
Full citation: MacDonell, S.G. (2003) Software source code sizing using fuzzy logic modeling,
Information and Software Technology 45(7), pp.389-404.
doi:10.1016/S0950-5849(03)00011-9

Software Source Code Sizing Using Fuzzy Logic Modeling

Stephen G. MacDonell
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142, New Zealand
stephen.macdonell@aut.ac.nz

Abstract

Knowing the likely size of a software product before it has
been constructed is potentially beneficial in project
management: for instance, size can be an important
factor in determining an appropriate
development/integration schedule, and it can be a
significant input in terms of the allocation of personnel
and other resources. In this study we consider the
applicability of fuzzy logic modeling methods to the task
of software source code sizing, using a previously
published data set. Our results suggest that, particularly
with refinement using data and knowledge, fuzzy
predictive models can outperform their traditional
regression-based counterparts.

Keywords: software size, SLOC, prediction, fuzzy logic

1. INTRODUCTION

Modeling relationships within project management
continues to present challenges to the software
engineering community. Although there is ample
empirical evidence to indicate that, to some degree,
software size is related to construction effort, and
construction effort is related to project duration, there are
many other factors that can and do have a significant
impact on the specific nature of these
relationships. The influence of the type of software to be
constructed and its intended operational domain have
been considered for some time, as evident in the work of
Boehm (1981) and DeMarco (1984) and more recently in
that reported by Murali and Sankar (1997), whereby
different models are used or weightings applied for
different classes of systems. In a very general sense, such
considerations are needed because complex software,
such as real-time embedded life-critical systems, requires
proportionally more effort to build than simpler similarly
sized counterparts. The impact of the specific personnel
involved in a product’s construction has been found to be
significant in terms of a project’s schedule, with some
evidence suggesting that the impact can be as much as
twenty to one (Boehm and Papaccio 1988; Lee 1993;
Blackburn et al. 1996). The sophistication of the tools

and methods employed in development can also have an
impact on effort and duration, as illustrated by Banker et
al. (1992) and Chan et al. (1996). Having said all of this,
the fact remains that the consistently dominant factor in
such relationships is product size (measured in some way)
(Verner and Tate 1992; Cockcroft 1996; Hakuta et al.
1997). Whilst these other factors undoubtedly have an
influence, we can potentially make significant inroads
into the problem of effort prediction and schedule
estimation if we have reliable measures of size.

We also face ongoing challenges in the area of data
analysis and interpretation, given the characteristics
commonly found in software engineering data sets.
Missing data can occur due to problems in collection, be
they systematic or related to errors made by project
personnel (Lind and Sulek 1998; Chulani et al. 1999).
Although various methods exist to cope with missing data
(Myrtveit et al. 2001) the influence on the predictive
models generated can be significant. Some data sets also
exhibit significant skewing and heteroskedasticity,
rendering certain analysis techniques inapplicable
(Rosenberg 1998; Pickard et al. 1999; Pickard et al.
2001). This is frequently evident in data sets dealing with
software defects and the like, where there is a fixed lower
limit of zero. Data sets need to be sufficiently large
relative to the number of parameters in order to use
certain methods of analysis (Rosenberg 1998; Basili et al.
1999). In building predictive models we need to be aware
of the effect of outlier observations and multicollinearity
among the predictor variables, both of which can have a
significant impact on the structure and stability of models
(Miyazaki et al. 1994; MacDonell et al. 1997). Other
issues that need to be considered include the unbalanced
nature of many software engineering data sets
(Kitchenham 1998), in which the values that influential
factors take tend to cover only a portion of the range of
possible values, and the fact that software data are
nonstationary since software development and evolution
processes are stochastic (Pillai and Nair 1997).

As a result, practitioners and researchers have continued
to explore alternative or complementary modeling and
analysis approaches. The application of computational
intelligence methods to problems in software engineering
has therefore risen to prominence in recent years. (Note

http://dx.doi.org/10.1016/S0950-5849(03)00011-9�

that whilst it appears that the term computational
intelligence is becoming the most widely used descriptor
for work in this area, similar research has also been
undertaken under the banners of machine learning and
soft computing.) The potential of such methods has been
demonstrated in domains other than software engineering
for some time, and in the last decade such methods have
been increasingly adopted by software engineering
researchers. For example, the capabilities of neural
networks in analyzing software engineering data sets have
been assessed among others by Khoshgoftaar and
Lanning (1995), Lee et al. (1998) and Mair et al. (2000),
case-based reasoning and analogy methods have been
investigated by Shepperd and Schofield (1997), Myrtveit
and Stensrud (1999) and Walkerden and Jeffery (1999),
and fuzzy logic has been investigated by Kumar et al.
(1994), Ebert (1997), Yau and Tsoi (1998) and Piattini et
al. (2001). More recently, genetic algorithms have also
been considered as potentially useful in analyzing
software engineering data (Shukla 2000). These studies
have met with mixed success, although in general it does
appear that techniques of this nature are able to produce
models for classification and prediction that are of at least
similar accuracy to their statistically based equivalents.
Moreover, there are other advantages in using these
approaches in terms of their capacity to adapt and learn
from the data on which they are built. Ultimately,
however, it is improvements in predictive accuracy that
will see such methods accepted more readily by other
researchers and software engineering practitioners, so it is
in this respect that we would need to see improvements
made.

The remainder of this paper is structured as follows. The
notion of software sizing is discussed in the next section,
focusing particularly on the estimation of software source
code size. Modeling methods used in producing these
estimates are then discussed in section 3. We then
describe the data set used in our analysis, the results of
which are detailed in section 5. We conclude our study in
section 6, with recommendations for further research and
implications for project management practice.

2. SOFTWARE SIZING

Early and accurate prediction of software size has long
been a goal of software engineers. Since the 1970s it has
been the focus of extensive research initiatives, firstly as
an objective in its own right, and then as part of the
model-building process that aims to predict development
effort and/or duration, with size as the principal input and
other factors acting as refining agents. Given that in the
early history of software development programming was
the dominant activity it was the size of the source code
that was of interest. Thus the work of Halstead (1977),
Chrysler (1978) and Boehm (1981) employed both
theoretical and empirical analyses to construct initial
models of software source code size. An area of related
research that emerged out of this work is that concerning
the notion of software evolution, popularised by Lehman
(1991, 1998). Implicit in this work is an assertion that
software follows patterns of growth over time, and that an
attribute such as size can be modelled accordingly.

Further discussion of software release size estimation (in
terms of source code) is provided by Turski (1996).

As the desire to build early predictive models grew so
research increased into measuring the size of other pre-
coding phase products. As a result a variety of
specification- and design-based measures were proposed.
Although they are of some relevance here the majority of
these studies did not directly address software sizing in
terms of source code, and so we provide only a brief
summary of the more prominent efforts in Table 1. The
interested reader is referred to Tate and Verner (1990) for
a comprehensive review of the earlier models listed, and
to MacDonell (1994) for an alternative criteria-based
evaluation of several of these approaches. Ferens (1999)
also provides an excellent (largely qualitative) review of
software sizing methods.

In spite of the availability of a wide range of software
product size measures, source lines of code (SLOC)
remains in favour in many models, particularly those
intended for effort estimation based on a COCOMO-type
approach. One of the criticisms levelled at such methods
is that SLOC size must itself be estimated before an
estimate of effort can be produced. Some of the studies
mentioned in Table 1 and in the following discussion
were undertaken to determine whether other size
measures, which could be objectively calculated at an
early stage in the development process, were in fact
related to eventual SLOC and could therefore be
considered instead of the estimated SLOC figures (e.g.
Mukhopadhyay and Kekre 1992; Dolado 1997;
MacDonell et al. 1997). Our particular focus in this
study, however, is on the estimation of source code size,
in this case code that is written using a fourth-generation
development environment, and the remainder of this
section deals with research to date on this topic.

The most comprehensive set of studies undertaken in this
area are those of Verner and Tate (1987, 1988, 1992; Tate
and Verner 1990). After first proposing a model of
software sizing applicable throughout the development
life cycle (1987) Verner and Tate then turned their
attention specifically to 4GL source code estimation. In
their second study (1988) they employed a combination
of function point analysis and COCOMO to produce size,
effort and schedule estimates for two increments of the
same information system. Notable observations of this
study included the lack of prior investigations using
COCOMO in a 4GL environment and the need for novel
measures of code size given the form-filling nature of
their particular development toolset. Given these
constraints Verner and Tate were able to generate what
they felt to be reasonably accurate indicators of size and
effort. In a subsequent study Verner and Tate (1992)
developed what they referred to as a “…more general and
flexible FPA-like approach” (p. 265) for transaction-
centered business systems. This method adopted a
different set of elementary software components as
contributors to code size – menus, screens, reports,
relations and updates. Each was assessed using one or
more measures (number of choices, number of data
elements, nesting level and so on) with some adjustment
for algorithmic complexity. After using regression
analysis to build a set of predictive models with data from

one version of a system they then tested these models on
later increments of the same system. In general they
found that they were able to estimate source code size
very accurately using this method. Further evaluation of

their approach on two other systems produced similarly
accurate estimates once models were tailored to the
environments in question.

Table 1. A selection of early-phase estimation methods.

Method Source Aim Scope Comments

Function point
analysis (and
variants)

Albrecht 1979;
Albrecht and
Gaffney 1983

Abstract size based on
user needs, adjusted for
complexity to enable
effort estimation.

Business systems
initially. Many
variants to widen its
applicability to other
system types.

Wide uptake,
international
standards, rigid, driven
by set of fixed
parameters with fixed
weight ranges.

Bang/Function
weight

DeMarco 1984,
1989

Abstract size based on
functional primitives,
adjusted for input/output
volume and process
complexity.

All system types,
either data-strong
(typically business) or
function-strong
(typically real-
time/scientific).

Intuitively appealing
but not widely
adopted.

Mini-Model Kulkarni et al. 1988 Used process
deliverables at each stage
to build size and effort
estimates for the next.

Built for military
command/control
systems.

Methodology
dependent, but said to
be adaptable to other
environments.

Mk II FPA Symons 1988, 1991 Contemporary data-
centered approach, using
past data to calibrate
weights.

Business systems. Said to overcome FPA
shortcomings;
extensive adoption in
Europe.

OO system size Laranjeira 1990 Size and effort
estimation.

OO systems Innovative, used
confidence intervals.

CK metrics
suite

Chidamber and
Kemerer 1991, 1994

Design metrics, used
subsequently for effort
prediction.

OO systems Generally accepted in
OO community.

Application
features

Mukhopadhyay and
Kekre 1992

Size and effort
estimation.

Process control
systems.

Promoted need for
environment-specific
models.

Object points Banker et al. 1992 Adapted, automated
version of FPA for
CASE environments.

Largely centered on
business systems.

Popular while CASE
was a prominent
technology.

Specification
measures

Tate and Verner
1991;

MacDonell 1997

Automated size
measurement, effort
prediction.

Data-centered
business systems.

Proposed at the height
of CASE and 4GL
popularity.

Parallel to the work of Tate and Verner was that
undertaken and reported by Wrigley and Dexter (1991).
Their empirical analysis of twenty-six 4GL systems
indicated that source code size could be modeled with a
high degree of accuracy at both program and system
levels, using regression-based equations that took into
account a variety of independent variables – files
accessed, projections and joins, screen images, input and
output data elements, and (at the system level) screens,
reports and files. Their experiment was sound and
rigorously conducted, although the authors themselves
noted that theirs was an assessment of goodness-of-fit
modeling rather than of prediction.

Bourque and Côté (1991) describe an experiment in
which they built predictive models of program size using
linear regression methods. Employing simple measures
extracted from real-world system specifications and

designs they were able to generate models that were of
comparable accuracy to those produced using far more
complex and time-consuming data collection and analysis
methods. A similar experiment, this time using a CASE
environment rather than a 4GL, was reported by
Cockcroft (1996). She found that it was possible to
predict code product size with low error based on
measures collected from the product specification’s data
and data flow models (defined in the earlier studies of
Verner and Tate). Size in her study, however, was
measured as a count of CASE generated report lines,
rather than programmer-developed code. Since code
generation requires minimal personnel resources, having
a priori knowledge of code size in such a situation may
not be of substantial assistance in allocating labor
resources or scheduling project activities.

Dolado (1997) investigated the relationship between
function point measures and 4GL source code size. His
study of 22 student projects found that whilst there was
indeed a statistically significant relationship between
function point counts and source lines of code the actual
amount of variation in size explained by the FPA counts
was 48% (for Albrecht FPA) and 58% (for Symons Mk II
FPA). Dolado speculated on some of the reasons for this,
but it remained unclear as to whether the underlying cause
related to problems with function points, with the 4GL
code, or with aspects of the development process.
Moreover Dolado’s study was focused on assessing
goodness-of-fit and so did not assess predictive accuracy
per se. Hakuta et al. (1997) aimed instead to produce a
“universal [size] estimation model independent of the
program type or characteristics.” (p.253). Their approach
utilised the abstract notion of a ‘processing unit’, a
program module that performs a specified function (either
visible or invisible to the user). The size of the
processing units is then estimated based on reference
modules, with adjustment for language level, before
further refinement is undertaken based on processing
complexity and environmental factors. Notable in the
work of Hakuta et al. (1997) is the use of three predicted
values of size for each observation, being the average and
a lower and upper limit. Although rather coarse, this does
represent an attempt to incorporate uncertainty into the
estimation process. Hakuta et al. (1997) also emphasized
the need for stepwise estimation – that is, the refinement
of size estimates over time as further work is done and as
further information becomes available.

In one of our own earlier studies of database-centered
systems (MacDonell et al. 1997) we used very simple
specification-based measures in regression models to
predict 4GL system size. A set of seventy small
transaction-processing systems was available for analysis,
split into a build set of fifty observations and a validation
set of twenty project points. In estimating the total
number of source statements is each system (SIZE) we
found that the number of non-menu processes depicted in
the specification’s functional decomposition chart
(NONMENU) and the number of attributes in the
system’s data model (ATTRIB) together explained 65%
of the variation in size. The two predictors were related,
however, so a single variable model using the most
influential variable – NONMENU – was adopted as the
most effective in this case. In order to provide an
opportunity for model comparison we use the same data
set here in the development and validation of fuzzy logic
estimation models for the current study.

3. MODELING ASPECTS OF SOFTWARE
PROJECT MANAGEMENT

As is evident in the previous section, most of the attempts
to estimate software product size (and effort) have
employed parametric models built using algorithmic or
regression-based methods. Complementary approaches
employing computational intelligence techniques have not
been widely used in this regard. That said, these methods
have been utilised in addressing other software
engineering research issues. In general this has been

motivated by a desire to work with the uncertainty
inherent in software projects rather than trying to avoid it.

Padberg (1999) reports the development of a probabilistic
model for software projects, whereby development time is
estimated according to probability distributions and risk-
based adjustments. He illustrates his approach by
considering schedule projections in a multi-team system
enhancement process. Several examples are given to
demonstrate how project progress varies with differences
in the input parameters, enabling a form of ‘what-if’
analysis to be undertaken in order to determine the
likelihood that a given schedule will be met.

In acknowledging the factors that limit the effectiveness
of multiple regression in software cost modeling, Chulani
et al. (1999) propose the use of Bayesian analysis in order
to overcome such limitations (related in particular to their
earlier work on COCOMO II). Their empirical
investigation of 161 project observations found that the
Bayesian approach, which enables both historical data
and expert judgment to be incorporated into predictive
models, outperformed multiple regression modeling
across fifteen separate samples of the data set. The fact
that models could be refined on an ongoing basis as new
data and information came to hand was promoted as a
particularly important attribute of the Bayesian analysis
method.

Fenton and Neil (1999) comment that our current models
of software development are too simplistic to fully
capture cause and effect relationships. As a result,
predictions constructed using such models are likely to be
flawed and/or spurious. Consequently, the authors
contend that we need models that are more able to cope
with diverse sources of evidence (empirical data,
probability distributions, managers’ insights), genuine
cause and effect relationships (and the magnitude of each
effect), missing information, and uncertainty. To this end
they have adopted Bayesian belief nets (BBNs), network
representations that incorporate model variables and their
interrelationships. Although not reported extensively in
their paper, the authors describe several case studies in
which they have applied their BBN approach to good
effect.

In an assessment of three machine learning prediction
methods – neural networks, case-based reasoning and rule
induction – Mair et al. (2000) found that in terms of
model accuracy the neural network proved to be the most
effective in estimating development effort. That said, the
authors also stated that the desire for accuracy needs to be
tempered by considerations of model configurability and
explanatory value. These and other desirable attributes of
predictive models are also discussed in Gray and
MacDonell (1997a). When these issues are taken into
account Mair et al. (2000) contend that methods that are
able to both generate and incorporate knowledge (e.g.
rule-based methods) may be more widely preferred over
those that are generally less able to do so (e.g. standard
neural networks).

Alonso et al. (1997) propose the use of rough sets
(Pawlak 1991) in estimating the maintainability of
software modules based on a set of object-oriented design
metrics, illustrating their approach with a small-scale

empirical example. They contend that the visibility of the
rule set and the incorporation of uncertainty afforded by
the use of rough (rather than crisp) sets mean that such an
approach would be attractive in software project
management (although they did not empirically validate
their method against a set of unseen observations).

Studies investigating the application of fuzzy logic
methods to software engineering problems are still
relatively few in number, but it does appear that interest is
growing in this area. One of the earliest reported efforts
in this domain is that of Putnam (1987), citing the use of
fuzzy logic in determining early estimates of software
size. As this approach was incorporated in their
commercial SIZE PLANNER product, it was and is
unclear as to how the method operates in practice.
Bastani et al. (1993) employed fuzzy logic in the domain
of software reliability modeling. Using an experimental
research method they found that a fuzzy logic approach
was more effective at classifying mutated programs (as
correct or incorrect) than a purely probabilistic approach.
Kumar et al. (1994) provide a well-reasoned justification
for the use of fuzzy logic in software project
management, building an illustrative fuzzy system to
replicate Putnam’s personnel scheduling model.

An alternative approach utilizing expert-system support
for effort estimation (based on function point analysis) is
described by Griech and Pomerol (1994). Although the
focus of their work was on the environment rather than on
accuracy, their initial experiments “…produced a
posteriori estimations not too far from the actually
observed effort” (Griech and Pomerol 1994, p. 183).
Ebert (1997) examined the effectiveness of five
classification methods in categorizing software modules
as fault-prone or non-fault-prone. His analysis indicated
that the fuzzy logic approach was superior to the other
four techniques considered, these being neural networks,
discriminant analysis, classification trees and simple
Pareto classification. Moreover, such an approach
received support on an intuitive basis given that
“…subjective and qualitative judgement plays an
important role in [software project and quality
management].” (Ebert 1997, p. 289). An attempt to apply
the principles of fuzzy logic to function point analysis, in
order to more successfully account for subjectivity and
uncertainty in software measurement, was described by
Yau and Tsoi (1998). A case study was provided to
illustrate their approach although no empirical analysis
was reported.

More recently, Idri and his colleagues (Idri and Abran
2000; Idri et al. 2000; Idri and Abran 2001; Idri et al.
2002) have focused their work to date on two areas: the
use of fuzzy logic in identifying similar observations to a
target project, which can then be used as the basis of
predictions for that project; and in fuzzy logic modeling
of the COCOMO prediction method, particularly the
specification of fuzzy membership functions for each of
the cost drivers. Although their published empirical
analyses are not extensive (given the early stage of the
research), their work does highlight the significant
potential in fuzzy logic modeling when applied to aspects
of software project management. Our own work (Gray
and MacDonell 1997b; MacDonell et al. 1999) has

similarly indicated the applicability of fuzzy logic
methods to this domain – one of the aims of the work
described here is to provide empirical evidence in support
of this.

As stated above, these studies reflect acceptance of the
fact that, since we do not have an underlying theory of
software construction, we cannot model it without
uncertainty. Lind and Sulek (1998) report that, in
software engineering, we have tended to ignore this
uncertainty, particularly when estimators are provided
with other often erroneous or misleading information
concerning their predictions. Abdel-Hamid et al. (1993)
and Jørgensen and Sjøberg (2001) have provided
empirical evidence for this phenomenon. In investigating
the issue of project undersizing, Lind and Sulek (1998)
found that although the impact of size on effort was
generally moderated by the opinions of project managers
in an attempt to incorporate uncertainty and to take the
influence of external factors (schedule pressure, personnel
turnover) into account, there was a clear tendency to
underestimate the real impact. They conclude by stating
(p. 267): “Quantitative, predictive techniques that
incorporate both the systems complexity and the
behavioural dynamics of team development should help
to remove the subjectivity and politics from IS project
estimation.” Whilst we doubt that this goal is feasible in
practice, we do support the need to bring together both
data and knowledge in prediction methods. Several
options exist for such an approach, including the
probabilistic and Bayesian methods discussed previously.
Our preferred means of doing so is through the use of
fuzzy logic modeling, as described in the following
sections.

4. CONTEXT FOR ANALYSIS

Seventy small transaction processing systems, built using
the same process and same 4GL tool set, were developed
by groups of senior information science students at the
University of Otago over a period of five years.
Specifications for each system had been developed under
the same prototyping methodology, resulting in the
provision of a useful set of data in terms of investigating
potential relationships between specification and design
characteristics and software source code size. Whilst
questions are often raised (and rightly so) in relation to
the generalisability of analyses performed on student-built
systems, most can be refuted in this particular case, since
the systems were built to solve actual business problems
for real clients operating in a commercial setting;
moreover, the results per se are less important than the
potential effectiveness of the more general analysis
process. That is, it is not the aim of this work to
recommend the specific sizing models for use in other
organisations; rather, it is the model-building process and
the tools and methods underlying it that may be of
benefit.

The specification and design methods used by the
development teams employed two central system
representations – an entity-relationship diagram (ERD),
illustrating the data objects of interest in the system and
the relationships that existed among them, and a

functional decomposition chart (FDC), depicting the high-
level menu, screen and report processing hierarchy of the
system. We aimed to take measures from each of the two
representations that would potentially provide coarse but
early indications of system size from the data and
processing perspectives respectively. Thus among the
measures collected were counts of the numbers of entities,
relationships and attributes (from the ERD), and counts of
the numbers of data entry/edit screens and system reports
(from the FDC). Whilst these counts were taken
manually, a verification process was applied (by an
independent counter) to ensure that the values were
accurate. The dependent variable, SIZE, was the total
number of source statements in each system. These
values were collected automatically via a code-parsing
program. Again, manual verification of the correctness of
the values was undertaken on a random selection of ten
systems to ensure that the parsing program was operating
as intended.

The sample of seventy observations was split randomly
into a model-building sample of fifty data points
(BUILD) and a model-testing sample of the remaining
twenty points (TEST). We used the BUILD sample to
develop complementary predictive models, using standard
linear regression and fuzzy logic modeling (via our
toolset FUZZYMANAGER (MacDonell et al. 1999)). As
described at the end of section two, previous regression-
based analysis of the data set had indicated that two
variables were able to explain the greatest amount of
variation in product size – NONMENU, the number of
non-menu processes depicted in the specification’s
functional decomposition chart, and ATTRIB, the number
of attributes in the system’s data model. Our models in
this study were therefore constructed using the same two
variables.

We also repeated the analyses using a second sample, in
light of the fact that sampling can have a significant
impact on the models constructed and their resultant
accuracy against test observations. By repeating the
analysis using a second sample we hoped to reduce the
sampling bias, thus enabling us to have greater confidence
in the results (as per Shepperd and Kadoda (2001) (two
samples) and Mair et al. 2000 (three samples)).

5. RESULTS AND DISCUSSION

We deal with the outcomes of the regression analysis first
followed by an assessment of the fuzzy logic models. A
comparison of the models’ predictive performance is then
reported.

5.1 Regression

Least-squares linear regression modeling resulted in the
following models being produced:

BUILD1: SIZE = -278.7 + 58.6(NONMENU) +
4.5(ATTRIB) (Adj R2 0.69)

BUILD2: SIZE = -230.6 + 50.1(NONMENU) +
5.6(ATTRIB) (Adj R2 0.73)

The fit for each model is shown in Figure 1. Such a
representation enables us to see that whilst the regression
lines are similar, they are also quite distinct. This further
emphasizes the effect of sampling on the resultant model.

3000200010000

3000

2000

1000

0

PRED2
SIZE

PRED1

SIZE

Figure 1. Regression models fitted using BUILD samples 1 and 2.

These models provided a baseline for performance
against which we could assess the effectiveness of
the proposed fuzzy models.

5.2 Fuzzy modeling

The body of knowledge concerned with fuzzy logic
modeling is now quite extensive, and the techniques
employed are being constantly refined. Where relevant
data is available as in this case, a variety of clustering
algorithms can be used to inform the creation of
membership functions (MFs) for each concept (or
variable) of interest. In attempting to obtain greater levels
of accuracy in classification and modeling, some of these
algorithms are necessarily complex. We need to
consider, however, the trade-off between the accuracy and
complexity of the method and its understandability. This
is an important issue in terms of gaining the trust of
project managers. Evidence suggests that managers are
more likely to use a method that they trust, and that trust
comes from understanding the process by which the
estimates are derived (Myrtveit and Stensrud 1999; Sauter
1999).

We therefore adopted a very simple approach to the
development of our fuzzy models, on the basis that such
an approach would be more acceptable to managers.
Thus:

• we considered just two values for the number of
membership functions for each concept – either five
or seven MFs. Scales of this size are used frequently
in surveys and the like, as it is generally accepted
that we are comfortable in classifying items or
answering questions according to five or seven
options. Five sets might equate to {strongly
disagree, disagree, neutral, agree, strongly agree} or
{very low, low, medium, high, very high}.

• we utilised fuzzy c-means clustering (Bezdek 1981;
Billaudel et al. 1999), a relatively simple iterative
clustering algorithm, to determine first-cut
membership functions and rule sets from the BUILD
data samples (see Appendix A for a pseudocode
description of the algorithms). Note that this
approach produces the most influential rules based
on a combination of all the predictor variables when
joined by the logical connector AND. As such the
rules as generated tend to be very simple in structure.

• we evaluated only two sizes of rule set – either
fifteen or twenty rules. Whilst these numbers may
be considered to be large, they are by no means as
high as the number that could be needed, given the
number of membership functions in the model.
Potentially, every combination of functions could
require a distinct rule. We then begin to encounter
the ‘rule explosion’ problem, due to the exponential
relationship between the number of variables, MFs
and rules (Kosko 1997). In our case, we will have a
system comprising two input variables (NONMENU
and ATTRIB). If we adopt five MFs for each, then
we would potentially need 52 = 25 rules. If we
instead use seven MFs to represent each variable
then the number of possible rules rises to 72 = 49.

Alternatively, we could simply have a rule for each
and every observation in the sample. Whilst both
strategies would be likely to result in very high
BUILD model accuracy there remain three
unresolved issues: one, high model accuracy when
used on the TEST samples is still not assured; two,
the BUILD models may be over fitted to their
underlying data sets, leading to a loss of
generalisability; and three, as the rule set size
increases, the less understandable it becomes. We
were also of the view that if a simple approach
proved to be comparable to linear regression in terms
of predictive performance then a more complex
fuzzy approach would almost certainly result in even
better outcomes.

The clustering and rule extraction activities were
undertaken using the CLUESOME (CLUster Extraction
for SOftware MEtrics) component of our
FUZZYMANAGER toolset (MacDonell et al. 1999).
After experimenting with various membership function
shapes we restricted ourselves to trapezoidal and
triangular as being appropriate for the discrete data being
modeled (Kumar et al. 1994). For the first of the two
BUILD samples the best model (in terms of goodness-of-
fit (see the next part of this section for further discussion))
was one that employed seven membership functions and
fifteen rules. The clusters generated using this model are
shown in Figure 2, in this case for the relationship
between NONMENU and SIZE. For the second BUILD
sample the best model again used seven membership
functions for each variable, but in this case the triangular
shape proved to be the more effective. Twenty rules
resulted in greater model accuracy than fifteen for this
sample. In both cases the ATTRIB and NONMENU
variables used the classification {VeryLow, Low,
LowMedium, Medium, MediumHigh, High, VeryHigh}
and the SIZE variable {VerySmall, Small, SmallMedium,
Medium, MediumLarge, Large, VeryLarge}.

The two rule sets are shown in Figure 3. It can be
observed that there are just two specific rules in common
between the two sets, again reflecting the impact that
sampling can have on model construction, although there
are eight rules in total that have a common set of
antecedent pairs (i.e. the same class combination for
NONMENU and ATTRIB). In general, the rules adhere
to the general principle that higher numbers of attributes
and non-menu functions in a specification map to a larger
system in terms of source code size. In this respect they
could be viewed as being intuitively plausible and
understandable to a project manager (although this was
not tested directly in this study).

5.3 Comparison of model performance

In order to compare the predictive accuracy of the two
modeling methods we needed to select one or more
appropriate measures of accuracy. This issue in itself has
been the subject of quite extensive research in recent
years (Lo and Gao 1997; Shepperd et al. 2000; Shepperd
and Kadoda 2001; Kitchenham et al. 2001), and there is
no consensus on what constitutes the ‘best’ accuracy
indicator. This is due in no small part to the fact that
organisations have different objectives when building

predictive models. For instance, some manage projects in
a portfolio approach, meaning that variations for
individual projects can be tolerated if over the portfolio
predictive accuracy is achieved. This may be contrasted
to organisations that deal with projects on a case-by-case
basis, where accuracy for every project is an important

goal. As a result of these differing objectives there is a
need for different accuracy measures. As we had no a
priori objective in this regard, we employed a selection of
measures so that performance could be considered from a
variety of perspectives. The measures we chose are
shown in Table 2.

Figure 2. Clusters with rule centers for the BUILD1 sample.

The No pred indicator enables us to assess the general
applicability of a model. Once constructed, a regression
model can be used to produce a prediction for any set of
input values. Although regression models are constructed
using a range of sample observations, it is not uncommon
for models to be used to extrapolate likely values outside
that range, in spite of the fact that such extrapolation may
not be appropriate. As a result, the proportion of cases
where a prediction is not made using regression analyses
is generally zero. In contrast, because fuzzy logic model
rules are only fired when input values map to membership
functions, there may be some combinations of input
values that result in no rules fired. The No pred indicator
therefore shows the proportion of such observations in the
TEST sample. We therefore also include the pred(n)sub
measures, enabling us to assess the relative accuracy of
the models for predicted cases only.

We used our TEST samples to assess the predictive
accuracy of the models, first by applying our regression

models and then using the FUzzy Logic for SOftware
MEtrics (FULSOME) module of FUZZYMANAGER to
produce first-cut estimates of SIZE. Table 3 illustrates
the summarized performance of the modeling methods as
applied to the two holdout samples. Where one model
performs better in terms of the goal for each accuracy
indicator this is illustrated in bold typeface.

In considering the accuracy of the two methods the results
in Table 3 suggest that the first-cut fuzzy logic models are
equally or more accurate than regression modeling in
terms of the MMRE, MedMRE, Sum Abs Diff and Med
Abs Diff measures, but are worse according to the
pred(20) and pred(30) indicators. These results are
misleading, however, due to the fact that there were a
number of observations in both samples for which no
fuzzy rules were fired (six and two observations,
respectively); hence the results as presented in Table 3
should not be compared directly. Instead, we needed to
consider options for refining our first-cut fuzzy systems.

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<Low> THEN [Size] IS <SmallMedium>

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<LowMedium> THEN [Size] IS <SmallMedium>

IF [ATTRIB] IS <Low> AND [NONMENU] IS
<LowMedium> THEN [Size] IS <Small>

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<Medium> THEN [Size] IS <Medium>

IF [ATTRIB] IS <VeryHigh> AND [NONMENU] IS
<High> THEN [Size] IS <Large>

IF [ATTRIB] IS <MediumHigh> AND [NONMENU]
IS <Medium> THEN [Size] IS <Medium>

IF [ATTRIB] IS <VeryHigh> AND [NONMENU] IS
<VeryHigh> THEN [Size] IS <VeryLarge>

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<MediumHigh> THEN [Size] IS <MediumLarge>

IF [ATTRIB] IS <Low> AND [NONMENU] IS
<LowMedium> THEN [Size] IS <SmallMedium>

IF [ATTRIB] IS <LowMedium> AND [NONMENU]
IS <MediumHigh> THEN [Size] IS <Large>

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<MediumHigh> THEN [Size] IS <MediumLarge>

IF [ATTRIB] IS <Low> AND [NONMENU] IS
<Low> THEN [Size] IS <VerySmall>

IF [ATTRIB] IS <LowMedium> AND [NONMENU]
IS <Medium> THEN [Size] IS <Medium>

IF [ATTRIB] IS <High> AND [NONMENU] IS
<High> THEN [Size] IS <Large>

IF [ATTRIB] IS <LowMedium> AND [NONMENU]
IS <LowMedium> THEN [Size] IS <Small>

Figure 3. Rule sets generated from BUILD samples 1 (left) and 2 (right).

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<MediumHigh> THEN [Size] IS <MediumLarge>

IF [ATTRIB] IS <MediumHigh> AND [NONMENU]
IS <Low> THEN [Size] IS <Medium>

IF [ATTRIB] IS <LowMedium> AND [NONMENU]
IS <Medium> THEN [Size] IS <MediumLarge>

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<Medium> THEN [Size] IS <MediumLarge>

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<MediumHigh> THEN [Size] IS <Large>

IF [ATTRIB] IS <VeryHigh> AND [NONMENU] IS
<High> THEN [Size] IS <VeryLarge>

IF [ATTRIB] IS <VeryLow> AND [NONMENU] IS
<VeryLow> THEN [Size] IS <VerySmall>

IF [ATTRIB] IS <LowMedium> AND [NONMENU]
IS <Low> THEN [Size] IS <Small>

IF [ATTRIB] IS <MediumHigh> AND [NONMENU]
IS <High> THEN [Size] IS <VeryLarge>

IF [ATTRIB] IS <High> AND [NONMENU] IS
<High> THEN [Size] IS <MediumLarge>

IF [ATTRIB] IS <Low> AND [NONMENU] IS
<LowMedium> THEN [Size] IS <SmallMedium>

IF [ATTRIB] IS <VeryLow> AND [NONMENU] IS
<Low> THEN [Size] IS <VerySmall>

IF [ATTRIB] IS <Low> AND [NONMENU] IS
<Low> THEN [Size] IS <Small>

IF [ATTRIB] IS <MediumHigh> AND [NONMENU]
IS <High> THEN [Size] IS <VeryLarge>

IF [ATTRIB] IS <High> AND [NONMENU] IS
<Medium> THEN [Size] IS <MediumLarge>

IF [ATTRIB] IS <VeryLow> AND [NONMENU] IS
<VeryHigh> THEN [Size] IS <VeryLarge>

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<Medium> THEN [Size] IS <SmallMedium>

IF [ATTRIB] IS <High> AND [NONMENU] IS
<LowMedium> THEN [Size] IS <Medium>

IF [ATTRIB] IS <High> AND [NONMENU] IS
<VeryHigh> THEN [Size] IS <VeryLarge>

IF [ATTRIB] IS <Medium> AND [NONMENU] IS
<MediumHigh> THEN [Size] IS <Large>

The first step in our refinement process saw us consider
the effect of weighted rule sets on predictive accuracy. In
our first-cut analysis we used CLUESOME to produce
rules of the same weight, irrespective of the fact that some
rules were fired more strongly than others. Differences in
the extent to which rules are fired can be interpreted as an
indication of the varying degree of confidence we should

have in the rules. We therefore re-ran our rule extraction
process, this time generating weighted rule sets. When
these revised models were applied to the TEST samples,
there was no improvement in the accuracy of the TEST1
model, but an improved level of performance was
observed for the TEST2 sample. These results are
presented in Table 4.

Table 2. Accuracy measures used in this study.

Abbreviation Name Definition Goal

MMRE Mean magnitude of relative error Mean of ((Actual-Predicted)/Actual) for all
predictions

Minimize

MedMRE Median magnitude of relative
error

Median of ((Actual-Predicted)/Actual) for all
predictions

Minimize

pred(20) Predictive accuracy at 20% over
sample

Proportion of predictions within 20% of actual
value for all observations

Maximize

pred(30) Predictive accuracy at 30% over
sample

Proportion of predictions within 30% of actual
value for all observations

Maximize

No pred No prediction proportion Proportion of cases where no predictions are
made

Minimize

pred(20)sub Predictive accuracy at 20% for
predicted cases

Proportion of predictions within 20% of actual
value for all predictions

Maximize

pred(30)sub Predictive accuracy at 30% for
predicted cases

Proportion of predictions within 30% of actual
value for all predictions

Maximize

Sum Abs Diff Sum of the absolute error Sum of (Absolute Value (Actual-Predicted))
for all predictions

Minimize

Med Abs Diff Median of the absolute error Median of (Absolute Value (Actual-Predicted))
for all predictions

Minimize

Table 3. Performance of regression and first-cut fuzzy models on TEST samples.

 TEST1 TEST2

 Regression model Fuzzy model Regression model Fuzzy model

MMRE 0.22 0.17 0.31 0.31

MedMRE 0.16 0.10 0.17 0.17

pred(20) 55% 50% 55% 45%

pred(30) 65% 55% 65% 55%

No pred 0% 30% 0% 10%

pred(20)sub 55% 71% 55% 50%

pred(30)sub 65% 79% 65% 61%

Sum Abs Diff 4463 2367 5557 4992

Med Abs Diff 175 97 198 146

We next considered how we might be able to address the
fact that the sample-based model construction process had
resulted in failure to produce predictions for a total of
eight of the forty observations. This required us to
examine the TEST observations for which no rules had
been fired and to consider whether amendments and
additions to the fuzzy systems would in fact enable us to
provide useful predictions. (This reflects the real-world
situation encountered by a manager when they are faced

with a project that has no directly analogous
counterparts.) In this respect we could amend the
membership functions and/or the rule sets. In examining
the six observations in the first TEST sample we found
that three had low ATTRIB values and one had a high
value for the same parameter, and that these were all
values that fell just outside the existing membership
function limits. Minor adjustments to the lower bound
parameters for the ATTRIB sets {Low} and {High},

along with one label change to the SIZE parameter in one
of the fifteen rules (from {SmallMedium} to {Small}),
led to substantial improvement in the effectiveness of the
model. Six further observations now had predictions
associated with them, and although the estimates for two
other observations had become worse as a result, two
others had been improved, and ten had remained the
same. In looking at similar possibilities for the second
sample, the addition of a new rule to cope with large
systems along with slight changes to the {Low} and
{Medium} ATTRIB fuzzy sets resulted in all twenty
observations having an associated estimate, with two new
predictions, four that were slightly worse, two that were
better, and twelve that were the same. Over both samples,

however, overall performance of the fuzzy logic models
was considerably improved (see Table 5). The fit of each
of the models on their respective data set is also shown
graphically in Figures 4 and 5. The impact of an unusual
(yet valid) observation on the regression model (LSR) in
Figure 4 is clearly evident – this is one of the two
remaining observations in the sample for which no rules
were fired in the corresponding fuzzy logic model. Such
an outcome reinforces previous comments regarding the
impact of unusual observations on the effectiveness of
regression modeling.

Table 4. Performance of regression and refined (weighted) fuzzy models on TEST samples.

 TEST1 TEST2

 Regression model Fuzzy model Regression model Fuzzy model

MMRE 0.22 0.17 0.31 0.29

MedMRE 0.16 0.10 0.17 0.13

pred(20) 55% 50% 55% 50%

pred(30) 65% 55% 65% 60%

No pred 0% 30% 0% 10%

pred(20)sub 55% 71% 55% 56%

pred(30)sub 65% 79% 65% 67%

Sum Abs Diff 4463 2367 5557 4005

Med Abs Diff 175 97 198 123

Table 5. Performance of regression and refined (amended) fuzzy models on TEST samples.

 TEST1 TEST2

 Regression model Fuzzy model Regression model Fuzzy model

MMRE 0.22 0.18 0.31 0.28

MedMRE 0.16 0.10 0.17 0.12

pred(20) 55% 60% 55% 60%

pred(30) 65% 75% 65% 70%

No pred 0% 10% 0% 0%

pred(20)sub 55% 67% 55% 60%

pred(30)sub 65% 83% 65% 70%

Sum Abs Diff 4463 2831 5557 4206

Med Abs Diff 175 90 198 110

This step in our analysis could be justly criticized in that
in effect it returns the process to a model-fitting exercise
with all data visible (BUILD + TEST) rather than an
assessment of unbiased prediction. We therefore also
investigated whether a similar strategy would result in
improvements in the regression-based predictions.
Instead of creating two separate regression equations from
our two BUILD samples we generated a single best-fit
equation from the entire sample of seventy observations.

We then applied this equation to the two TEST samples
and assessed its performance according to our accuracy
criteria. The results are presented alongside those
obtained from the existing amended fuzzy logic models in
Table 6, and graphically in Figures 6 and 7. It can be
seen that whilst some improvements in accuracy were
indeed made, particularly in terms of the pred indicators,
performance against other criteria actually deteriorated,
and the fuzzy logic models still performed better overall.

3000200010000

3000

2000

1000

0

PRED1FUZ
SIZE1

Rsq = 0.8815

PRED1LSR

SIZE1

Rsq = 0.7000

Figure 4. Model fit for the TEST1 sample.

3000200010000

3000

2000

1000

0

PRED2FUZ
SIZE2

Rsq = 0.6486

PRED2LSR

SIZE2

Rsq = 0.5674

Figure 5. Model fit for the TEST2 sample.

It should be noted that, apart from the development of the
model based on the complete data set, we made no
attempt to revise the regression models in light of their
performance on the TEST data samples. However, when
compared to the very transparent nature of the fuzzy
models, regression equations do not lend themselves to
such refinement. As a result we consider that the

outcomes of the work are valid for this study. It is
therefore the conclusion of this analysis that in terms of
accuracy, fuzzy logic modeling can outperform
regression-based estimation in software source code
sizing.

Table 6. Performance of full regression model versus refined (amended) fuzzy models.

 TEST1 TEST2

 Regression model Fuzzy model Regression model Fuzzy model

MMRE 0.23 0.18 0.31 0.28

MedMRE 0.20 0.10 0.18 0.12

pred(20) 50% 60% 60% 60%

pred(30) 75% 75% 70% 70%

No pred 0% 10% 0% 0%

pred(20)sub 50% 67% 60% 60%

pred(30)sub 75% 83% 70% 70%

Sum Abs Diff 4368 2831 5252 4206

Med Abs Diff 205 90 166 110

3000200010000

3000

2000

1000

0

PRED1FUZ
SIZE1

Rsq = 0.8815

PREDLSR

SIZE1

Rsq = 0.7015

Figure 6. Model fit for the TEST1 sample (against full regression model).

6. CONCLUSIONS

This study set out to investigate whether fuzzy logic
modeling could be used both in its own right and as a
viable alternative to least squares regression in the
estimation of source code size. Specifically we used very
simple clustering and rule extraction methods to generate
first-cut fuzzy models for two samples from a set of 4GL
project records and compared the accuracy of these
models to that achieved via regression-based prediction.
We found that using a variety of criteria, fuzzy logic
modeling appeared to perform as well as or better than
least squares regression.

Given that the accuracy of the first-cut fuzzy models was
similar to that of their regression-based counterparts it

may be said that fuzzy logic modeling adds little to
existing (regression-based) modeling capability. In our
view, however, fuzzy logic modeling also has several
other characteristics that make it an appealing option – it
is amenable to data, knowledge, or both; it incorporates
aspects of uncertainty in modeling; there is no fixed
structure to models; it is easily understood; and the
reasoning employed via the rule sets is relatively
transparent. Moreover, refinement of the fuzzy models in
this study led to improved predictive accuracy and good
coverage in terms of the test observations. These results
suggest that in terms of estimation accuracy fuzzy logic
modeling could provide effective assistance to software
project managers. On the basis of this we would
recommend that managers adopt fuzzy logic modeling as
a technique to be used alongside other complementary

classification and prediction methods.

A number of avenues for further research have arisen out
of this work. As stated previously, we intentionally
employed very simple methods in the construction of our
fuzzy models. We now intend to investigate whether the
use of more complex methods and algorithms leads to
further improvements in predictive accuracy, keeping in
mind the trade-off with model understandability. We are

also presently assessing the impact of sampling, the
number and shape of membership functions, rule structure
(in terms of other connectives) and rule set size on the
accuracy of estimates. Finally, we are evaluating the
accuracy of fuzzy logic modeling when applied to other
software engineering problems, in order to determine the
breadth of applicability of the approach in this domain.

3000200010000

3000

2000

1000

0

PRED2FUZ
SIZE2

Rsq = 0.6486

PREDLSR

SIZE2

Rsq = 0.5677

Figure 7. Model fit for the TEST2 sample (against full regression model).

APPENDIX A

The fuzzy c-means clustering algorithm is as follows:

1. select an appropriate mathematically defined
function for the membership functions of the variable of
interest i, say fi(x)

2. select the number of membership functions that are
desired for that particular variable, mi

3. call each of the mi functions fij([x]) where j = 1…mi
and [x] is an array of parameters defining that particular
function (normally a center and width parameter are
defined)

4. using one-dimensional fuzzy c-means clustering on
the available data set find the mi cluster centers, cij

5. sort the cluster centers cij into monotonic (generally
ascending) order for the given i

6. set the membership function center for fij, generally
represented as one of the parameters in the array [x], to
the cluster center cij

7. set the membership function widths for fij in [x] such
that ∑mi

n=1 fin([cin,…]) = 1, or as close as possible for the

chosen f(x) where this cannot be achieved exactly (for
example for triangular membership functions each
function can be defined using three points a, b and c
where a is the center of the next smaller function and c is
the center of the next larger function).

The rule extraction algorithm is as follows:

1. start with known membership functions fij([x]) for
all variables, both input and output, where j represents the
number of functions for variable i and [x] is the set of
parameters for the particular family of function curves

2. select the number of clusters k (which represents the
number of rules involving the k-1 independent variables
to estimate the single output variable)

3. perform fuzzy c-means clustering to find the centers
(i dimensional) for each cluster

4. for each cluster k with center ck

(a.) determine the kth rule to have the antecedents and
consequent fij for each variable i where fij(ck) is
maximized over all j

(b.) weight the rule, possibly as ∏ i
n=1 fij(ck) or ∑ i

n=1
fij(ck)

5. combine rules with the same antecedents and
consequents, either summing, multiplying, or bounded
summing rule weights together

6. (optionally) ratio scale all weights so that the mean
weight is equal to 1.0 to aid interpretability.

REFERENCES

Abdel-Hamid, T.K., Sengupta, K. and Ronan, D.
Software project control: an experimental investigation of
judgment with fallible information. IEEE Transactions on
Software Engineering 19(6): 603-612 (1993)

Albrecht, A.J. Measuring application development
productivity. In Proceedings, IBM GUIDE/SHARE
Applications Development Symposium. California USA
(1979)

Albrecht, A.J. and Gaffney, J.E., Jr. Software function,
source lines of code, and development effort prediction: a
software science validation. IEEE Transactions on
Software Engineering 9(6): 639-648 (1983)

Alonso, E.B., Moreno, A.G. and Galvez, J.F.G. Applying
rough sets to software development metrics. In
Proceedings of SCI'97/ISAS'97. Caracas (1997)

Banker, R.D., Kauffman, R.J. and Kumar, R. An
empirical test of object-based output measurement
metrics in a computer aided software engineering (CASE)
environment. Journal of Management Information
Systems 8(3): 127-150 (1992)

Basili, V.R., Shull, F. and Lanubile, F. Building
knowledge through families of experiments. IEEE
Transactions on Software Engineering 25(4): 456-473
(1999)

Bastani, F.B., DiMarco, G. and Pasquini, A. Experimental
evaluation of a fuzzy-set based measure of software
correctness using program mutation. In Proceedings of
the 15th International Conference on Software
Engineering. Baltimore MY, USA, IEEE Computer
Society Press, Los Alamitos CA (1993) 45-54

Bezdek, J.C. Pattern Recognition with Fuzzy Objective
Function Algorithms. Plenum, New York, 1981

Billaudel, P., Devillez, A. and Villermain Lecolier, G.
Performance evaluation of fuzzy classification methods
designed for real time application. International Journal
of Approximate Reasoning 20: 1-20 (1999)

Blackburn, J.D., Scudder, G.D. and Van Wassenhove,
L.N. Improving speed and productivity of software
development: a global survey of software developers.
IEEE Transactions on Software Engineering 22(12): 875-
885 (1996)

Boehm, B.W. Software Engineering Economics.
Englewood Cliffs NJ, USA, Prentice-Hall (1981)

Boehm, B.W. and Papaccio, P.N. Understanding and
controlling software costs. IEEE Transactions on
Software Engineering 14(10): 1462-1477 (1988)

Bourque, P. and Côté, V. An experiment in software
sizing with structured analysis metrics. Journal of
Systems and Software 15: 159-172 (1991)

Chan, T., Siu Leung Chung and Teck Hua Ho An
economic model to estimate software rewriting and
replacement times. IEEE Transactions on Software
Engineering 22(8): 580-598 (1996)

Chidamber, S.R. and Kemerer, C.F. Towards a metrics
suite for object oriented design. In Proceedings of
OOPSLA'91. Phoenix, AZ, ACM (1991) 197-211

Chidamber, S.R. and Kemerer, C.F. A metrics suite for
object oriented design. IEEE Transactions on Software
Engineering 20(6): 476-493 (1994)

Chrysler, E. The impact of program and programmer
characteristics on program size. In Proceedings of the
National Computer Conference (1978) 581-587

Chulani, S., Boehm, B.W. and Steece, B. Bayesian
analysis of empirical software engineering cost models.
IEEE Transactions on Software Engineering 25(4): 573-
583 (1999)

Cockcroft, S.K.S. Estimating CASE development size
from outline specifications. Information and Software
Technology 38: 391-399 (1996)

DeMarco, T. An algorithm for sizing software products.
ACM SIGMetrics Performance Evaluation Review 12(2):
13-22 (1984)

DeMarco, T. In the land of function metrics. Presented to
The 5th International COCOMO User Group Conference,
Pittsburgh (1989)

Dolado, J.J. A study of the relationships among Albrecht
and Mark II function points, lines of 4GL code and effort.
Journal of Systems and Software 37: 161-173 (1997)

Ebert, C. Experiences with criticality predictions in
software development. In Proceedings of the 6th
European Software Engineering Conference
(ESEC/FSE'97). Switzerland, Springer (1997) 278-293

Fenton, N.E. and Neil, M. Software metrics: success,
failures and new directions. Journal of Systems and
Software 47: 149-157 (1999)

Ferens, D.V. Software size estimation: quo vadis?
National Estimator (Winter): 43-54 (1999)

Gray, A.R. and MacDonell, S.G. A comparison of
techniques for developing predictive models of software
metrics. Information and Software Technology 39: 425-
437 (1997a)

Gray, A. and MacDonell, S.G. Applications of fuzzy logic
to software metric models for development effort
estimation. In Proceedings of the 1997 Annual Meeting of
the North American Fuzzy Information Processing
Society - NAFIPS. Syracuse NY, USA, IEEE (1997b)
394-399

Griech, B. and Pomerol, J.-C. Design and implementation
of a knowledge-based decision support system for
estimating software development work-effort. Journal of
Systems Integration 4: 171-184 (1994)

Hakuta, M., Tone, F. and Ohminami, M. A software size
estimation model and its evaluation. Journal of Systems
and Software 37: 253-263 (1997)

Halstead, M.H. Elements of Software Science. New York
NY, USA, Elsevier North-Holland (1977)

Idri, A. and Abran, A. “Towards a Fuzzy Logic Based
Measures for Software Projects Similarity”, In Proc 6th
MCSEAI’2000 Maghrebian Conference on Computer
Sciences. Fez, Morocco, 2000

Idri, A., Abran, A. and Kjiri, L. “COCOMO Cost Model
Using Fuzzy Logic”, In Proceedings of the 7th
International Conference on Fuzzy Theory and
Technology. New Jersey, 2000

Idri, A. and Abran, A. “A Fuzzy Logic Based Set of
Measures for Software Project Similarity: Validation and
Possible Improvements”, In Proc 7th Intl Symposium on
Software Metrics, London, IEEE Computer Society Press,
2001, 85-96

Idri, A., Abran, A., Khoshgoftaar, T.M. and Robert, S.
“Evaluating Software Project Effort by Analogy Based on
Linguistic Values”, to appear in Proc 8th Intl Symposium
on Software Metrics, Ottawa, IEEE Computer Society
Press, 2002, 21-32

Jørgensen, M. and Sjøberg, D.I.K. Impact of effort
estimates on software project work. Information and
Software Technology 43: 939-948 (2001)

Khoshgoftaar, T.M. and Lanning, D.L. A neural network
approach for early detection of program modules having
high risk in the maintenance phase. Journal of Systems
and Software 29: 85-91 (1995)

Kitchenham, B.A. A procedure for analyzing unbalanced
datasets. IEEE Transactions on Software Engineering
24(4): 278-301 (1998)

Kitchenham, B.A., Pickard, L.M., MacDonell, S.G. and
Shepperd, M.J. What accuracy statistics really measure.
IEE Proceedings – Software Engineering 148(3): 81-85
(2001)

Kosko, B. Fuzzy Engineering. Prentice Hall, New Jersey,
1997

Kulkarni, A., Greenspan, J.B., Kriegman, D.A., Logan,
J.J. and Roth, T.D. A generic technique for developing a
software sizing and effort estimation model. In
Proceedings, COMPSAC '88, (1988) 155-161

Kumar, S., Krishna, B.A. and Satsangi, P.S. Fuzzy
systems and neural networks in software engineering
project management. Journal of Applied Intelligence 4:
31-52 (1994)

Laranjeira, L.A. Software size estimation of object-
oriented systems. IEEE Transactions on Software
Engineering 16(5): 510-522 (1990)

Lee, H. A structured methodology for software
development effort prediction using the analytic hierarchy
process. Journal of Systems and Software 21: 179-186
(1993)

Lee, A., Cheng, C.H. and Balakrishnan, J. Software
development cost estimation: integrating neural network

with cluster analysis. Information & Management 34: 1-9
(1998)

Lehman, M.M. Software engineering, the software
process and their support. Software Engineering Journal:
243-258 (1991)

Lehman, M.M. Software's future: managing evolution.
IEEE Software (January-February): 40-44 (1998)

Lind, M.R. and Sulek, J.M. Undersizing software
systems: third versus fourth generation software
development. European Journal of Information Systems
7: 261-268 (1998)

Lo, B.W.N. and Gao, X. Assessing software cost
estimation models: criteria for accuracy, consistency and
regression. Australian Journal of Information Systems
5(1): 30-44 (1997)

MacDonell, S.G. Comparative review of functional
complexity assessment methods for effort estimation.
Software Engineering Journal 9(3): 107-116 (1994)

MacDonell, S.G. Establishing relationships between
specification size and software process effort in CASE
environments. Information and Software Technology
39(1): 35-45 (1997)

MacDonell, S.G., Shepperd, M.J. and Sallis, P.J. Metrics
for database systems: an empirical study. In Proceedings
of the Fourth International Software Metrics Symposium
(Metrics'97). Albuquerque NM, USA, IEEE Computer
Society Press (1997) 99-107

MacDonell, S.G., Gray, A.R. and Calvert, J.M.
FULSOME: a fuzzy logic modeling tool for software
metricians. In Proceedings of the 1999 Annual Meeting of
the North American Fuzzy Information Processing
Society - NAFIPS. New York NY, IEEE Computer
Society Press (1999) 263-267

Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield,
C., Shepperd, M. and Webster, S. An investigation of
machine learning based prediction systems. Journal of
Systems and Software 53: 23-29 (2000)

Miyazaki, Y., Terakado, M., Ozaki, K. and Nozaki, H.
Robust regression for developing software estimation
models. Journal of Systems and Software 27: 3-16 (1994)

Mukhopadhyay, T. and Kekre, S. Software effort models
for early estimation of process control applications. IEEE
Transactions on Software Engineering 18(10): 915-924
(1992)

Murali, C.S. and Sankar, C.S. Issues in estimating real-
time data communications software projects. Information
and Software Technology 39: 399-402 (1997)

Myrtveit, I. and Stensrud, E. A controlled experiment to
assess the benefits of estimating with analogy and
regression models. IEEE Transactions on Software
Engineering 25(4): 510-525 (1999)

Myrtveit, I., Stensrud, E. and Olsson, U.H. Analyzing
data sets with missing data: an empirical evaluation of
imputation methods and likelihood-based methods. IEEE
Transactions on Software Engineering 27(11): 999-1013
(2001)

Padberg, F. A probabilistic model for software projects.
In Proceedings of the 7th European Software Engineering
Conference (ESEC/FSE'99). Toulouse, Springer (1999)
109-126

Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning
About Data. Kluwer, 1991

Piattini, M., Genero, M. and Jiménez, L. A metric-based
approach for predicting conceptual data models
maintainability. International Journal of Software
Engineering and Knowledge Engineering 11(6): 703-729
(2001)

Pickard, L., Kitchenham, B. and Linkman, S. An
investigation of analysis techniques for software datasets.
In Proceedings of the 6th International Software Metrics
Symposium. Boca Raton, Florida, IEEE (1999) 130-142

Pickard, L., Kitchenham, B. and Linkman, S.J. Using
simulated data sets to compare data analysis techniques
used for software cost modelling. IEE Proceedings –
Software Engineering 148(6): 165-174 (2001)

Pillai, K. and Nair, V.S.S. Statistical analysis of
nonstationary software metrics. Information and Software
Technology 39: 363-373 (1997)

Putnam, D. Size Planner – An automated sizing model,
Presented to The 3rd COCOMO User Group Meeting,
Pittsburgh (1987)

Rosenberg, J. Five easy steps to systematic data handling.
IEEE Software (January-February): 75-77 (1998)

Sauter, V.L. Intuitive decision-making. Communications
of the ACM 42(6): 109-115 (1999)

Shepperd, M. and Schofield, C. Estimating software
project effort using analogies. IEEE Transactions on
Software Engineering 23(12): 736-743 (1997)

Shepperd, M.J., Cartwright, M. and Kadoda, G. On
building prediction systems for software engineers.
Empirical Software Engineering 5: 175-182 (2000)

Shepperd, M. and Kadoda, G. Evaluating software
prediction techniques using simulation. IEEE
Transactions on Software Engineering 27(11): (2001)

Shukla, K.K. Neuro-genetic prediction of software
development effort. Information and Software
Technology 42: 701-713 (2000)

Symons, C.R. Function point analysis: difficulties and
improvements. IEEE Transactions on Software
Engineering 14(1): 2-10 (1988)

Symons, C.R. Software Sizing and Estimating: Mk II FPA
(Function Point Analysis). Chichester, UK, John Wiley
& Sons (1991)

Tate, G. and Verner, J.M. Software sizing and costing
models: a survey of empirical validation and comparison
studies. Journal of Information Technology 5: 12-26
(1990)

Tate, G. and Verner, J.M. Approaches to measuring size
of application products with CASE tools. Information and
Software Technology 33(9): 622-628 (1991)

Turski, W.M. Reference model for smooth growth of
software systems. IEEE Transactions on Software
Engineering 22(8): 599-600 (1996)

Verner, J.M. and Tate, G. A model for software sizing.
Journal of Systems and Software 7: 173-177 (1987)

Verner, J. and Tate, G. Estimating size and effort in
fourth-generation development. IEEE Software: 15-22
(1988)

Verner, J. and Tate, G. A software size model. IEEE
Transactions on Software Engineering 18(4): 265-278
(1992)

Walkerden, F. and Jeffery, R. An empirical study of
analogy-based software effort estimation. Empirical
Software Engineering 4: 135-158 (1999)

Wrigley, C.D. and Dexter, A.S. A model for measuring
information system size. MIS Quarterly (June): 245-257
(1991)

Yau, C. and Tsoi, H.-L. Modelling the probabilistic
behaviour of function point analysis. Information and
Software Technology 40: 59-68 (1998)

	Software Source Code Sizing Using Fuzzy Logic Modeling
	1. Introduction
	2. Software Sizing
	3. Modeling aspects of software project management
	4. Context for analysis
	5. Results and discussion
	5.1 Regression
	5.2 Fuzzy modeling
	5.3 Comparison of model performance

	6. Conclusions
	Appendix A
	References

