92

Fig. 33. Multicore. .. 94

Fig. 34. Clustering. .. 95

Fig. 35. Dead code insertion. ... 124

Fig. 36. Code reordering .. 126

Fig. 37. An opaque predicate. .. 129

Fig. 38. The grammar of a structured string. ... 144

Fig. 39. The k-subgraph feature. ... 149

Fig. 40. Malware and benign sample processing times 163

Fig. 41. The cloud services infrastructure. ... 169

Fig. 42. Simseer landing page. .. 170

Fig. 43. Simseer results. .. 170

Fig. 44. Simseer Cluster landing page. ... 172

Fig. 45. Simseer Cluster results. ... 172

Fig. 46. Simseer Search landing page. ... 174

Fig. 47. Simseer Search results. ... 174

Fig. 48. Clonewise results. .. 176

T A B L E O F C O N T E N T S

9

Tables

Table 1. Accuracy of Shared Package Clone Detection 96

Table 2. Accuracy of Shared Package Clone Detection 96

Table 3. Accuracy of Embedded Package Clone Detection 97

Table 4. Accuracy of Embedded Package Clone Detection 97

Table 5. Adhoc Detection of fedora Linux vulnerabilities 100

Table 6. Adhoc Detection of Debian Linux vulnerabilities 101

Table 7. Automated Vulnerability Inference .. 102

Table 8. Automated Detection of Potential Vulnerabilities............................ 103

Table 9. Similarity matrices for Roron malware. .. 157

Table 10. Similarity matrices for Roron malware... 158

Table 11. False positives using k-subgraphs and q-grams. 159

Table 12. Malware detection .. 160

Table 13. False positives. ... 161

Table 14. Algorithmic Complexity Comparisons .. 162

 C H A P T E R 1

1

Chapter 1: Introduction

This thesis introduces the major applications related to software similarity and classification

and proposes novel contributions to the theory and practice of malware detection and

clone detection. The topic of software similarity and classification covers the areas of

detecting software variants, clones, derivatives, and classes of software. The literature of

those individual areas can be combined into a cohesive topic that we examine in a unified

manner. We demonstrate that considering these applied problems as a software similarity

and classification problem enables techniques to be shared between areas.

1.1 Background

The software similarity problem is to determine the similarity between two pieces of

software. Software that is similar has a common origin. This allows for relationships

between software to be inferred such as when used in evolutionary trees to identify a

software’s ancestry and derivatives. The software classification problem is to assign

classes to software. For example, software may be labelled as belonging to the class of

malicious programs, or the class of non malicious programs. Software similarity and

software classification are closely related and based on the problem of feature extraction.

Feature extraction concerns itself with identifying invariant properties of a program.

A number of applications make use of identifying program features including malware

classification, software theft detection, plagiarism detection, and code clone detection.

Malware classification is the process of determining if a program is malicious. One

approach to perform classification is to obtain a fingerprint of the malware based on

program feature extraction. This fingerprint creates an invariant signature that can be used

to identify evolutionary malware variants. For detection of completely novel malware,

program features can be extracted to create feature vectors which can be subsequently

used in machine learning algorithms and statistical classification.

Software theft detection identifies unauthorized copying of a program in binary form. An

example of this is if a software library is illegally being used with regards to its license. One

 C H A P T E R 1

2

approach to detect software theft is to identify birthmarks in the software. A birthmark is a

program feature or feature set that is invariant when the software is illegally copied.

Plagiarism detection identifies similar or identical copying of source code. An example of its

use would be to detect student cheating in programming assignments. Plagiarism detection

works by extracting program features that are invariant when plagiarised. The program

features are then detected in plagiarised copies.

Code clone detection [1] seeks to identify duplicate fragments of code in a source tree. The

value in detecting code clones is that it is often bad software development practice to have

redundant or duplicate code fragments. By refactoring the code to eliminate clones, the

software becomes easier to maintain and is less likely to have bugs. Code clone detection

works by identifying program features for code fragments and identifying those features in

other locations.

1.2 Motivation

Malware classification helps fight the threat of malicious software. Such malicious software

presents a significant challenge to modern desktop computing. According to the Symantec

Internet Threat Report [2], 499,811 new malware samples were received in the second half

of 2007. In 2010, over 1.5 billion malicious code detections were identified [3] by the same

vendor. F-Secure published, “As much malware [was] produced in 2007 as in the previous

20 years altogether“ [4]. This trend is continuing and makes the detection of malware

before it adversely affects computer systems highly desirable. To achieve this, static

detection of malware is still the dominant technique to secure computer networks and

systems against untrusted executable content.

Detecting malware variants improves signature based detection methods. The size of

signature databases is growing exponentially, and detecting entire families of related

malicious software can prevent the blowout in the number of stored malware signatures.

 Detecting malware variants improves signature based detection methods. The size of

signature databases is growing exponentially, and detecting entire families of related

malicious software can prevent the blowout in the number of stored malware signatures.

 C H A P T E R 1

3

Detecting entire families of malware by using similarity measures instead of exact matching

makes malware detection less fragile and more robust in the face of malware evolution and

change.

Software theft detection is an important problem with serious consequences. In 2005, a

federal court determined that the independent software vendor Compuserve be paid $140

million by IBM to license its software or $260 million to purchase its services because it

was discovered that IBM products had illegitimately used code from Compuware without

authorization [5]. The software theft problem is growing as the internet and software

companies become more ubiquitous. For example, in SourceForge.net there were over

230,000 registered open source projects as of February 2009 [5]. Clearly, an automated

approach to detecting software theft is the only way to scale with the problem.

Plagiarism detection is an important task to ensure that students do not cheat when

submitting assignments. Without plagiarism detection systems, teachers rely on their own

memory when marking. If the number of assignments is high, or the cheating occurs from

previous years, or the assignments are divided between markers, plagiarism may go

undetected. An automated approach to detecting plagiarism is therefore an important

component in a teacher’s arsenal against student cheating.

Code clone detection helps improve the maintainability of large software systems. Several

studies have shown this that duplicated copy and paste fragments of code make code

harder to maintain [6, 7]. This increases the cost of developing and maintaining software.

Therefore, an effort to detect clones and refactor solutions leads to less cost in the

software life cycle.

1.3 Problem Formulization

The static feature extraction problem is related to identifying invariant properties or

approximations of the program.

Definition 1. Let r be a property for program p if for all possible executions r is true.

The software similarity problem is to determine if program p is a copy or derivative of

program q. We use an extended definition based on software theft detection [8].

 C H A P T E R 1

4

Definition 2. A program q is a copy of program p if it is exactly the same as p or it is the result of a

semantic preserving transformation (e.g., obfuscation, recompilation, or optimisation) over p.

Definition 3. Programs p and q are similar if they are derived from the same works.

Definition 4. Let p, q be programs. Let f be a method for extracting a set of characteristics extracted

from p. We say f(p) is a birthmark of p, only if both of the following conditions hold.

 f(p) is obtained only from p itself

 Program q is a copy of p f(p) = f(q)

Definition 5. Let p, q be programs or program components. Let f(p) a and f(q) b be the

birthmarks extracted from p and q. Let s(a,b) [0,1] be a similarity function and a value e < 1. The

birthmarking system is resilient if p and q are similar and 1 - s(a,b) < e.

Definition 6. Let p and q be independently written programs. The software birthmarking system is

credible if the system can discriminate between the two programs; that is s(f(p),f(q)) < 1-e

The software classification problem uses the birthmark feature to identify class

membership of software.

Definition 7. Given a set of programs and their classes {(p1,c1),...(pn,cn)}, the software classification

function c’=h(f(p)) will yield a similar classification as close as possible to the true data set.

1.4 Problem Overview

The problem of software similarity and classification is approached by constructing a

software birthmark for a program and then using a similarity function on that birthmark for

comparisons. Program features are used to construct a birthmark. Different program

features enable different birthmarks, so taxonomy of program features is useful. Different

features have different properties which are better or worse at different qualities. A simple

breakdown is to divide the features into syntactic and semantic properties. Syntax

describes the structure or form of a program whereas the semantics describe the meaning

Program p

Program q

Birthmark

Birthmark

Similar?

MATCH!

Different

Fig. 1. The software similarity problem.

 C H A P T E R 1

5

of a program’s instructions. Semantics are sometimes more useful than syntax when

constructing birthmarks due to the fact that obfuscations and transformations applied to

programs can modify that syntax while maintaining equivalent semantics. There are

different approaches in extracting features such as extracting properties from execution of

the program or extracting properties statically. For static analysis, program analysis

techniques offer benefit. Decompilation is a specific program analysis technique that

recovers high level source-like information from a binary. Decompilation offers some

benefits to birthmark construction that we examine in this thesis. If program features are

used to construct birthmarks, they must be represented in mathematical form. Different

features are naturally represented using different structures. Once a birthmark is

constructed, they can be compared using mathematical measures and metrics. The final

result is a measure of similarity, or classification of birthmarks into classes using statistical

machine learning.

1.5 Aims and Scope

The aim of this thesis is to review state-of-the-art literature and propose advances in the

field of software similarity and classification. The thesis makes cohesive much of the

disparate literature and surveys software feature extraction, similarity, classification, and

their applications by investigating the principal concepts that constitute the construction of

algorithms that tackle these problems. The intended purpose is to provide an opportunity

for researchers and software engineers to understand the state-of-the-art, lay foundation

for the creation of extended works, and then use that foundation to propose new ideas,

concepts, and algorithms to extract software features, determine software similarity, and

perform software and classification.

The scope of this thesis is limited to the theory of software feature extraction, similarity,

and classification. The applied areas surveyed in software similarity and classification are

limited to:

 Software Theft Detection

 Plagiarism Detection

 C H A P T E R 1

6

 Software Clone Detection

 Malware Variant Detection and Classification

For applications that fall outside of this scope, readers are advised to find other relevant

sources and references.

The novel research proposed and implemented in this thesis is limited to 3 research works

which improve specific state-of-the-art techniques to detect clones, analyse binary

executables, and detect malware variants. While, not improving all the state-of-the-art in

software similarity and classification, the proposed work contributes significantly to

knowledge and the cohesive literature review lays foundation for future advances.

1.6 Contributions

This thesis makes the following contributions to advance the state-of-the-art in the field of

software similarity and classification:

1. The literature of software similarity and classification is combined into a unified

field.

2. We propose the concept of package-level clones which has immediate practical

benefit to Linux vendors, package repositories operating systems.

3. We propose considering package-level clone detection as a pattern classification

problem.

4. We propose over 30 features for the purposes of package-level clone detection.

5. We formulate a solution for Debian Linux in identifying security vulnerabilities

based on package-level clones.

6. We propose a formal intermediate language to analyse binary-level executables.

7. We propose combining high level information obtained through decompilation into

our low-level language.

 C H A P T E R 1

7

8. We apply our language to a number of tasks related to code equivalence, software

similarity, and classification in a formal context.

9. We propose new ways of representing graph-based signatures of programs that

enable more efficient processing.

10. We propose string, set of strings, and vector based signatures to approximate a

set of control flow graphs.

11. We propose new ways of comparing, indexing, and searching those signatures

very efficiently.

1.7 Thesis Organization

The structure of this thesis is as follows:

 Chapter 2 gives a survey of state-of-the-art literature.

 Chapter 3 proposes, implements, and evaluates a novel system to identify

package-level clones and infer security problems in Linux distributions.

 Chapter 4 proposes and implements a novel system to analyse binary-level

executables.

 Chapter 5 proposes, implements, and evaluates a novel system to detect malware

variants.

 Chapter 6 proposes and implements a novel cloud-based system for exposing the

research systems presented in this thesis.

 Chapter 7 examines future work and concludes the thesis.

The thesis may be read in different manners. A recommended order to read the chapters is

shown in the following workflow.

 C H A P T E R 1

8

1. Introduction

2. Related Work

3. Clonewise – Detecting

Package-level Clones

Using Machine Learning

4. Wire -A Formal

Intermediate Language for

Binary Analysis

5. Malwise II – Control

Flow-based Malware

Variant Detection

6. Software Similarity and

Classification in the Cloud

7. Future Work and

Conclusion

5. Malwise II – Control

Flow-based Malware

Variant Detection

4. Wire -A Formal

Intermediate Language for

Binary Analysis

Fig. 2. Recommended order of reading chapters.

 C H A P T E R 2

9

Chapter 2: Related Work

This chapter examines related work in the area of software similarity and classification.

Extracting program features, processing those features into suitable representations, and

constructing distance metrics to define similarity and dissimilarity are the key methods to

identify software variants, clones, derivatives, and classes of software. This chapter

reviews the literature of those core concepts, in addition to relevant literature in each

application and demonstrates that considering these applied problems as a similarity and

classification problem enables techniques to be shared between areas. Additionally, in-

depth case studies are presented using the software similarity and classification

techniques developed throughout the chapter.

2.1 Taxonomy of Program Features

All programs have common features and abstractions which are used to create birthmarks.

Features can be divided into syntactic and semantic groups. Syntactic features concern

themselves with program structure and program form. Semantic features examine the

meaning of the program. In this chapter we examine those syntactic and semantic features

of programs.

Syntactic Features include:

 Raw Code

 Abstract Syntax Trees

 Variables

 Pointers

 Instructions

 Basic Blocks

 Procedures

 C H A P T E R 2

10

 Control Flow Graphs

 Call Graphs

 Object Inheritances and Dependencies

Semantic features include:

 API Calls

 Data Flow

 Procedure Dependency Graphs

 System Dependency Graphs

2.1.1 Syntactic Features

2.1.1.1 Raw Code

The raw code of the program can be analysed directly. For source code this is the textual

stream, possibly normalized by removing comments and whitespace. For binaries, the raw

code is the byte sequences.

Definition 8. Let be an alphabet of symbols .The raw code of program p is defined by the function r

that evaluates to a string over the alphabet.

*,

:

ssp

SPr

2.1.1.2 Abstract Syntax Trees

Abstract syntax trees (AST) examine the syntax of source code and construct a tree

representing the syntactical structure. For binaries, decompilation is required to reconstruct

Fig. 3. Raw code for a binary (left) and source code (right).

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

63796767 63635f73 2d312e64 6c6c005f cyggcc_s-1.dll._

5f726567 69737465 725f6672 616d655f _register_frame_

696e666f 00637967 67636a2d 392e646c info.cyggcj-9.dl

6c005f4a 765f5265 67697374 6572436c l._Jv_RegisterCl

61737365 73005f5f 64657265 67697374 asses.__deregist

65725f66 72616d65 5f696e66 6f000000 er_frame_info...

55736167 653a2025 73205b4f 5054494f Usage: %s [OPTIO

*

* - THE SOFTWARE IS PROVIDED "AS-IS", WITHOUT ANY

WARRANTIES,

* EXPRESSED OR IMPLIED. USE IT AT YOUR OWN RISK.

*************/

// -*- c++ -*-

#ifndef _cvcl__include__c_interface_h_

#define _cvcl__include__c_interface_h_

 C H A P T E R 2

11

an abstract syntax tree.

2.1.1.3 Variables

Variables represent the state of data. Programs typically maintain separate regions of

memory for different classes of data handled by the run time environment. Run times may

separate the stack from the heap to store data. The stack is used for local variables in a

procedure and survives for the scope of that procedure or activation record. The run time

creates a stack segment to achieve this outcome. In contrast, the heap is used for

dynamically generated memory. Global variables conceptually belong to a different region

than the heap, but for practical purposes are normally grouped together at run time in a

data segment.

2.1.1.4 Pointers

Pointers are a type of variable that contain links or pointers to other variables. Pointers can

be dereferenced, which allows for referencing the data the pointer is pointing to. Pointers

may allow pointer arithmetic to be performed which allows for such operations as

incrementing the value of a pointer. Some languages allow seemingly arbitrary pointer

arithmetic, while other languages heavily restrict their use. Restricting pointer arithmetic

allows for easier automated analysis.

2.1.1.5 Instructions

if

== return =

x 0 x 1

condition then else

Fig. 4. An abstract syntax tree (AST).

 C H A P T E R 2

12

Instructions capture the basic unit of computation. Computations can include such things

as unary and binary operations, procedure or library calls. An instruction is defined by its

operand and opcodes.

Definition 9. Let I be set of all instructions such that I={(opcode,operand1,...,operandn)}

Definition 10. Let InstrSequence be a string of instructions such that

InceInstrSeque *,

Assembly

Assembly is a low level instruction format that can be executed on the native processing

unit. It consists of opcodes which describe the type of operation to perform, and operands

which are the arguments or parameters. Assembly language can be roughly divided into

Complex Instruction Set Computing (CISC) architectures, or Reduced Instruction Set

Architectures (RISC). RISC architectures favour simplified and small instruction sets while

CISC architectures favour a rich and large instruction set. x86 is the dominant architecture

for personal computing and is a CISC based architecture.

Intermediate Representations

Instructions can be abstracted into intermediate representations. A common representation

is Three-Address-Code which consists of three operands and one opcode. Typically, two

fixed operands are inputs and the remaining operand is the output. For unary operations,

the extra operands are ignored. Using intermediate representation has the advantage of

normalizing a complex instruction set into a series of simpler standardized operations.

p = malloc

*p = q

p = *q

p = &q

p = q

Fig. 5. Typical pointer operations.

 C H A P T E R 2

13

Definition 11. Let TAC=(opcode, operand1, operand2, operand3)

2.1.1.6 Basic Blocks

A basic block is a sequence of instructions that satisfy the following conditions:

 Execution flow can only enter the basic block through the first instruction.

 Execution flow can only exit the block at the last instruction.

A basic block can also be represented as s directed cyclic graph showing the data

dependencies between instructions.

Definition 12. Let InstrSequence(b) be a string of instructions such that

InceInstrSeque *, for basic block b.

2.1.1.7 Procedures

Procedures and functions are found in structured programming which allows for making

modular maintainable code. A program uses a set of procedures F=procedures(P)={f1,...,fn}

2.1.1.8 Control Flow Graphs

The control flow graph is a directed graph representing the possible flow of execution

within a procedure. The nodes in the graph represent basic blocks.

Definition 13. The control flow graph of procedure f is the directed graph C=(B,E) such that B is the set

of basic blocks and E is the set of edges between them.

Alternative representations of control flow are possible using graphs such as dominator

trees or control dependency graphs.

Definition 14. d dom n or node d dominates a node n if every path from the start node to n must go

through d.

Definition 15. A node d strictly dominates a node n if d dominates n and d does not equal n.

Definition 16. The immediate dominator or idom of a node n is the node that strictly dominates n but

does not strictly dominate any other node that strictly dominate n.

Definition 17. A dominator tree is a tree where each node’s children are those nodes it immediately

dominates.

2.1.1.9 Call Graphs

The call graph represents the control flow between procedures and is again represented by

a directed graph. If the program does not have recursive procedures, then the graph is

 C H A P T E R 2

14

acyclic. Like the control flow graph, dominator trees can be equally representative of the

call graph.

Definition 18. The call graph of a program is the directed graph CallGraph=(F,E) such that F is the set

of procedures and E is the set of edges between them.

The interprocedural control flow graph combines the control flow graphs with the call

graph. It is defined as ICFG=(B’,E):

 The set of control flow graphs.

 Each control flow graph is given an additional exit node, which is successor to the

set of return nodes in the cfg.

 For all basic blocks, a call instruction divides the block into two parts. The first part

is connected to a call_return node, and that in turn is connected to the remaining

basic block part.

 For each basic block that now ends with a call instruction, the block’s successor is

additionally the control flow graph of the call target. The successor of the exit node

of the target control flow graph is additionally the call_return node.

2.1.1.10 Object Inheritances and Dependencies

8d 4c 24 04

83 e4 f0

ff 71 fc

55

89 e5

51

83 ec 24

e8 6a 00 00 00

c7 45 f8 00 00 00 00

eb 10

c7 04 24 a0 20 40 00

e8 5d 00 00 00

83 45 f8 01

83 7d f8 09

7e ea

83 c4 24

59

5d

8d 61 fc

c3

lea 0x4(%esp),%ecx

and $0xfffffff0,%esp

pushl -0x4(%ecx)

push %ebp

mov %esp,%ebp

push %ecx

sub $0x24,%esp

call 4011b0 <___main>

movl $0x0,-0x8(%ebp)

jmp 40115f <_main+0x2f>

movl $0x4020a0,(%esp)

call 4011b8 <_puts>

addl $0x1,-0x8(%ebp)

cmpl $0x9,-0x8(%ebp)

jle 40114f <_main+0x1f>

add $0x24,%esp

pop %ecx

pop %ebp

lea -0x4(%ecx),%esp

ret

movl $0x4020a0,(%esp)

call 4011b8 <_puts>

addl $0x1,-0x8(%ebp)

lea 0x4(%esp),%ecx

and $0xfffffff0,%esp

pushl -0x4(%ecx)

push %ebp

mov %esp,%ebp

push %ecx

sub $0x24,%esp

call 4011b0 <___main>

movl $0x0,-0x8(%ebp)

jmp 40115f <_main+0x2f>

add $0x24,%esp

pop %ecx

pop %ebp

lea -0x4(%ecx),%esp

ret

cmpl $0x9,-0x8(%ebp)

jle 40114f <_main+0x1f>

Fig. 6. Assembly instructions and basic blocks.

 C H A P T E R 2

15

Objects come from object oriented languages which group procedures (known as

methods) and data into modular units. Objects are related to other objects via inheritance

of their functionality.

2.1.2 Semantic Features

2.1.2.1 API Calls

API calls represent calls to libraries and other imports.

2.1.2.2 Data Flow

Data flow statically represents the data at run time entering and leaving each basic block.

Many types of data flow analyses [9] are possible including reaching definitions, liveness,

available expressions, and very busy expressions.

2.1.2.3 Procedure Dependence Graphs

The control dependencies and data dependencies of a procedure can be represented in a

single graph using a procedure dependence graph [10].

2.1.2.4 System Dependence Graph

The system dependence graph combines the set of procedure dependency graphs of each

procedure into a unified representation.

movl $0x4020a0,(%esp)

call 4011b8 <_puts>

addl $0x1,-0x8(%ebp)

lea 0x4(%esp),%ecx

and $0xfffffff0,%esp

pushl -0x4(%ecx)

push %ebp

mov %esp,%ebp

push %ecx

sub $0x24,%esp

call 4011b0 <___main>

movl $0x0,-0x8(%ebp)

jmp 40115f <_main+0x2f>

add $0x24,%esp

pop %ecx

pop %ebp

lea -0x4(%ecx),%esp

ret

cmpl $0x9,-0x8(%ebp)

jle 40114f <_main+0x1f>

Proc_0

Proc_2

Proc_1

Proc_4

Proc_3

Fig. 7. A control flow graph (left) and a call graph (right).

 C H A P T E R 2

16

2.1.3 Taxonomy of Features in Program Binaries

Programs may begin as source code, but are typically compiled into a target binary for

execution on the native platform or in another run time environment. The target binary is a

container for all the information necessary for its execution in the target environment. This

container is known as the object file format [11].

2.1.3.1 Object File Formats

Object File Formats contain five types of data:

 Headers

 Object Code

 Symbols

 Debugging Information

 Relocations

Most modern object files also contain:

 Dynamic Linking Information

2.1.3.2 Headers

The object file format is often described by a variety of headers. Headers may be used to

define where the object code, symbols, debugging information, etc, is present in the binary.

2.1.3.3 Object Code

Object code contains the code and data of the program. For native executables the object

code can consist of assembly or machine code. For object file formats such as Java class

files, the object code contains byte code which is the instruction set architecture of the

Java Virtual Machine.

2.1.3.4 Symbols

Parts of the code, data and binary may be associated with symbolic names. These

associations are organized and stored in a Symbol Table.

 C H A P T E R 2

17

2.1.3.5 Debugging Information

The binary may contain debugging information such as line numbers of source code

associated with object code, or naming of information for different codes or data.

2.1.3.6 Relocations

If the binary has not been associated with a specific load address at compile time, the

binary may need to be link edited at runtime. Relocations or fixups contain the necessary

information to bind the object code to a specific load address.

2.1.3.7 Dynamic Linking Information

If the binary requires the use of external libraries, then the names of the required library

functions must be present. Likewise, if the binary's functions are being exported as a

library, then this information must also be present.

2.1.4 Case Studies

2.1.4.1 Portable Executable

The Portable Executable (PE) format [12] is the native object file format for the Windows

family of operating systems. It is a modern file format which can contain all the information

we have described in this section. It is identified by a series of magic bytes in its headers.

Object code is defined in PE sections and an Import Address Table allows for dynamic

linking.

2.1.4.2 Executable and Linking Format

The Executable and Linking Format [13] is the object file format in use on Linux and other

operating systems. It replaced the previous a.out object file format in Linux. The a.out

/bin/ls: file format pei-i386

architecture: i386, flags 0x00000102:

EXEC_P, D_PAGED

start address 0x00401000

Sections:

Idx Name Size VMA LMA File off Algn

 0 .text 00019528 00401000 00401000 00000400 2**4

Fig. 8. The output of objdump on a PE executable.

 C H A P T E R 2

18

object file format did not natively support dynamic linking and ELF brought a much more

modern format to Linux and enabled the transition to shared libraries using dynamic

linking. An ELF binary is identified by a magic sequence in its header. There are three

types of ELF object files.

 Executable Objects

 Relocatable Objects

 Dynamic Objects

Executable objects have been linked and bound to an address. Relocatable objects have

not been bound to a load address and require linking. Dynamic objects have both a

relocatable view and an executable view - shared libraries use this format.

Dynamic linking is slightly different to the PE format and uses a Global Offset Table (GOT)

and a stub call to the runtime linker to resolve imports.

2.1.4.3 Java Class File

Java class files [14] contain object code in sections defined in the file's headers. The object

code is in the instruction format for execution on the Java Virtual Machine. Like the

previous object file format, a sequence of marker bytes (the magic bytes) in the header

identifies the file format.

2.2 Program Transformations and Obfuscations

Software feature extraction must cope with transformations that are intended to obscure,

evolve, or rewrite the program. For example, malware polymorphism and metamorphism

are transformations applied to the malicious code to evade signature detection. Robust

signatures must identify the invariant birthmarks under these transformations. This chapter

focuses on analysing these types of program transformations and obfuscations including

compiler optimsations, recompilation, plagiarism, software theft, derivative works, malware

packing, malware polymorphism and malware metamorphism.

2.2.1 Compiler Optimisation and Recompilation

Compiler optimisations and recompilation are semantic preserving transformations. These

transformations rewrite the program but do not alter the behavioural properties of the

 C H A P T E R 2

19

software. Compiler optimisations make feature extraction more difficult. Even very minor

changes to a program’s source code can result in significant changes to the program’s

instruction stream once recompiled.

Many compiler optimisations are possible. We examine some in this section. Typical

classes of code optimisation that may affect the birthmarks and feature extraction are:

 Instruction Reordering

 Loop Invariant Code Motion

 Code Fusion

 Function Inlining

 Loop Unrolling

 Branch/Loop Inversion

 Strength Reduction

 Algebraic Identities

 Register Assignment

2.2.1.1 Instruction Reordering

Instructions can be reordered or scheduled in such a way that they are semantically

equivalent but perform faster due to caching. To determine if instructions inside a basic

block can be reordered, a directed acyclic graph can be drawn of the data dependencies.

Only instructions that have data dependencies between each other require strict ordering

between those instructions.

2.2.1.2 Loop Invariant Code Motion

Code that is inside a loop may be moved to outside the loop if no semantic change occurs.

This improves the efficiency of the code.

2.2.1.3 Code Fusion

Code inside loops in sequence can be fused into a single loop.

 C H A P T E R 2

20

2.2.1.4 Function Inlining

Functions can be inlined to improve performance. Inlining a function means that a clone or

copy of that function replaces the function call. This means that a function call is avoided

and therefore improves performance.

2.2.1.5 Loop Unrolling

It can improve efficiency to unroll the loop by duplicating the loop body and termination

condition.

2.2.1.6 Branch/Loop Inversion

Branching on equality or non equality can be inverted and may improve efficiency in some

cases.

2.2.1.7 Strength Reduction

Strength reduction replaces expensive operations with equivalent but less expensive

operations.

2.2.1.8 Algebraic Identities

Algebraic identities take note that some expressions are algebraically equivalent to other

less expensive operations. For example, x+0 is equivalent to the less expensive

expression x.

2.2.1.9 Register Reassignment

Register allocation is the process of assigning specific registers to instructions. The

assignment of these registers can change while maintaining semantically equivalent code.

2.2.2 Program Obfuscation

Program obfuscation obscures the workings of a program [15].

Definition 19. Let 'PP T
be a transformation of a source program P into a target program P’.

'PP T
is an obfuscating transformation, if P and P’ have the same observable behaviour.

More precisely, in order for 'PP T
to be a legal obfuscating transformation the following

conditions must hold:

 If P fails to terminate or terminates with an error condition, then P’ may or may not

terminate.

 Otherwise, P’ must terminate and produce the same output as P.

 C H A P T E R 2

21

2.2.3 Plagiarism, Software Theft, and Derivative Works

An incomplete list of source code plagiarism techniques is described in [16]. The authors

state that such a list is never ending, so a comprehensive list is impossible. Nevertheless,

they identified the following forms of plagiarism:

 Lexical Changes

o Comments can be reworded, added and omitted

o Formatting can be changed.

o Identifier names can be modified.

o Line numbers can be changed (e.g., in Fortran programs).

 Structural Changes

o Loops can be replaced (e.g, replacing a while loop with a for loop)

o Nested if statements can be replaced by case statements and vice versa.

o Statement order can be changed.

o Procedures can be replaced by functions (e.g., in Pascal)

o Procedures may be inlined

o Ordering of operands may be changed (e.g., x < y becomes x >= y)

2.2.3.1 Semantic Changes

An extension to syntactic changes is that of semantic changes where the new variant is a

derived work of the original malware. Semantic changes occur due to the software authors

modifying the original source code or functionality. This can occur to a natural evolution of

the software during its development life cycle. Additionally, it can occur when a software

author reuses existing code in a new program instance.

2.2.3.2 Code Insertion

Code insertion occurs when new functionality is added to the malware.

 C H A P T E R 2

22

2.2.3.3 Code Deletion

Code deletion occurs when functionality is removed from the malware.

2.2.3.4 Code Substitution

Code substitution occurs when functionality in the malware is replaced by an alternative

algorithm or code.

2.2.3.4 Code Transposition

Code transposition occurs when specific code and functionality of the malware is removed

from its initial location and inserted into a semantically different location in the malware.

2.2.4 Malware Packing, Polymorphism, and Metamorphism

The two categories of malware obfuscation are syntactic and semantic changes. Semantic

changes include those described for plagiarism and software theft. A syntactic polymorphic

malware technique is a method that changes the syntactic structure of the malware [17].

Though the syntactic structure changes in polymorphic malware, the malware semantically

remains identical. The technique is predominantly used to evade byte level signature

based detection and classification that is routinely employed by traditional Antivirus.

Polymorphism borrows many of the techniques from the field of program obfuscation.

Polymorphism is sometimes described by the similar term of metamorphism. In that usage

it is used to describe the automated syntactic mutation of the malware’s code and

instructions. Under such terminology, polymorphism is used to describe syntactic mutation

of limited parts of the malware’s instruction content. The remaining parts of the malware

are encoded at the byte level without regard to the instruction syntax or semantics. In this

book we treat polymorphism and metamorphism as identical to each other.

Syntactic malware obfuscations and transformations include:

 Dead Code Insertion

 Instruction Substitution

 Variable Renaming

 Code Reordering

 Branch Inversion and Flipping

 C H A P T E R 2

23

 Opaque Predicate Insertion

 Code Packing

2.2.4.1 Dead Code Insertion

Dead code is also known as junk code and a semantic nop [17]. Dead code is semantically

equivalent to a nil operation. Insertion of this type of code has no semantic impact on the

malware. The insertion increases the size of the malware and modifies the byte and

instruction level content of the malware.

2.2.4.2 Instruction Substitution

Instruction substitution replaces specific instructions or sequences of instructions with

semantically equivalent, but differing instructions and instruction sequences. The size of

the malware may grow or shrink in this procedure.

2.2.4.3 Variable Renaming

Variable renaming [18] and the associated technique of register reassignment alters the

use of variables and registers in a sequence of code such that the instructions are

semantically equivalent but use different variables and registers when compared to the

original code.

2.2.4.4 Code Reordering

Code reordering [18] changes the syntactic order of the code in the malware [17]. The

actual or semantic execution path of the program does not change. However, the syntactic

order as present in the malware image is altered. Code reordering includes the techniques

of branch obfuscation, branch inversion, branch flipping, and the use of opaque predicates.

mov $0,%eax

mov $1,%ebx

add %eax,%ebx

push %ebx

call $0x80482000

mov $0,%ebx

mov $1,%ecx

add %ebx,%ecx

push %ecx

call $0x80482000

Fig. 11. Register reassignment.

mov $0,%eax xor %eax,%eax

Fig. 10. Instruction substituion.

push %ebx

pop %ebx

Fig. 9. A semantic nop

 C H A P T E R 2

24

2.2.4.5 Branch Obfuscation

Branch obfuscation attempts to hide the target of a branch instruction. Examples include

the use of Structured Exception Handling (SEH) on the Microsoft Windows platform. The

use of SEH to obscure control flow is common in modern malware. Similar techniques

involve indirect branching. Indirect branching uses data content as the target of a branch.

This translates control flow identification into a harder data flow analysis problem. The use

of a branch function [19] extends this approach and dispatches multiple branches through

a single routine. The main purpose of branch obfuscation is to make the static analysis of

the malware by an analyst or automated system harder to perform.

2.2.4.6 Branch Inversion and Flipping

Branch inversion inverts the branch condition in conditional branches. Whereas the branch

may originally transfer control when the condition is true, branch inversion alters the

condition to branch when false. To maintain the original semantics of the program the

branch instruction is also inverted. For example, a branch on condition true statement can

be changed to a branch on condition false statement. Additionally, the condition being

tested would also be inverted. Branch inversion is effectively a form of instruction

substitution on control flow statements.

Branch flipping [19] is a similar technique to branch inversion and rewrites the branch

instruction by substituting it with semantically equivalent code with different control flow

properties. For example, if the original code is to branch on condition true then the new

code branches on condition false to the original fall-through instruction. The new fall-

through instruction then unconditionally branches to the original conditional branch target.

mov $0x8048200,%eax

jmp *%eax

Fig. 12. An indirect branch.

 C H A P T E R 2

25

2.2.4.7 Opaque Predicate Insertion

An opaque predicate [19] is a predicate that always evaluates to the same result. An

opaque predicate is constructed so that it is difficult for an analyst or automated analysis to

know the predicate result. Opaque predicates can be used to insert superfluous branching

in the malware’s control flow. They can also be used to assign variables values which are

hard to determine statically. The use of opaque predicates is primarily for code

obfuscation, and to prevent understanding by an analyst or automated static analysis.

2.2.4.8 Malware Obfuscation Using Code Packing

Code packing [20, 21] is the dominant technique used to obfuscate malware and hinder an

analyst’s understanding of the malware’s intent. In one month during 2007, 79% of

identified malware from a commercial Antivirus vendor was found to be packed [22].

Additionally, almost 50% of new malware in 2006 were repacked versions of existing

malware [23].

Code packing, in addition to obfuscating the understanding of the malware by an analyst, is

also used by malware to evade an Antivirus system’s detection. Polypack [24] evaluated

the effectiveness of code packing against Antivirus detection by providing a service to pack

malware using a variety of code packing tools. Antivirus systems often have the

capabilities of unpacking known code packing tools, and unpacking unknown tools has

also had commercial interest [25]. However, Polypack demonstrated that packing can be

an effective tool to defeat an Antivirus system with many commercial malware detection

systems failing to identify the packed versions of existing malware.

Code packing is used in the majority of malware, but code packing also serves to provide

compression and software protection for the intellectual property contained in a program. It

is not necessarily advantageous to flag all occurrences of code packing as being indicative

of malicious activity. Code packing tools are freely available [26] and commercially sold to

jc $0x80482000
cmc # complement carry flag

jnc $0x80482000

Fig. 13. Branch inversion.

jz $0x80482000

L:

jnz L

jmp $0x80482000

L:

Fig. 14. Branch flipping.

 C H A P T E R 2

26

the public as legitimate software [27]. For this reason, unpacking of packed programs

provides benefit. It is advisable to determine if the packed contents are malicious, rather

than identifying only the fact that unknown contents are packed.

2.2.4.9 Traditional Code Packing

From [28]: The most common method of code packing is described in [20] and [28].

Malware employing this method of code packing transforms executable code into data as a

post-processing stage in the malware development cycle. This transformation may perform

compression or encryption, hindering an analyst's understanding of the malware when

using static analysis. At runtime, the data, or hidden code, is restored to its original

executable form through dynamic code generation using an associated restoration routine

[29]. Execution then resumes as normal to the original entry point. The original entry point

marks the entry point of the original malware, before the code packing transformation is

applied. Execution of the malware, once the restoration routine is complete and control is

transferred to the original entry point, is transparent to the fact that code packing and

restoration had been performed. A malware may have the code packing transformation

applied more than once. After the restoration routine of one packing transformation has

been applied, control may transfer another packed layer. The original entry point is derived

from the last such layer. The process of this form of malware packing is shown in Fig. 15.

2.2.4.10 Shifting Decode Frame

From [28]: An extension to traditional code packing is to maintain as much of the packed

image in an encrypted form at run-time. During execution of the malware, blocks of

Restoration

Routine

Hidden Code =

f(Original Code)

Original Code

Remnant Code

and Restoration

Routine

Original Code =

g(Hidden Code)

Packing Runtime

Original Executable Packed Executable Memory Image at Runtime

Fig. 15. The traditional code packing transformation.

Restoration

Routine

Hidden Code =

f(Original Code)

Original Code

Remnant Code

and Restoration

Routine

Original Code =

g(Hidden Code)

Packing Runtime

Original Executable Packed Executable Memory Image at Runtime

Fig. 15. The traditional code packing transformation.

 C H A P T E R 2

27

memory can be decrypted as needed and subsequently re-encrypted to prevent an analyst

or automated system from having access to all the hidden code at any single moment in

time. This technique is known as the shifting decode frame [30]. The granularity of

encryption can occur at the page level, the basic block level, and the instruction level. This

type of code packing is not often used in wild malware, and in practice, traditional code

packing and instruction virtualization are the dominant techniques used in real malware.

The process of this form of malware packing is shown in Fig. 15..

2.2.4.11 Instruction Virtualization and Malware Emulators

From [28]: Code packing may employ the use of instruction virtualization also known as a

malware emulator [21]. An emulator used by a malware should not be confused with an

emulator used for automated unpacking of the malware. This type of code packing

transformation employing an emulator is used in a minority of malware. In this form of code

packing, packing translates the original native code into a byte-code which is subsequently

emulated by the malware at run-time. Using this form of code packing, the hidden code in

Shifting Decode

Frame Restoration

Routine

Hidden Code =

f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Hidden Code

Shifting Decode

Frame Restoration

Routine

Original Code

Original Executable

Fig. 16. Code packing using the shifting decode frame.

Interpreter

Byte Code =

f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Original Executable

Interpreter

Byte Code =

f(Original Code)

Fig. 17. Code packing using instruction virtualization.

 C H A P T E R 2

28

its original form is never revealed. The process of this form of malware packing is shown in

Fig. 16.

2.2.5 Features under Program Transformations

Program features may change under program transformations and obfuscation. The

challenge then is in choosing features which remain invariant under these conditions. The

raw or byte level content deals poorly with program transformations. Small changes in high

level source code may result in large changes in the raw content. Instruction level content

is also prone to large changes under transformations such as when registers are

reassigned or the instruction stream is modified. Control flow is more invariant than most

syntactic features and can be a good choice. At a source code level, program and system

dependency graphs have been popular. The APIs used by a program represent a good

choice and have been widely used in behavioural analysis of malware. For static analysis

of malware, the malware must be unpacked to reveal its hidden code. Unpacking of

malware is not addressed in this book.

2.3 Formal Methods of Program Analysis

Feature extraction is a necessary component to construct a birthmark, show similarity and

classify a program as belonging to a particular class. Program analysis is an important

component in feature extraction. The analysis reveals information on the syntax,

semantics, and behaviour of the program being inspected. This section focuses on formal

methods of program analysis which can be used for the purpose of property and feature

extraction.

2.3.1 Static Feature Extraction

The majority of formal methods we will examine in this section are based on analysing a

static view of a program without performing execution of it. A number of possible choices

exist to perform feature extraction statically from a program. There is some equivalence

between source code and binary feature extraction, however differences also exist.

The possible stages to extract static features from source code are:

 Raw Code Analysis

 C H A P T E R 2

29

 Lexical Analysis

 Parsing

 Static Program Analysis

For binary only software, analyses can be divided into:

 Raw Code Analysis

 Object File Parsing

 Static Program Analysis of Binaries

 Decompilation

Static program analysis is an approximation of program behaviour. For an analysis to be

sound, then no behaviour should be omitted. For an analysis to be precise, the over-

approximation should be close to the actual behaviour. This over approximation leads to

false positives in the case of bug detection, or conservation optimisations in the case of

compiler techniques. A perfectly precise analysis is undecidable due to Rice’s theorem

[31], however even without perfect precision the results are still practical and useful.

2.3.2 Formal Syntax and Lexical Analysis

Lexical analysis is the process of producing a sequence of tokens given a sequence of

characters. Lexical analysis is performed before parsing. The parser uses the tokens

generated from the lexical analysis.

2.3.3 Parsing

Definition 20. A context-free grammar G is defined by the 4-tuple:

G=(V, ,R,S) where

V is a finite set of non terminal variables.

 is a finite set of terminals.

R is a finite set of rules or productions of the grammar.

S is the start variable.

Rules are of the form wV where V is a non terminal symbol and w is a string of

terminals and/or non terminals.

 C H A P T E R 2

30

Context-free grammars are the basis for recognizing and representing programming

languages in source code. However, in practice, a number of widely used languages such

as C++ are not strictly context-free in all cases.

The process of parsing in static analysis is to transform source code into a concrete or

abstract syntax tree.

2.3.4 Intermediate Representations

2.3.4.1 Intermediate Code Generation

The process of code generation is typically performed by traversing the abstract syntax

tree and generating intermediate code for each unit in the tree.

2.3.4.2 Abstract Machines

The intermediate language used for the intermediate code runs on an abstract machine

that has a correspondence to the actual machine. Typical models of computation for the

digit [0-9]

letter [a-zA-Z]

%%

"<=" { return LEQ; }

">=" { return GEQ; }

"begin" { return BEGINSYM; }

"call" { return CALLSYM; }

"const" { return CONSTSYM; }

"do" { return DOSYM; }

"end" { return ENDSYM; }

Fig. 18. Implementation of lexical analysis.

 C H A P T E R 2

31

abstract machine are register machines or random access machines. A typical

implementation useful for static analysis consists of:

 An unlimited number of uniquely labelled registers.

 A small number of instruction prototypes to make an instruction set.

 An instruction pointer.

 A sequence of labelled instructions.

 A random access memory.

 An entry point.

 The instruction set can further be divided into:

 Data (arithmetic etc)

 Control (conditional and unconditional branching etc)

input:

 expr { ((SParserParam*)data)->expression = $1; }

 ;

 expr:

 expr TOKEN_PLUS expr { $$=createOperation(ePLUS, $1, $3); }

 | expr TOKEN_MULTIPLY expr { $$=createOperation(eMULTIPLY, $1, $3); }

 | TOKEN_LPAREN expr TOKEN_RPAREN { $$=$2; }

 | TOKEN_NUMBER { $$ = createNumber($1); }

;

Fig. 19. Implementation of parsing.

 C H A P T E R 2

32

 API Calls (operating system and library interface etc)

2.3.4.3 Basic Blocks

To partition the intermediate code into basic blocks [32] we determine instructions that are

leaders. Leaders are the first instruction in each basic block. An instruction is a leader

when it satisfies one of the following properties:

 The first instruction in the intermediate code.

 Any instruction that is the target of a branch.

 Any instruction that follows a branch.

2.3.4.4 Control Flow Graph

The successors of a basic block b, succ(b), are:

 The target of the basic block’s branch instruction.

 The basic block immediately following the current basic block in the instruction

stream.

Thus, a control flow graph [32] is defined as the directed graph C=(B,E) such that B is the

set of basic blocks, and)}(,|),{(usuccvBuvuE

2.3.4.5 Call Graph

The successors of a procedure f, call_succ(f), are:

 The set of call targets in the procedure body.

Thus, a call graph is defined as the directed graph CallGraph=(F,E) such that F is the set

of procedures, and)}(_,|),{(usucccallvFuvuE

2.3.5 Formal Semantics of Programming Languages

The formal semantics of programming languages aims to rigourously reason about

program meaning by having a strict mathematical representation of a program’s semantics.

Multiple methods are available to represent program semantics and the three main

techniques are:

 C H A P T E R 2

33

 Operational Semantics

 Denotational Semantics

 Axiomatic Semantics

Other approaches are also possible, including algebraic semantics [33] which has been

used successfully to show equivalence between code fragments of metamorphic malware.

2.3.5.1 Operational Semantics

Operational semantics capture the state transition that occurs when a program instruction

is executed. It can be thought of as defining an interpreter for a language [34]. Operational

semantics can be expressed using the following notation:

NAME
PPi

premise

premise

n

'),(

...

1

Where i is the current instruction, P is the current state and P’ is the next state following

execution of the instruction i.

2.3.5.2 Denotational Semantics

Denotational semantics transform instructions to mathematical objects [34]. It can be

thought of as defining a compiler for a language.

2.3.5.3 Axiomatic Semantics

Axiomatic semantics give an axiomatic basis for a program. Typically this is achieved by

using preconditions and postconditions for instructions. These preconditions and

postconditions can be analysed with logic, typically first order logic. The most common use

of axiomatic semantics is to prove program correctness using Hoare logic [35] and its

variants.

2.3.6 Theorem Proving

2.3.6.1 Hoare Logic

Hoare logic is a means for proving the correctness of structured programs [35]. It is based

on axiomatic semantics. Hoare logic provides a deductive method for proving correctness,

 C H A P T E R 2

34

however loop invariants must be synthesised and this represents a significant challenge in

developing program proofs.

2.3.6.2 Predicate Transformer Semantics

Predicate transformer semantics [36] provide a method to generate verification conditions

through the weakest precondition. This is a form of axiomatic semantics and reformulates

Hoare logic to provide an automated construction of first order logic formula to prove

program correctness.

2.3.6.3 Symbolic Execution

Symbolic execution [37] is the process of executing a program using symbolic represents

for variables and data. The program executes by generating constraints of the symbols for

each instruction. Mixed symbolic execution [38] allows a more efficient implementation by

concretely executing part of the program using native computations, and symbolically

execution those variables of interest. Symbolic execution is path based execution. At every

control transfer point, a decision must be made of which path to follow. The feasibility of

paths and the symbolic constraints are modelled using an SMT decision procedure. The

decision procedure can report if a set of constraints is feasible, or provide a counter

example to prove otherwise. Symbolic execution has been applied to binaries for

applications such as malware analysis [39].

2.3.7 Model Checking

Model checking is used to verify that a model meets the properties of a specification [40]. It

achieves this by enumerating the state space of the model to verify the specification.

2.3.8 Data Flow Analysis

Data flow analysis tries to statically determine the behaviour of data [9]. Perfectly precise

data is undecidable so data flow analysis seeks to find an approximation of the data by

discovering conservative program invariants. Data flow analyses are flow-sensitive which

means the ordering of instructions is taken into account. The solution of data flow problems

is based on lattice and order theory. The problems are represented as monotone functions

which can be approximated and computed using fixed point solutions.

 C H A P T E R 2

35

2.3.8.1 Dataflow Equations

Dataflow analysis is performed by reaching a fixpoint solution in a semilattice for a system

of monotone equations that describe the dataflow. Typical data flow analyses require

control flow information to perform the analysis. The basic approach is to set up data flow

equations to track data entering and leaving each node in the control flow graph. In a

forward flow analysis, a transfer function is applied on the data entering a basic block

which results in the data leaving the basic block. Merging of control flow edges is applied

using a join operator. The analysis can be forwards or backwards merging successor or

predecessor nodes. In some literature a meet operator is used instead of a join. This is

arbitrarily dependent on whether a meet-semilattice or join-semilatice is used for analysis.

In a forward analysis using a join-semilattice, for each block b:

)},|({

)(_

bbb

bb

outrpredecessoppjoinin

infunctiontransferout

A backwards analysis replaces in with out, and out with in. It also uses the successor

blocks instead of the predecessor blocks in the join.

Typical join operators include union or intersection. Data flow analyses are usually

constructed to be conservative so that precision is sacrificed to capture all possible

behaviours. The analysis proceeds by iteratively computing the functions for all blocks until

a fixed point is reached.

2.3.8.2 Dataflow Analysis Examples

Common data flow analyses include reaching definitions and live variable analysis. These

analyses are use-def analyses. They resolve the problem of identifying which instructions

subsequently use a variable as in the case of liveness and upwards exposed uses, or

which variable definitions reach an instruction as in the case of reaching definitions. There

may be more than one reaching definition of the same variable at an instruction if multiple

paths lead to that instruction and the same variable is defined along those separate paths.

If an accurate control flow graph is available, then data flow analysis performs equally

accurate. Data flow analyses has been heavily used in the decompilation of binaries [41]. If

 C H A P T E R 2

36

data flow analyses is performed interprocedually, then the call graph must be accurately

generated.

2.3.8.3 Reaching Definitions

The lattice for reaching definitions is the power set of definitions ordered by set inclusion.

The data flow equations for reaching definitions are:

}{][)],...,(:[

}{)],...,(:[

][][

])[(][][

1

1

][

dyDEFSxxfydKILL

dxxfydGEN

pREACHSREACH

SKILLREACHSGENSREACH

n

n

Spredp

OUTIN

INOUT

where DEFS[y] is the set of all definitions that assign to variable y. d is a unique label

attached to the assigning instruction.

2.3.8.4 Live Variables

The lattice for live variable analysis is the power set of used variables ordered by set

inclusion. The data flow equations for live variable analysis are:

}{][)],...,(:[

},...,{)],...,(:[

][][

0][

])[(][][

1

11

][

yyDEFSxxfydKILL

xxxxfydGEN

pLIVESLIVE

finalLIVE

SKILLLIVESGENSLIVE

n

nn

Ssuccp

INOUT

OUT

OUTIN

2.3.9 Abstract Interpretation

Abstract interpretation [42] is closely related to data flow analysis. Abstract interpretation

concerns to the sound approximation of programs. A classic example of abstract

interpretation used for pedagogical purposes is the abstract domain of signs which

represents numerical variables by the possible sign they have. A variable may be positive,

negative, possibly both, or zero. Abstract interpretation has been applied to, in amongst

other things, malware detection.

 C H A P T E R 2

37

2.3.10 Intermediate Code Optimisation

Data flow analysis is used in intermediate code optimisation. A very small set of possible

optimisations are:

 Dead Store Elimination

 Constant Folding

 Copy Propagation

For example, in dead store elimination, if a variable is defined, but is not live, then the

definition can be safely removed from the code.

2.3.11 Research Opportunities

Algebraic semantics [43] have been used to show equivalence between metamorphic

malware. However, the general approach of using formal semantics to show semantic

equivalence between programs is under-utilised. We believe this presents an opportunity

for researchers looking at the software similarity problem in future work. We tackle part of

this problem and propose using operational semantics to analyse malware codes in

Chapter 4. The notion of non exact matching of semantics is an area that needs

investigation if we are to detect similar but not identical program copies.

2.4 Static Analysis of Binaries

Static binary analysis is more difficult than if source code is available. In many cases, the

analyses are unsound and behaviours are omitted to make problems feasible. Heuristics

may be required to separate code and data in a disassembly or pointer behaviour may be

weakly modelled to make statically analysing programs feasible. Nevertheless, static

analysis of binaries is an important area of research with a number of practical applications

including the detection of software theft and the classification and detection of malware.

This section examines static analysis of binaries with the intent that properties and features

of binary programs can be extracted to create useful birthmarks for software similarity and

classification.

 C H A P T E R 2

38

2.4.1 Disassembly

Disassembly is the process of translating machine code to assembly language [44]. This is

typically the first stage of a static analysis. Static disassembly parses the entire binary

image statically without execution. In static disassembly, there are two main algorithms. In

the Linear Sweep algorithm, the instructions are disassembled one instruction after

another, starting from the beginning of code. The disadvantage of this method is that data

introduced into instruction stream may be erroneously disassembled.

disassemble_program(program)

{

 address = disassemble_linear_sweep(start(program), end(program))

}

disassemble_linear_sweep(start, end) {

 address = start

 while (address < end) {

 instruction = Disassemble(program, address)

 if (error) {

 address += 1;

 } else {

 disassembly[address] = instruction;

 address += length(instruction);

 }

 }

}

Fig. 20. Linear sweep disassembly.

 C H A P T E R 2

39

The other main algorithm to perform disassembly is the Recursive Traversal algorithm.

This algorithm decodes each instruction following the order of the control flow. This

resolves the issue of embedded data, but may miss decoding instructions that are the

target of indirect jumps or other situations when it is hard to resolve control flow statically.

disassemble_program(program) {

 disassemble(entry_point(program))

}

disassemble_recursive_traversal(address) {

 while (has_address(program, address)) {

 if (disassembly[address] not null)

 return

 instruction = Disassemble(program, address)

 if (error)

 return

 disassembly[address] = instruction

 if (is_return_instruction(instruction))

 return

 if (is_transfer_instruction(instruction))

 disassemble(transfer_target(instruction);

 address += length(instruction);

 }

}

Fig. 21. Recursive traversal disassembly.

 C H A P T E R 2

40

Speculative Disassembly attempts to remedy the problems of the Recursive Traversal

algorithm problem by first performing the Recursive Traversal, and then performing a

Linear Sweep in regions that are not decoded.

Disassembly results in the following data.

},...,,,{ 1 noperandoperandopcodeaddressydisassembl

2.4.2 Intermediate Code Generation

A simple approach to transforming assembly into an intermediate language is to translate

each instruction without maintaining intermediate state. This approach has been used

successfully in the Reverse Engineering Intermediate Language (REIL) [45]. Other popular

intermediate languages are Vex as used in the Valgrind binary instrumentation framework

[46] and Vine as used in the BitBlaze project [47]. An example to translate native assembly

into three address code is shown below.

),...(__ 1 nTACTACninstructioassemblynative

disassemble_speculative(program) {

 disassemble_recursive_traversal(entry_point(program))

 for all intervals in

 [start(program), end(program)] and not in disassembly

 {

 disassemble_linear_sweep(

 start(interval), end(interval))

 }

}

Fig. 22. Speculative disassembly.

 C H A P T E R 2

41

2.4.3 Procedure Identification

An important stage in reconstruction the control flow of an executable is identifying

procedures. There are roughly four approaches that can be employed.

 Using object file format information (e.g., symbols and exports)

 Using static targets of call site

}),_,(|{ ydisassemblfdirectcalladdressfF

 Using idioms to identify procedure prologues

disassemble_procedure(address) {

 while (has_address(program, address)) {

 if (disassembly[address] not null)

 return

 instruction = Disassemble(program, address)

 if (error)

 return

 disassembly[address] = instruction

 if (is_return_instruction(instruction))

 return

 if (is_transfer_instruction(instruction)

 and not is_call_instruction(instruction))

 disassemble_procedure(transfer_target(instruction);

 address += length(instruction);

 }

}

Fig. 23. Procedure disassembly.

 C H A P T E R 2

42

 Using static analysis and data flow analysis to reconstruct indirect call targets

The main hindrance to generating accurate representations is when a program uses

indirect branches and procedure calls. The analysis of indirect targets requires data flow

analysis. A number of approaches have been employed [48-50]. Using idioms to identify

procedures requires string matching algorithms to identify common byte sequences.

2.4.4 Procedure Disassembly

Procedures consist of a body of instructions which must be recovered from the

disassembly. The algorithm is a very slight variation of the recursive traversal disassembly

algorithm. The difference is that inter procedural control flow is not traversed.

2.4.5 Control Flow Analysis, Deobfuscation and Reconstruction

Control flow analysis is more difficult on binaries because of the difficultly in separating

code and data. Likewise, the presence of indirect branch and call targets in assembly

language makes precisely determining the static control flow undecidable.

The simplest approach is to ignore indirect targets completely. The edges of the graphs

representing the call graph control flow can be constructed by connecting the call site to

the static call target. For control flow graphs the approach is similarly applied to branch

targets.

Control flow may also be obfuscated. An opaque predicate [19] is a predicate that always

evaluates to the same result. An opaque predicate is constructed so that it is difficult for an

analyst or automated analysis to know the predicate result. Opaque predicates can be

used to insert superfluous branching in a binary’s control flow. They can also be used to

assign variables values which are hard to determine statically. The use of opaque

predicates is primarily for code obfuscation, and to prevent understanding by an analyst or

automated static analysis.

The presence of opaque predicates in a control flow graph reduces the accuracy of the

graph because of misleading branch targets. In [51] it was proposed to use the program

analysis technique of abstract interpretation to detect specific classes of opaque predicate

algorithms.

 C H A P T E R 2

43

2.4.6 Pointer Analysis

Pointer and alias analysis tries to determine the variables that a pointer may point to. In

assembly this problem is difficult. A conservative approach to alias analysis of assembly

using datalog constraints was proposed in [52], however this work was to introduce formal

rigour and is not practical to deploy. Value-Set Analysis [53] has been proposed as an alias

analysis, suitable for binary programs and assembly language. Value-Set Analysis has

been used in malware detection [54] and the automated static unpacking of malware [55].

2.4.7 Decompilation of Binaries

Decompilation [41] is the process of recovering source code from executable binaries. In

general, decompilation can be seen as a form of static analysis of a binary that recovers

additional information from its intermediate representation. Research connecting the type

of static analysis a compiler performs to the requirements of a decompiler was proposed in

[41] and [56].

2.4.7.1 Condition Code Elimination

In Instruction Set Architectures such as x86, many arithmetical instructions modify a status

flag or condition code. For example, determining if two variables are equal is divided into

two computations. An arithmetic instruction over the two variables that sets a condition

code, and then a branch based on the resulting condition code. Decompilation requires

these two computations be reduced to one conditional test.

An approach to solve this is by maintaining a reaching definition of the various conditions

code set by each arithmetic instruction. At the point of a conditional branch based on the

condition code, the reaching definitions are combined into a single condition.

2.4.7.2 Stack Variable Reconstruction

Stack variable reconstruction transforms variables allocated on the stack into native

variables in the intermediate representation. The stack can be accessed in two main ways.

The first method is by referencing variables relative to the top of the stack, or stack pointer.

The second method accesses the stack relative to the frame pointer. The frame pointer is

unique for each procedure or activation record. It points to the top of the stack as set on

function entry. During procedure execution the stack pointer may change, but the frame

pointer remains constant. This simplifies access to variables on the stack and is often used

 C H A P T E R 2

44

in debug builds of application. It is clear that for a decompiler to be effective, it must handle

both methods of accessing the stack. Both frame and stack based addressing may be

intermixed in real life applications.

Another complication to using the stack pointer is that callees may or may not change the

stack pointer. It is the responsibility of the caller to push arguments onto the stack, but the

callee may or may not unwind these arguments based on the calling convention being

used.

One approach [57] to reconstruct stack based variables takes advantage of the fact that in

compiled programs, the position of the stack pointer in each basic block remains constant.

The stack pointer can be modified within a basic block when calls are made or values or

pushed and popped on or from the stack. Using this information, a set of constraints over

the control flow graph can describe the stack pointer. Solving the constraints identifies the

relative position of the stack pointer at the entry and exit of each basic block. Frame pointer

relative addressing uses fixed offsets from the top of the stack at the beginning of the

procedure, and knowing the position of the stack pointer at each basic block enables

knowing exactly which memory location on the stack is being referenced. This enables a

unified approach to modelling stack and frame based addressing.

Pointers and arrays complicate the process of stack variable reconstruction. In these

cases, the stack variable may only be referencing the beginning of an array or pointing to

the beginning of the object. Heuristics must be used to estimate the size of the object. An

approach to estimate this is by looking at the size of the stack frame or looking at the next

adjacent stack reference to predict a bounds on the object in question.

2.4.7.3 Preserved Register Detection

A typical problem that arises is determining if the register is modified in the life time of a

procedure. If the register is used in procedure, but maintains its original value once

returning from the procedure’s callsite then the register is preserved. The process of

preserving a register is to copy the register into a temporary variable and then restore it

before leaving the function. Detecting preserved registers is important in the process of

identifying which registers are arguments or return values from a procedure.

 C H A P T E R 2

45

Data flow analysis and a suitable intermediate representation can help solve the preserved

register problem. If we ignore calls within a procedure, we can identify a preserved register

by the fact that the reaching definitions for that register at each function exit, is the value of

a copy of the register on function entry. To determine where the value is copied on entry to

the function we can use a liveness analysis to identify where the register is used and check

that instruction for a copy instruction.

This process of identifying preserved registers requires that local variable reconstruction be

performed. The reason is that the temporary variable used to save a copy of the preserved

register is typically represented by a local variable.

2.4.7.4 Procedure Parameter Reconstruction

The parameters to procedures may be passed on the stack, or passed via registers. The

return values are typically passed by registers. The exact semantics are defined the calling

convention on a particular procedure. The arguments used by a procedure can be

determined by the procedure accessing variables outside the current stack frame. Once

the arguments are known, at call sites, the stack is statically unwound to the required depth

to retrieve them.

Registers may also be passed as arguments. Ignoring calls, arguments are registers that

are live on procedure entry that aren’t preserved. To take into account calls, the analysis is

performed on inner calls first as defined by their depth first order in the call graph.

Recursive calls require further analysis.

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

proc(){

L_0:

while (v1 || v2) {

L_1:

if (v3) {

L_2:

} else {

L_4:

}

L_5:

}

L_7:

return;

}

Fig. 24. A control flow graph and its linearized form.

 C H A P T E R 2

46

2.4.7.5 Reconstruction of Structured Control Flow

A standard technique in decompilation is transforming a control flow graph into higher level

structured control flow [41, 58, 59]. This is the process of structuring. Identifying conditions,

loops, and parts of the control flow graph that cannot be structured is required. Conditions

may be compound conditional statements involving conjunction and disjunction. The higher

the quality of structuring means the less the number of gotos in the generated code. Some

graphs cannot be structured and the reducibility of the graph identifies these cases.

Structuring of control flow graphs was proposed in [60, 61] to generate string signatures

that were later used to identify malware variants.

2.4.7.6 Type Reconstruction

Type information is lacking from binaries. Reconstruction of types enables higher quality

code in the decompiled output. An approach to type reconstruction using the unification

algorithm was proposed in [62]. A data flow analysis approach based on lattices and using

single static analysis was proposed in [56].

2.4.8 Obfuscation and Limits to Static Analysis

It is known that perfectly precise disassembly is undecidable [63]. Branch targets can be

indirect, and precise understanding of those run-time values can be problematic. In [64] an

analysis of some limits to static analysis of malware were identified. The use of opaque

predicates was shown to confound the problem of precise program representation.

Determining whether two programs are semantically equivalent is also known to an

undecidable problem which is why for example malware detection is often based on

heuristic and unsound solutions. Likewise, perfect decompilation, for all possible binaries,

is undecidable. If the binary does not originate from high level source then it is unlikely

decompilation will give meaningful results.

2.4.9 Research Opportunities

Decompilation presents potential research opportunities when combined with other

techniques such as static analysis or malware classification. Very little research has been

performed on decompilation-based applications. The main application of decompilation

thus far has been source code recovery. However, the high level information it recovers

makes it a suitable abstraction for useful software features. In Chapter 5, we propose

 C H A P T E R 2

47

extending decompilation-based approaches to malware variant detection. To achieve this

task, we propose in Chapter 4 a novel formal intermediate language for binary analysis.

Our intermediate language uses high level concepts from decompilation and bridges the

gap between binary and higher level analyses.

2.5 Dynamic Analysis

In the previous sections we have examined static extraction of program features for the

purpose of birthmark construction. Dynamic analysis is examined in this section. It is an

alternative approach to static analysis that can be used for birthmark construction.

Dynamic analysis concerns itself with analysing a running program. The program being run

is typically isolated in an environment which allows its behaviour to be inspected. Typical

behaviours that are extracted are the API call sequence. Instruction sequences, basic

block sequences and control flow are amongst other behaviours that can also be identified.

2.5.1 Relationship to Static Analysis

There are roughly two approaches to extract program features from software. In the static

approach, the software is never executed and the features are extracted from a static view

of the program. In dynamic analysis the software is executed, possibly in a virtual machine,

and its run-time behaviour examined. The run-time behaviours exhibit the properties or

features being extracted.

Static analysis is effective because it is able to examine to represent the set of all possible

execution paths by approximating program behaviour. This is important because

behaviours of specific programs may be hard to trigger dynamically. It is often difficult to

trigger corner cases in programs and as a result a number of dynamic analysis testing

methodologies exist to address this such as the use of analysing code coverage during

execution. In the case of malicious code, malware authors actively change the behaviour of

the code when under analysis.

The main advantage of dynamic analysis is that the semantics of the program are

exhibited, and obfuscations applied to the program have less effect on these exhibited

semantics. Attempting to identify run-time behaviour properties for multiple paths of

execution has been researched [39]. It is still a new area, but using symbolic execution to

 C H A P T E R 2

48

trigger different behaviours has had some success. The results of exploring these multiple

paths can be accumulated into a final report to infer the intent or potential behaviour of a

piece of software.

2.5.2 Environments

Dynamic analysis requires an environment in which to run and isolate the program being

analysed. The environment in which to run a program can be categorized in the following

list:

 Hooking

 Dynamic Binary Instrumentation

 Virtualization

 Application Level Emulation

 Whole System Emulation

2.5.3 Debugging

An operating system typically provides an API to debug processes. Debugging can allow

for operations including single stepping through execution an instruction at a time, or

setting a breakpoint at a particular code address. Debugging can be useful to monitor non

malicious programs, however most malware today implements anti-debugging functionality

which can detect the presence of a debugger.

2.5.4 Hooking

Hooking is the process of intercepting API calls allowing for possible instrumentation.

Hooks can be placed in user space or kernel space. Hooking is commonly used by

commercial Antivirus software to monitor process behaviour and detect possible misuse.

Detours [65] is an implementation of hooking for the Windows operating system. The basic

mode of operation is to overwrite the function in memory with a trampoline to the intercept

handling code. The intercept handling code performs any instrumentation or monitoring as

necessary then restores control back to the original function. Another method of hooking is

overwriting dispatch tables such as system call tables or import addresses. It is also

 C H A P T E R 2

49

possible in Linux to natively intercept API calls to dynamic libraries by preloading another

library. Malware today often can detect the presence of hooking by implementing

checksums over their executable code.

2.5.5 Dynamic Binary Instrumentation

Dynamic binary instrumentation is an approach that instruments native code on the fly. The

binary being executed is controlled from a dispatcher which analyses the code, instruments

it, and then rewrites it for execution. Some examples of dynamic binary instrumentation

include PIN [66], DynamoRIO [67], and Valgrind [46]. Dynamic binary instrumentation

based on PIN has been used for malware unpacking and analysis in [68, 69].

2.5.6 Virtualization

Virtualization is a technique that supports native execution of a guest operating system by

exploiting separation and isolation mechanisms implemented by the native hardware

architecture or software. A number of methods are available to implement virtualization

including paravirtualization which must be supported by both the host and the guest

operating systems. The most important type of virtualization for providing an environment

to perform feature extractions is hardware assisted virtualization. In the x86 architecture,

hardware assisted virtualization was not always supported and detection of the virtualized

environment was implemented by many strains of malware [68]. Hardware assisted

virtualization has been used for malware analysis [70]. This type of analysis is harder to

detect but attacks still exist to detect virtualization from a guest [71]. For example, it is

known that memory caching between guests and hosts are different in the virtualized

environment. However, as virtualization becomes a standard tool on the desktop, malware

authors might no longer be able to associate virtualization with threat analysis.

2.5.7 Application Level Emulation

Application level emulation emulates the operating system and instruction set architecture

for specific applications. This approach has been predominantly employed in Antivirus

systems to perform real-time analysis of malware and automated unpacking [60]. Its main

disadvantage is its inability to faithfully emulate the desired system which makes it

susceptible to detection as has been the case with modern malware.

 C H A P T E R 2

50

The typical features emulated in an application level emulator on the x86 Windows platform

for the purposes of malware detection include:

 Instruction Set Architecture (ISA).

 Virtual Memory.

 Windows API emulation.

 Linking and Loading.

 Thread and Process Management.

 OS Specific Structures.

The instruction set architecture (ISA) must be faithfully emulated. In practice, most

deployed emulators only simulate part of the complete x86 ISA. Malware authors have

responded by using uncommon instructions such as those associated with MMX and FPU

to detect and thwart the emulation process.

Virtual memory must be emulated. 32-bit x86 employs a segmented memory architecture.

In Windows the segment registers are utilised to reference thread specific data. This data

is additionally used by Windows Structured Exception Handling (SEH). SEH is used to

gracefully handle abnormal conditions such as division by zero and is routinely used by

packers and malware to obfuscate control flow.

The Windows API is the official system call interface provided by Windows. There are too

many Windows API functions to full emulate in a typical environment so only the most

common APIs are implemented. This also presents a method for malware to detect and

thwart an emulator using uncommon API calls.

Linking and loading must be implemented by an emulator. Program loading entails

allocating the appropriate virtual memory, loading the program text, data and dynamic

libraries. Relocations must be performed and run-time linking performed.

 C H A P T E R 2

51

Threads and process management must be performed. Malware can sometimes try to

detect and thwart a debugger or emulator by being multi-process or multi-threaded.

OS specific structures must also be simulated. Windows has a number of these including

the Process Environment Block, the Thread Environment Block and the Loader Module.

These structures are visible to applications and can be used by malware.

2.5.8 Whole System Emulation

A whole system emulator emulates the hardware of a PC. This allows an operating system

to be installed as a guest. There are roughly two approaches to implement a whole system

emulator or any emulator in general:

 Interpretation

 Dynamic Binary Instrumentation

An example of whole system emulators includes QEMU [72] which is based on dynamic

binary translation. Bochs is another whole system emulator that uses interpretation instead

of dynamic binary translation. Bochs has been used for malware unpacking and analysis

[30]. Interpretation is slower than dynamic binary translation which makes QEMU a popular

choice.

Interpretation works by implementing a fetch, decode and execute loop inside the

emulator. Dynamic binary translation translates sequences of code from the guest into

native code on the host. It can perform optimisations on these blocks of code which

improves efficiency. The blocks are also cached reducing the costs of translation. In

general, dynamic binary translation offers significant performance improvements over an

interpretation based emulator.

It is possible to modify a whole system emulator to monitor or instrument guest execution

[73]. The BitBlaze project [47] is a project for binary analysis that makes heavy use of

whole system emulation to perform tasks including malware analysis. Whole system

emulation is effective for behavioural analysis of code but attacks exist to detect its

presence from the guest [71].

 C H A P T E R 2

52

2.6 Feature Extraction

To recap the survey so far, we have examined static and dynamic methods of program

analysis. These features must be translated into mathematical representations and

birthmarks to be useful. Furthermore, mathematical representations may be embedded in

other mathematical types to make birthmarks more amenable to similarity comparisons

and for use in classification algorithms. Another approach is to represent features using

kernels. This allows for the use of classification algorithms including the support vector

machine for complex data types. This section examines the mathematical representations

that we use to describe program features.

2.6.1 Processing Program Features

Program features are the basis of software similarity and classification, but must be

transformed or into a meaningful representation that allows for similarity comparisons and

indexing. Different representations are possible ranging from highly efficient but least

expressive, to highly expressive but least efficient. For example, representing birthmarks

as vectors allows for very efficient comparisons, but tends to lose structural information

that is present in graph based representations.

Combining features into a unified form may result in the establishment of software metrics.

Attribute counting is one approach. Attributes that can be tallied might include the number

of specific keywords, the number of conditionals, the number of loops and so forth. The

final metric is the set of counted attributes. Processing might be done on these counted

attributes to result in other measures. The Halstead complexity measures [74] are a set of

software metrics that uses attribute counting at its core to give a measure on a programs

complexity. Its initial use was for the purpose of software maintenance metrics but it has

also been applied to software similarity.

Another approach to combine the expressiveness of complex objects, such as graphs, is to

transform or embed one representation into another. For example, a graph can be

transformed into a vector based representation. Information is lost, but in many cases this

is still useful as a birthmark.

 C H A P T E R 2

53

2.6.2 Strings

A string describes a sequence of tokens or characters. An example of a string could be a

sequence of instruction opcodes making up a program path.

Definition 21. Let be an alphabet of symbols .Let s be a string over the alphabet where *s .

2.6.3 Vectors

Vectors are one of the simplest representations and are efficient to work with. A vector is

an an ordered list or tuple of a fixed number of elements or dimensions. A feature vector

describes the frequency of particular features occurring. If the number of features is very

large then dimensionality reduction can be used to filter unimportant features, or combine

features together such as when using Principle Component Analysis (PCA).

Examples of using vectors include describing features based on the occurrence of a

specific n characters or n-grams.

2.6.4 Sets

A set is a collection of unique objects. A set of features is sometimes a useful

representation. It ignores ordering of those features. An example use of sets is to describe

the set of API calls a program makes.

2.6.5 Sets of Vectors

A set of vectors may sometimes be useful. If we consider that a procedure can be

represented as a vector, then the set of procedures can be represented as a set of vectors.

2.6.6 Trees

Trees capture the structure of data, but are not as general as graphs. A tree is a connected

undirected graph without cycles. Abstract syntax trees and parse trees are naturally

represented by trees. Structured control flow can also be represented by trees. Trees can

have a defined ordering of child nodes or be unordered.

2.6.7 Graphs

Graphs model structure in the data. Many program features are naturally represented as

graphs include control flow graphs, call graphs, and dependency graphs.

Definition 22. A graph is g=(V,E) where V is a set of vertices. VVVvuvuE },|),{(

 C H A P T E R 2

54

Definition 23. A labelled graph),,(Vg where V is a set of vertices LV: is the node

labelling function, and LVV: is the edge labelling function.

2.6.8 Embeddings

Strings may be embedded in vectors. To reduce the string problem into an n-gram vector

problem, a string may be divided into n-grams where the specific n-grams represent

features.

Definition 24. Given a set of strings L, and a set of vectors V there is a function f such that

VLf :

Strings may be embedded in sets. To reduce the string problem into a set problem, a string

may be divided into n-grams or shingles where the unique n-grams represent set elements.

Definition 25. Given a set of strings L, and a set of sets S there is a function f such that SLf :

Trees may be embedded in vectors. A tree may be decomposed into fixed sized subtrees.

These subtrees can represent features in a feature vector.

Definition 26. Given a set of trees T, and a set of vectors V there is a function f such that

VTf :

2.6.9 Kernels

Kernels are most used in kernel based statistical machine learning classifiers. A kernel

function operates in feature space which is typically of much higher dimensionality. A string

kernel based on the subsequences in the string known as a subsequence kernels was

proposed in [75]. A kernel for sets of features was proposed in [76]. A kernel for vector sets

was proposed in [77]. A kernel for trees was proposed in [78]. A kernel based on random

walks in a graph was proposed in [79]. Subtree kernels have been proposed. A kernel

based the set of all paths in a graph has also been proposed. A kernel based on the

shortest paths in a graph was proposed in [80].

2.6.10 Research Opportunities

Embeddings and kernels present a significant opportunity for researchers. Embeddings

have been investigated somewhat, but a comprehensive treatment of different embeddings

for different structures has not been performed in the context of software similarity. In

Chapter 5, we propose new methods of embedding structured data into vectors. We

 C H A P T E R 2

55

propose approximating graphs as vectors and this allows us to implement a very efficient

malware variant detection system. Kernel methods are effectively unused in software

similarity and this presents many opportunities for researchers to apply kernel methods to

so the software similarity and classification problem. Graph kernels could be used to

perform software classification in applications such as malware classification.

2.7 Software Birthmark Similarity

Comparing birthmarks is necessary to identify similarities between software. If two

birthmarks are similar, then the software is similar. Birthmarks may be compared to show

similarity, or an alternative to showing similarity is to show dissimilarity or distance.

Similarity measures and metrics exist for the different types of data such as strings,

vectors, trees, graphs, etc. This section examines the different similarity measures and

metrics for the different classes of birthmarks.

Keywords: Software similarity, birthmark similarity, distance metrics, string similarity,

vector similarity, set similarity, set of vectors similarity, tree similarity, graph similarity.

2.7.1 Distance Metrics

Definition 27. A metric on a set X is a function (known as the distance function or distance):

DXd :

For all x, y, z in X, this function is required to satisfy the following conditions:

1. 0),(yxd

2. 0),(yxd iff x=y

3.),(),(xydyxd

4.),(),(),(zydyxdzxd (triangle inequality)

If the distance function has the properties of a distance metric then indexing and searching

a database can be performed more efficiently. Therefore it is beneficial to compare

software using distance functions that are metric. Examples of metric access methods are

in [81-83].

 C H A P T E R 2

56

2.7.2 String Similarity

Strings can be compared using string metrics. The Levenshtein distance between two

strings defines the number of edit operations that must be performed to transform one

string to the other. An edit operation includes character insertion, deletion, and substitution.

Other string metrics include the Smith-Waterman algorithm which is used to perform local

string alignment, or using the longest common subsequence. Optimal solutions to edit

distance and alignments are normally O(n.m) where n and m are the lengths of each

respective string. The solutions are typically implemented using dynamic programming.

The Levenshtein distance, Smith Waterman distance and Normalized Compression

Distance are all metric.

2.7.2.1 Levenshtein Distance
Definition 28. For two strings s and t, the Levenshtein distance is measured as follows:

D(i,0)=0)(0 sleni

D(0,j)=0)(0 tlenj

deletionjiD

insertionjiD

onsubstitutitjsidjiD

jiD

1)1,(

,1),1(

),,()1,1(

min),(

d(i,j) is a function whereby d(c,d)=0 if c=d, 1 else.

The Levenshtein distance is metric.

Definition 29. A method of normalizing the edit distance to give a similarity in [0,1] is:

))(),(max(

),(
1),(

tlenslen

tsed
tssim

2.7.2.2 Smith-Waterman Algorithm
Definition 30. For two strings s and t, the Smith-Waterman similarity score is measured as follows:

D(i,0)=0)(0 sleni

D(0,j)=0)(0 tlenj

If ai=bj w(ai,bj)=w(match) or ai≠bj w(ai,bj)=w(mismatch)

 C H A P T E R 2

57

insertionbjwjiH

deletionaiwjiH

mismatchmatchbjaiwjiH
jiD

),()1,(

),(),1(

/),()1,1(

0

max),(

The Smith-Waterman algorithm when constructed as a distance instead of a similarity is

known to be metric. The similarity algorithm is known as an optimal local string alignment.

2.7.2.3 Longest Common Subsequence (LCS)

Definition 31. For two strings X and Y, the LCS is found as follows:

yjxiifYjXiLCSYjXiLCSlongest

yjxiifxiYjXiLCS

joriif

YiXiLCS

)),1(),1,((

)),1,1((

000

),(

The similarity between two strings X and Y is defined as),(YXLCS

2.7.2.3 Normalized Compression Distance
Definition 32. For two strings x and y where C(x) is the length of a compressed x, the normalized

compression distance (NCD) [84] is:

))(),(max(

))(),(min(),(
),(

yCxC

yCxCyxC
yxNCD

The NCD is metric.

2.7.3 Vector Similarity

Vector distance can be performed using metrics such as the Euclidean distance or

Manhattan distance. Non metric similarity measures can include the cosine similarity which

is often used in text mining.

2.7.3.1 Euclidean Distance
Definition 33. The Euclidean distance between vectors p and q is:

n

i

pq
ii

qpd
1

2

)(),(

 C H A P T E R 2

58

The Euclidean distance is metric.

2.7.3.2 Manhattan Distance
Definition 34. The Manhattan distance between vectors p and q is:

n

i
ii
pqqpd

1

),(

The Manhattan distance is metric.

2.7.3.3 Cosine Similarity
Definition 35. The cosine similarity between vectors A and B is:

BA

BA
similarity)cos(

The cosine similarity is not metric.

2.7.4 Set Similarity

Two sets can be compared using a variety of measures. The Dice coefficient and Jaccard

Index are two such measures. The Jaccard Index is not metric, but its parallel the Jaccard

Distance is, which allows for efficient indexing and searching. Containment and the

Tversky index are examples of asymmetric similarity measures. Because they are

asymmetric, they do not qualify as metric distance functions.

2.7.4.1 Dice Coefficient
Definition 36. The Dice coefficient betweens sets A and B is:

BA

BA
s

2

The Dice coefficient is not metric.

2.7.4.2 Jaccard Index
Definition 37. The Jaccard Index between sets A and B is:

BA

BA
BAJ),(

The Jaccard Index is not metric, however the Jaccard distance is.

 C H A P T E R 2

59

2.7.4.3 Jaccard Distance
Definition 38. The Jaccard distance between sets A and B is:

),(1),(BAJBAJ d

The Jaccard distance is metric.

2.7.4.4 Containment
Definition 39. The Containment of set B in A is:

A

BA
BAC),(

Containment is an asymmetric measure and therefore not metric.

2.7.4.5 Overlap Coefficient
Definition 40. The overlap coefficient between sets A and B.

),min(
),(

YX

BA
YXoverlap

The overlap coefficient is not metric.

2.7.4.6 Tversky Index
Definition 41. The Tversky Index of sets X and Y is:

XYYXBA

YX
YXS),(

The Tversky index is an asymmetric measure and therefore not metric.

2.7.5 Set of Vectors Similarity

A set of vectors can be compared using the minimum matching distance [85], which

constructs a minimum weight matching between pairs of vectors in each set. This distance

is metric and can be evaluated in polynomial time. We extend this problem in Chapter 5 to

our novel set of strings problems.

2.7.6 Tree Similarity

Trees can be compared for equality using tree isomorphism. Ordered trees are trees such

that the children of each node are in a specific sequence. Ordered trees are significantly

 C H A P T E R 2

60

more efficient to process than unordered trees. Approximate matching and similarity

between trees can also be found using the tree edit distance [86]. The tree edit distance is

metric. Alternatives to the tree edit distance include using the largest common subtree as

an indicator of similarity. These are similar to the graph based version of the problem and

are shown in the next section.

Definition 42. The tree edit distance between two graphs TTd 21
: is the minimum

number of edge or vertex insertions, deletions, and substitutions to transform one tree to the other.

2.7.7 Graph Similarity

2.7.7.1 Graph Isomorphism

Graphs can be tested for structural equality by graph isomorphism testing. Graph

isomorphism has not been demonstrated to belong to the complexity class P but it has not

been proven to be in NP either.

Definition 43. Let),,(
1111 Vg and),,(

2222 Vg be two graphs. A graph

isomorphism between g1 and g2 is a bijective mapping VVf 21
: such that

VV

V
yxyfxfyx

xxfx

1121

121

),()))(),((()),((

))(()(

If V1=V2=0 then f is called the empty graph isomorphism

2.7.2.2 Graph Edit Distance

A harder problem is calculating the approximate similarity or distance between two graphs.

The two main approaches are the graph edit distance and using the maximum common

subgraph. The graph edit distance is metric. These problems are proven not to belong to

P. However, polynomial time approximate solutions exist to the graph edit distance.

Definition 44. The graph edit distance GGd 21
: between two graphs is the minimum sum

cost of basic edit operations to transform one graph to another.

2.7.2.3 Maximum Common Subgraph

Definition 45. Let
),,(

1111 Vg
and

),,(
2222 Vg

be two graphs and

gggg
2211

','
. If there exists a graph isomorphism between g1’ and g2’, then both g1’

and g2’ are called a common subgraph of g1 and g2.

 C H A P T E R 2

61

Definition 46. Let g1 and g2 be two graphs. A graph g is called the maximum common subgraph of g1

and g2 if g is a common subgraph of g1 and g2 and there exists no other common subgraph of g1 and

g2 that has more nodes than g.

Definition 47. The distance between graphs g1 and g2 is:

1

),(
),(

21

21
g

ggMCS
ggd where |g|=|V|+|E|

Definition 48. The distance between graphs g1 and g2 is:

),max(

),(
),(

21

21

21
gg

ggMCS
ggd where |g|=|V|+|E|

An approximate or inexact maximum common subgraph is also possible.

Definition 49. The graph edit distance between two graphs GGd 21
: is the minimum

number of edge or vertex insertions, deletions, and substitutions to transform one graph to the other.

Distances based on the maximum common subgraph are not metric.

2.8 Software Similarity Searching and Classification

The ultimate problem of this chapter is to search for similar software to our query from a

database and to classify a program as belonging to a particular class. This section

examines how we transform the pair-wise similarity problem into a similarity search

problem over a database. Moreover, we examine statistical classification of birthmarks to

identify the class of software it belongs to.

2.8.1 Instance-based Learning and Nearest Neighbour

Instance-based learning is a form of machine learning used in classification. To classify an

object, it is compared to known instances of that object. If the query is similar to a known

instance, or alternatively closest to an instance, known as its nearest neighbour, then it is

classified as belonging to the same class. Nearest neighbour and range searches are the

fundamental basis for software similarity using software features. If a piece of software

represented as an object is in very close range or distance to known software instances,

then it is declared a variant.

 C H A P T E R 2

62

2.8.1.1 k Nearest Neighbours query
Definition 50. Given a set of objects P and a query Q, and an integer k > 0, the k nearest neighbours

(kNN) query is to find a result set kNN that consists of k objects such that for any

)(kNNPp and any),(),'(,' qpdistqpdistkNNp

2.8.1.2 Range query
Definition 51. Given a set of objects P and a query Q, and a range r > 0, the range query is to find a

result set rNN that consists of objects such that for any rqpdistrNNp),'(,'

2.8.1.3 Metric Trees

Metric trees allow similarity searches (nearest neighbour and range searches) for objects

that have a metric distance function. A number of algorithms have been proposed such as

BK Trees [87], Vantage Point trees [81], M-Trees [83], Slim trees [88], or DBM Trees [82].

Metric access methods can be categorized by different qualities such as whether the data

structures allow for efficient insertion and deletion of objects allowing for dynamic access,

or whether the data structures are kept in main memory or on disk.

2.8.1.4 Locality Sensitive Hashing

Locality sensitive hashing [89] is a scheme whereby similar objects are hashed to the

same buckets. This allows a similarity search to perform nearest neighbour searches by

hashing.

Definition 52. Let d be a metric distance function. Let }.),(|{),(rqvXqrvB A family

}:{ UShH is called {r1,r2,p1,p2} sensitive for D if for any Sqv,

 If),(1rqBv then 1)]()([Pr pvhqhH

 If),(2rqBv then 2)]()([Pr pvhqhH

q

Query Malicious

Query Benign

d(p,q)

p

r

Malware

Query

Fig. 25. The software similarity search to detect
malware.

 C H A P T E R 2

63

In order of a locality-sensitive hash (LSH) family to be useful, it has to satisfy inequalities

p1 > p2 and r1 < r2.

2.8.1.5 Distributed Similarity Search

Scalability becomes a problem when database sizes increase. For example, malware

databases have been growing exponentially [4] and efficient algorithms are required to

handle the problem. Distributed algorithms are one solution to scale similarity searches.

Distributed metric space similarity search algorithms include M-Chord [90] and GHT* [91,

92]. An approach based on Locality Sensitive Hashing is proposed in [93].

2.8.2 Statistical Machine Learning

Statistical classification is the process of assigning objects to classes. A typical example is

the malware classification problem which is the process of assigning an unknown

executable to the class of malicious or non malicious software.

Machine learning can be supervised or unsupervised. In the unsupervised model, none of

the objects are labelled, and their class designation is unknown. The usual approach is to

perform clustering to identify separate classes. In the supervised approach, a training set

of data is labelled and used to build a model of classes in relation to their characteristics.

After training, the system classifies unlabelled data and determines their classes.

Statistical classifiers include the popular and efficient Bayesian classifiers. Artificial Neural

Networks (ANN) are another popular choice. The classifiers can also be grouped into linear

and non linear systems. In a linear classifier, the input space can divide the classes using

hyperplanes.

Vectors are used in many machine learning algorithms so often it is most useful to

represent software as feature vectors. Features that are extracted from software can be

used to construct feature vectors. Kernel machines provide an alternative approach to

using feature effects and the most popular kernel method based classifier is the Support

Vector Machine [94]. In this approach, a kernel for a particular object must be constructed.

For classification of objects such as graphs, a variety of graph kernels can be used.

2.8.2.1 Vector Space Models

 C H A P T E R 2

64

In the vector space model, a feature vector is constructed in n and classes are separated

by partitioning over that space. The original feature vectors may have a high

dimensionality, but in reality many of these features may be of low importance or

redundant. Dimensionality reduction reduces the size of the feature vector.

2.8.2.2 Kernel Methods

The most well known kernel based classifier is the support vector machine (SVM) [94]. It is

a linear classifier and works by constructing a hyperplane that maximally separates the

margins between each class.

2.8.3 Research Opportunities

Nearest neighbour searches using metric distance functions to perform similarity searches

has been employed in some malware detection literature. Much existing literature on

software similarity has only focused on pairwise similarity and ignored the indexing and

searching problem. Opportunities exist to transfer existing techniques into metric indexing

methods. In Chapter 5, we make the novel application of metric indexing methods to our

malware indexing and searching system.

Locality sensitive hashing also represents an opportunity as this indexing and searching

technique has not been employed in all areas such as malware detection. Likewise,

distributed similarity search algorithms are still to be exploited in the domain of software

similarity.

Class B

Class A

Fig. 26. A linear classifier separating two classes.

 C H A P T E R 2

65

The use of kernel methods for graph and tree based features is an area which is

unexplored. The use of graph kernels to enable graph based classification presents much

opportunity for researchers in future work.

2.9 Applications

This section surveys the application specific literature in software similarity and

classification. It examines malware classification, software theft detection, plagiarism

detection and code clone detection. We group the literature based on the class of program

feature that is used to construct birthmarks. Finally, we critically analyse the approaches

used.

2.9.1 Malware Classification

2.9.1.1 Raw Code

An approach employed by commercial Antivirus avoids static analysis by automatically

extracting string signatures [95, 96].The main problem with this approach is that

polymorphic malware makes string signatures prone to failure when the byte level content

changes due to mutation, recompilation, and source code modification.

Kolmogorov complexity is a theoretical measure of the computational complexity, or

minimum string length in a universal description language, required to represent an object

or set of data. It is a theoretical measure that is not computable. To estimate the

Kolmogorov complexity, an object may be compressed and concatenated with the

associated decompression routine, to give the approximate minimum string length to

describe the object. The observation, when this theory is related to malware, is that similar

malware have similar measures of Kolmogorov complexity. This form of analysis occurs on

the malwares raw file or section content.

Estimating Kolmogorov complexity was proposed in peHash [97] by identifying the

compression ratio of a malicious sample that was subsequently used for clustering

malware families. Another measure of similarity related to Kolmogorov complexity is the

Normalized Compression Distance (NCD). The NCD was used in [98] to cluster worms into

families. This approach, like peHash [97], was not used to classify samples as being

benign or malicious, but to cluster malicious samples only.

 C H A P T E R 2

66

It was the observation in [99] that malware and benign programs can be classified

according to a likeness to a compression model for each of the malicious and benign

classes. In this research, it was proposed that two compression models be constructed

from a two training sets, one of malicious samples, and one of benign samples. To classify

a query sample as being malicious or benign, the number of bits required to encode the

query was calculated for each compression model. The query was classified by identifying

the class that requires the least data to encode the query.

2.9.1.2 Instructions

An approach that employs static analysis is code normalization [17, 100]. Code

normalization canonizes malware before Antivirus string scanning. In [17], static analysis

eliminated superfluous control flow by merging redundant control flow nodes together.

Instruction sequences within basic blocks that had no effect were also removed using an

SMT decision procedure. The malware normalization approach improves on Antivirus

detection but does not always effectively canonize a program to a unique form. This can

affect the effectiveness and efficiency of malicious code detection.

A simple approach requiring only disassembly is fingerprinting malware based on opcode

distributions [101]. An improved approach was proposed by using n-gram analysis of

opcode and byte sequences. N-grams and n-perms can identify similarity between

malicious programs and build evolutionary trees [102]. N-gram based feature vectors were

used in instance-based learning and statistical classification. Statistical classification

allowed for the detection of novel and unknown malware in [103, 104]. These systems

improve the effectiveness of static string signatures, but instruction level classification has

similar problems when the instruction stream changes to any significant degree.

2.9.1.3 Basic Blocks

Malware classification using the basic blocks of a program has been investigated in [105].

This approach requires disassembly and ideally a reasonable control flow analysis to

identify targets of branchs and calls. The edit distance can be used between basic blocks

to identify similarity. Existence of a basic block in a malicious sample can be determined

using an inverted index or bloom filters. The main problem with this approach is

polymorphic malware that changes the instructions within a basic block.

 C H A P T E R 2

67

2.9.1.4 API Calls

The static ordering of system API calls can be extracted and used for malware

classification. Association mining was proposed in [106] proposed to detect unknown

malicious programs. Dynamic analysis of API calls or the combination of API calls and data

flow can also be used as proposed in [107].

2.9.1.5 Control Flow and Data Flow

Control flow has been shown to be one of the more invariant features of a polymorphic

malware and is resistant to byte and instruction level changes. Combining data flow

analysis and control flow analysis was proposed in [108, 109]. Annotated flowgraphs

combining data flow were compared to signatures, or automata, that describe the malware.

2.9.1.6 Data Flow

A data flow analysis was proposed in [54] where value set analysis was used to construct

signatures.

2.9.1.7 Call Graph

Interprocedural control flow using the call graphs of a program have been compared to

show similarity to existing malware [110-113]. An approach to transform the interprocedural

control flow information into a context free grammar, allowing for homomorphism testing

using string equality was also proposed in [24].

2.9.1.8 Control Flow Graphs

Control flow graphs have also been employed in [60, 61, 114, 115] using graph edit

distances, maximum common subgraphs and decomposition of graphs into small fixed

sized subgraphs.

2.9.2 Software Theft Detection (Static Approaches)

2.9.2.1 Instructions

Considering the static instruction sequences in control flow graphs was proposed for Java

programs in [116]. This approach proposed using control flow graphs to build static

instruction traces. The traces were constructed by imposing a tree structure on the control

flow graphs and performing tree traversals to generate an ordering of the instructions. To

compare traces a sequence alignment algorithm was used. The similarities between traces

in control flow graphs were accumulated to generate a program level similarity score.

 C H A P T E R 2

68

K-grams were proposed in [117] to compare two programs. In this work, a k-gram was

defined as a unique sequence of k instructions as laid out in the executable. The resulting

birthmark is a set of k-grams. To compare two programs, set similarity measures were

used which parallel the Jaccard index and the detection of subsets.

The operands of instructions have also been proposed as a useful birthmark in Java

programs. [118] proposed four birthmarks, one being the sequence of constant values in

field variables. Operand stack patterns were proposed in [119] [120]. Operand stack

patterns looked at sequences of bytecode that shared operands through the operand

stack.

2.9.2.2 Control Flow

Control flow has been proposed as a static feature from which birthmarks can be

constructed [121, 122]. In the proposed approaches, the edges in the control flow graph

were used. The instructions in the basic blocks making up the edge were concatenated

with each other to construct a possible execution sequence of code. To compare two of

these features, the longest common subsequence (LCS) algorithm was used. To compare

two sets of these features, as when all the control flow edges are considered, a maximum

weight matching was performed on the set of all pairwise comparisons of those features.

This matching sum allows for a calculation of similarity.

2.9.2.3 API Calls

Static API calls were proposed as birthmarks in [123, 124]. The API calls made in each

procedure of a program were grouped together in sets. To compare two sets, the Dice

coefficient which measures the similarity between two sets was used. To compare two

programs, where each program consists of multiple sets, a maximum weight matching was

used on the set of all pairwise comparisons between those sets. This matching allows for

calculation of similarity.

2.9.2.4 Object Dependencies

Object inheritance graphs in Java programs and the objects other objects used was

proposed in [118] as a birthmark. This paper proposed a total of four birthmarks that could

be used for software theft detection.

 C H A P T E R 2

69

2.9.3 Software Theft Detection (Dynamic Approaches)

2.9.3.1 Instructions

Dynamic extraction of instruction N-grams was proposed in [125]. This is analogous to k-

grams and n-grams in the static approach.

2.9.3.2 Control Flow

An interesting approach to capture the dynamic nature of control flow was proposed in

[126]. The control flow is dynamically traced, and the edges in the associated control flow

graph labelled. The execution trace generates a sequence of those labels. The sequence

is converted into a context free grammar using the SEQUITUR algorithm which is useful in

capturing the repetitive nature of dynamic control flow. The grammar produces a graph and

the terminal nodes are removed. This final graph is the birthmark. To compare two

birthmarks, a maximum common subgraph is used to identify similarity.

2.9.3.3 API Calls

Dynamic tracing of API class has had a considerable amount of research [8, 127-130]. The

dynamic API trace exhibits properties of the programs semantics and is less prone to the

problems of obfuscation that static API call traces have. However, triggering all behaviours

can be difficult.

2.9.3.4 Dependence Graphs

A dynamically generated system call dependence graph approach to building a birthmark

was employed in [5]. Nodes in the graph represented system calls and control and data

dependencies were represented by edges. The graphs, or birthmarks, were compared to

show similarity using subgraph isomorphism testing.

2.9.4 Plagiarism Detection

Plagiarism detection systems often make the distinction between attribute counting and

structure based techniques. Attribute counting is based on software metrics, or the

frequencies of particular features occurring. Typical approaches include Halstead metrics

and other metrics which take into account attributes including the number of tokens, the

number of operators, the number of variables, or the number of source lines [131].

Structure based techniques rely on using program structure which typically include the use

of dependency graphs or parse trees.

 C H A P T E R 2

70

2.9.4.1 Raw Code and Tokens

JPlag [132] and YAP3 [133] consider tokens from source code as features and perform

similarity comparisons using greedy string tiling. Another approach [134] considers

tokenization and linearization of the source code and uses an adaptive sequence

alignment to construct a similarity measure.

2.9.4.2 Parse Trees

Parse trees are related to abstract syntax trees and have been proposed for plagiarism

detection [135] by using tree comparisons to identify similarity. Tree similarity can be based

on algorithms including tree edit distances or largest common subtrees.

2.9.4.3 Program Dependency Graph

GPLAG used program dependency graphs of programs [136]. Similarity between program

dependency graphs uses similarity metrics such as the graph edit distances.

2.9.5 Code Clone Detection

Large scale manual attempts at auditing specific Linux distributions for embedded

packages-level clones have occasionally occurred in the past. In 2005, the Debian

package repository was scanned for vulnerable zlib fingerprints based on version strings

[137]. Antivirus signatures were generated and ClamAV performed the scanning. We

extend this work significantly with a completely automated approach in Chapter 3. Work

has been done on detecting higher-level clones, including file-level clones [138].

Additionally, clone detection has been used on industrial sources like the Linux kernel [139]

or as used by Microsoft engineers [140]. An interesting semantic approach to clone

detectioni is to use the memory states of a program [141]. . In [142], trees were used to

represent sourcecode, and subtrees transformed to a vector representation. This allowed

for the Euclidean distance and clustering to identify clones.

2.9.5.1 Raw Code and Tokens

Clone detection can be performed on the textual stream in a source file once whitespace

and comments are removed [143]. The key concept is that a fingerprint of a code fragment

is obtained and then the remainder of the source scanned for possible matching

duplicates. More recently [144, 145] has used the token approach with good success in

large scale evaluations. Large scale copy and paste clones using a data mining approach

was investigated in [146, 147].

 C H A P T E R 2

71

2.9.5.2 Abstract Syntax Tree

An alternative approach is to use the abstract syntax tree of the source to generate a

fingerprint [148]. Tree matching can subsequently be used to discover software clones.

Abstract syntax trees are more impervious to superficial changes to the textual stream and

textual organization of the code.

2.9.5.3 Program Dependency Graph

Other program abstractions can be used to fingerprint code fragments such as the program

dependency graph which is a graph combining control and data dependencies [149].

2.9.6 Critical Analysis

All applications of software similarity and classification share common themes

of feature extraction, similarity functions and statistical classification. The

literature reviewed in this section on applications should be in the context of

the theory presented in this chapter. Initial work on malware detection was

based primarily on the raw code contents. As noted in earlier sections, raw

code is ineffective when trying to detect malware variants including

polymorphic and metamorphic samples. Instruction opcodes and sequences

also face similar problems. Control flow has been used successfully in most of

the above applications when perform static analyses. The danger of including

data flow as a feature is that the birthmarks created become too specific to

the instance of code and therefore suffer the same fate as using byte-level

content. Therefore, control flow might be the best choice for the time being.

Control flow can be obfuscated however using packing and other techniques

so a trend has been to perform dynamic analysis by running the sample

program in a virtualized environment. The feature of choice has been the API

calls the program makes. Dynamic analysis is not without fault though and

that has also been discussed in earlier sections. Of note, there is a distinction

in the literature between the software similarity problem and the software

classification problem. Some applications such as software theft detection will

 C H A P T E R 2

72

always be based upon software similarity. However, applications such as

malware detection only care for a signature-less binary classification.

Nevertheless, software similarity is still useful for identifying families of

malware and attributing authorship of those malicious executables.

2.10 Future Trends

Software similarity and classification may see the unification of malware classification with

other technologies such as software theft detection or software clone detection. These

topics will see sharing of concepts and techniques and the use of program features will

become comprehensive. It may indicate that a combination approach to software similarity

and classification is appropriate. Many of the features are useful at representing a

particular property of software, but obfuscations or transformations may alter these

properties. Using a variety of properties in combination may be a suitable response for

increasing accuracy.

Static binary analysis is an emerging field and continues to improve. The analyses are

becoming stronger and able to model more complex behaviour without gross under-

approximations or over-approximations. This will continue to improve as this area of static

analysis becomes more recognized. In particular, malware classification and software theft

detection are driving forces of the need for analyses.

Static binary analysis is used in academic malware classification. It has not seen

widespread use in commercial Antivirus. We believe this situation will change due to the

more effective signatures and the ability to use machine learning and statistical

classification to detect novel samples of malware. The trend in malware classification is to

use higher level of abstractions and more emphasis is placed on combining data flow

analysis with control flow analysis. Appropriate database technologies are being used

more as the problem is becoming how to effectively perform indexing and searching of

program features for an instance-based signature approach of malware variant detection.

Statistical classification continues to improve on the effectiveness of program features

used. We are likely to see the combination of program features, and the combination of

 C H A P T E R 2

73

different classifiers to improve system accuracy. Complex objects such as graphs will

continue to be used with an emphasis on problems in graph mining.

Software theft detection is not widely used by all vendors, but as technology improves and

matures, this may become more common. Software theft detection is a program variant

detection problem and therefore uses instance-based learning. Database technology as in

the case of malware variant detection will take important roles.

Network speeds are improving and cloud services are becoming more popular. Antivirus

vendors have already taken advantage of this and have provided an initial set of offerings

for cloud based malware detection. Services already exist that provide AV scanning on

demand using a large number of commercial scanners. A hybrid scheme may also be used

where some of the processing and feature extraction is done on the endpoint. We expect

that as bandwidth becomes less of an issue, cloud Antivirus will become popular. Placing

malware classification in the cloud allows the use of huge signature databases along with

correlation not possible when end users are disconnected. Mobile platforms are less

powerful than their desktop counterparts, so these devices would benefit from cloud

services where the majority of processing is done away from the user’s device. Finally,

cloud services may provide an opportunity to detect attackers, through service misuse,

from tuning their malware or plagiarised code to evade detection.

Concluding Remarks

In conclusion of this chapter, software similarity and classification is an important topic that

unifies and tackles the problems of malware classification, plagiarism detection, software

theft detection and code clone detection. Many techniques are pioneered or formalized in

one topic but only later applied, if at all, to other domains. We have presented the core

concepts of how to approach this problem and identify new areas of research. Much

research is possible simply by applying existing research across domains.

 C H A P T E R 3

74

Chapter 3: Clonewise – Detecting Package-level

Clones Using Machine Learning

Developers sometimes maintain an internal copy of another software or fork development

of an existing project. This practice can lead to software vulnerabilities when the embedded

code is not kept up to date with upstream sources. As a result, manual techniques have

been applied by Linux vendors to track embedded code copies and identify vulnerabilities.

We propose an automated solution to identify clones of packages without any prior

knowledge of these relationships. We then correlate clones with vulnerability information to

identify outstanding security problems. This motivates package maintainers to avoid using

cloned packages and link against system wide libraries. Our approach identifies similar

source files based on file names and content to identify relationships between packages.

We propose over 30 novel features that enable us to use to use pattern classification to

accurately identify package-level clones. To our knowledge, we are the first to consider

clone detection as a classification problem. Our results show Clonewise compares well to

manually tracked databases. These results are now starting to be used by Linux vendors to

track embedded packages. Red Hat started to track clones in a new wiki, and Debian are

planning to integrate Clonewise into the operating procedures used by their security team.

Based on our work, over 30 unknown package clones and vulnerabilities have been

identified and patched.

3.1 Introduction

Developers of software sometimes embed code from other projects. They statically link

against an external library, maintain an internal copy of an external library’s source code,

or fork the development of an external library. A canonical example is the zlib compression

library which is embedded in much software due to its functionality and permissive

software license. In general, embedding software is considered a bad development

practice, but the reasons for doing so include reducing external dependencies for

installation, or the need to modify functionality of an external library. The practice of

embedding code is generally ill advised because it has implications on software

maintenance and software security. It is a security problem because at least two versions

 C H A P T E R 3

75

of the same software exist when it is embedded in another package. Therefore, bug fixes

and security patches must be integrated for each specific instance instead of being applied

once to a system wide library. Because of these issues, for most Linux vendors, package

policies exist that oppose the embedding of code, unless specific exceptions are required.

In the example of zlib, each time a vulnerability was discovered in the original upstream

source, all embedded copies required patching. However, in the past, uncertainty existed

in Linux distributions of which packages were embedding zlib and which packages required

patching. In 2005, after a zlib [150] vulnerability was reported, Debian Linux [151] made a

specific project to perform binary signature scans against packages in the repository to find

vulnerable versions of the embedded library. To create a signature the source code of zlib

was manually inspected to find a version string that uniquely identified it. This manual and

time consuming approach still finds vulnerable embedded versions of software today. We

constructed signatures for vulnerable versions of compression and image processing

libraries including bzip2, libtiff, and libpng. We performed a scan of the Debian and Fedora

Linux [152] package repository and found 5 packages with previously unknown

vulnerabilities. Even for actively developed projects such as the Mozilla Firefox web

browser, we saw windows of exploitability between upstream security fixes and the

correction of embedded copies of the image processing libraries. Even in mainstream

applications such as Firefox, these windows of opportunity sometimes extended for periods

of over 3 months.

The traditional approach for discovering duplicated fragments of insecure code has been

through the use of code clone detection. However, clone detection is sometimes too fine

grained to be of practical benefit for Linux vendors and package maintainers.

3.1.1 Motivation for Package-level Clone Detection

Clone detection theoretically solves the problem of insecure code fragments propagating to

other locations. However, in practice the number of code clones is significantly high. For

developers of individual projects, clone information may be useful. Yet, package

maintainers and operating system distributions have no realistic actions to take with such

clone information since they are not the primary developers of the software they release.

What package maintainers and operating system vendors want is the ability to repackage

 C H A P T E R 3

76

or build the software in such a way that improves security and eliminates clones. If vendors

know that an entire package is cloned in another, then they can modify the build process to

use the operating system's system wide library package. This is an achievable goal and

improves the security and stability of the system. This is our motivation and the reason we

see package-level clone detection as an important addition to software engineering that

traditional clone detection does not address.

3.1.2 Motivation for Automated Approaches

The approach of manually searching for embedded copies of specific libraries deals poorly

with the scale of the problem. According to the list of tracked embedded packages in

Debian Linux, there are over 420 packages which are embedded in other software in the

repository. This list was created manually and our results show that it is incomplete. Other

Linux vendors were not even tracking embedded copies before our research supplied them

with relevant data. It is evident from this that an automated approach is needed for

identifying embedded packages without prior knowledge of which packages to search for.

This would aid security teams in performing audits on new vulnerabilities in upstream

sources. This identifies the motivation for our system named Clonewise to identify

package-level clones.

libpng

Firefox

expat

libpng

Firefox

expat

libpng

Firefox

expat

Shares code? No

Shares code? Yes

Binary Classification – Shares code?

libpng shares code with Firefox.
Package listing

libpng

FirefoxFirefox

libpng libpng

Firefox

Embedded? Yes

Firefox

libpng

Embedded? No

All of these packages share code. libpng is embedded in Firefox, but Firefox is not embedded in libpng.

Fig. 27. Shared package clone detection (above) and embedded
package clone detection (below).

 C H A P T E R 3

77

Previous systems that automate and address part of the problem are software provenance

systems. Our system extends such suck by recognising more features in software that can

be used to fingerprint it. Our system also addresses the problem of software being

implemented in multiple languages, even within the same package. Our work is language

agnostic. We also address the problem of requiring every version of a software to match it

against a query. Our system can determine if a package is embedded, irrespective of

which version number is used. This has advantages, but also makes identifying security

problems in specific versions harder. We overcome this by using side-information that

tracks the necessary information and is maintained by operating system vendors.

Our work is also similar to the concept of structural or higher-level clones as proposed in

[138]. We are much more specific in the type of structure we are searching for. That is,

package-level clones. Likewise, the structural clones in [138] use directory-level clones to

simulate module-level clones which is not as accurate.

3.1.2 Generability

At first glance, package-level clone detection may appear to be a Linux distribution specific

problem. However, this problem applies to any vendor who maintains a repository of

software packages and shares common code amongst packages. It also applies to any

vendor which for legal reasons needs to know the provenance of embedded packages

such as open source libraries. Finally, this problem applies to any vendor who needs to

know what open source libraries have been embedded so as to keep up-to-date with

upstream releases. It is quite conceivable that any large software project may incorporate

some permissively licensed open source software as an embedded library or package. For

Fig. 28. Graph of Fedora 13 package relationships.

 C H A P T E R 3

78

all of these reasons, software engineering needs to incorporate automated means to

provide assurance that the state of software and the existence of package-level clones is

known.

3.1.3 Innovation

Our approach is to consider code reuse detection as a binary classification problem

between two packages. The classification problem is ‘do these two packages share code?’

We achieve this by performing feature extraction from the two packages and then

performing statistical classification using a vector space model. The features we use are

based on the filenames, hashes, and fuzzy content of files within the source packages

To identify security vulnerabilities we associate vulnerability information from public

vulnerability advisories to vulnerable packages and vulnerable source files. We then

discover all clones of these packages in a Linux distribution. Finally, we check the

manually tracked vulnerable packages that Debian Linux maintain for each vulnerability

and report if any of our discovered clones are not identified as being vulnerable.

In this chapter we make the following contributions:

We define the problem of package clone detection, and the sub-categories of shared and

embedded package clone detection.

We are the first ones to formulate code reuse detection as a pattern classification problem.

Then, it is feasible to apply traditional pattern classification algorithms to achieve accurate

clone detection. We employ a novel asymmetric bagging based classifier combination

method to address the specific classification problem.

We propose over 30 new features for the purpose of clone detection, which are

fundamental to solve the specific pattern classification problem. In particular, the proposed

features are basis to the accuracy of clone detection.

We propose applications of package clone detection. We present algorithms to identify

outstanding security vulnerabilities based on out-of-date clones.

 C H A P T E R 3

79

We implement a complete system, Clonewise, which demonstrates our system effectively

identifies package clones, finds vulnerabilities and is useful to vendors. For example,

Debian Linux is planning infrastructure integration of Clonewise.

3.1.4 Structure of the Chapter

The structure of this chapter is as follows: Section 3.2 defines the problem of package

clone detection and outlines our approach. Section 3.3 discusses some early attempts we

made to perform package-level clone detection. Section 3.4 describes how Clonewise

detects shared and embedded package clones using machine learning. Section 3.5

describes the algorithms we use to identify vulnerabilities based on clone information.

Section 3.6 gives an outline of our implementation and Section 3.7 evaluates our system.

Section 3.8 is discussion. Finally we present our concluding remarks.

3.2 Problem Definition and Our Approach

3.2.1 Problem Definition

A package clone is the duplication of one package’s code in another package. It is the

presence of code reuse between packages. How do we find these package clones?

A package can be embedded in another package. How do we determine this knowing that

a package clone exists?

A package clone may contain vulnerabilities or other security problems because the clone

is out of date. How do we find these?

3.2.2 Our Approach

Our approach for detecting clones is based on binary classification. This approach is

shown in Fig. 27 and described below. A key point is that if two packages share code, one

is not necessarily embedded in the other. We therefore detect code reuse and embedding

as related but distinct problems.

Our approach is to consider code reuse detection as a binary classification problem

between two packages. The classification problem is ‘do these two packages share code?’

We achieve this by performing feature extraction from the two packages and then perform

 C H A P T E R 3

80

statistical classification using a vector space model. The features we use are based on the

filenames, hashes, and fuzzy content of files within the source packages.

A package clone consisting of two packages can be analysed to determine if one package

is embedded in the other. We use a binary classification problem to answer this. The

features we use are based on the size of the cloned code relative to the size of each

package, and other features such has how many packages are dependent on the

packages we are analysing.

We determine vulnerable packages by correlating security tracking information with our

package clone detection analysis.

3.3 Initial Attempts

Clonewise has been under development over a period of time and we have experimented

with a number of approaches before deciding to use the machine learning-based system

we currently employ.

3.3.1 Containment for Embedded Package Clone Detection

In our first attempts, we recognized that shared filenames can be used to identify

commonality between two software packages. We experimented with using set theory

proposed in related work to show that one package was embedded in another:

Definition 53. Package containment is:

where A and B are the sets of filenames in each package and t is a threshold of similarity.

This equation is similar to the containment similarity measure [153] to show that one object

is embedded in another. This is the same similarity measure as used to determine software

provenance.

The first point we noticed was that some filenames are very common and skewed our

results. We decided to exclude the most frequent filenames from our analysis to address

this problem.

t
A

BA

 C H A P T E R 3

81

3.3.2 Intersection for Shared Package Clone Detection

A failure with the previous approach is that almost the entire package must be embedded

for detection to occur. It is often the case that only the core code is embedded. We then

tried the following:

Definition 54. Package clone intersection is:

This equation shows us the number of shared filenames between two packages which

indicates sharing, not embedding, of code. We chose a low threshold and analysed the

Fedora 13 Linux distribution. We made a directed graph where each node was a package,

and an edge between nodes indicated the above equation was true. The graph is shown in

Fig 28.

The graph gives us insight into package relationships. Cliques, or fully connected

subgraphs, are packages that all share code with each other. If we relax clique detection to

detect quasi-cliques or detect densely connected subgraphs, as in community structure

[154], we can reveal even more relationships. It is likely, that one of the nodes in the clique,

quasi-clique, or community is a library that is embedded in the other nodes.

3.3.3 Motivations for Other Approaches

We chose not to continue along this line of research for a number of reasons. 1) Choosing

thresholds can be difficult and machine learning to select these values is a sound

alternative. 2) All filenames should be considered, but it would be ideal if they were

weighted based on their frequency. 3) Other features besides filenames should be

considered. The set theory approach fails at this point without significant redesign.

3.4 Package Clone Detection

Clonewise is based on machine learning and we have found this approach to be most

versatile and successful. We employ statistical classification to learn and then classify two

packages as sharing or not sharing code.

tBA

 C H A P T E R 3

82

Classification is a well-studied problem in machine learning and software is available to

make analyses easy. Weka [155] is a popular data mining toolkit using machine learning

that Clonewise uses to perform machine learning.

3.4.1 Shared Package Clone Detection

Feature extraction is necessary to perform shared package clone classification. We need

to select features that reflect if two packages share or do not share code. The feature

vector we extract is obtained from a pair of packages that we are testing for sharing of

code. The 26 features we use are discussed in the following subsections.

3.4.1.1 Number of Filenames

Our first set of features is simply the number of filenames in the source trees of the two

packages being compared.

3.4.1.2 Source Filenames and Data Filenames

In Clonewise, we distinguish between two types of filename features. Filenames that

represent program source code and programs that represent non program source code.

We distinguish these two types of filenames by their file extension. The list of extensions

used to identify source code are c, cpp, cxx, cc, php, inc, java, py, rb, js, pl, m, mli, and lua.

Almost all of the features in Clonewise are applied for both source and data filenames.

3.4.1.3 Number of Common Filenames

To identify that a relationship exists between two packages such that they share common

code, we use common filenames in their source packages as a feature. Filenames tends to

remain somewhat constant between minor version revisions, and many filenames remain

present even from the initial release of that software. For our purposes we can ignore

directory structure and consider the package as a set of files, or we can include directory

structure and consider the package as a tree of files. We noted several things while

experimenting with this feature:

Many files in a package do not contribute to the actual program code.

C code is sometimes repackaged as C++ code when cloned. For example, lib3ds.c might

become lib3ds.cxx.

 C H A P T E R 3

83

The filenames of small libraries can often be referred to as libfoo.xx or foo.xx in cloned

form.

Some files that are cloned may include the version number. For example, libfoo.c might

become libfoo43.c.

We therefore employ a normalization process on the filenames to make this feature

counting the number of similar filenames more effective.

Normalization works by changing the case of each filename to be all lower case. If the

filename is prefixed with lib, it is removed from the filename. The file extensions .cxx, .cpp,

.cc are replaced with the extension .c. Any hyphens, underscores, numbers, or dots

excluding the file extension component are removed.

3.4.1.4 Number of Similar Filenames

It is useful to identify similar filenames since they may refer to nearly identical source code.

A fuzzy string similarity function is used that matches if the two filenames are 85% or more

similar in relation to their edit distance.

Definition 55. Our similarity measure is:

We chose the edit distance as our string metric after experimenting with other metrics

including the smith-waterman local sequence alignment algorithm and the longest common

subsequence string metric.

3.4.1.5 Number of Files with Identical Content

We perform hashing of file content using the ssdeep software and do a comparison of

hashes between packages to identify identical content without respect to the filenames

used. Like the previous class of feature, we have a feature for the number of files having

identical content that are all program source code, and a feature for the number of files

having identical content that are non-program source code.

))(),(max(

),(_
1),(

tlenslen

tsdistedit
tssimilarity

 C H A P T E R 3

84

3.4.1.6 Number of Files with Common Filenames and Similar Content

To increase the precision of file matching from the previous feature, we employ a fuzzy

hash of the file contents and then perform an approximate comparison of those hashes for

files with similar filenames. While the previous approach is based on file names alone, this

approach is a combination of file names and content. Fuzzy hashing can be used to

identify near identical data based on sequences within the data that remain constant using

context triggered piecewise hashing [156]. The result of fuzzy hashing file content is a

string signature known as its fuzzy hash. Approximate matching between hashes is

performed using the string edit distance known as the Levenshtein distance. The distance

is then transformed to a similarity measure. The similarity is a number between 0 and 100

indicates the hashes are not at all similar, and 100 indicates that the hashes are equal.

We have features for the number of files of similar content with a similarity greater than 0 of

program source code and non-program source code. We also count the number of similar

files having a similarity greater than 80.

3.4.1.7 Scoring Filenames

Not all filenames should be considered equal. Filenames, such as README or Makefile

that frequently occur in different packages should have a lower importance than those

filenames which are very specific to a package such as libpng.h. We account for this by

assigning a weight for each filename based on its inverse document frequency [157]. The

inverse document frequency lowers the weight of a term the more times it appears in a

corpus and is often used in the field of information retrieval.

Definition 56. The inverse document frequency is:

where D is the set of packages, d is a package, and t is a filename in a package.

We use features scoring the sum of matching filename weights to the number of similar

files, the number of similar files and similar content with similarity greater than 0 and 80, for

both program source code and non-program source code.

}:{
log),(

dtDd

D
Dtidf

 C H A P T E R 3

85

3.4.1.8 Matching Filenames between Packages

If filename matching between two packages was performed as an exact match, then the

number of filenames shared would be the cardinality of the intersection between the two

sets of filenames. However, in Clonewise the filename matching is approximate based on

the string edit distance. This means that some filenames such as Makefile.ca could

potentially match the filenames Makefile.cba and Makefile.cb. Moreover, the scores for

each filename as discussed in the previous section can be different depending on which

filename is deemed to be a match. We solve this problem by employing an algorithm from

combinatorial optimization known as the assignment problem as shown in Fig. 29.

The assignment problem is to construct a bijective mapping between two sets, where each

possible mapping has a cost associated with it, such that the mappings are chosen so that

the sum of costs is optimal. Formally, the assignment problem is defined as:

Definition 57. Given two sets, A and T, of equal size, together with a weight function C: A × T → R.

Find a bijection f: A →T such that the cost function (below) is optimal.

In our work the sets are the two packages and the elements of each set are the filenames

in that package. The cost of the mapping between sets is the score of the matching

filename in the second set according to its inverse document frequency. Our use of the

assignment problem seeks to maximize the sum of costs.

The assignment problem can be solved in cubic time in relation to the cardinality of the

sets using the Hungarian or Munkres [158] algorithm.

Aa
afaC))(,(

q
Weight(q)

p

Makefile.ca

png43.c

png.h

README

rules

Makefile

png.h

Makefile

png44.c

Fig. 29. The assignment problem.

 C H A P T E R 3

86

The Munkres algorithm is effective, however for large N, a cubic running time is not

practical. We employ a greedy solution that is not optimal but is more efficient when N is

large.

4.1.9 Features Selected.

We experimented with using a subset wrapper and a genetic search algorithm for feature

selection. We did not arrive at a good feature set within a practical amount of time.

Therefore, we chose not to perform feature selection in classification.

3.4.2 Shared Package Clone Classification

The output of Clonewise is the set of packages where the classification determines the

package pairs share code. Clonewise also reports the filenames between the packages

and the weights of those filenames.

Clonewise uses supervised learning to build a classification model. We use the manually

created Debian embedded-code-copies database that tracks package clones to train and

evaluate our system. We employ a number of classifiers to evaluate our system as

described in Section 3.7.

3.4.3 Embedded Package Clone Detection

To detect embedded package clones we use the results of shared package clone detection

and apply a filtering stage to exclude packages where the first package is not embedded in

the second package. We solve this problem by considering the problem as a binary

classification problem.

Similar to the shared package clone detection approach, we perform feature extraction

before using statistical classification. The 18 features we use are summarized in the

following:

3.4.3.1 Number of Filenames

As in shared package clone detection, the number of filenames that are source and data

are used.

3.4.3.2 Percent of X embedded in Y

These features say how much of one package is embedded in the other package.

 C H A P T E R 3

87

3.4.3.3 Package X has Lib in name

These features are useful in identifying if a package is a library, which increases its

likelihood that it is an embedding. If the package name is prefixed with ‘lib’, then the feature

is assigned a value of 1. If the prefix is not that, then the value is 0. The prefix is compared

without regard to case.

3.4.3.4 A to B Ratio

These features inform us on how big the packages are relative to each other. It is typical

that an embedded library is smaller than the software it is embedded in.

3.4.3.5 Package Dependents

These features inform us on how many other packages depend on the package in

question. Libraries are typically used by many other packages and so the value for this

feature will also be high. As explained earlier, that the package is library indicates that the

package is more likely to be embedded.

3.4.4 Classification Using Asymmetric Bagging

For training our classifier, we have a finite set of labelled positive cases as obtained from

vendor generated databases and we are able to arbitrarily generate labelled negative

cases. We have many more negative cases than we have positive cases, wherein a

positive case indicates an embedded package clone. This scenario represents the

imbalanced class problem [159] where many classifiers favour the majority class. We

decided to improve our detection rate of the positive class by addressing the imbalanced

class problem by performing asymmetric bagging [160].

Asymmetric bagging uses all the labelled positive cases and use an equivalent number of

negative cases obtained from a random sampling. This extends traditional bagging which

uses a random and equal sampling from both classes. The asymmetric bagging approach

described generates a single bag upon which a classification model is built from training.

Many bags are created and classification models are built for each bag. When performing

classification of an unlabelled instance, each bag makes a prediction and the results are

aggregated using a majority vote. This has the effect or improving the accuracy when

detecting positive cases. We implemented the asymmetric bagging algorithms by

extending the bagging meta-classifier in the Weka machine learning toolkit.

 C H A P T E R 3

88

3.5 Inferring Security Problems

In this section, we discuss standardization and tracking efforts by vendors. We then

examine algorithms and approaches to detect software vulnerabilities. Package-level clone

detection is not strictly the best method to discover security problems through code

cloning. However, it is almost impossible in practice to apply code-level clone detection

across tens of thousands of packages with potentially hundreds of thousands of clones and

expect developers to integrate fixes. The reality is, a vendor's security team can fix high

impact bugs and push package maintainers to build their software using system wide

package-level libraries. In effect, the only practically used system of bug fixing on a large

scale in regards to clones, is by fixing package-level clones. Yet the problem still exists of

how to motivate package maintainers or security teams to apply these fixes. The current

practice is to highlight that the cloned package contains known security problems and

pointing out that there is less cost in rebuilding the software to eliminate the higher-level

clone than it is to apply individual patches. Therefore, we see value in Clonewise as being

a tool that can bring about good practices of eliminating package clones by highlighting

vulnerabilities. To achieve the task of vulnerability detection, we propose use-cases for

clone detection by Linux security teams. We also propose a completely automated solution

to find out-of-date clones that have outstanding security vulnerabilities.

3.5.1 Use-case of Clone Detection to Detect Vulnerabilities

One method which we initially tried, for the purpose of vulnerability detection, was to look

at packages that had reported vulnerabilities against them. We considered this to be a list

of security sensitive packages. We used this list of packages as input to our clone

detection analysis. Anytime a security sensitive package was cloned, we verified that the

clone was not out of date. This is an effective method to detect vulnerabilities, but it

requires manual analysis. Even though the technique we described is manual, it still has

benefits today and can be used in an on-going basis to detect new vulnerabilities.

If a new vulnerability is found in a package, then clone detection should be performed on

the complete Linux distribution because it is likely the same vulnerability is present in the

cloned software. For example, if a vulnerability is reported for libpng, then clone detection

should be performed and each libpng clone checked to see if the vulnerability is present as

 C H A P T E R 3

89

is shown in Fig. 31. This method can be used by Linux security teams, but for old

vulnerabilities it is not advisable since many clones would be patched but not reported by a

Linux vendor. Therefore, we looked at other automated methods to detect out-of-date

clones which we describe in the following sub-sections.

3.5.2 Standardization Efforts

Common Vulnerabilities and Exposure (CVE) is a standardization effort for public reporting

of vulnerabilities. CVEs are maintained in the National Vulnerability Database (NVD). Each

unique vulnerability is given a unique CVE identifier. In version 2 of the NVD content, the

CVE information is stored as an XML database. CVE reports a vulnerability and gives a

canonical name of the package or packages affected using the Common Platform

Enumeration (CPE). Documented in the CVE entry is also a summary of the vulnerability in

the package or program. This summary often includes a reference to the program's

vulnerable function and vulnerable source file, if it exists. CVE makes it possible for

different vendors to talk a common language of vulnerabilities and remediation when the

same vulnerability affects multiple vendors. This is common because vulnerabilities often

occur from upstream sources that are pushed downward and used by different vendors.

3.5.3 Debian Linux Security Tracking

Debian Linux make a significant effort to track security information and maintain a publicly

accessible repository known as the security tracker for tracking security problems in their

distribution.

A useful database that is unique to Debian is a manually generated list that is used to

associate CPE names to Debian package names. This is done so Debian can check native

packages against new vulnerabilities that appear as a CVE in the NVD.

Debian Linux also use CVE internally to track vulnerabilities. They maintain a database of

every CVE. They then list every package in Debian affected by each particular CVE.

3.5.4 Automated Vulnerability Inference

In Clonewise, we can use clone detection in addition to the above information to identify

untracked vulnerabilities.

 C H A P T E R 3

90

Clonewise takes a CVE number as input and extracts the vulnerable package from the

report. The CPE package name is translated to a native Debian package name.

Clonewise then parses the summary to find the vulnerable source files. It is possible to

extract theses vulnerable source files from the summary (Fig. 30) by tokenizing the

summary into words and extracting words that have a file extension of known programming

languages.

Clonewise then looks at all the clones of the vulnerable package and trims the list by

ensuring one of the vulnerable source files is present in the clone and that the fuzzy hash

between the vulnerable package’s source is similar to the clone’s.

We also trim the list by ignoring clones that we believe have been patched to use the

system wide dynamic library. We did this by checking if in the binary version of the

package the embedded package was a package dependency. If the embedded package is

a dependency, then the main package almost certainly uses it for dynamic linking.

Dynamic linking is the normal approach vendors use to address the security implications of

package clones.

Finally, Clonewise checks to see if Debian Linux is tracking this package clone as being

affected by that particular CVE. If it is not being tracked, then Clonewise will report the

package as being potentially vulnerable as shown in Fig. 32.

Summary: Off-by-one error in the __opiereadrec function in

readrec.c in libopie in OPIE 2.4.1-test1 and earlier, as used

on FreeBSD 6.4 through 8.1-PRERELEASE and other

platforms, allows remote attackers to cause a denial of

service (daemon crash) or possibly execute arbitrary code via

a long username, as demonstrated by a long USER

command to the FreeBSD 8.0 ftpd.

Fig. 30. An NVD CVE summary.

 C H A P T E R 3

91

This process of finding outstanding vulnerabilities is applied to every CVE of interest in the

database, and a final report is generated. The normal process is that a security analyst

then verifies each reported vulnerability and eliminates any false positives.

One feature that we didn’t implement was using the CVE summary’s reference to

vulnerable functions. We could potentially parse the sentence containing the vulnerable

source filename to extract the vulnerable function and then check for the presence of this

string in the source file. We did not do this because it requires the contents of each source

tree to be maintained as signatures. This would increase the data storage requirements of

Clonewise which we thought to be impractical. Potentially we could download the source

as required, but this would cause issues doing analyses between distributions.

3.6 System Implementation

In this section we discuss the implementation.

3.6.1 Software

We implemented all of the above proposals in a complete system named Clonewise to

identify package clones in Linux distributions. Clonewise automatically downloads a Linux

distribution package repository and builds a database of signatures for each package. It

then trains a model and uses statistical classification to perform clone detection for both

the shared and embedded cases. We employ the Weka machine learning toolkit to perform

the data mining aspects of our system. Our implementation uses C++ and shell scripting. It

Fig. 31. Use-case of clone detection.

 C H A P T E R 3

92

consists of about 4,500 lines of code (LOC) to perform the package clone detection and

security problem inference.

We performed an analysis of the Ubuntu Linux distribution and also performed some

analysis of other distributions including Fedora 13 and Debian Linux. The package count in

each distribution was in excess of 10,000.

Clonewise consists of multiple components. The components are divided into:

 Parsing Debian’s package clone database

 Building the Clonewise database

 Training the classification models

 Clone detection

Fig. 21. Automated vulnerability inference.

 C H A P T E R 3

93

 Building a clone detection cache

 Querying the cache

 Finding cloned files

 Inferring vulnerabilities

We parse Debian’s package clone database and convert it to XML or a text based format.

We can optionally filter the results to ignore statically linked clones, or we can filter those

clones which have been fixed, or those clones which remain unfixed. This component is

necessary for generating the labelled training data to build a machine learnt model for

classification. We can also find clones of files given as input. The output is the set of

packages that have a similar file in their source trees. To build the Clonewise database, we

download the entire source package repository for a Linux distribution, unpack the sources,

and generate signatures. The signatures are the ssdeep signatures of the source trees for

each package. We also build a package index relating binary packages to source

packages. Finally we build a package dependency list for the purpose of identifying fixed

clones. Clone detection is performed as explained earlier by using machine learning. XML

output is optional. The clone detection cache is built using a cluster and the results of clone

detection are stored to disk. The cache can be queried so that clone detection does not

need to be performed again. XML output is optional. Finally, vulnerability inference relates

clones in the cache to Debian’s security tracker and the NVD CVE information.

3.6.2 Scaling The Analysis

Our system is effective and reasonably efficient at identifying clones in a single Linux

package. However, in a typical Linux distribution there exist more than ten thousand

individual packages. Our system would be impractically long if we performed clone

detection on all packages without taking advantage of multicore and cluster computing.

3.6.2.1 Multicore

Given an input package to perform clone detection, Clonewise pairs that package with

every other package in a Linux distribution. These package pairs are the input to a binary

classification problem. Each binary classification problem can be evaluated independently

 C H A P T E R 3

94

of the other binary classification problems. This model of evaluation is embarrassingly

parallel and leads to efficient parallel and distributed computing. The workflow is shown in

Fig. 33.

We chose to solve this problem using multicore computing. We used the OpenMP

multicore programming model [161] to implement our solution. OpenMP is a shared

memory model based on the use of compiler directives. We parallelize the feature

extraction and classification for each package pair. This process improves the speed it

takes to perform clone detection on an individual package.

3.6.2.2 Clustering

Our multicore implementation improves the performance of clone detection on a single

package. We use cluster computing to distribute clone detection of multiple packages.

Each package can be scanned in parallel without regard to other packages and is also an

embarrassingly parallel problem. The workflow is shown in Fig. 34.

We implemented our system using message passing with Open MPI [162]. In our

implementation, a job is defined as performing clone detection on a single package. Since

we have many packages to analyse, a master node distributes jobs to slave nodes. When

the slaves complete a job they signal the master node requesting more work.

3.6.2.3 Running the Analysis

We analysed our Linux distribution using a high performance compute cluster. We

purchased 4 hours of cluster computing time from the Amazon EC2 cloud computing

Clone Detection –

Package_X

Classify(Package_X, Package_1)

Classify(Package_X, Package_N)

Classify(Package_X, Package_2)

Fig. 33. Multicore.

 C H A P T E R 3

95

service. We built a 4 node cluster with dual CPUs per node, Intel Xeon E5-2670, eight-core

"Sandy Bridge" architecture), 60.5G of memory per node, and CPU performance identified

as 88 EC2 compute units.

3.7 Evaluation

In this section we evaluate Clonewise using vendor labelled data and evaluate Clonewise's

ability to discover security vulnerabilities.

3.7.1 Filenames as Features

In our first experiment we wanted to determine the distribution of unique filenames in a

large Linux distribution. We tallied the frequency of filenames occurring in the Ubuntu Linux

sources. We identified 3,077,363 unique filenames and ranked them according to their

frequency of occurring. We sampled this distribution and performed a regression analysis.

We observed that the frequency of filenames follows an inverse power law distribution with

multiplicative constant 777892.740 and multiplicative exponent constant of 1.207. The R

square value from the regression analysis was 0.928

3.7.2 Establishing the Ground Truth for Training and Evaluation

Debian Linux maintain a manually created database of packages that are cloned in their

security tracker. We use this list of entries to establish the ground truth for our labelled

data.

Clone Detection

Clone Detection – Package_1

Clone Detection - Package_N

Clone Detection - Package_2

Fig. 34. Clustering.

 C H A P T E R 3

96

The Debian database was not originally created to be processed by a machine, so some of

the data is not consistent in referencing packages with their correct machine readable

names. Instead, shorthand or common names for packages and libraries are sometimes

used. We cull all those entries which do not reference package sources and are therefore

not suitable for our system.

We had two types of negative labeled entries. One case was for shared package clone

detection, and the other was for embedded package clone detection. To establish true

negatives for shared package clone detection, we randomly selected pairs of packages not

in our true positive list. We label these package pairs as negatives. This data can be

unclean since we observe the labeled true positives are incomplete, but even so, the true

TABLE 1. ACCURACY OF SHARED PACKAGE CLONE DETECTION

CLASSIFIER PRECISION RECALL ACCURACY F-MEASURE
Naïve Bayes 0.47562 0.57687 0.98599 0.52137

Multi. Perceptron 0.80555 0.26806 0.98948 0.40225

C4.5 0.85878 0.68725 0.99436 0.76349

Random Forest 0.89881 0.70039 0.99499 0.78728

Rand. Forest (0.8) 0.96746 0.58607 0.99426 0.72994

TABLE 2. ACCURACY OF SHARED PACKAGE CLONE DETECTION

CLASSIFIER TP/FN FP/TN TP RATE FP RATE
Naïve Bayes 439/322 484/56296 57.69% 0.85%

Multilayer Perceptron 204/557 48/56732 26.81% 0.08%

C4.5 523/238 86/56694 68.73% 0.15%

Random Forest 533/228 60/56720 70.04% 0.11%

Random Forest (0.8) 446/315 15/56765 58.61% 0.03%

 C H A P T E R 3

97

negatives we label are still useful for training our statistical model. In total, we obtained

761 labelled positives and 56780 negatives.

To generate true negatives for the embedded package clone detection, we paired up all

packages that were reported as being embedded in X, ignoring those cases where X was

the embedded code. This is what we expect our system to report – that X is embedded in

Y and Z, but Y is not embedded in Z, and Z is not embedded in Y. In total, we were able to

label 9149 negative cases.

3.7.3 Accuracy of Shared Package Clone Detection

We employed 10-fold validation from our labeled dataset to evaluate the accuracy of our

system and experimented with a number of classifiers including Naïve Bayes [163],

Multilayer Perceptron, C4.5 [164], and Random Forest [165]. Our results are shown in

TABLE 3. ACCURACY OF EMBEDDED PACKAGE CLONE DETECTION

CLASSIFIER PRECISION RECALL ACCURACY F-MEASURE
Naïve Bayes 0.10171 0.94349 0.35580 0.18362

Multi. Perceptron 0.75229 0.43101 0.94540 0.54802

C4.5 0.89235 0.75164 0.97396 0.81597

Random Forest 0.89067 0.72798 0.97225 0.80114

Asym. Bagging 0.53196 0.91852 0.93168 0.67372

TABLE 4. ACCURACY OF EMBEDDED PACKAGE CLONE DETECTION

CLASSIFIER TP/FN FP/TN TP RATE FP RATE
Naïve Bayes 718/43 6341/2808 94.35% 69.31%

Multilayer Perceptron 328/433 108/9041 43.10% 1.18%

C4.5 572/189 69/9080 75.16% 0.75%

Random Forest 554/207 68/9081 72.80% 0.74%

Asymmetric Bagging 699/62 615/8534 91.86% 6.72%

 C H A P T E R 3

98

Table 1 and Table 2. The data is very imbalanced and this skews the accuracy, which

easily achieves better than 99%, because we can identify negative cases more easily than

positive cases. We obtained the best result using the Random Forest classification

algorithm. This classification algorithm performed significantly better than all other

algorithms we evaluated. The true positive rate is 70.04%, the precision is 89.88%, the

recall is 70.05%, and the f-measure is 78.73%, which we think is quite reasonable for the

first implementation of an automated system for package clone detection. The false

positive rate must be very low for our system to be used by Linux security teams. Our initial

false positive rate is 0.11%. We then modified the decision threshold of the random forest

algorithm to consider false positives as more significant than false negatives. Our false

negative rate is 0.03% with a decision threshold of 0.8 which represents that 3 in every

10,000 package pairs is mislabeled as a positive. The true positive rate is lower with a

higher decision threshold and is 58.61%. This is the trade-off we accept for a low false

positive rate. There are about 18,000 source packages, so there are 18,000 package pairs

that are classified when performing clone detection on an individual package. Therefore, if

our training data were not noisy, we would predict 4 to 5 false positive per complete clone

detection on an individual package. However, our labelled negatives are noisy, and some

negatives are actually positives. Therefore, we think between 4 to 5 false positives is closer

to an upper limit. This is reasonable for a manual analyst to verify and we think it will not

cause significant burden on Linux security teams.

3.7.4 Accuracy of Embedded Package Clone Detection

We evaluated the embedded package clone detection using a number of classifiers

including Naïve Bayes, Multilayer Perceptron, C4.5, and Random Forest. Our results are

shown in Table 3 and Table 4. We obtained the best result using the C4.5 classification

algorithm. The true positive rate was 75.16%, the false positive rate was 0.75%, the

precision was 89.24%, the recall was 75.16%, and the f-measure was 81.60%. We then

used this algorithm as a base classifier for our asymmetric bagging meta-classifier with 50

bags. This improved the true positive rate to 91.86% but also increased the false positive

rate to 6.72%. We see this as an acceptable trade-off to improve the true positive rate.

 C H A P T E R 3

99

3.7.5 Practical Package Clone Detection

As part of the practical results from our system we contributed 34 previously untracked

package clones to Debian Linux’s embedded code copies database. Thus, we feel that the

package clone detection provides tangible benefit to the Linux community. We also verified

if the embedded packages we detected were not in fact patched by the Linux vendors to

link dynamically against a system wide library.

3.7.6 Vulnerability Detection

A consequence of package clone detection is determining if a clone is out of date and if it

has any outstanding and unpatched vulnerabilities. As part of our work we detected over

30 vulnerabilities in Debian and Fedora Linux because of package clone issues by

checking security sensitive packages manually, or using adhoc identification of out-of-date

clones. The vulnerabilities in each package we found using clone detection are shown in

Table 5 and 6.

3.7.7 Automated Vulnerability Detection

We performed a more recent evaluation of completely automated vulnerability inference

over the years of 2010, 2011, and 2012. Clonewise reported 132 vulnerabilities across 19

packages. We submitted bug reports against each package to Debian Linux. Not all our

submitted bug reports were actual vulnerabilities. Some reports were erroneous because

Clonewise falsely identified a package clone when one did not exist. Another source of

errors was that some bugs we reported as vulnerabilities could not be triggered, even

though the clone was correctly identified and had unpatched CVEs. This was true of libpng

image processing library being embedded in the syslinux boot loader package. Boot

loading displays an image, but does not allow an attacker to control that image to trigger

the vulnerability. A high number (64) of vulnerabilities were found in the ia32-libs package.

This package contains a list of embedded libraries and is only updated by Debian on point

releases. Debian informed us that this package would invariably contain vulnerabilities, but

in the unstable release of Debian an alternative approach will be employed which resolves

these issues by not embedding libraries.

 C H A P T E R 3

100

Debian have not yet confirmed all our bug reports so we investigated each package

manually to check that a package clone existed, and that the internal version number of the

library was a version vulnerable to the CVE Clonewise reports. The results are shown in

TABLE 5. ADHOC DETECTION OF FEDORA LINUX VULNERABILITIES

PACKAGE EMBEDDED PACKAGE

OpenSceneGraph lib3ds

mrpt-opengl lib3ds

mingw32-OpenSceneGraph lib3ds

libtlen expat

centerim expat

mcabber expat

udunits2 expat

libnodeupdown-backend-ganglia expat

libwmf gd

Kadu mimetex

cgit git

tkimg libpng

tkimg libtiff

ser php-Smarty

pgpoolAdmin php-Smarty

Sepostgresql postgresql

 C H A P T E R 3

101

Table 7. It should be noted that the high number of true positives is largely accounted for

by the 64 vulnerabilities we marked as such once Debian informed us that ia32-libs was by

TABLE 6. ADHOC DETECTION OF DEBIAN LINUX VULNERABILITIES

PACKAGE EMBEDDED PACKAGE
boson lib3ds

libopenscenegraph7 lib3ds

libfreeimage libpng

libfreeimage libtiff

libfreeimage openexr

r-base-core libbz2

r-base-core-ra libbz2

lsb-rpm libbz2

criticalmass libcurl

albert expat

mcabber expat

centerim expat

wengophone gaim

libpam-opie libopie

pysol-sound-server libmikod

gnome-xcf-thumnailer xcftool

plt-scheme libgd

 C H A P T E R 3

102

nature collecting vulnerabilities until point releases. Nonetheless, we detected unverified

vulnerabilities in more than 50% of the packages Clonewise reported. We performed this

manual analysis stage of all vulnerabilities, except for those in ia32-libs, in less than 2

hours. Our results are shown in Table 8. In the case that these potential vulnerabilities are

not confirmed by Debian, then Debian will still need to update their internal CVE database

to report that those packages are unaffected. Therefore, our work still remains beneficial.

The results of our system demonstrate that we effectively identify vulnerabilities with a

false positive rate that is practical for manual verification in a feasible amount of time.

3.8 Discussion

In this section we examine points of discussion, focusing on how our work has had

practical consequence to Linux vendors. We also discuss how we think vulnerability

reporting could be improved to take into account package cloning and embedding.

TABLE 7. AUTOMATED VULNERABILITY INFERENCE

TP + FP (Packages) 19

TP (Packages) 10

FP (Packages) 9

TP + FP (CVEs) 132

TP (CVEs) 81

FP (CVEs) 51

 C H A P T E R 3

103

3.8.1 Practical Consequences of Our Research

Key results of our research are the consequences and responses by Linux vendors in

using our data. Linux vendors responded well and are using our results. Another

consequence of our research was that we were given access to modify and update the

Debian Linux embedded packages database and to enter vulnerabilities and other

information in their security tracker. Debian Linux have also sought us to integrate our

system into the security team’s standard operating procedures and have offered access to

a subdomain on the Debian website to offer a clone detection web service. We feel this

validates our work and completing this integration is our next immediate focus. Red Hat

Linux did not maintain an equivalent embedded packages list like Debian’s, but have since

created a database on their public wiki based on our research results. We believe similar

TABLE 8. AUTOMATED DETECTION OF POTENTIAL VULNERABILITIES

PACKAGE EMBEDDED PACKAGE
freevo feedparser

hedgewars freetype

ia32-libs * (see text)

libtk-img tiff

likewise-open curl

luatex poppler

planet-venus feedparser

syslinux libpng

vnc4 freetype

vtk tiff

 C H A P T E R 3

104

data would be useful for other Linux vendors, and non-Linux vendors such as the BSD

family of operating systems and distributions.

3.8.2 Referencing CVEs in an advisory.

Ideally, CVE would include package relationships of vulnerabilities it reports. For example,

if Firefox has a libpng vulnerability assigned a CVE, then libpng would be referenced as the

canonical upstream package. The Common Platform Enumeration which canonically labels

software and enables upstream tracking of packages may provide a useful system for

tracking these related package clone vulnerabilities.

Concluding Remarks

In addition to the number of reported vulnerabilities and subsequent patching and

resolution of vulnerabilities, we believe our research has much value in the practical

approach of coping with embedded code and packages that may or may not be known

about. We believe all vendors benefit in creating and maintain databases of embedded

code and package-level clones in their package repository and our research fills a gap

when the manual task of auditing in excess of 10,000 packages per distribution is too time

consuming to be practical. There is much work as a consequence that could be applied to

current practice to aid operating system security and we feel our work is a good step

towards this goal.

 C H A P T E R 4

105

Chapter 4: Wire - A Formal Intermediate Language

for Binary Analysis

Wire is a intermediate language to enable static program analysis on low level objects such

as native executables. It has practical benefit in analysing the structure and semantics of

malware, which is a key topic in software similarity and classification. In this chapter we

describe how an executable program is disassembled and translated to the Wire

intermediate language. We define the formal syntax and operational semantics of Wire and

discuss our justifications for its language features. We use Wire in Malwise, our malware

variant detection system described in Chapter 5. We also examine applications for when a

formally defined intermediate language is given. Our results include showing the semantic

equivalence between obfuscated and non obfuscated code samples and identifying

similarity between software programs . These examples stem from the obfuscations

commonly used by malware and the areas of software theft detection, plagiarism detection,

and code clone detection.

4.1 Introduction

Static program analysis is a useful tool that provides many benefits and applications. In

summary, static analysis identifies the runtime behaviour of software. It does this analysis

statically, meaning that the program is not executed. Applications of static analysis include

detecting plagiarism of software code, optimising code during compilation, verifying

software by proving the absence of certain bug classes, or in a weakened form, to identify

software bugs. Static analysis is generally performed at the source level, but applications

exist when we only have access to low level object code. The applications of low level

static analysis include the analysis and detection of malware, detecting the theft of

proprietary or licensed software, or detecting bugs in binaries which are the result of

compilation or link-time conditions.

4.1.1 Motivation

Malware analysis and detection is a large motivation for why low level static analysis is

required. Traditional static malware detection employed in commercial Antivirus has

ignored program structure and semantics. Instead, pattern recognition on the raw byte-

 C H A P T E R 4

106

level content has been the dominant technique in signature based detection. However,

program structure such as that exhibited by the static control and data flow of the malware

results in more robust and predictive characteristics. These characteristics or fingerprints

are often invariant in large malware families and strains. Thus, by employing static analysis

techniques, signature based detection is much more robust in the detection of variants

such as polymorphic and metamorphic malware. Moreover, the use of program structure

and semantics to extract robust features allows machine learning to detect novel samples

of malware that we can predict as being malicious, but not belonging to known families of

malicious software. Malware is almost always in binary form so a low level static analysis

system that examines the binary form of executables content is required.

Software theft detection is another motivation for why low level static analysis is needed.

Detecting unauthorized use of software code is desirable to protect industry investment.

Similar to the malware variant detection problem, software theft detection extracts program

structure and semantics and identifies unauthorized software copies by finding those same

features in illegitimate software. It is necessary then to be able to examine closed source

software by using low level static analysis.

More motivation is that of detecting the presence of software bugs in binaries. The purpose

of this form of bug detection is not to replace traditional source level analysis, but

complement it by providing an increased level of assurance. Source level analysis by

definition is the unfinished form of a software that is lacking detail of how the program will

be physically executed after assembly and linking. Bug detection in binaries by nature has

access to the final form of the program where assembling and link time editing has been

performed. This also provides additional assurance that the compiler has done what it was

designed to do. This type of assessment is not only useful for development and quality

assurance; it is also beneficial to system auditors who by requirements do not have access

to software source.

Analysing binaries is hard. Many simple problems such as separating code from data are

undecidable. Our first motivation stems from the desire of representing a binary in a

manner that makes analysis easier. The native assembly in a binary is unfavourable for

analysis. The reasons that native assembly is difficult to use are:

 C H A P T E R 4

107

 Native CISC assemblies such as x86 have hundreds of instructions which requires

significant and duplicate efforts to model for each class of static analysis.

 Native assemblies have instructions with side effects which make analyses require

hidden information and assumptions.

 Native assemblies are platform dependent which requires separate static analysis

implementations for each architecture.

This motivates us to use an intermediate language to represent native assembly. The

intermediate language should be low level enough so that translation from assembly is not

complex. It should also be high level enough so that traditional static analysis techniques

can be applied.

We have implemented Wire and use it as the intermediate representation in performing

static analysis on binaries and to detect malware variants in our research system Malwise.

This chapter represents the formal description of the intermediate language we have

implemented.

4.1.2 Innovation

The contributions of this chapter are as follows:

 We propose a new low level intermediate language and define its formal

operational semantics.

 We propose methods to translate native assembly into our intermediate language.

 We propose applications of a formally defined intermediate language and

demonstrate operational semantics can be used to show equivalence between

metamorphic malware codes.

 We use our language as the basis for Malwise – our malware variant detection

system.

 C H A P T E R 4

108

4.1.3 Structure of the Chapter

The structure of this chapter is as follows: Section 4.2 explains how to translate native

code into our intermediate language. Section 4.3 defines the formal syntax and operational

semantics of our language. Section 4.4 demonstrates applications of our language to

semantic equivalence. Section 4.5 demonstrates applications in software similarity and

classification. Finally we present our concluding remarks.

4.2 Translating Native Code

The input to our system is an object file. The most typical case is an x86 binary. For

Windows this is a portable executable (PE) object or an Executable and Linking format

object under Linux. The system can also partially process Java class files, and C source

code for the GNU compiler (GCC), however these aspects are experimental and not

described in this chapter. Our system is designed as modular software that allows plugin

extensions to inspect or modify the object file or the results of a static analysis. An XML

configuration file determines which plugins will be loaded, the order in which they are

processed, and at which stage of object file processing and static analysis they will be

called.

The first stage is object file parsing. PE and ELF binaries contain information on how to

access the object code and the dynamic linking information such as imported and exported

functions. The object code is extracted and code is processed. For x86 binaries, a

disassembly is performed.

The native representation contains instruction level information. These native instructions

are translated to an intermediate language. All further static analyses operate on the

intermediate language which by its construction is easier to analyse. Our implementation

consists of 10,000 lines of C++ code for the disassembly to be translated to the

intermediate language.

4.2.1 Disassembly

Disassembly is the process of translating machine code to assembly language [44]. This is

the first stage of a static analysis. We employ the use of speculative disassembly in our

framework as described in Section 2.4.1.

 C H A P T E R 4

109

The set of addresses for a machine is defined by A. A native instruction in an executable is

located in memory and is defined by the ordered pair. A disassembly is the set of ordered

pairs.

Execution transfers from one instruction to another and is identified using speculative

disassembly in Wire. There are two types of control transfers. The first type is the when

execution transfers from one instruction to the subsequent or fall through instruction

without following a branch or a call. The second type is when a branch or call is taken.

4.2.2 Abstract Machines

The intermediate language used for the intermediate code runs on an abstract machine

that has a correspondence to the actual machine. Typical models of computation for the

abstract machine are register machines or random access machines. In Wire we use a

register machine which has the following components:

 An unlimited number of uniquely labelled registers (in practice this number is

limited by a 32 bit representation).

 A small number of instructions roughly into divided into arithmetic and control.

 An instruction pointer.

 A sequence of labelled instructions.

 A random access memory.

 An entry point.

4.2.3 Intermediate Code Generation

As described in Section 2.4.2, one approach to transform assembly into an intermediate

language is to translate each instruction without maintaining intermediate state. We use

 C H A P T E R 4

110

this approach also and in our framework we translate native assembly into three address

code. This part of our system is not formally verified and we assume the translation is

correct. The generated three address code is a list of ordered intermediate instructions.

4.2.4 Register Mapping between Native Architectures and Wire

Wire assigns registers labels using a 32 bit number. Wire’s registers overlap the native

registers for the x86 architecture. That is, the 8 x86 registers numbered 0 to 7 in the native

disassembly are reserved and map to the first 8 registers of the Wire intermediate

language.

4.2.5 Label Generation

Native assembly memory addresses are not used in the intermediate language. Nor do all

instructions have a memory location. Instead, a label is assigned at the beginning of a

basic block. The labels contain an address to identify the location of a basic block. We

make two passes over the assembly to generate label addresses. In the first pass, all

branch targets are identified, and then a Wire label address is assigned to each native

address. Finally, the native addresses are eliminated and labels are used to replace them.

Like the execution flow in disassembly, labelled basic blocks in the intermediate language

have an execution flow.

4.2.6 Condition Code Generation

Condition codes represent arithmetic conditions. For example, an arithmetic instruction

performing an assignment may store the fact that the operand is zero. In x86 assembly,

arithmetic instructions such as subtraction also store information on inequalities such as

one operand being less, greater, or equal to the other. In Wire, each possible condition is

stored in a separate register. That is, there is a register storing equality, less than, zero

 C H A P T E R 4

111

status etc. Each arithmetic instruction sets the set of these registers based on the

operands of the instructions. These registers are set using Wire’s mkbool instructions

which can assign a register a Boolean value (a numeric 1 or 0) based on an inequality and

its parameters.

4.2.7 Decompilation

Native instructions are translated into the Wire intermediate language, but after

construction, the intermediate code is analysed to generate additional or replacement

code. For example, Wire uses the PUSHARG instruction to give procedure calls

arguments, however this requires decompilation to generate this information.

Decompilation is used for the following components:

 Local variable reconstruction

 Procedure argument reconstruction

 Condition code elimination

The use of decompilation to generate IL instructions enables high level static analysis to be

employed. Traditional source level analyses such as bug detection can use the decompiled

results. This feature distinguishes itself from most other intermediate languages for reverse

engineering except those specifically used for decompilation.

Local variable reconstruction transforms stack based memory access into much simpler

register based variables. Procedure argument reconstruction extends the stack based

memory analyses to identify arguments which are on the stack at call sites. This is done by

reconstructing what the stack looks like at a call site and unwinding values from it.

Condition code elimination transforms explicit use of condition codes and a branch on a

condition code into a simpler branch on condition. The approach is to look at the reaching

definition of the condition code at a branch on condition code and then to propagate the

definition and transform the branch into the branch on condition.

 C H A P T E R 4

112

4.2.8 Intermediate Code Optimisation

The generation of the intermediate language produces a very verbose and inefficient code.

We transform this into a simpler code by using compiler style optimisations. The

optimisations we employ are:

 Dead code elimination

 Constant propagation

 Constant Folding

 Copy Propagation

Dead code elimination or more correctly dead store elimination removes stores which are

never subsequently read before they are redefined. Constant propagation and constant

folding simply expressions and assignments using constants such that their result is

calculated when possible during the optimization pass. Copy propagation eliminates

extraneous copies/assignments that are often used to has temporary placeholders for

further expressions.

4.3 Formal Syntax and Semantics

In this section we define our intermediate language’s syntax, the abstract machine it runs

on, and its operational semantics. We believe formally defining Wire is important because it

allows formal reasoning about the assembly language it represents. One application that

becomes possible is the ability to prove semantic equivalence between two different

syntactical representations. The problem of semantic equivalence is central to the problem

of metamorphic malware detection. We give a detailed description of the Wire language to

make these proofs and to also give insight into the language features required to represent

assembly language.

4.3.1 Syntax

Program p ::= p i | i

 C H A P T E R 4

113

Instruction i ::= m| m t

Type t ::= u8_t

 | u16_t

 | u32_t

 | s8_t

 | s16_t

 | s32_t

Instructions m ::= *(r3) := r1

 | r3 := (*r1)

 | r3 := r1

 | r3 := n

 | r3 := uop r1

 | r3 := r1 bop r2

 | r3 := r1 bop n

 | mkbool r1 ucond

 | mkbool r1 bcond r2

 | nop

 | halt

 C H A P T E R 4

114

 | label l

 | jmp l

 | ijmp r

 | if r1 cond1 jmp l

 | if r1 cond2 r2 jmp l

 | lcall s

 | cast(r1, t)

 | r3 := getpc()

 | r3 := returnaddress()

 | pusharg(n, r)

 | r3 := malloc(r)

 | free(r)

 | r3 := alloca(r)

Operations uop ::= -|~|!

 bop ::= +,-,*,/,%,>>,<<,|,&,^

Conditions ucond ::= == 0|!= 0

 bcond ::= ==|!= | >|>=|<|<=

Operands v ::= n (an integer literal)

 r (a register)

 C H A P T E R 4

115

 l (a label)

 s (a symbol)

4.3.2 Functions

Instructions I ::= n i

Heap H ::= nxn n

Memory M ::= n n

Register R ::= r n

Labels L ::= l pc

AllocAMemory V ::= nxn n

Instructions: (maps instruction number to instruction)

Heap: (maps heap address and memory size to non overlapping memory addresses)

Register: (maps register name to numeric value)

Memory: (maps address to numeric value)

Labels: (maps label to instruction address pc)

AllocAMemory: (maps alloca address and memory size to non overlapping memory

addresses)

Note that we assign each instruction a unique program counter address that is used

internally to describe the semantics.

4.3.3 Abstract Machine State

Call Stack C ::= stack of (l,pc,A,V)

 C H A P T E R 4

116

Argument Stack A ::= stack of (n,r)

Process State P ::= (I,L,H,M,C,A,V,pc)

CallStack: Where l is the current function label, pc is the return address, A is the argument

stack for function l, and V is the alloca memory mappings for function l.

ArgumentStack: (argument stack for callee of current function) Where n is the argument

index and r is the register argument.

4.3.4 Operational Semantics of Core Instructions

Operational semantics [34] describe the state transitions that occur from execution of a

program. We follow the following format:

Where i is the current instruction, P is the current state and P’ is the next state following

execution of the instruction i.

For simplicity, in this section we only show instructions of a single typing. In practice we

have separate instructions for 8, 16, and 32 bit types.

4.3.4.1 Control Flow Instructions

The control flow instructions handle conditional and unconditional branches.

The JMP instruction implements an unconditional branch. It simply changes the program

counter to the target of the branch. In the case above, it is a direct branch to a label.

 C H A P T E R 4

117

The IJMP instruction also implements an unconditional branch, but uses register contents

as the branch target.

The CJMP-T instruction implements a conditional branch on a true condition to a branch

target specified by a label. There are a number of possible conditions including less than,

greater than, less than or equal to and so forth.

The CJMP-F implements a conditional branch on condition false.

The LABEL instruction specifies a location in the instruction sequence. Wire does not

assign individual addresses to instructions to specify locations, so whenever an instruction

is the target of a branch a label must be specified.

 C H A P T E R 4

118

The NOP instruction implements a no operation.

4.3.4.2 Arithmetic Instructions

The arithmetic instructions handle unary and binary operations. The binary operation

instructions have a version where one of the arguments is a constant.

The OP instruction implements the arithmetic instructions. It is a function that takes 3

operands and modifies those operands as necessary. In practice, the 3rd operand is kept

as a destination register when possible.

The OPC instructions implements the OP instruction except 2 of the operands are registers

and the 3rd operand is a constant.

4.3.4.3 Boolean Instructions

 C H A P T E R 4

119

4.3.4.4 Transfer Instructions

The transfer instructions handle assignments of either registers or constants.

4.3.4.5 Memory Access Instructions

The memory access instructions handle reading and writing to memory.

The LOAD instruction implements a memory read.

The STORE instruction implements a memory write.

4.3.4.6 Casting Instructions

The CAST instruction is an assignment instruction between operands of different types.

 C H A P T E R 4

120

4.3.4.7 Procedural Instructions

The LCALL instruction implements an API or library call.

The CALL instruction implements a procedure call instruction to a label target. The return

address (pc+1) is pushed onto the call stack.

The ICALL instruction implements an indirect procedure call to a register target.

The RETURN instruction implements a return from a procedure. The return address is

stored at the top of the call stack. The memory allocated by ALLOCA instructions becomes

freed after a return. Likewise, the argument stack is emptied.

4.3.5 Operational Semantics of Decompiled Instructions

A number of instructions in Wire are only generated after a stage that decompiles the

specified object file.

4.3.5.1 Address Instructions

 C H A P T E R 4

121

The GETPC instructions returns the address of the current instruction in the binary being

analysed.

The RETURNADDRESS returns the return address of the current procedure.

4.3.5.2 Memory Allocation Instructions

The MALLOC instruction implements dynamic memory allocation. It stores the allocation

information on the heap (H).

The FREE instruction frees dynamically allocated memory.

The ALLOCA instruction performs dynamic memory allocation for the current procedure.

The memory does not require freeing and will be done so automatically when the

procedure returns.

 C H A P T E R 4

122

4.3.5.3 Procedural Instructions

The PUSHARG instruction pushes the contents of a register onto the argument stack. The

argument stack is passed into the next called procedure. The PUSHARG instructions are

generated as a result of decompilation to identify procedure arguments.

4.3.6 Three Address Code

The high level syntax we have described is not used internally by Wire. For that we employ

a three address code. The semantic equivalence between the high level syntax and three

address code is shown using the semantic function A for the high level syntax and the

semantic function B for the three address code.

 C H A P T E R 4

123

4.4 Applications in Semantic Equivalence

One application of a formally defined language is to prove properties of its programs. One

type of proof that can be performed is an equivalence proof. Equivalence proofs are useful

and we will examine the particular case of equivalence between obfuscated codes which is

a commonly seen occurrence in malware. Our proofs work on the intermediate code only

and assume the intermediate code generation has been performed correctly.

4.4.1 Semantic Equivalence of Obfuscated Code

A syntactic metamorphic malware technique is a method that changes the syntactic

structure of the malware [17]. Though the syntactic structure changes in polymorphic

malware, the malware semantically remains identical. The technique is predominantly used

to evade byte level signature based detection and classification that is routinely employed

by traditional Antivirus. Metamorphism borrows many of the techniques from the field of

program obfuscation.

 C H A P T E R 4

124

4.4.1.1 Dead Code Insertion

Dead code is also known as junk code and a semantic nop [17]. Dead code is semantically

equivalent to a nil operation. Insertion of this type of code has no semantic impact on the

malware. The insertion increases the size of the malware and modifies the byte and

instruction level content of the malware.

An example of dead code insertion is shown below. The intermediate code is also shown.

For simplicity we assume that the condition codes are not required as is the case when a

future arithmetic instruction overrides earlier ones.

In the proof that we perform we show the equivalence between code using dead code and

code that is not using dead code. The proof is carried out by simulating execution of each

code sample and showing that the program states for both sequences are the same once

complete.

Firstly, we map register names to register indices that will be used in all proofs in this

section of the paper.

BOPCADD

%eax,$50,%eax

BOPCSUB

%eax,%50,%eax

ASSIGNC $0,,%eax

ASSIGNC $0,-,%eax

mov $0,%eax
add $50,%eax

sub $50,%eax

mov $0,%eax

Fig. 35. Dead code insertion.

 C H A P T E R 4

125

Reg_name(“eax”) = 0

Reg_name(“ebx”) = 1

Reg_name(“zf”) = 100

In the first part of the dead code equivalence proof we execute the instructions without the

dead code.

In the second part of the proof we execute the instructions with the dead code.

 C H A P T E R 4

126

Now we can see that t’’’-pc = s’-pc which means they are semantically equivalent when

ignoring the effect the code has on the program counter. We also note that s’ and s’’ are

semantically equivalent. We have thus proven the obfuscated and deobfuscated code

samples are equivalent.

This approach to proving semantic equivalence between code samples is useful to a

malware researcher who wants to identify malware instances and variants.

4.4.1.2 Code Reordering

Code reordering [18] changes the syntactic order of the code in the malware [17]. The

actual or semantic execution path of the program does not change. However, the syntactic

order as present in the malware image is altered..

ASSIGNC $0x2,,%eax

ASSIGNC $1,,%ebx

BOPADD %ebx,%eax,%ebx

ASSIGNC $0x1,-,%ebx

ASSIGNC $2,-,%eax

BOPADD %ebx,%eax,%ebx

mov $2,%eax

mov $1,%ebx

add %eax,%ebx

mov $1,%ebx

mov $2,%eax

add %eax,%ebx

Fig. 36. Code reordering

 C H A P T E R 4

127

We show an example of code reordering and the intermediate code generated from each

sequence above.

For the first part of the proof we execute the first instruction sequence.

For the second part of the proof we execute the second instruction sequence.

 C H A P T E R 4

128

Thus we see that t’’’-pc = s’’’-pc and therefore the two instruction sequences are

semantically equivalent.

4.4.1.3 Opaque Predicate Insertion

An opaque predicate [19] is a predicate that always evaluates to the same result. An

opaque predicate is constructed so that it is difficult for an analyst or automated analysis to

know the predicate result. Opaque predicates can be used to insert superfluous branching

in the malware’s control flow. They can also be used to assign variables values which are

hard to determine statically. The use of opaque predicates is primarily for code

obfuscation, and to prevent understanding by an analyst or automated static analysis. The

opaque predicate we are examining is shown on the next page in Fig. 23.

In the first part of the proof we execute the first code sequence.

 C H A P T E R 4

129

In the second part of the proof we execute the second code sequence.

BOPXOR %eax,%eax,%eax

UMKBOOLIsZero %eax,,%zf

ASSIGNC $2,-,%eax

BOPXOR %eax,%eax,%eax

UMKBOOLIsZero %eax,,%zf

UCJMPIsNotZero %zf,,$target

ASSIGNC $2,-,%eax

xor %eax,%eax

mov $2,%eax

xor %eax,%eax

jnz $0x80482000

mov $2,%eax

Fig. 37. An opaque predicate.

 C H A P T E R 4

130

We see that register 100 is set which makes the conditional branch in the following

instruction use a false condition.

Thus we see that s’’-pc=t’’’’-pc and this proves semantic equivalence.

4.4.2 Assisted and Automated Theorem Proving

The manual proofs shown in the previous section are useful. However, a more automated

approach is beneficial. Algebraic specification [43] has been used in previous research to

combine algebraic semantics [33] and theorem proving. Our work is different and uses

operational semantics. Proof assistants may be used by an analyst. An alternative is to use

automated theorem provers such as those for Satisfiability over Modulo Theories (SMT).

These solvers can solve 1st order logic problems in a number of theories including bit

 C H A P T E R 4

131

vectors. Public solvers are freely available [166]. SMT solvers have been used in the past

to perform semantic NOP detection [17] and show equivalence between the code in basic

blocks of two programs [167]. Our work gives a semantic basis and theory for these

solvers to be used.

4.5 Applications in Software Similarity and Classification

Another application of our intermediate language is the detection of similar software. This

has uses in malware variant detection, plagiarism detection, and software theft detection.

4.5.1 Software Isomorphism

L is an intermediate language representing a translation of assembly code. For each three

address code, the label associated with its basic block is also maintained.

4.5.1.1 Interprocedural Control Flow Graph (ICFG)

The interprocedural control flow graph (ICFG) represents both control flow graphs of each

procedure (the intraprocedural control flow) and the call graph (the interprocedural control

flow). In our intermediate language we can define it as:

This definition of the ICFG is not conservative since we ignore indirect calls and branches.

However, it is suitable for the purposes of software similarity detection.

To detect if two programs are equal, we can approximate this by testing for isomorphism

between their interprocedural control flow graphs.

An isomoprhism of graphs G and H is a bijection between the vertex sets of G and H

 C H A P T E R 4

132

such that any two vertices u and v of G are adjacent in G if and only ig f(u) and f(v) are

adjacent in H.

No polynomial time algorithm has been constructed for isomoprhism testing, however it

has not been formally proven that the algorithm is exclusively outside of complexity class

P. In practice, graph invariants can be used to speed up testing. A graph invariant is a

property of a graph that remains constant amongst its isomorphisms. One graph property

of interest is the degree sequence of a graph. The degree sequence of an undirected

graph is the non-increasing sequence of its vertex degrees. Using this graph invariant we

can apply set equality testing to definitely show two graphs are non isomorphic. This allows

us in the software isomorphism problem to show that two programs are not equivalent with

respect to their interprocedural control flow graphs.

4.5.1.2 Call Graph

The call graph shows the control flow between procedures and intraprocedural control flow.

Formally, we can define an approximation of the call graph using our intermediate

language.

We can then apply our graph isomorphism testing to show equivalence between programs

based on their call graphs.

4.5.2 Software Similarity and Classification

The software similarity problem extends the software isomorphism problem to show that

two programs are approximately equal to each other to some degree. The similarity

between two programs is typically represented as a real number [0,1] where 0 identifies the

programs as being totally dissimilar and 1 shows that the programs are isomorphic.

There are a number of approaches to showing the similarity between two programs. The

general idea is to use specific features of the program and then to construct a signature out

 C H A P T E R 4

133

of these features. Once a signature has been constructed, a similarity function solves the

pairwise similarity problem between these signatures.

4.5.2.1 Instructions

For this problem we use the instructions of our intermediate code as a feature to construct

a signature.

The intermediate language disassembly is:

The 'birthmark' of the program is a fingerprint or signature. In this case we use a bag of

opcodes of the instruction listing as our birthmark. The birthmark is represented

mathematically as a vector.

where Natural is a bijective mapping between the opcodes and a natural number.

The similarity between two birthmarks can be defined in terms of the Euclidean distance

between two vectors representing the programs.

4.5.2.2 The Small Primes Product

Sometimes it is useful to represent a sequence of instructions and compare them to

another sequence of instructions irrespective of the instruction ordering. This is beneficial

when facing malware which reorders its code without changing the semantics. Although we

earlier showed a semantic method to identify equivalence, we note that there are syntactic

methods as well.

The Small Primes Product [113] was proposed to tackle this problem. Each possible

opcode is represented by a unique prime number. Given an instruction sequence, the

 C H A P T E R 4

134

primes associated with each opcode are multiplied together. The resulting prime product is

unique for a given set of unique instructions.

 Formally, for a sequence of instructions I, the Small Primes Product (SPP) is:

We can use the small primes product to create a set of basic blocks, where each basic

block is represented by the small primes product of the basic block's instructions. We can

then use all of the set similarity measures described in Chapter 2 to show the similarity

between two programs.

4.5.2.3 API Calls

The API calls made by a program are another type of feature that can be used when

creating birthmarks to show similarity between programs. API Calls can also be

represented using vectors and the similarity between two programs determined by the

Euclidean distance as is the same when using opcodes.

The birthmark is thus represnted as:

where Natural is a bijective mapping between the API call target and a natural number.

4.5.2.4 Control Flow

We can define the similarity the similarity between two interprocedural control flow graphs

in terms of their edit distance. We can also apply the same to the call graph.

The graph edit distance (GED) between two graphs is defined as the minimum number of

graph edit operations to transform one graph to the other.

 C H A P T E R 4

135

For two graphs G=(V1,E1) and H=(V2,E2), the similarity between those graphs can b e

defined as:

4.5.2.5 Classification and Clustering

Representing programs by feature vectors allows for the traditional application of machine

learning techniques. Classification is the task of assigning a class to an object, after a

period of training with a labelled data set. Classification can be used for instance to detect

the difference between malicious and non malicious programs. Clustering is an

unsupervised machine learning method which groups together similar objects according to

some definition of closeness or similarity. The Euclidean distance is one such measure of

similarity.

The typical input to a classification or clustering algorithm is a feature vector. The feature

vectors described earlier in this section is exactly the kind of input that these algorithms

work on. Therefore, machine learning can be directly applied to these objects.

4.5.3 Software Embedding

Another software similarity related problem is to determine if one program is embedded in

another. A typical example of this is in the virus detection problem. A formal approach to

tackle this problem is by using the maximum common subgraph.

Formally, given two graphs G and H, the maximum common subgraph (MCS) is the largest

subgraph, S, of G that is isomorphic is a subgraph of H.

To determine if V is a viral infection in G, we can test if V is the maximum common

subgraph of G where the graphs represent call graphs or interprocedural control flow

graphs. Formally, V is a viral infection of G if V=MCS(G). We can allow for approximate

solutions potentially accounting for mutations of V using the graph edit distance. V is a viral

infection of G if ged(V,MCS(H)) > e.

Concluding Remarks

 C H A P T E R 4

136

Wire is an intermediate language that enables analysis of executable programs. Wire has

unique features including the ability to integrate the results of decompilation into the core

language. While this makes the translation possibly unsound, for the majority of programs

the translation is effective and useful for analysis. A formal definition of the operational

semantics of the language enables researchers to formally reason about assembly code.

We demonstrated proofs of program equivalence between obfuscated and non obfuscated

code samples. We also demonstrated that using the syntax and semantics lets us formally

model software similarity problems. These applications reinforce our belief that a formal

approach to describing Wire has practical benefits.

 C H A P T E R 5

137

Chapter 5: Malwise II - Control Flow-based Malware

Variant Detection

Static detection of polymorphic malware variants plays an important role to improve system

security and is an important area in software similarity and classification. Control flow has

shown to be an effective characteristic that represents polymorphic malware instances and

construction of which was shown formally in the last chapter. In this chapter, we propose a

similarity search of malware using novel distance metrics of malware signatures based on

control flow. We describe a malware signature by the set of control flow graphs the

malware contains. We first experiment with string based signatures. We then try using

vector and set of strings based signatures. We propose two approaches and use the first to

perform pre-filtering. Firstly, we use a distance metric based on the distance between

feature vectors. The feature vector is a decomposition of the set of graphs into either fixed

size k-subgraphs, or q-gram strings of the high-level source after decompilation. We also

propose a more effective but less computationally efficient distance metric based on the

minimum matching distance. The minimum matching distance uses the string edit

distances between programs’ decompiled flow graphs, and the linear sum assignment

problem to construct a minimum sum weight matching between two sets of graphs. We

implement the distance metrics in a complete malware variant detection system. The

evaluation shows that our approach is highly effective in terms of a limited false positive

rate and our system detects more malware variants when compared to the detection rates

of other algorithms.

5.1 Introduction

Malware classification and detection can be divided into the tasks of detecting novel

instances of malware, and detecting copies or variants of known malware. Both tasks

require suitable feature extraction, but the class of features to be extracted is often

dependant on which problem is trying to be solved. Detecting novel samples primarily uses

statistical machine learning. On the contrary, malware variant detection uses the concept

of similarity searching to query a database of known instances. These similarity queries or

nearest neighbour searches are known in machine learning as instance-based learning.

 C H A P T E R 5

138

Instance-based learning uses distance functions to show dissimilarity and hence similarity

between objects. If the distance function has the mathematical properties of a metric, then

algorithms exist that enable more efficient searching than an exhaustive set of queries over

the database.

Traditional and commercial malware detection systems have predominantly utilised static

string signatures [95, 96] to query a database of known malware instances. Static string

signatures capture sections of the malwares’ raw file content that uniquely identifies them.

String signatures have been employed because they have desirable performance

characteristics that enable real-time use [168]. However, string signatures perform poorly

when faced with polymorphic malware variants. Exact string matching also ineffectively

handles closely related but non-identical signatures.

Polymorphic malware variants have the property that the byte level content of the malware

changes between instances. This can be the result of source code modifications or self

mutation and obfuscation to the malware. Signatures that rely on fixed byte level content

are unable to capture the invariant characteristics between these polymorphic instances.

Efficient real-time systems have been proposed that examine the run-time behaviour of

programs to identify malicious behaviour [107]. Malicious behaviour can either conform to a

policy of malicious intent, or reassemble the behaviour of a program instance, known in

advance to be malicious. However, static detection of malware has advantages - it does

not require conditional, untrusted or sandboxed execution of malware once the original

contents of the malware are visible. Unpacking is the processing of revealing that code and

typically occurs before the malware performs its malicious intent. Many Antivirus products

implement static unpacking for known packers, and this accounts for the majority of

samples. However, for novel packing techniques unpacking is often a dynamic process

making effective static analysis against novel malware a hybrid approach. Additionally,

snapshots of process images can be taken at runtime, thus avoiding the most common

packing issues and can be used to statically identify if those processes belong to a known

malware family.

 C H A P T E R 5

139

 A variety of algorithms have been employed to statically detect malware variants with

superior classification compared to string based approaches. An n-gram is one of all

possible fixed sized substring extracted from a larger string. Our work is directly related to

the n-gram concept. N-grams of byte level, or instruction level content, utilising machine

learning and classification has been proposed. However, n-grams are ineffective with

polymorphic malware because of the changes the instruction level content.

More detailed program analysis techniques have been employed on the instruction level

content to extract high level features. Data flow analysis reveals useful high level features

that are more invariant than instruction content alone. Likewise, abstract interpretation

using specific domains reveals desirable features. Efficiency still remains a concern for

industrial usage.

Control flow has also been used to overcome the limitations of byte level and instruction

level classification [110]. Control flow has the desirable property that instruction level

changes do not affect the resulting flowgraphs. Control flow is observed to be more

invariant in polymorphic malware [115].

Our work is based on the set of control flow graphs of the program. In some literature, the

individual control flow graphs are merged together into a single interprocedural control flow

graph (ICFG). However, for our work, we represent each procedure with a separate graph

and therefore consider the set of graphs problem. In contrast, most malware analysis using

control flow has focused on analysing a single call graph. The advantage of considering

each control flow graph individually is that we can apply the decompilation technique of

structuring which is not possible with the ICFG.

The challenge of using graphs to show similarity is that accurately measuring similarity

such as when using the graph edit distance does not perform in polynomial time.

Therefore, research must investigate methods that make using graphs feasible for large

scale malware detection. The real or near real-time constraints of Antivirus software make

this challenge even more significant. The challenge increases again when complex graph

based objects are considered such as the set of graphs signature our research

investigates.

 C H A P T E R 5

140

5.1.2 Motivation

This work is motivated by several real-world applications that would benefit from control

flow-based malware variant detection.

5.1.2.1 A replacement to traditional Antivirus

Traditional AV suffers from the inability to detect malware variants efficiently from large

databases. Control flow is effective and our system makes such a system practically

efficient when using large databases. Moreover, it would reduce the size of the database

required on the end host due to requiring fewer samples to recognise a large malware

family.

5.1.2.2 To cluster interesting samples

AV vendors need to know which malware families are significant enough that they require

manual analysis. Our system could be used to identify variants and group them to their

family. If many instances of a family are identified, then that family may require human

analysis to determine what the real impact of the malware is. Moreover, our system could

be used to avoid redundancy of work. In this case, a human analyst would not perform

more work on already analysed family.

5.1.2.3 Incident Response

An accurate system that identifies what family of malware a sample belongs to could be

used in incident response. An analyst could attribute authors of malware to the family it

belongs to or identify what disinfection procedures are required and what impact a sample

has on an infected system.

 5.1.3 Innovation

Our work is based on control flow classification but we make the following contributions:

We propose a system that performs similarity searching of sets of control flow graphs. We

perform the search in close to real-time in the expected case. No other system has

demonstrated near real-time performance for this use of control flow based signature.

We propose using the Levenshtein distance, the NCD and the BLAST algorithms to

perform similarity comparisons using novel string based malware signatures.

 C H A P T E R 5

141

We propose using fixed size k-subgraphs to construct a feature vector approximating a set

of graphs. Using a vector representation improves efficiency significantly and has not been

used before.

We also propose the novel use of a polynomial time algorithm to generate q-gram features

of decompiled control flow graphs to construct a feature vector. These features are shown

to have more accuracy than k-subgraphs and can be constructed faster than k-subgraphs.

K-subgraph feature construction is not known to take polynomial time. Q-grams of

decompiled graphs have not been used before for malware classification.

We propose a distance metric between two sets of graphs based on the minimum

matching distance. The minimum matching distance uses the linear sum assignment

problem. It has been used previously with sets of vectors, but not sets of graphs. The

minimum matching distance has not been used before in malware classification.

We implement these ideas in a complete prototype system and perform an evaluation on a

set of benign binaries and on real malware, including those malware that are packed and

polymorphic. The evaluation demonstrates the system is effective and fast enough for

potential desktop adoption.

5.1.4 Structure of the Chapter

The structure of this chapter is as follows: Section 5.2 defines the malware classification

problem and our approach. Section 5.3 describes the unpacking and general static

analysis component of the system. Section 5.4 examines string based signatures. Section

5.5 describes the vector based pre-filtering stage used in classification. This is a course

grained classification process. Section 5.6 describes the fine grained classification

algorithms. Section 5.7 describes distance metrics and the nearest neighbour similarity

search. Section 5.8 performs an evaluation using benign and malicious samples. Section

5.9 examines limitations and discusses points of interest. Section 10 looks at future work.

Finally, we present some concluding remarks.

 C H A P T E R 5

142

5.2 Problem Statement and Our Approach

5.2.1 Problem Statement

New programs that are discovered on the host system are inspected to determine if they

are malicious or benign. Unknown malware are detected by calculating their similarity to

existing malware. A high similarity identifies a malicious variant. Existing malware are

collected from honeypots and other malicious sources to construct a database of malware

signatures. The described malware variant detection problem is equivalent to the software

similarity search problem.

The software similarity problem is to determine if program p is a copy or derivative of

program q and is defined in Section 1.4. The software similarity problem is extended to

operate over a database of programs. We use the nearest neighbour search.

To recap Section 2.8, the nearest neighbour range search is defined as:

Given a set of objects P and a query q, and a range r > 0, the range nearest neighbours

(rNN) query is to find a result set rNN that consists of objects such that for any

rqpdistPprNNp),'(,',' .

A slight variation is to find any nearest neighbour in range. This variation can improve

performance.

Definition 58. Given a set of objects P and a query q, and a range r > 0, the any range nearest

neighbours (rNN) query is to find any object p, such that
rqpdistPp),(,

.

The distance function used in the nearest neighbour search is d(p,q) =1-s(p,q).

5.2.2 Our Approach

Our approach builds a signature or birthmark of a malware based on the set of control flow

graphs it has. We compare signatures using distance metrics to show similarity. In our

experiments we evaluate constructing strings to represent signatures and then use a

variety of string metrics to show signature similarity. We also use a vector based signature

which we observe is more effective and efficient than our string signatures. Finally, we add

a set of strings signature which we observe as more accurate and is used to refine the

vector based result.

 C H A P T E R 5

143

Malware is first unpacked to remove obfuscations. Control flow is reconstructed and the

control flow graphs decompiled and structured into strings. Malware variants are detected

by identifying existing malware the query programs are related to. Pre-filtering is used to

provide a list of potentially related malware. The pre-filtering algorithm is based on

constructing a feature vector to represent the query programs and malware. Either of two

algorithms can be used to extract features. Firstly, subgraphs of size k are used to

represent features. Alternatively, q-grams are extracted from the strings representing the

structured graphs. Q-grams our equivalent to n-grams when using strings from decompiled

control flow graphs. Using either algorithm for feature extraction, the most relevant features

are used to construct a feature vector. The pairwise similarity between two feature vectors

employs a distance function on the pair of vectors. Vectors that are close to each other are

indexed to the same bucket. To identify candidates with high similarity to existing malware,

a metric similarity search is performed using Vantage Point trees [81].

To compare the query to the candidate malware, a more accurate pairwise distance

function is used. Each control flow graph from one program is assigned a unique mapping

to a flowgraph from the other program. This mapping intuitively shows the flowgraphs

represent the same procedure. The mapping is assigned a weight and the mappings

chosen by considering it as an optimization problem. The mappings are chosen to

minimize the sum of all weights associated with the mappings. The weight is the distance

between flowgraphs and is based on the string distance between structured graphs. This

sum weight is known as the minimum matching distance and is known to be metric. Metric

Access Methods using DBM trees [82] are used to perform a similarity search.

5.3 Unpacking and Static Analysis

5.3.1 Unpacking

The query program may have its real contents hidden using the code packing

transformation [20]. Code packing encrypts, compresses, or obfuscates the code by

dynamically generating the original program at runtime. This obfuscation layer is removed

using automated unpacking. The unpacking process employs application level emulation

as proposed in previous research [60].

 C H A P T E R 5

144

5.3.2 Dissasembly and Control Flow Reconstruction

Procedure ::= StatementList

StatementList ::= Statement | Statement StatementList

Statement ::= Return | Break | Continue | Goto

| Conditional | Loop | BasicBlock

Goto ::= 'G'

Return ::= 'R'

Break ::= 'K'

Continue ::= 'C'

BasicBlock ::= SubRoutineList

SubRoutineList ::= 'S' | 'S' SubRoutineList

Condition ::= | ConditionTerm

| ConditionTerm NextConditionTerm

NextConditionTerm ::= '!' Condition | Condition

ConditionTerm ::= '&' | '|'

IfThenCondition ::= Condition | '!' Condition

Conditional ::= IfThen | IfThenElse

IfThen ::= 'I' IfThenCondition StatementList 'H'

IfThenElse ::= 'I' IfThenCondition StatementList

‘E’ StatementList 'H'

Loop ::= PreTestedLoop | PostTestedLoop

| EndlessLoop

PreTestedLoop ::= 'W' Condition 'StatementList '}'

PostTestedLoop ::= 'D' StatementList '}' Condition

EndlessLoop ::= 'F' StatementList '}'

Fig. 38. The grammar of a structured string.

 C H A P T E R 5

145

In our system, an unpacked program is disassembled using speculative disassembly [44].

The disassembly is translated to an intermediate language using the Wire static analysis

framework. The control flow is reconstructed into control flow graphs for each procedure

[60] based on the intermediate code. This and the remaining components of the static

analysis are architecture independent.

The control flow graphs are normalized to eliminate unnecessary jumps such as when an

unconditional branch is used to divide a basic block in two. This is typically done by a

malware for the purpose of changing its byte level content and static string signature. The

result after control flow reconstruction is the set of control flow graphs associated with each

identified program procedure

5.3.3 Structuring

Structuring is a reverse engineering and decompilation technique to transform a control

flow graph into its high level source code representation. We use a structuring algorithm to

transform the control flow graphs into strings. The intuition is that similar control flow

graphs are structured into similar strings [60]. This effectively forms a locality sensitive

hash. The structuring algorithm we use is based on the algorithm used in the DCC

decompiler [41]. The grammar for the resulting string is shown in Fig. 38 using alphabet .

Formally, for program P and for a control flow graph c, let }{ GcP . A structuring

function for a control flow graph is defined as s and a structuring algorithm for program P is

defined as S.

)(

:

csc

MPS

5.4 String Based Signatures

We first experimented with string based signatures. This approach was eventually

discarded in favour of representing signatures using vectors, however insight into the

malware detection problem is gained by examining these novel techniques.

 C H A P T E R 5

146

5.4.1 Feature Extraction

There is an associated string representing control flow for each procedure identified in the

binary. These strings and ordered and concatenated to form a single string to represent the

control flow of the entire binary. The substrings are deliminated by a specific character (eg

‘Z’), The novelty of our approach is to order and concatenate the control flow graph strings

into a single unified string based signature, which allows us to use traditional string

similarity metrics for malware classification. The order of the concatenated strings is

determined by features of the procedure, which are used as sort keys. Procedures that

have duplicate sets of keys are removed from the analysis. The keys in order of

importance are:

 Number of IL instructions in procedure

 Length of string representing decompiled control flow graph

 Number of basic blocks in procedure

 Number of edges in control flow graph

 Number of procedure’s callers

 Number of procedure’s callees

5.4.2 Indexing Using String Metric Access Methods

String metrics are proposed to show the similarity between a query signature and malware

signatures. A similarity search over the malware database enables the malware variant

classification. The string metric we propose is the Levenshtein or edit distance. The

Levenshtein distance between two strings gives the minimum number of insertions,

deletions and substitutions to transform one string to the other. The run-time complexity is

O(nm) where n and m are the lengths of the strings. The Levenshtein distance forms a

metric. A metric allows efficient indexing and searching of objects. Sequence alignment

algorithms also provide suitable string distances. The Smith-Waterman algorithm is an

optimal local alignment algorithm. We propose using Metric Access Methods to perform a

range similarity search. The similarity search finds all malware signatures similar to the

 C H A P T E R 5

147

query with at most r edit operations to transform the query signature to the malware

signature.

String metrics may also be used on the byte-level content of the unpacked malware. We

evaluate the effectiveness of using byte-level content in Section 5.9, and compare it to our

proposed signature of using decompiled control flow graphs.

5.4.3 Indexing Using Genome Strings and Blast

The Smith-Waterman algorithm gives the optimal local sequence alignment between two

strings. The local sequence alignment seeks to provide an alignment between two strings

taking into account the alignment of substrings. Local sequence alignment is used often in

the field of Bioinformatics to identify similarity between genome sequences. It forms a

metric allowing for Metric Access Methods for indexing and searching. The Smith-

Waterman algorithm has quadratic run-time complexity like the Levenshtein distance. A

quadratic running time has poor efficiency when the length of the strings becomes

moderately large. The Basic Local Assignment Search Tool (BLAST) [169] approximates

the Smith-Waterman algorithm using a heuristic search. BLAST is used frequently to

improve the efficiency of genome searches. We propose using off-the-shelf BLAST

software to perform similarity searches of our malware signatures. To do this, we translate

our control flow graph signatures to a protein string in the FASTA format to be used as

input to the BLAST software. To construct a protein sequence, the decompiled string is

translated character by character to a genome identifier. The BLAST algorithm does not

employ distance metrics for the similarity search, but uses the notion of an expected value,

which describes the statistical probability of the occurrence of a random signature.

The use of off-the-shelf genome similarity search software is a novel aspect used by our

approach, and to the best of our knowledge has not been proposed in earlier research.

5.4.4 Indexing Using the NCD Metric Access Method

We propose using the normalized compression distance (NCD) [84] to perform a similarity

search. The NCD utilises the notion of compressed objects being related to Kolmorogov

complexity. The NCD takes note that when two objects are related, compressing the

concatenated objects results in a blob of similar length to compressing only one of the

 C H A P T E R 5

148

objects. The NCD provides a measure of dissimilarity or distance between objects without

explicit knowledge or representation of the internal structure of the objects in question. It is

able to provide a distance measure using many existing compression algorithms without

modification. To recap Chapter 2, the NCD is defined as:

where C(x) is the length of the compressed object, and C(xy) is the length of the

compressed concatenated objects.

For the NCD to perform effectively, the size of the objects must be less than the

compressors window size. The NCD is a metric and so can employ the use of Metric

Access Methods to index and search the signatures. To the best of our knowledge, Metric

Access Methods have not been used in conjunction with the NCD and malware indexing by

previous research.

5.5 Vector Based SIgnatures – Pre-filtering

To reduce the search space for potentially related malware, we use an initial similarity

search to select candidate malware variants. We chose a vector based approached

because during our evaluation we observed that this approach was more efficient and

effective. Note that in our final system we use both vector based signatures for pre-filtering

and the set of strings based signatures for refinement.

We construct and search for feature vectors that are associated with malware. We propose

two methods to extract features for the feature vector using either k-subgraphs or q-grams

of structured control flow. Q-grams are more efficient and evaluation shows that they

generate more accurate results. The use of approximating a set of graphs by a vector is a

novel contribution of this thesis.

5.5.1 The K-Subgraph Feature

)}(),(max{

)},(),(min{)(
),(

yCxC

yCxCxyC
yxNCD

 C H A P T E R 5

149

Using subgraphs of size k to characterize control flow has been investigated in previous

literature [115]. Subgraphs of size k are those subgraphs in the control flow graph which

have k nodes. We use each possible subgraph of size k in the control flow graphs as

features of the program. Our novel contribution is the use of these features in the

construction of a feature vector which is subsequently used in a similarity search.

For each control flow graph, we construct a depth first spanning tree to eliminate cycles.

We then perform a traversal of all possible paths in the tree where the traversal is

terminated when k nodes have been visited [115].

Given a subgraph of size k, the graph is transformed into a unique and canonical

representation using the Bliss open-source toolkit [170]. A canonical graph labeling is

formed and the adjacency matrix of the resulting graph is stored as a string. This string

represents a feature of the malware. Graph canonization is not known to take polynomial

time in the general case. An example of possible k-subgraph features from a control flow

graph when k is 7 is shown in Fig. 39.

5.5.2 The Control Flow Q-Gram Feature

Q-grams can be employed to represent control flow if the control flow graph is modeled as

a string. We use structuring to generate the strings. A q-gram is any character sequence in

the string of length q, constructed as a sliding window. For q-grams to be an effective

feature, the strings must satisfy the property that similar control flowgraphs have similar

strings. Each possible q-gram in the string represents a feature. Constructing the strings

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_3

L_6

L_7L_1

L_2 L_4

L_5

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

L_0

L_3

L_6

L_1

L_2 L_4

L_5

0101000

0000000

0000010

0010100

0000010

0000001

1001000

0001010

0000000

1000000

0000100

0010000

0101000

1000000

0000001

0000100

0000001

0010000

0001010

0010000

0100100

Fig. 39. The k-subgraph feature.

 C H A P T E R 5

150

and the q-grams can be done in polynomial time and is more efficient than using k-

subgraphs. The use of q-grams on the structured control flow graphs is a novel contribution

of this thesis.

 5.5.3 Feature Selection

The number of possible and distinct features in a program is large. To reduce the number

of distinct features to a feasible number, the set of the 500 most frequent features are

selected from a training set of malicious and benign programs. Feature selection works by

counting the number of times each feature occurs in the training set and then ranking them

in descending order. The top 500 were our selected features. Frequency of features forms

our feature selection and is reasonable considering we are performing a nearest neighbour

search. If we were performing malware detection using binary classification then another

form of feature selection would be more suitable, for example, Mutual Information. The

number of features, 500, was chosen to replicate previous work used in n-gram

classification. We noted no significance to the accuracy of the system when this number

was increased further. We did notice that decreasing this number using dimensionality

reduction did decrease the accuracy as explained in section 5.6.4. Both program classes

are used because it is our intuition that there is no significant classification difference in

control flow between malicious and benign programs. This intuition forms the basis for our

instance-based learning approach to classification. These features represent dimensions in

a program’s feature vector, and the frequency of a particular feature represents the

dimension’s magnitude. For the remaining features not in the 500 most frequent, they are

ignored when constructing the feature vector of a program.

5.5.4 Dimensionality Reduction

To reduce the dimensionality of the feature vector obtained from the previous stage,

Principal Component Analysis (PCA) [171] can be employed. Our pilot studies performed

more effectively when PCA was not used. We do not consider dimensionality reduction any

further. Fig. 8 illustrates the process of feature selection and dimensionality reduction.

5.5.5 Feature Vector Distance

To calculate the pairwise similarity between two feature vectors, a distance metric is

employed. Many distance metrics are possible including the Euclidean distance. We use

 C H A P T E R 5

151

the Manhattan distance because of its efficiency when compared to the more traditional

Euclidean distance. This distance is also reportedly more robust for high dimensional data

when compared to the Euclidian distance. The more familiar cosine similarity measure is

not used in our work because it is not a metric distance function and therefore does not

allow for efficient database indexing. The Manhattan distance (Section 2.7.3) is also known

as the city block or L1 distance. To recap Chapter 2, for n-dimensional vectors p and q, the

Manhattan distance is:

5.5.6 Indexing and Searching the Feature Vectors

We group the feature vectors into buckets. To group the feature vectors, the neighbours of

each feature vector that are equal to or exceed the similarity of 0.6 are placed in the same

bucket. This threshhold was chosen empirically through experimentation.

We pre-filter malware variants by performing a range nearest neighbour similarity search to

our query feature vector. Given database D, query q, and threshold t, the set of nearest

neighbours R is:

t
q

qrd
DrR

),(
1:}{

 The results of the similarity search are candidate matches that can be used in the

subsequent stage of comparing programs using the assignment problem. The nearest

neighbours of the query enable us to determine if those neighbours are variants of the

query. All samples available are typically used for the queries once the database is

created. The nearest neighbours of those queries, as described in the introduction, can

identify polymorphic variants, group samples by their family, or enable incident response to

identify clusters of infection. More discussions of the algorithms and implementation of the

similarity search are given in Section 8.

n

i

ii qpqpqpd
1

11),(

 C H A P T E R 5

152

5.6 Set of Strings Based Signatures – Malware Classification

We propose a more accurate distance function to be applied to candidate malware variants

after their identification in the pre-filtering stage. This improved distance is based on the

distance between the control flow graphs’ structured strings and is a variant of the

minimum matching distance.

5.6.1 A Distance Function for Programs Based On the Linear Sum

Assignment Problem

The linear sum assignment problem is to match distinct pairings of elements between two

sets. Each match or assignment has an associated weight. The assignments are made

such that, the sum of the weights are minimized. The linear sum assignment problem is

also known as a minimum weight perfect matching.

The linear sum assignment problem is formally defined as:

Given two sets, A and T, of equal size, together with a weight function C: A × T → R. Find

a bijection f: A →T such that the cost function:

is minimized.

For each program examined by our malware classification system, there exists an

associated set of control flow graphs. Each set is represented as a set of structured

strings. The assignment problem is used to match control flow graphs between sets. The

intuition is that these matched control flow graphs are shared characteristics between

malware variants. The weight of the assignment is the string metric or distance between

those strings. We use the Smith-Waterman algorithm. We construct a matrix containing the

weights of all possible pairings between two programs’ sets of structured strings. If the

number of elements in each set is not identical, then the elements that cannot be paired to

existing elements are paired to the null element. The weight of this pairing is equivalent to

the size of the element’s string.

Aa
afaC))(,(

 C H A P T E R 5

153

We define the distance between programs as the minimal cost function generated by a

solution to the assignment problem using the matrix of weights. The use of the assignment

problem is a novel contribution used in our system to show the distance between

programs. This cost is a variation of the minimum matching distance [85] which is known to

be metric.

Formally, let two programs P1 and P2 be defined as sets of control flow graphs and let S be

a structuring function.

We first normalize the size of the sets making them equal. The additional elements, bj,

used in the normalization process are place holders and not used for any other purpose.

The function ed(a,b) is defined as the distance between strings. The distance, d, between

the programs is found as follows:

Find a bijection such that the distance, d is minimized.

5.6.2 Solutions to the Assignment Problem

The assignment problem can be solved optimally using the Munkres or Hungarian

algorithm [158] in time O(N3). Although an optimal solution is available, for programs that

have a large number of control flow graphs, the time complexity required of O(N3) is

impractical. In these cases when the number of nodes is greater than 300, we use a

 C H A P T E R 5

154

heuristic solution based on a greedy assignment. The greedy assignment matches an

element from one set by selecting the element from the other set with the lowest

associated weight. The time complexity is O(N(N+1)/2). The greedy solution performs

more efficiently, but the program distance it identifies is often significantly higher than the

optimal solution.

5.6.3 Similarity Search of Malware

The similarity between two objects is given by:

We scale the distance relative to our query so we can perform a range search relative to

only the query using an efficient metric access method. Because we scale to the query and

not max(|p|,|q|) we have cases where d(p,q) > |q|. In this case our similarity function would

give us a negative result. To simplify interpretation of this result, we say that it is not at all

similar and discard it.

A threshold for similarity, t, is chosen as 0.6. The threshold was chosen manually after an

empirical evaluation. We then use this to identify any nearest neighbour p to the query q in

the set of malware, E, returned by our pre-filtering process.

qqpdt
q

qpd
Epp),(,

),(
1,:

5.7 Nearest Neighbour Similarity Searches

5.7.1 Metric Distance Functions

The distance between two objects shows their dissimilarity. If the distance function has the

properties of a distance metric then indexing and searching a database can be performed

more efficiently. The formal definition of a metric distance function is given in Section 2.7.1.

Given metric distance functions can enable efficient database access, it is beneficial to

compare objects or birthmarks (software fingerprints) using distance functions that are

metric. Examples of metric access methods are in [81-83].

qqpdiff
q

qpd
qps),(

),(
1),(

 C H A P T E R 5

155

5.7.2 Similarity Search Using Metric Access Methods

To search for malware that are similar to our query in both the pre-filtering and

classification stages, a metric access method is employed. Metric trees encapsulate data

structures including BK Trees [87], VP Trees [81] or dynamic indexing structures such as

M-Trees [83] and Slim-Trees [88]. Our implementation uses the GBDI metric access

method library [172].

 In our prototype, we use a Vantage Point Tree [81] for indexing the feature vectors used in

the pre-filtering stage. Then, the final classification process uses DBM-Tree [82] to perform

a similarity search. Note that our classification system uses two levels of indexing and has

different metric access methods for each.

In our prototype we can configure the similarity search to return either any similar objects,

or all similar objects. We use the any range search for classification, and the all range

search for pre-filtering. By performing a similarity search to find any similar object, the

performance is significantly improved when there are many near duplicate malware stored

in the database. The any range search was implemented by us into the GDBI Arboretum

library [172].

5.8 Implementation and Evaluation

5.8.1 Implementation

Our implementation is built as a set of modules in the Malwise malware and static analysis

framework. Malwise consists of approximately 100,000 LOC of C++ and its features

include unpacking using application level emulation and static analysis. The modules we

developed to perform malware classification consist of approximately 3,000 LOC of C++.

Emulation is used to perform unpacking. However, the classification process uses only

static analysis and that is the focus of our current work.

5.8.2 Effectiveness of String Signatures

The first evaluation we performed was to examine the similarity matrices for our string

based signature classification algorithms on a known family of related malware. We also

compared these methods to the q-gram approach. The system ideally identifies high

similarity between malware that belongs to the same family. The malware chosen was the

 C H A P T E R 5

156

Roron family of malware to replicate previous research [60, 61, 110]. The family of

malware variants was identified by an Antivirus vendor and may not necessarily have been

entirely trustworthy. We obtained the malware from the Offensive Computing malware

database [173]. Identified malware variants have similarities exceeding or equal to 0.6.

Identified variants additionally have their table cells highlighted. The more cells highlighted

the more effective each approach is. We also evaluate using only the byte-level content for

similarity comparisons. The Roron malware family is not stringly polymorphic, so byte-level

content is still somewhat effective. The most important observation is that comparing string

based signature approaches in Table 9 to the q-gram approach in Table 10 shows that the

q-gram vector based signature detects more malware variants. It is also noted that q-

grams are theoretically more efficient. It is for these reasons we decided to focus on vector

based signatures.

5.8.3 Evaluation Setup

To perform more evaluations of the classification system, 17,430 real malware with unique

MD5 hashes were collected between 02-01-2009 and 8-12-2009 from honeypots in the

mwcollect Alliance [174] network. From these malware, 15,398 were found to be valid

object files for Windows Vista – the remaining binaries were invalid, specific to Windows

XP, and not able to be processed by our prototype’s unpacking system. In addition to the

malware, we employed the use of 1601 benign binaries, which were obtained from the

Windows system directory and the Cygwin [175] executable directories. The system we

used to evaluate the prototype classification system was an Intel Q6600 Quad Core

2.4GHz PC with 4G of memory running 32-Bit Windows Vista Home Premium, Service

Pack 1.

The prototype system requires training to select the 500 most common q-grams and k-

subgraphs. 1769 malware and 1601 benign binaries were used in the training set to

generate features.

5.8.4 Evaluation of False Positives in Pre-filtering

To evaluate the accuracy of the q-gram and k-subgraph classification algorithms we first

constructed a database of 10,000 malware signatures. Then, we found the similarities

between each of 10,000 malware and 280 benign binaries from the windows system

 C H A P T E R 5

157

directory. This evaluation is to identify how effective the pre-filtering stage is at filtering non

matching samples. We expect that similarity found should be generally quite low, and any

similarity found above or equal to 0.6 identifies a false positive. The size of the q-gram was

4. The size of the k-subgraph was 10 as recommended in the existing literature. Better

selections of the size k were not investigated. The threshold of 0.6 was chosen empirically

through experimental testing.

The evaluation shown in Table 11 demonstrates that false positives, or collisions, occur

using this pre-filtering algorithm with either feature. The q-gram feature is shown to

generate considerably less collisions and false positives compared to using k-subgraphs of

size 10. For this reason, we excluded using k-subgraphs as part of the classification

process in further evaluations.

TABLE 9. SIMILARITY MATRICES FOR RORON MALWARE.

 ao b d e g k m q a

ao 1.00 0.60 0.35 0.38 0.45 0.74 0.60 0.60 0.73

b 0.60 1.00 0.46 0.50 0.37 0.73 0.95 0.96 0.73

d 0.35 0.46 1.00 0.64 0.59 0.36 0.46 0.46 0.35

e 0.38 0.50 0.64 1.00 0.61 0.42 0.49 0.50 0.40

g 0.45 0.37 0.59 0.61 1.00 0.47 0.37 0.37 0.46

k 0.74 0.73 0.36 0.42 0.47 1.00 0.73 0.72 0.86

m 0.60 0.95 0.46 0.49 0.37 0.73 1.00 0.96 0.72

q 0.60 0.96 0.46 0.50 0.37 0.72 0.96 1.00 0.72

a 0.73 0.73 0.35 0.40 0.46 0.86 0.72 0.72 1.00

Levenshtein String Metric on Byte-level Content

 ao b d e g k m q a

ao 1.00 0.70 0.42 0.42 0.44 0.72 0.70 0.70 0.70

b 0.70 1.00 0.47 0.47 0.48 0.94 1.00 1.00 0.93

d 0.42 0.47 1.00 0.71 0.80 0.48 0.47 0.47 0.48

e 0.42 0.47 0.71 1.00 0.72 0.47 0.47 0.47 0.47

g 0.44 0.48 0.80 0.72 1.00 0.49 0.48 0.48 0.50

k 0.72 0.94 0.48 0.47 0.49 1.00 0.94 0.94 0.96

m 0.70 1.00 0.47 0.47 0.48 0.94 1.00 1.00 0.93

q 0.70 1.00 0.47 0.47 0.48 0.94 1.00 1.00 0.93

a 0.70 0.93 0.48 0.47 0.50 0.96 0.93 0.93 1.00

Levenshtein String Metric

 ao b d e g k m q a

ao 0.94 0.80 0.50 0.52 0.52 0.82 0.80 0.80 0.82

b 0.80 0.93 0.51 0.54 0.53 0.88 0.93 0.93 0.89

d 0.50 0.51 0.93 0.77 0.83 0.52 0.51 0.51 0.52

e 0.52 0.54 0.77 0.94 0.85 0.54 0.54 0.54 0.54

g 0.52 0.53 0.83 0.85 0.93 0.53 0.53 0.53 0.53

k 0.82 0.88 0.52 0.54 0.53 0.94 0.88 0.88 0.92

m 0.80 0.93 0.51 0.54 0.53 0.88 0.93 0.93 0.89

q 0.80 0.93 0.51 0.54 0.53 0.88 0.93 0.93 0.89

a 0.82 0.89 0.52 0.54 0.53 0.92 0.89 0.89 0.93

Normalized Compression Distance (NCD) Metric

 C H A P T E R 5

158

5.8.5 True Positives of the System Compared to Previous Research

The next evaluation we performed was to examine the similarity matrices for our complete

classification algorithms on a known family of related malware. This evaluation

incorporates all elements of our system and is the main evaluation we performed on the

true positive detection rate of the system. The system ideally identifies high similarity

between malware that belongs to the same family. We compared the q-gram classification

TABLE 10. SIMILARITY MATRICES FOR RORON MALWARE.

 ao b d e g k m q a

ao 0.44 0.28 0.27 0.28 0.55 0.44 0.44 0.47

b 0.44 0.27 0.27 0.27 0.51 1.00 1.00 0.58

d 0.28 0.27 0.48 0.56 0.27 0.27 0.27 0.27

e 0.27 0.27 0.48 0.59 0.27 0.27 0.27 0.27

g 0.28 0.27 0.56 0.59 0.27 0.27 0.27 0.27

k 0.55 0.51 0.27 0.27 0.27 0.51 0.51 0.75

m 0.44 1.00 0.27 0.27 0.27 0.51 1.00 0.58

q 0.44 1.00 0.27 0.27 0.27 0.51 1.00 0.58

a 0.47 0.58 0.27 0.27 0.27 0.75 0.58 0.58

Exact Matching

 ao b d e g k m q a

ao 0.70 0.28 0.28 0.27 0.75 0.70 0.70 0.75

b 0.74 0.31 0.34 0.33 0.82 1.00 1.00 0.87

d 0.28 0.29 0.50 0.74 0.29 0.29 0.29 0.29

e 0.31 0.34 0.50 0.64 0.32 0.34 0.34 0.33

g 0.27 0.33 0.74 0.64 0.29 0.33 0.33 0.30

k 0.75 0.82 0.29 0.30 0.29 0.82 0.82 0.96

m 0.74 1.00 0.31 0.34 0.33 0.82 1.00 0.87

q 0.74 1.00 0.31 0.34 0.33 0.82 1.00 0.87

a 0.75 0.87 0.30 0.31 0.30 0.96 0.87 0.87

Heuristic Approximate Matching

 ao b d e g k m q a

ao 0.86 0.53 0.64 0.59 0.86 0.86 0.86 0.86

b 0.88 0.66 0.76 0.71 0.97 1.00 1.00 0.97

d 0.65 0.72 0.88 0.93 0.73 0.72 0.72 0.73

e 0.72 0.80 0.87 0.93 0.80 0.80 0.80 0.80

g 0.69 0.77 0.93 0.93 0.77 0.77 0.77 0.77

k 0.88 0.97 0.67 0.77 0.72 0.97 0.97 0.99

m 0.88 1.00 0.66 0.76 0.71 0.97 1.00 0.97

q 0.88 1.00 0.66 0.76 0.71 0.97 1.00 0.97

a 0.87 0.97 0.67 0.77 0.72 0.99 0.97 0.97

Q-Grams

 ao b d e g k m q a

ao 0.86 0.49 0.54 0.50 0.87 0.86 0.86 0.86

b 0.87 0.57 0.63 0.62 0.96 1.00 1.00 0.96

d 0.61 0.64 0.85 0.91 0.64 0.64 0.64 0.64

e 0.64 0.69 0.85 0.90 0.68 0.69 0.69 0.68

g 0.62 0.68 0.91 0.91 0.68 0.68 0.68 0.68

k 0.88 0.96 0.58 0.62 0.61 0.96 0.96 0.99

m 0.87 1.00 0.57 0.63 0.62 0.96 1.00 0.96

q 0.87 1.00 0.57 0.63 0.62 0.96 1.00 0.96

a 0.87 0.96 0.58 0.62 0.61 0.99 0.96 0.96

Optimal Distance Using Assignment Problem

 C H A P T E R 5

159

algorithm and the assignment problem classification algorithm. Additionally, we made

comparison to algorithms proposed in previous research. We compared our system to a

real-time flowgraph based classification system that uses exact or isomorphic testing of

control flow graphs in [61]. We expect our approximate matching algorithm to detect more

variants than the exact matching system. The second comparison was to a previously

proposed system that uses an approximate control flow graph matching algorithm in [60].

The previously proposed system uses an alternative heuristic algorithm based on greedy

matching and string metrics of the structured control flow graphs. The system we

compared against does not employ the assignment problem or a program distance metric.

TABLE 11. FALSE POSITIVES USING K-SUBGRAPHS AND Q-GRAMS.

Similarity K-Subgraphs QGrams

0.0 1302161 2334251

0.1 463170 413667

0.2 356345 40055

0.3 285202 7899

0.4 200326 3790

0.5 129790 327

0.6 46320 11

0.7 10784 0

0.8 5883 0

0.9 19 0

1.0 0 0

 C H A P T E R 5

160

The results are shown in Table 12. The results show that our prototype detects more

malware variants in this family of malware than existing systems.

The Netsky, Roron, and Klez, and Frethem malware were chosen to continue the

evaluation of variant detection. For each malware family, the maximum number of possible

variants is listed, along with the detection results of our algorithm and existing algorithms

[60, 61]. Table 4 lists the results. Ideally, the number of variants detected would be the

maximum, meaning all variants were related to each other. Our system detects many but

not all variant relationships. It may be that some of the variants are quite distinct. The

classification algorithms we proposed in this research are shown to be highly effective and

detect more malware than previous systems. Looking at the Frethem malware family, our

algorithm detects 217 variant relationships, while the next best system detects 144

variants.

5.8.6 Evaluation of the System’s False Positives

We next evaluate the number of false positives generated by the system. The number of

false positives gives indication of how the distance functions perform using non similar

programs. In our first test we simply aggregated the families of malware from our true

TABLE 12. MALWARE DETECTION

Classification Algorithm Klez Netsky Roron Frethem

Maximum 36 49 81 289

Exact 20 29 17 139

Heuristic Approximate 20 27 43 144

Q-Grams 20 31 79 226

Optimal Distance 22 46 73 220

Q-Grams + Optimal Distance 20 43 73 217

 C H A P T E R 5

161

positive testing. Our system did not report any samples as belonging to incorrect families.

We then implemented a more thorough test of our system. We performed an evaluation

using a much larger malware database size of 10,000. We classified the set of 1601

benign programs and expected that any identified malware would be a false positive. The

evaluation demonstrates false positives when using the q-gram as is also demonstrated in

Table 13. For a database size of 10,000 the false positive rate is shown to be less than

1%. We also show that using the assignment problem solution in conjunction with the q-

gram classification results in fewer false positives.

We suspect the reason for the remaining false positives is because we do not eliminate

statically linked functions from the analysis. Programs that share the same statically linked

objects have a high similarity, even when the programs are generally unrelated.

TABLE 13. FALSE POSITIVES.

Classification Algorithm False Positives FP Percentage

Q-Grams 10 0.62

Q-Grams + Optimal Distance 7 0.43

 C H A P T E R 5

162

5.8.7 Algorithmic Complexity Analysis

The algorithmic complexity of comparing malware signatures is shown in Table 14. We

examine our string based signature based on using the optimal edit distance, the vector-

based signature using the Manhattan distance, and the set of strings-based signature

using the optimal and greedy approach to solving the assignment problem. We also

compare our approach with previous work in SMIT, exact control flow graph matching in

[61], and traditional graph algorithms. Our vector-based signature is the most efficient and

a distance between signatures can be performed in O(1) relative to the size of the

programs in terms of number of procedures. This is why our system performs so efficiently.

The string-based signature performs quite slowly because each procedure incurs a cost, k,

relative to the size of the procedures’ decompiled control flow graphs. Our set of strings-

based distance can be performed in O(N3) which is comparable to the previous research in

SMIT [112] which uses an approximation to the graph edit distance on the programs’ call

graphs. For large graphs we can use the approximate algorithm in our approach which

TABLE 14. ALGORITHMIC COMPLEXITY COMPARISONS

Algorithm Complexity

SMIT O(N3)

Exact Matching O(NlogN)

Graph Edit Distance NP

Graph Isomorphism NP

String O((k*N)2)

Vector O(1)

Set of Strings-Optimal O(N3)

Set of Strings-Approximate O(N(N+1)/2)

 C H A P T E R 5

163

performs in O(N(N+1)/2) and is more efficient than SMIT. The exact matching algorithm

was proposed in our previous research but does not perform approximate matching of

control flow graphs which our current work does. The classical single graph based distance

and equality algorithms are either in NP (graph edit distance) or believed to be in NP

(graph isomorphism) making control flow intractable when used for a signature.

5.8.8 Efficiency

To evaluate the efficiency of our system, we record the execution time to classify each of

1601 benign programs and 15,398 malware. The malware database is pre-populated with

10,000 malware signatures. We evaluate the complete processing time of the system

including unpacking, disassembly, control flow reconstruction and analysis. The processing

times for the malware and benign programs are shown in Fig. 40. The malware processing

times are higher in general. The median time for processing malicious samples is 0.84

seconds. 90% of the samples could be processed in under 1.31 seconds. The maximum

time taken is 585 seconds and may have resulted from excessive memory consumption

causing thrashing. Some candidate buckets were large due to a high number of related

malware variants, resulting in higher than average pairwise comparisons using the less

efficient distance function. Unpacking binaries using emulation may also cause significant

overhead in some cases. If applied in a desktop environment, the analysis may need to

flag such binaries that impact performance and whitelist known benign programs that

would otherwise cause false positives. In practice, we do not see these edge cases as

reducing the effectiveness if they are handled in these ways. The median time for

processing the benign binaries is 0.06s. 90% of samples could be processed in under 0.56

Fig. 40. Malware and benign sample processing times

0.01

0.1

1

10

100

1000

0 50 100

 C H A P T E R 5

164

seconds. Classifying only the Windows system programs has a median time of 0.15s.

Processing benign programs is the expected case and performs more quickly than

classifying malware due to the extra overhead of unpacking. The slowest time is 8.06

seconds which is still reasonable for industrial deployment. Our system improves the

performance in classifying benign programs compared to the less effective exact matching

algorithm proposed in [61] which has a median Windows system directory processing time

of 0.25s. This is not due to classification performance, which is almost identical, but due to

improvements to efficiency in the static analysis component. The general results indicate

that the speed of classification may warrant the system suitable for real-time use for

desktop Antivirus or on an Email gateway system.

5.9 Limitations and Discussion

5.9.1 Code Packing

A malware obfuscation technique commonly employed to resist static analysis is packing.

Malware packing that encrypts, compresses, or obfuscates the code contents and then

later regenerates the original program needs to be removed. The majority of packed

samples can be automatically unpacked, but there exist binaries which evade this analysis.

Instruction virtualization [21, 176] is resistant to an entirely automated static analysis.

Instruction virtualization implements an emulator which interprets bytecode representing

the hidden code. Therefore, the hidden code in its original unpacked form is never

revealed. If unpacking cannot be achieved by a malware classification system, then the

packing tool may be classified instead of the packed contents. It is probably advantageous

for Antivirus to blacklist programs that cannot be unpacked. Manually written static

unpackers can be developed on a case by case basis and this is what is traditionally

employed by commercial Antivirus. A better approach is to detect packed programs and

flag them as suspicious. Benign programs that are packed can be whitelisted. The scope of

our system is limited to malware that can be unpacked using the approach of application

level emulation. Application level emulation is fast but because of its limited use of a faithful

emulator, malware can detect its presence and therefore change its behaviour. Unpackers

such as Renovo [29] employ whole system emulation and are more resistant to detection.

The current problem is that such systems have poor performance in terms of real-time

 C H A P T E R 5

165

constraints. Another approach is to unpack on the fly during program run-time by

monitoring memory access, as is done by OmniUnpack [177]. This system claims real-time

performance suitable for Antivirus. Such a system could be combined with our work to

make a real-time malware classification capable of unpacking most or all non instruction

virtualization based malware.

5.9.2 Obfuscation

For the most part, code packing is the obfsucating process employed by malware authors.

Therefore, once a sample has been unpacked, analysts have access to the original

unobfuscated image. This is becoming prevalent as malware becomes more like traditional

software development and malware authors employ high level languages to implement

their works.

Control flow can be obfsucated but this is typically not present in most malware today.

Code insertion, deletion, substitution, and reordering within a basic block does not affect

the structured control flow that our system uses. This makes control flow a more invariant

program representation than traditional byte-level signatures. If control flow is modified,

then our system can perform an approximate match. The changes to the decompiled

strings should show the changes locally. The global view of the strings should still retain

similarity. Through the normal process of software development and evolution, decompiled

strings of control flow graphs can identify those changes while still identifying them as

variants.

Obfuscations such as opaque predicates which add conditional branches which always

evaluate to the same path but are hard to determine statically present a bigger problem.

Unless opaque predicates account for the majority of the control flow, our system should

still detect the malware as a variant. Other obfsucations including negating conditions and

swapping the branches resulting in different decompiled strings. A solution to this could

involve using an unordered Abstract Syntax Tree (AST) instead of a string. If malware in

the future obfuscates control flow like this, we may consider using k-subtrees of the AST

instead of q-grams of the decompiled strings.

 C H A P T E R 5

166

Concluding Remarks

Malware can effectively be characterized by its control flow. We proposed a malware

classification system using approximate matching of control flow graphs. We first tried

using string signatures to describe malware. We then used techniques to extract q-grams

and k-subgraphs of sets of control flow graphs and created feature vectors. From these

feature vectors we were able to construct an efficient distance metric and similarity search.

We also used the assignment problem and the string distance to construct a distance

metric between programs. We implemented these algorithms in a prototype and performed

an evaluation of the system. Our evaluation showed that our work more effectively

detected malware than previous comparable systems. The number of false positives was

low, and the efficiency of the prototype demonstrated that the system could be used on a

desktop system or Email gateway.

 C H A P T E R 6

167

Chapter 6: Software Similarity and Classification in

the Cloud

Simseer and Clonewise are online web services that perform the software similarity and

classification applications proposed in the previous chapters. There are two services

available - Simseer and Clonewise. Simseer exposes the software implemented in Chapter

3 and can identify similarity between submitted executables based on the similarity in the

control flow of each binary. Simseer extends Malwise II from Chapter 5 by providing a

search service, a clustering service, and an evolutionary tree visualisation service.

Clonewise exposes an online version of the system in Chapter 4. Clonewise takes a tar

ball of a software system and identifies and reports any embedded package-level clones in

that software. Both Clonewise and Simseer are built on a scalable cloud infrastructure

hosted by Amazon's elastic compute cloud (EC2).

6.1 Introduction

Cloud services offer the ability for people to use the applications developed throughout this

thesis in an easy to use manner. The processing is offloaded to behind the scene servers

that can be scaled up and out easily. These cloud services could potentially integrate with

client based software, thus affording the best of cloud and traditional software services.

6.1.1 Services

We have implemented multiple services based on Malwise and Clonewise. These services

are described below.

6.1.1.1 Simseer

This service takes as input a ZIP archive of 32-bit x86 executables. Using Malwise, the

similarities between each sample is identified. These similarities are then passed to

phylogenetics software to graphically visualize an evolutionary tree of relationships

between the samples.

6.1.1.2 Simseer Search

This service takes as input a threshold of similarity and a 32-bit x86 executable. The

executable is used as query to search a database of samples. The result is all samples in

 C H A P T E R 6

168

the database that are at least the threshold of similarity similar to the query. Each sample

submitted to the service is stored in the database for future comparison and each sample

is scanned with traditional Antivirus. This system allows users to take an unknown sample

and identify if it is related to any previously identified malicious samples. Additionally, code

packing detection is performed as a heuristic to identify obfuscated samples that cannot be

deobfuscated by Malwise.

6.1.1.3 Simseer Cluster

This service takes as input a number specifying the number of clusters and a a ZIP archive

of 32-bit x86 executables. Using the feature vector approach of Malwise, the vectors

representing each sample are clustered using hierarchical clustering and the cosine

distance as a notion of dissimilarity. The results show the samples clustered into groups of

similar samples. Each sample is also scanned with traditional AntiVirus which enables a

user to identify the family name of potential malware. Like Simseer Search, if an unknown

sample is in the same family of known malicious samples, the sample is likely to be

malicious also.

6.1.1.4 Clonewise

This service takes as input an email address and a tar ball of source code. The source

code can be of any language. Clonewise reports via E-Mail any library of 420 identified

possible clones that are present in the tar ball. The results show which files are shared

between the tar ball and identified clones and the importance of each file in respect to

clone determination.

6.1.2 Structure of the Chapter

The structure of this chapter is as follows: Section 6.2 discusses the design and

implementation of our system as a cloud service. Section 6.3 gives details on how to

access our service. Section 6.4 looks at future work. Finally, Section 6.5 gives our

concluding remarks.

6.3 System Design and Implementation

The system uses multiple Virtual Private Servers (VPS) in the cloud and could potentially

be scaled to operate on large server farms. Both Simseer and Clonewise run on the same

infrastructure. The servers can be divided into serving the frontend of the system, those

 C H A P T E R 6

169

serving the backend of the system, and those supporting the network infrastructure. All

servers run on the Amazon EC2 elastic compute cluster cloud infrastructure and in our

work use the Linux Ubuntu 12.10 operating system distribution. The frontend and

supporting infrastructure use a 64-bit platform and the backend uses a 32-bit platform.

6.3.1 The Web Frontend

The frontend of the system provides infrastructure to support serving the web content and

accepting submissions to the services. Chiefly, this part of the system uses the Apache

web server. This node is a micro instance and has 615M of memory, 1 core, and is

specified as having up to 2 EC2 compute units for small bursts.

The web frontend is the user interface to the Simseer and Clonewise cloud service and the

landing pages and the final results are shown in Fig. 42 - Fig. 48. A user can submit

executables and file archives to Simseer or tar balls to Clonewise. Our frontend

implementation is coded in the server side PHP programming language and uses the

Twitter Bootstrap CSS (Cascading Style Sheets) to implement the presentation.

Both Simseer and Clonewise are currently implemented on the same web server to reduce

the operational costs of Amazon EC2. This is achieved by separating each service on its

own virtual host. The virtual host for Simseer is www.simseer.com and the virtual host for

Web Server

HTTP Load

Balancer

Scan Server Scan Server

Log Server

Reporting Server

Mail-1

Mail-2

Primary DNS

Secondary DNS

Bugzilla

File Server

Health Monitor

Malware Feeds

SCM Server

Build Server

Fig. 41. The cloud services infrastructure.

 C H A P T E R 6

170

Clonewise is www.codeclones.com. Potentially, if the system requires to be scaled, each

service could be placed on its own isolated host. Likewise, these nodes could be placed

behind a load balancer for high availability and scalability.

The PHP code in the frontend examines the files submitted to it and performs sanity

checking. For example, Simseer for each archive submitted, it will check that the ZIP

archive is valid, does not contain an excessive number of samples, does not contain

symbolic links as archive members, and does not contain archive member names using

Fig. 42. Simseer landing page.

Fig. 43. Simseer results.

 C H A P T E R 6

171

special characters. Clonewise performs an equivalent amount of sanity checking on tar

balls.

Logging is performed for each submission and a copy of the submission is made to a

directory that is stored on the network's file server. The web submission is then relayed to

a HTTP load balancer via a Python script which will distribute the job to a scan server. The

scan server will then report the results as an XML document and the frontend will make a

copy of this report on the file server and present it in a suitable form to the user.

Additionally, all previously generated reports can be retrieved via another wbe-based

request given their MD5 hashes.

6.3.2 Cluster-based Load Balancing

As described in the previous section, the frontend web server resubmits each job to a

separate node that distributes the work. The load balancer is implemented with an Apache

web server. The node is a micro instance and has 615M of memory, 1 core, and up to 2

EC2 compute units for small bursts. The load balancing distributes jobs to a cluster so that

each node in the cluster receives approximately the same number of jobs as every other

node. The jobs to the cluster nodes are sent as web requests.

6.3.3 Backend Clustering and Work Scheduling

The scan nodes in the cluster backend perform the backend work for each job. There are

currently 3 nodes in the backend cluster that perform job requests. Each node is a small

instance and has 1.7G of memory, 1 core, and 1 EC2 compute units.

 C H A P T E R 6

172

The backend cluster nodes run the Apache web server and accept requests via a PHP

web interface. When a job is received, it is passed to a script on the node. This script

launches a network client which submits the job to a network daemon listening on a local

TCP port.

Each scan node listens locally on a TCP port to accept scan jobs. The network daemon

and client are implemented in C++. This daemon queues and schedules jobs. Currently, 1

job can run on 1 node at any one time so that the server does not consume excessive

Fig. 44. Simseer Cluster landing page.

Fig. 45. Simseer Cluster results.

 C H A P T E R 6

173

resources. Running multiple jobs in parallel places more pressure on memory usage per

instance which we wanted to avoid.

Once a job has been scheduled by the network daemon a script is launched to process the

file and launch the Malwise or Clonewise systems.

6.3.4 Network Infrastructure

Simseer and Clonewise require supporting infrastructure outside of the frontend, load

balancer and backend cluster. These requirements include a file server, syslog server

(using rsyslog) to collect logs from all servers on the network, a mail server (using postfix),

a domain name server (using bind9), an Apache web based reporting server for system

process usage (using munin), web and load balancer usage, and a server to monitor the

health of the network by submitting known jobs to the services and checking that the

results are correct.

6.3.5 DevOps Infrastructure

To develop Simseer and Clonewise requires such things as source code management and

build management. All source code is maintained in the Git source code management

software. A build server is implemented that clones the Git repository, builds the software

and packages it into Debian DEB archives. These can then be deployed with the use of

deployment scripts to each necessary server.

6.3.5 Service Specific Processing

Although all services run on the same infrastructure, each service has its own specific

capabilities and implementation requirements.

6.3.5.1 Simseer Evolutionary Tree Visualization

Simseer visualizes program relationships using an evolutionary tree. A phylogenetic or

evolutionary tree is a visual representation of the evolutionary relationships between

species based on similarity between features or characteristics. Species closer to the tree

in relation to the number of branches or branch lengths are more closely related. Simseer

uses evolutionary trees to visualize the relationships between programs and their variants.

This visualization is useful because program variants are typically derivatives and modified

versions of their upstream source.

 C H A P T E R 6

174

The web frontend host is responsible for processing the XML results returned by Malwise.

The XML returned by Malwise scores the similarity between each sample. The frontend

transforms the XML into a distance matrix. Distance is calculated as 1 – similarity. This

distance matrix is then analysed to create an evolutionary tree using the PHYLIP software

package [178]. The PHYLIP package uses the neighbour joining method [179] to construct

an evolutionary tree. The evolutionary tree is described by the Newick tree format which

gives such information as branch lengths in the tree. The Newick tree file is processed to

Fig. 46. Simseer Search landing page.

Fig. 47. Simseer Search results.

 C H A P T E R 6

175

render a figure suitable for display. The figure is then transformed to a PNG image and

stored on the web host. An example of the tree visualization is shown in Fig. 4.

To display the results, the Malwise XML similarity results are displayed as an HTML table.

The background colour of the table cells are proportional to how similar the samples are.

The lighter the colour, the more similar the programs are. If the programs are not variants

of each other, the table cell is left unshaded. The evolutionary tree image of the programs

is shown on the same page.

6.3.5.2 Simseer Search

SImseer Search uses a backend database that must be accessible by all nodes in the

backend cluster. We met this requirement by using a network file server implementing

NFS. To synchronize writing and reading from the database we use file locking. Simseer

Search uses traditional AntiVirus to scan samples. We use Clam AntiVirus (ClamAV) which

runs on Linux.

6.3.5.3 Simseer Cluster

Simseer Cluster uses the WEKA machine learning toolkit to perform hierarchical clustering.

WEKA does not by default allow the use of the cosine distance in its hierarchical clustering

algorithm. We implemented a custom distance function to achieve this capability.

6.3.5.4 Clonewise

Clonewise uses a database for the 420 common clones it checks for that may be

potentially embedded. This database was generated offline on an Amazon EC2 cluster and

is used for the Clonewise web service.

6.3.6 Updating the Malware Database

The Simseer Search service is entirely dependent on the quality of the database that it

uses. Some of the samples in the database come from user submissions, but for the

majority of samples in the database, they are uploaded automatically from an internet

based malware feed, VirusShare. Each night the daily malware feed that VirusShare

provides is downloaded as a ZIP archive. The ZIP archive ranges in size from 600M to

16G. The archive consists of a variety of file types. The Windows 32-bit executables are

extracted and passed to Simseer's web interface via a python script similar to how a user

submission is made. This process allows the full use of the backend cluster to process

 C H A P T E R 6

176

samples and enter them into its database. The difference between user submissions and

submissions from the malware feed is that the requests from the feed are marked so that a

copy of the sample's binary is not made on the servers. This is a requirement to limit the

disk usage. Otherwise, disk space on the servers would quickly reach capacity.

6.4 Availability

The Simseer and Clonewise servics are free to use. Simseer can be accessed on the web

at http://www.simseer.com. The Clonewise service can be accessed on the web at

http://www.codeclones.com.

Concluding Remarks

In this chapter we have demonstrated novel services to detect and analyse malware

variants and to detect package-level clones in software. The Simseer and Clonewise

services are deployed as cloud services and are free to use. We are the first to make a

public service that analyses executable binaries and software tar balls in these contexts

and see the area of cloud based software analysis and similarity detection as having future

growth.

Fig. 48. Clonewise results.

 C H A P T E R 7

177

Chapter 7: Future Work and Conclusion

In this section we discuss potential areas of future work for each of our systems. FInally,

we conclude the thsis.

7.1 Future Work

7.1.1 Clonewise

In Clonewise, although we decided not to use the original set theory approach to perform

package-level clone detection, some interesting problems can still be examined. For

example, given a set of packages, one can build a signature of at least k filenames by

finding k-cliques (k-bicliques) in a bipartite graph where nodes in one partition represent

packages, nodes in the other partition represent filenames, and an edge exists when a

package contains a filename. Another research direction could be to consider a package

as a directory tree. Finding the maximum common subtree between two packages

identifies common code and could be used as a signature.

Using our classification approach, there are several ways we could see it applied to

improve current practice. We could apply our system to more source code, including other

Linux distributions, BSD vendors and also online source code repositories such

Sourceforge [180]. It is conceivable that source code repositories could offer services to

find package clones. Our system could be integrated into a package build system to

automatically update the embedded database information or ask for validation from a

package maintainer. Debian Linux would like our Clonewise tool to run constantly in the

background and scan the source code repository to update a live database of clones. If we

did this, we could enforce build recommendations that aim for avoidance of embedded

code. The Debian Linux security team has asked us to perform this integration into their

distribution as part of a standard operating procedure for when a vulnerability is found in a

package and this is a focus of our current work.

7.1.2 Wire

An important aspect of Wire that we would like to implement is 64-bit support for x86. Most

malware is still 32-bit so this does not present an immediate concern, but 64-bit would be

 C H A P T E R 7

178

required at some point in the future. Another aspect we would like to work on is the data

flow analysis framework we implemented using Wire. We see this as giving us the potential

to go outside of the field of software similarity and classification and into bug detection. We

have done some initial work on this and already have had some interesting results and

found real world bugs [181]. Future work may also see theorem proving added to the

system including weakest precondition and verification condition generation. Using proof

assistants may also help analysts show equivalence between malware codes.

7.1.3 Malwise II

Malwise could be extended by using any-time, incremental, or stream clustering in addition

to the similarity search it currently uses. In stream clustering, malware could be added to

existing clusters in an online process as submissions are made to the system.

Experimenting with clustering may help our system. Another aspect we have considered is

the use of distance metric learning. A distance metric could be trained given a small set of

labelled data.

7.1.4 Cloud Services

One thing we would like to do in our cloud services is replace our custom scheduling work

queue with an enterprise messaging system such as RabbitMQ. Enterprise-level

messaging systems have guarantees on reliabilities in the case of transmission or network

failures. Using such a system would improve our reliability.

An option to improve the clustering service is using any-time clustering on the stream of

samples that are given to Simseer. In this approach, cluster analysis is performed

incrementally as objects are given to the system sequentially. An any-time phylogenetic

tree analysis could follow on from any-time clustering. Any-time clustering could provide

intelligence into new families of malware that are given to Simseer. This could benefit

analysts in determining if a new sample relates to an existing family is something never

seen before or relatively new.

7.2 Conclusion

In this thesis, we surveyed the state-of-the art in software similarity and classification. The

thesis made disparate literature become a cohesive whole by showing that a number of

 C H A P T E R 7

179

areas were very related. In some areas of software similarity and classification, theory is

more developed and in other areas different algorithms and analysis techniques have been

proposed. For example, the software similarity problem definition presented in the

introduction stems directly from the area of software theft. This theory, which employs the

birthmark concept, had not been used in malware similarity. This cohesive presentation of

literature gave the foundation for this thesis to extend and propose new ideas, algorithms,

and complete systems, all while significantly contributing to knowledge. To recap the major

contributions of this thesis, we:

 Proposed the concept of package-level clones and automated some of their

applications.

 Proposed using pattern classification to detect package-level clones

 Proposed and formally defined a new intermediate language that combines low

level semantics with high level information recovered from decompilation.

 Proposed new types of graph-based malware signature that allows for efficient

comparison, indexing, and searching.

 Proposed and implemented a complete infrastructure for malware and clone

detection in the cloud.

In Clonewise, we evaluated our system using real-world data including an entire Linux

distribution, and over 15,000 malware found in the wild. This system improves current

practice by automating the tedious and manual practice in current use. Clonewise was

shown to perform effectively, which was demonstrated by finding previously unknown

clones, bugs, and vulnerabilities.

In Wire, we presented a formal intermediate language suitable for low level binary analysis.

We demonstrated that this language could be used in a purely theoretic context to detect

code equivalence, software similarity and classification. We used Wire in a practical

context when we applied it to our malware detection system to extract intermediate

representations of programs that enabled malware variants to be detected.

 C H A P T E R 7

180

Malwise II was shown to be effective and demonstrated to be efficient. Typical graph based

comparisons perform in NP complexity, yet using our novel birthmark representations, we

were able to improve the efficiency using vector-based signatures.

We extended all the systems implemented to execute in the cloud. The cloud-based

systems make this work available to many potential users. We used a scalable cluster-

based infrastructure allowing us to grow the services as use increases. We automated

almost all of our builds and deployment, making our infrastructure reproducible and

resilient.

In summary, our systems found real bugs and vulnerabilities in Linux, gave analysts the

capability to identify malware strains or families, and gave researchers new tools and

techniques in software similarity and classification. The algorithms we presented were

demonstrated to work in real environments and contributed significantly to knowledge.

181

References

[1] C. K. Roy and J. R. Cordy, "A survey on software clone detection research,"

Queen’s School of Computing TR, vol. 541, p. 115, 2007.

[2] Symantec, "Symantec internet security threat report: Volume XII," Symantec2008.

[3] Symantec, "Internet Security Threat Report," vol. 16, 2011.

[4] F-Secure. (2007, 19 August 2009). F-Secure Reports Amount of Malware Grew by

100% during 2007. Available: http://www.f-secure.com/en_EMEA/about-

us/pressroom/news/2007/fs_news_20071204_1_eng.html

[5] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, "Behavior based software theft detection,"

presented at the Proceedings of the 16th ACM conference on Computer and

communications security, Chicago, Illinois, USA, 2009.

[6] B. S. Baker, "On finding duplication and near-duplication in large software

systems," in Proceedings of the Second Working Conference on Reverse

Engineering (WCRE '95), 1995, p. 86.

[7] J. H. Johnson, "Identifying redundancy in source code using fingerprints," in

Proceedings of the 1993 conference of the Centre for Advanced Studies on

Collaborative research (CASCON '93), 1993, pp. 171-183.

[8] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. Matsumoto, "Dynamic

software birthmarks to detect the theft of windows applications," in International

Symposium on Future Software Technology (ISFST 2004), 2004.

[9] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and tools.

Reading, MA: Addison-Wesley, 1986.

182

[10] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The program dependence graph

and its use in optimization," ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 9, pp. 319-349, 1987.

[11] J. R. Levine, Linkers and loaders: Morgan Kaufmann Pub, 2000.

[12] M. Pietrek, "Inside Windows-An In-Depth Look into the Win32 Portable Executable

File Format," MSDN Magazine, pp. 80-92, 2002.

[13] T. I. Standard, "Executable and Linking Format (ELF) Specification Version 1.2,"

TIS Committee, May, 1995.

[14] T. Lindholm and F. Yellin, Java virtual machine specification: Addison-Wesley

Longman Publishing Co., Inc., 1999.

[15] C. Collberg, C. Thomborson, and D. Low, "A taxonomy of obfuscating

transformations," Department of Computer Science, The University of Auckland,

New Zealand 1173-3500, 1997.

[16] M. Joy and M. Luck, "Plagiarism in programming assignments," Education, IEEE

Transactions on, vol. 42, pp. 129-133, 1999.

[17] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser, and H. Veith, "Malware

normalization," University of Wisconsin, Madison, Wisconsin, USA Technical

Report #1539, 2005.

[18] C. Mihai and J. Somesh, "Testing malware detectors," presented at the

Proceedings of the 2004 ACM SIGSOFT international symposium on Software

testing and analysis, Boston, Massachusetts, USA, 2004.

183

[19] L. Cullen and D. Saumya, "Obfuscation of executable code to improve resistance

to static disassembly," presented at the Proceedings of the 10th ACM conference

on Computer and communications security, Washington D.C., USA, 2003.

[20] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, "Polyunpack:

Automating the hidden-code extraction of unpack-executing malware," in

Computer Security Applications Conference, 2006, pp. 289-300.

[21] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, "Rotalume: A Tool for Automatic Reverse

Engineering of Malware Emulators," 2009.

[22] Panda Research. (2007, 19 August 2009). Mal(ware)formation statistics - Panda

Research Blog. Available:

http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-

statistics.aspx

[23] A. Stepan, "Improving proactive detection of packed malware," in Virus Bulletin

Conference, 2006.

[24] J. Oberheide, M. Bailey, and F. Jahanian, "Polypack," in USENIX Workshop on

Offensive Technologies (WOOT ‘09), Montreal, Canada, 2009.

[25] T. Graf, "Generic unpacking: How to handle modified or unknown PE compression

engines," presented at the Virus Bulletin Conference, 2005.

[26] (2010, 6 April 2010). UPX: the Ultimate Packer for eXecutables. Available:

http://upx.sourceforge.net/

[27] (2010, 6 April 2010). Themida. Available: http://www.themida.com/

184

[28] S. Cesare, "Fast automated unpacking and classification of malware," Masters

Thesis, Central Queensland University, 2010.

[29] M. G. Kang, P. Poosankam, and H. Yin, "Renovo: A hidden code extractor for

packed executables," in Workshop on Recurring Malcode, 2007, pp. 46-53.

[30] L. Boehne, "Pandora’s Bochs: Automatic Unpacking of Malware," University of

Mannheim, 2008.

[31] H. G. Rice, "Classes of Recursively Enumerable Sets and Their Decision

Problems," Transactions of the American Mathematical Society, vol. 74, pp. 358-

366, 1953.

[32] S. S. Muchnick, Advanced compiler design and implementation: Morgan

Kaufmann, 1997.

[33] J. Goguen and G. Malcolm, Algebraic semantics of imperative programs: The MIT

Press, 1996.

[34] H. R. Nielson and F. Nielson, Semantics with applications: an appetizer: Springer

Verlag, 2007.

[35] C. A. R. Hoare, "An axiomatic basis for computer programming," Communications

of the ACM, vol. 12, pp. 576-580, 1969.

[36] E. W. Dijkstra, "Guarded commands, nondeterminacy and formal derivation of

programs," Communications of the ACM, vol. 18, pp. 453-457, 1975.

[37] J. C. King, "Symbolic execution and program testing," Communications of the

ACM, vol. 19, pp. 385-394, 1976.

185

[38] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, "EXE:

automatically generating inputs of death," ACM Transactions on Information and

System Security TISSEC (2008), vol. 12, pp. 10:1-10:38, 2008.

[39] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome, D. Song, and H. Yin,

"BitScope: Automatically dissecting malicious binaries," Technical Report CMU-

CS-07-133, School of Computer Science, Carnegie Mellon University2007.

[40] E. Clarke, "Model checking," 1997, pp. 54-56.

[41] C. Cifuentes, "Reverse compilation techniques," Queensland University of

Technology, 1994.

[42] P. Cousot and R. Cousot, "Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints," in Sixth Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Los Angeles, California, 1977, pp. 238-252.

[43] M. Webster and G. Malcolm, "Detection of metamorphic computer viruses using

algebraic specification," Journal in Computer Virology, vol. 2, pp. 149-161, 2006.

[44] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, "Static disassembly of

obfuscated binaries," in USENIX Security Symposium, 2004, pp. 18-18.

[45] T. Dullien and S. Porst, "REIL: A platform-independent intermediate representation

of disassembled code for static code analysis," ed: CanSecWest, 2009.

[46] N. Nethercote and J. Seward, "Valgrind A Program Supervision Framework,"

Electronic Notes in Theoretical Computer Science, vol. 89, pp. 44-66, 2003.

186

[47] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J.

Newsome, P. Poosankam, and P. Saxena, "BitBlaze: A new approach to computer

security via binary analysis," presented at the Information Systems Security, 2008.

[48] K. Daniel, stner, and W. Stephan, "Generic control flow reconstruction from

assembly code," SIGPLAN Not., vol. 37, pp. 46-55, 2002.

[49] H. Theiling, "Extracting safe and precise control flow from binaries," presented at

the Proceedings of the Seventh International Conference on Real-Time Systems

and Applications, 2000.

[50] K. Johannes, Z. Florian, and V. Helmut, "An Abstract Interpretation-Based

Framework for Control Flow Reconstruction from Binaries," presented at the

Proceedings of the 10th International Conference on Verification, Model Checking,

and Abstract Interpretation, Savannah, GA, 2009.

[51] M. Dalla Preda, M. Madou, K. De Bosschere, and R. Giacobazzi, "Opaque

predicates detection by abstract interpretation," Algebraic Methodology and

Software Technology, pp. 81–95, 2006.

[52] D. Brumley and J. Newsome, "Alias analysis for assembly," Technical Report

CMU-CS-06-180, Carnegie Mellon University School of Computer Science,

20062006.

[53] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum, "Wysinwyx: What you see

is not what you execute," Verified Software: Theories, Tools, Experiments, pp.

202-213, 2007.

187

[54] F. Leder, B. Steinbock, and P. Martini, "Classification and Detection of

Metamorphic Malware using Value Set Analysis," in Proc. of 4th International

Conference on Malicious and Unwanted Software (Malware 2009), Montreal,

Canada, 2009.

[55] K. C. S. Debray and T. K. G. Townsend, "Automatic Static Unpacking of Malware

Binaries," presented at the Working Conference on Reverse Engineering - WCRE,

2009.

[56] M. J. Van Emmerik, "Static single assignment for decompilation," The University of

Queensland, 2007.

[57] S. Hex-Rays, "IDA Pro Disassembler," ed, 2008.

[58] E. Moretti, G. Chanteperdrix, and A. Osorio, "New algorithms for control-flow graph

structuring," presented at the Software Maintenance and Reengineering, 2001.

[59] T. Wei, J. Mao, W. Zou, and Y. Chen, "Structuring 2-way branches in binary

executables," presented at the International Computer Software and Applications

Conference, 2007.

[60] S. Cesare and Y. Xiang, "Classification of Malware Using Structured Control

Flow," in 8th Australasian Symposium on Parallel and Distributed Computing

(AusPDC 2010), 2010.

[61] S. Cesare and Y. Xiang, "A Fast Flowgraph Based Classification System for

Packed and Polymorphic Malware on the Endhost," in IEEE 24th International

Conference on Advanced Information Networking and Application (AINA 2010),

2010.

188

[62] A. Mycroft, "Type-based decompilation," Lecture notes in computer science, pp.

208-223, 1999.

[63] R. N. Horspool and N. Marovac, "An approach to the problem of detranslation of

computer programs," The Computer Journal, vol. 23, pp. 223-229, 1979.

[64] A. Moser, C. Kruegel, and E. Kirda, "Limits of static analysis for malware

detection," in Annual Computer Security Applications Conference (ACSAC), 2007.

[65] G. Hunt and D. Brubacher, "Detours: binary interception of Win32 functions,"

presented at the Proceedings of the 3rd conference on USENIX Windows NT

Symposium - Volume 3, Seattle, Washington, 1999.

[66] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood, "Pin: Building customized program analysis tools with

dynamic instrumentation," presented at the Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and implementation,

2005.

[67] V. Bala, E. Duesterwald, and S. Banerjia, "Dynamo: a transparent dynamic

optimization system," presented at the Proceedings of the ACM SIGPLAN 2000

conference on Programming language design and implementation, 2000.

[68] W. Guizani, J. Y. Marion, and D. Reynaud-Plantey, "Server-side dynamic code

analysis," in Malicious and Unwanted Software (MALWARE), 2009 4th

International Conference on, 2009, pp. 55-62.

[69] D. Quist and Valsmith, "Covert Debugging Circumventing Software Armoring

Techniques," in Black Hat Briefings USA, 2007.

189

[70] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, "Ether: Malware analysis via

hardware virtualization extensions," in Proceedings of the 15th ACM conference

on Computer and communications security, 2008, pp. 51-62.

[71] T. Raffetseder, C. Kruegel, and E. Kirda, "Detecting system emulators," Lecture

notes in computer science, vol. 4779, p. 1, 2007.

[72] F. Bellard, "QEMU, a fast and portable dynamic translator," in USENIX Annual

Technical Conference, 2005, pp. 41–46.

[73] U. Bayer, C. Kruegel, and E. Kirda, "TTAnalyze: A tool for analyzing malware," in

European Institute for Computer Antivirus Research (EICAR 2006), 2006.

[74] M. H. Halstead, Elements of Software Science (Operating and programming

systems series): Elsevier Science Inc., 1977.

[75] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins, "Text

classification using string kernels," The Journal of Machine Learning Research,

vol. 2, pp. 419-444, 2002.

[76] K. Grauman and T. Darrell, "The Pyramid Match Kernel: Efficient Learning with

Sets of Features," J. Mach. Learn. Res., vol. 8, pp. 725-760, 2007.

[77] R. Kondor and T. Jebara, "A kernel between sets of vectors," in Proceedings of

ICML'2003, 2003, p. 361.

[78] M. Collins and N. Duffy, "Convolution kernels for natural language," Advances in

neural information processing systems, vol. 1, pp. 625-632, 2002.

[79] H. Kashima and A. Inokuchi, "Kernels for graph classification," 2002, p. 25.

190

[80] K. M. Borgwardt and H. P. Kriegel, "Shortest-path kernels on graphs," presented at

the Data Mining, 2005.

[81] N. Y. Peter, "Data structures and algorithms for nearest neighbor search in general

metric spaces," in Proceedings of the fourth annual ACM-SIAM Symposium on

Discrete algorithms, Austin, Texas, United States, 1993, pp. 311-321.

[82] M. R. Vieira, F. J. T. Chino, C. Traina, Jr., and A. J. M. Traina, "DBM-Tree: A

Dynamic Metric Access Method Sensitive to Local Density Data.," in Brazilian

Symposium on Databases, Brazil, 2004, pp. 163-177.

[83] C. Paolo, P. Marco, and Z. Pavel, "M-tree: An Efficient Access Method for

Similarity Search in Metric Spaces," presented at the Proceedings of the 23rd

International Conference on Very Large Data Bases, 1997.

[84] R. Cilibrasi and P. M. B. Vitányi, "Clustering by compression," Information Theory,

IEEE Transactions on, vol. 51, pp. 1523-1545, 2005.

[85] S. Brecheisen, "Efficient and Effective Similarity Search on Complex Objects,"

Ludwig-Maximilians-Universität München, 2007.

[86] P. Bille, "A survey on tree edit distance and related problems," Theoretical

Computer Science, vol. 337, pp. 217-239, 2005.

[87] R. Baeza-Yates and G. Navarro, "Fast approximate string matching in a

dictionary," in South American Symposium on String Processing and Information

Retrieval (SPIR'98), 1998, pp. 14-22.

[88] Caetano Traina, Jr., J. M. T. Agma, S. Bernhard, and F. Christos, "Slim-Trees:

High Performance Metric Trees Minimizing Overlap Between Nodes," presented at

191

the Proceedings of the 7th International Conference on Extending Database

Technology: Advances in Database Technology, 2000.

[89] P. Indyk and R. Motwani, "Approximate nearest neighbors: towards removing the

curse of dimensionality," 1998, pp. 604-613.

[90] D. Novak and P. Zezula, "M-Chord: a scalable distributed similarity search

structure," presented at the Proceedings of the 1st international conference on

Scalable information systems, Hong Kong, 2006.

[91] M. Batko, C. Gennaro, P. Savino, and P. Zezula, "Scalable similarity search in

metric spaces," 2004, pp. 213-224.

[92] M. Batko, C. Gennaro, and P. Zezula, "A scalable nearest neighbor search in p2p

systems," Databases, Information Systems, and Peer-to-Peer Computing, pp. 79-

92, 2005.

[93] P. Haghani, S. Michel, and K. Aberer, "Distributed similarity search in high

dimensions using locality sensitive hashing," presented at the Proceedings of the

12th International Conference on Extending Database Technology: Advances in

Database Technology, Saint Petersburg, Russia, 2009.

[94] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, pp.

273-297, 1995.

[95] K. Griffin, S. Schneider, X. Hu, and T. Chiueh, "Automatic Generation of String

Signatures for Malware Detection," in Recent Advances in Intrusion Detection:

12th International Symposium, RAID 2009, Saint-Malo, France, 2009.

192

[96] J. O. Kephart and W. C. Arnold, "Automatic extraction of computer virus

signatures," in 4th Virus Bulletin International Conference, 1994, pp. 178-184.

[97] G. Wicherski, "peHash: A Novel Approach to Fast Malware Clustering," in Usenix

Workshop on Large-Scale Exploits and Emergent Threats (LEET'09), Boston, MA,

USA, 2009.

[98] S. Wehner, "Analyzing worms and network traffic using compression," Journal of

Computer Security, vol. 15, pp. 303-320, 2007.

[99] Y. Zhou and W. M. Inge, "Malware detection using adaptive data compression," in

Proceedings of the 1st ACM workshop on Workshop on AISec (AISec '08), 2008,

pp. 53-60.

[100] W. Andrew, M. Rachit, R. C. Mohamed, and L. Arun, "Normalizing Metamorphic

Malware Using Term Rewriting," presented at the Proceedings of the Sixth IEEE

International Workshop on Source Code Analysis and Manipulation, 2006.

[101] D. Bilar, "Opcodes as predictor for malware," International Journal of Electronic

Security and Digital Forensics, vol. 1, pp. 156-168, 2007.

[102] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, "Malware phylogeny

generation using permutations of code," Journal in Computer Virology, vol. 1, pp.

13-23, 2005.

[103] R. Perdisci, A. Lanzi, and W. Lee, "McBoost: Boosting Scalability in Malware

Collection and Analysis Using Statistical Classification of Executables," in

Proceedings of the 2008 Annual Computer Security Applications Conference,

2008, pp. 301-310.

193

[104] J. Z. Kolter and M. A. Maloof, "Learning to detect malicious executables in the

wild," in International Conference on Knowledge Discovery and Data Mining, 2004,

pp. 470-478.

[105] M. Gheorghescu, "An automated virus classification system," in Virus Bulletin

Conference, 2005, pp. 294-300.

[106] Y. Ye, D. Wang, T. Li, and D. Ye, "IMDS: intelligent malware detection system," in

Proceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2007.

[107] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, X. F. Wang, and U.

C. Santa Barbara, "Effective and efficient malware detection at the end host," in

18th USENIX Security Symposium, 2009.

[108] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, "Semantics-

aware malware detection," in Proceedings of the 2005 IEEE Symposium on

Security and Privacy (S&P 2005), Oakland, California, USA, 2005.

[109] M. Christodorescu and S. Jha, "Static analysis of executables to detect malicious

patterns," presented at the Proceedings of the 12th USENIX Security Symposium,

2003.

[110] E. Carrera and G. Erdélyi, "Digital genome mapping–advanced binary malware

analysis," in Virus Bulletin Conference, 2004, pp. 187-197.

[111] I. Briones and A. Gomez, "Graphs, Entropy and Grid Computing: Automatic

Comparison of Malware," in Virus Bulletin Conference, 2008, pp. 1-12.

194

[112] X. Hu, T. Chiueh, and K. G. Shin, "Large-Scale Malware Indexing Using Function-

Call Graphs," in Computer and Communications Security, Chicago, Illinois, USA,

pp. 611-620.

[113] T. Dullien and R. Rolles, "Graph-based comparison of Executable Objects (English

Version)," in SSTIC, 2005.

[114] G. Bonfante, M. Kaczmarek, and J. Y. Marion, "Morphological Detection of

Malware," in International Conference on Malicious and Unwanted Software, IEEE,

Alexendria VA, USA, 2008, pp. 1-8.

[115] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, "Polymorphic worm

detection using structural information of executables," Lecture notes in computer

science, vol. 3858, p. 207, 2006.

[116] H. Park, S. Choi, H. Lim, and T. Han, "Detecting code theft via a static instruction

trace birthmark for Java methods," 2008, pp. 551-556.

[117] G. Myles and C. Collberg, "K-gram based software birthmarks," presented at the

Proceedings of the 2005 ACM symposium on Applied computing, Santa Fe, New

Mexico, 2005.

[118] H. Tamada, M. Nakamura, A. Monden, and K. I. Matsumoto, "Java Birthmarks-

Detecting the Software Theft," IEICE TRANSACTIONS ON INFORMATION AND

SYSTEMS E SERIES D, vol. 88, p. 2148, 2005.

[119] H. Lim, H. Park, S. Choi, and T. Han, "Detecting theft of java applications via a

static birthmark based on weighted stack patterns."

195

[120] H. Park, H. Lim, S. Choi, and T. Han, "A Static Java Birthmark Based on Operand

Stack Behaviors," in Proceedings of the 2008 International Conference on

Information Security and Assurance (ISA 2008), 2008, pp. 133-136.

[121] H. Lim, H. Park, S. Choi, and T. Han, "A Static Java Birthmark Based on Control

Flow Edges," in Computer Software and Applications Conference (COMPSAC

'09), 2009, pp. 413-420.

[122] H. Lim, H. Park, S. Choi, and T. Han, "A method for detecting the theft of Java

programs through analysis of the control flow information," Information and

Software Technology, vol. 51, pp. 1338-1350, 2009.

[123] S. Choi, H. Park, H. Lim, and T. Han, "A static API birthmark for Windows binary

executables," Journal of Systems and Software, vol. 82, pp. 862-873, 2009.

[124] S. Choi, H. Park, H. Lim, and T. Han, "A static birthmark of binary executables

based on API call structure," Advances in Computer Science–ASIAN 2007.

Computer and Network Security, pp. 2-16, 2008.

[125] B. Lu, F. Liu, X. Ge, B. Liu, and X. Luo, "A software birthmark based on dynamic

opcode n-gram," in Proceedings of the International Conference on Semantic

Computing (ICSC '07), 2007.

[126] G. Myles and C. Collberg, "Detecting software theft via whole program path

birthmarks," Information Security, pp. 404-415, 2004.

[127] O. MORIYAMA, T. FURUE, T. TOOYAMA, and T. MATSUMOTO, "A Method of

Software Dynamic Birthmarks Using History of API Function Calls," IEIC Technical

196

Report (Institute of Electronics, Information and Communication Engineers), vol.

106, pp. 77-84, 2006.

[128] D. Schuler, V. Dallmeier, and C. Lindig, "A dynamic birthmark for java," presented

at the Proceedings of the twenty-second IEEE/ACM international conference on

Automated software engineering, Atlanta, Georgia, USA, 2007.

[129] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. ichi Matsumoto,

"Design and evaluation of dynamic software birthmarks based on api calls," Nara

Institute of Science and Technology, Technical Report, 2007.

[130] D. Schuler and V. Dallmeier, "Detecting software theft with API call sequence

sets," in Proceedings of the 8th Workshop Software Reengineering, Bad Honnef,

Germany, 2006.

[131] E. L. Jones, "Metrics based plagarism monitoring," Journal of Computing Sciences

in Colleges, vol. 16, pp. 253-261, 2001.

[132] L. Prechelt, G. Malpohl, and M. Philippsen, "Finding plagiarisms among a set of

programs with JPlag," Journal of Universal Computer Science, vol. 8, pp. 1016-

1038, 2002.

[133] M. J. Wise, "YAP3: improved detection of similarities in computer program and

other texts," SIGCSE Bull., vol. 28, pp. 130-134, 1996.

[134] J.-H. Ji, G. Woo, and H.-G. Cho, "A source code linearization technique for

detecting plagiarized programs," SIGCSE Bull., vol. 39, pp. 73-77, 2007.

197

[135] J.-W. Son, S.-B. Park, and S.-Y. Park, "Program Plagiarism Detection Using Parse

Tree Kernels," in PRICAI 2006: Trends in Artificial Intelligence. vol. 4099, Q. Yang

and G. Webb, Eds., ed: Springer Berlin / Heidelberg, 2006, pp. 1000-1004.

[136] C. Liu, C. Chen, J. Han, and P. S. Yu, "GPLAG: detection of software plagiarism

by program dependence graph analysis," presented at the Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining,

Philadelphia, PA, USA, 2006.

[137] Christoph Biedl, Mark Adler, and F. Weimer. (2011). Discovering copies of zlib.

Available: http://www.enyo.de/fw/security/zlib-fingerprint/

[138] H. A. Basit and S. Jarzabek, "A Data Mining Approach for Detecting Higher-Level

Clones in Software," IEEE Trans. Softw. Eng., vol. 35, pp. 497-514, 2009.

[139] L. Jiang, Z. Su, and E. Chiu, "Context-based detection of clone-related bugs,"

presented at the Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations of

software engineering, Dubrovnik, Croatia, 2007.

[140] Y. Dang, S. Ge, R. Huang, and D. Zhang, "Code Clone Detection Experience at

Microsoft," in Proceedings of the 5th International Workshop on Software Clones,

2011.

[141] H. Kim, Y. Jung, S. Kim, and K. Yi, "MeCC: memory comparison-based clone

detector," presented at the Proceedings of the 33rd International Conference on

Software Engineering, Waikiki, Honolulu, HI, USA, 2011.

198

[142] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, "DECKARD: Scalable and Accurate

Tree-Based Detection of Code Clones," presented at the Proceedings of the 29th

international conference on Software Engineering, 2007.

[143] S. Ducasse, M. Rieger, and S. Demeyer, "A language independent approach for

detecting duplicated code," 1999, p. 109.

[144] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: a multilinguistic token-based

code clone detection system for large scale source code," IEEE Transactions on

Software Engineering, pp. 654-670, 2002.

[145] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, "Very-large scale code clone

analysis and visualization of open source programs using distributed CCFinder: D-

CCFinder," in Proceedings of the 29th international conference on Software

Engineering (ICSE '07), 2007, pp. 106-115.

[146] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, "CP-Miner: A tool for finding copy-paste

and related bugs in operating system code," in Proceedings of the 6th conference

on Symposium on Opearting Systems Design & Implementation (OSDI '04), 2004,

pp. 20-20.

[147] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, "CP-Miner: Finding copy-paste and related

bugs in large-scale software code," IEEE Transactions on Software Engineering,

pp. 176-192, 2006.

[148] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier, "Clone detection using

abstract syntax trees," 1998, p. 368.

199

[149] J. Krinke, "Identifying similar code with program dependence graphs," 2001, p.

301.

[150] J.-l. Gailly and M. Adler. (2011). zlib. Available: http://zlib.net

[151] (2011). Debian Linux. Available: http://www.debian.org

[152] Red_Hat. (2011). Fedora Linux. Available: http://fedoraproject.org

[153] A. Z. Broder, "On the resemblance and containment of documents," 1997, pp. 21-

29.

[154] M. Girvan and M. E. J. Newman, "Community structure in social and biological

networks," Proceedings of the National Academy of Sciences, vol. 99, pp. 7821-

7826, June 11, 2002 2002.

[155] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The

WEKA data mining software: an update," SIGKDD Explor. Newsl., vol. 11, pp. 10-

18, 2009.

[156] J. Kornblum, "Identifying almost identical files using context triggered piecewise

hashing," Digital Investigation, vol. 3, pp. 91-97, 2006.

[157] G. Salton and C. Buckley, "Term-weighting approaches in automatic text retrieval,"

Information Processing & Management, vol. 24, pp. 513-523, 1988.

[158] H. Kuhn, W., "The hungarian method for the assignment problem," Naval

Research Logistics Quarterly, 1955.

[159] N. Japkowicz and S. Stephen, "The class imbalance problem: A systematic study,"

Intell. Data Anal., vol. 6, pp. 429-449, 2002.

200

[160] T. Dacheng, T. Xiaoou, L. Xuelong, and W. Xindong, "Asymmetric bagging and

random subspace for support vector machines-based relevance feedback in

image retrieval," Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 28, pp. 1088-1099, 2006.

[161] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-memory

programming," Computational Science & Engineering, IEEE, vol. 5, pp. 46-55,

1998.

[162] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres, V. Sahay, P.

Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and T.

Woodall, "Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation

Recent Advances in Parallel Virtual Machine and Message Passing Interface." vol. 3241,

D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Eds., ed: Springer Berlin /

Heidelberg, 2004, pp. 353-377.

[163] G. H. John and P. Langley, "Estimating continuous distributions in Bayesian

classifiers," presented at the Proceedings of the Eleventh conference on

Uncertainty in artificial intelligence, Montréal, Qué, Canada, 1995.

[164] J. R. Quinlan, C4.5: programs for machine learning: Morgan Kaufmann Publishers

Inc., 1993.

[165] L. Breiman, "Random Forests," Machine learning, vol. 45, pp. 5-32, 2001.

201

[166] V. Ganesh and D. L. Dill, "A decision procedure for bit-vectors and arrays,"

presented at the Proceedings of the 19th international conference on Computer

aided verification, Berlin, Germany, 2007.

[167] D. Gao, M. K. Reiter, and D. Song, "Binhunt: Automatically finding semantic

differences in binary programs," in Information and Communications Security,

2008, pp. 238–255.

[168] A. V. Aho and M. J. Corasick, "Efficient string matching: an aid to bibliographic

search," Communications of the ACM, vol. 18, p. 340, 1975.

[169] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local

alignment search tool," Journal of molecular biology, vol. 215, pp. 403-410, 1990.

[170] T. Junttila and P. Kaski, "Engineering an efficient canonical labeling tool for large

and sparse graphs," in Ninth Workshop on Algorithm Engineering and

Experiments, SIAM, 2007.

[171] L. I. Smith, "A tutorial on principal components analysis," Cornell University, USA,

vol. 51, p. 52, 2002.

[172] (2010, 26 March 2010). GDBI Arboretum. Available:

http://gbdi.icmc.usp.br/arboretum

[173] (2009, 21 September 2009). Offensive Computing. Available:

http://www.offensivecomputing.net

[174] (2009, 21 September 2009). mwcollect Alliance. Available:

http://alliance.mwcollect.org

[175] (2010, 26 March 2010). Cygwin. Available: http://www.cygwin.com

202

[176] R. Rolles, "Unpacking Virtualization Obfuscators," in USENIX Workshop on

Offensive Technologies (WOOT), Montreal, Canada, 2009.

[177] L. Martignoni, M. Christodorescu, and S. Jha, "Omniunpack: Fast, generic, and

safe unpacking of malware," in Proceedings of the Annual Computer Security

Applications Conference (ACSAC), 2007, pp. 431-441.

[178] J. Felsenstein, "PHYLIP (phylogeny inference package), version 3.6," ed: Joseph

Felsenstein., 2005.

[179] N. Saitou and M. Nei, "The neighbor-joining method: a new method for

reconstructing phylogenetic trees," Molecular biology and evolution, vol. 4, pp.

406-425, 1987.

[180] Geeknet. (2011). Sourceforge. Available: http://sourceforge.net/

[181] S. Cesare, "Detecting Bugs Using Decompilation and Dataflow Analysis," in

Ruxcon Breakpoint, 2012.

