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Abstract 

Knowing the likely size of a software product before it has 
been constructed is potentially beneficial in project 
management: for instance, size can be an important 
factor in determining an appropriate 
development/integration schedule, and it can be a 
significant input in terms of the allocation of personnel 
and other resources.  In this study we consider the 
applicability of fuzzy logic modeling methods to the task 
of software source code sizing, using a previously 
published data set.  Our results suggest that, particularly 
with refinement using data and knowledge, fuzzy 
predictive models can outperform their traditional 
regression-based counterparts. 
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1. INTRODUCTION 

Modeling relationships within project management 
continues to present challenges to the software 
engineering community.  Although there is ample 
empirical evidence to indicate that, to some degree, 
software size is related to construction effort, and 
construction effort is related to project duration, there are 
many other factors that can and do have a significant 
impact on  the specific nature of these 
relationships.  The influence of the type of software to be 
constructed and its intended operational domain have 
been considered for some time, as evident in the work of 
Boehm (1981) and DeMarco (1984) and more recently in 
that reported by Murali and Sankar (1997), whereby 
different models are used or weightings applied for 
different classes of systems.  In a very general sense, such 
considerations are needed because complex software, 
such as real-time embedded life-critical systems, requires 
proportionally more effort to build than simpler similarly 
sized counterparts. The impact of the specific personnel 
involved in a product’s construction has been found to be 
significant in terms of a project’s schedule, with some 
evidence suggesting that the impact can be as much as 
twenty to one (Boehm and Papaccio 1988; Lee 1993; 
Blackburn et al. 1996).  The sophistication of the tools 

and methods employed in development can also have an 
impact on effort and duration, as illustrated by Banker et 
al. (1992) and Chan et al. (1996).  Having said all of this, 
the fact remains that the consistently dominant factor in 
such relationships is product size (measured in some way) 
(Verner and Tate 1992; Cockcroft 1996; Hakuta et al. 
1997).  Whilst these other factors undoubtedly have an 
influence, we can potentially make significant inroads 
into the problem of effort prediction and schedule 
estimation if we have reliable measures of size. 

We also face ongoing challenges in the area of data 
analysis and interpretation, given the characteristics 
commonly found in software engineering data sets.  
Missing data can occur due to problems in collection, be 
they systematic or related to errors made by project 
personnel (Lind and Sulek 1998; Chulani et al. 1999).  
Although various methods exist to cope with missing data 
(Myrtveit et al. 2001) the influence on the predictive 
models generated can be significant.  Some data sets also 
exhibit significant skewing and heteroskedasticity, 
rendering certain analysis techniques inapplicable 
(Rosenberg 1998; Pickard et al. 1999; Pickard et al. 
2001).  This is frequently evident in data sets dealing with 
software defects and the like, where there is a fixed lower 
limit of zero.  Data sets need to be sufficiently large 
relative to the number of parameters in order to use 
certain methods of analysis (Rosenberg 1998; Basili et al. 
1999).  In building predictive models we need to be aware 
of the effect of outlier observations and multicollinearity 
among the predictor variables, both of which can have a 
significant impact on the structure and stability of models 
(Miyazaki et al. 1994; MacDonell et al. 1997).  Other 
issues that need to be considered include the unbalanced 
nature of many software engineering data sets 
(Kitchenham 1998), in which the values that influential 
factors take tend to cover only a portion of the range of 
possible values, and the fact that software data are 
nonstationary since software development and evolution 
processes are stochastic (Pillai and Nair 1997). 

As a result, practitioners and researchers have continued 
to explore alternative or complementary modeling and 
analysis approaches.  The application of computational 
intelligence methods to problems in software engineering 
has therefore risen to prominence in recent years.   (Note 
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that whilst it appears that the term computational 
intelligence is becoming the most widely used descriptor 
for work in this area, similar research has also been 
undertaken under the banners of machine learning and 
soft computing.)  The potential of such methods has been 
demonstrated in domains other than software engineering 
for some time, and in the last decade such methods have 
been increasingly adopted by software engineering 
researchers.  For example, the capabilities of neural 
networks in analyzing software engineering data sets have 
been assessed among others by Khoshgoftaar and 
Lanning (1995), Lee et al. (1998) and Mair et al. (2000), 
case-based reasoning and analogy methods have been 
investigated by Shepperd and Schofield (1997), Myrtveit 
and Stensrud (1999) and Walkerden and Jeffery (1999), 
and fuzzy logic has been investigated by Kumar et al. 
(1994), Ebert (1997), Yau and Tsoi (1998) and Piattini et 
al. (2001).  More recently, genetic algorithms have also 
been considered as potentially useful in analyzing 
software engineering data (Shukla 2000).  These studies 
have met with mixed success, although in general it does 
appear that techniques of this nature are able to produce 
models for classification and prediction that are of at least 
similar accuracy to their statistically based equivalents.  
Moreover, there are other advantages in using these 
approaches in terms of their capacity to adapt and learn 
from the data on which they are built.  Ultimately, 
however, it is improvements in predictive accuracy that 
will see such methods accepted more readily by other 
researchers and software engineering practitioners, so it is 
in this respect that we would need to see improvements 
made. 

The remainder of this paper is structured as follows.  The 
notion of software sizing is discussed in the next section, 
focusing particularly on the estimation of software source 
code size.  Modeling methods used in producing these 
estimates are then discussed in section 3.  We then 
describe the data set used in our analysis, the results of 
which are detailed in section 5.  We conclude our study in 
section 6, with recommendations for further research and 
implications for project management practice. 
 
2. SOFTWARE SIZING 

Early and accurate prediction of software size has long 
been a goal of software engineers.  Since the 1970s it has 
been the focus of extensive research initiatives, firstly as 
an objective in its own right, and then as part of the 
model-building process that aims to predict development 
effort and/or duration, with size as the principal input and 
other factors acting as refining agents.  Given that in the 
early history of software development programming was 
the dominant activity it was the size of the source code 
that was of interest.  Thus the work of Halstead (1977), 
Chrysler (1978) and Boehm (1981) employed both 
theoretical and empirical analyses to construct initial 
models of software source code size.  An area of related 
research that emerged out of this work is that concerning 
the notion of software evolution, popularised by Lehman 
(1991, 1998).  Implicit in this work is an assertion that 
software follows patterns of growth over time, and that an 
attribute such as size can be modelled accordingly.  

Further discussion of software release size estimation (in 
terms of source code) is provided by Turski (1996). 

As the desire to build early predictive models grew so 
research increased into measuring the size of other pre-
coding phase products.  As a result a variety of 
specification- and design-based measures were proposed.  
Although they are of some relevance here the majority of 
these studies did not directly address software sizing in 
terms of source code, and so we provide only a brief 
summary of the more prominent efforts in Table 1.  The 
interested reader is referred to Tate and Verner (1990) for 
a comprehensive review of the earlier models listed, and 
to MacDonell (1994) for an alternative criteria-based 
evaluation of several of these approaches.  Ferens (1999) 
also provides an excellent (largely qualitative) review of 
software sizing methods. 

In spite of the availability of a wide range of software 
product size measures, source lines of code (SLOC) 
remains in favour in many models, particularly those 
intended for effort estimation based on a COCOMO-type 
approach.  One of the criticisms levelled at such methods 
is that SLOC size must itself be estimated before an 
estimate of effort can be produced.  Some of the studies 
mentioned in Table 1 and in the following discussion 
were undertaken to determine whether other size 
measures, which could be objectively calculated at an 
early stage in the development process, were in fact 
related to eventual SLOC and could therefore be 
considered instead of the estimated SLOC figures (e.g. 
Mukhopadhyay and Kekre 1992; Dolado 1997; 
MacDonell et al. 1997).  Our particular focus in this 
study, however, is on the estimation of source code size, 
in this case code that is written using a fourth-generation 
development environment, and the remainder of this 
section deals with research to date on this topic. 

The most comprehensive set of studies undertaken in this 
area are those of Verner and Tate (1987, 1988, 1992; Tate 
and Verner 1990).  After first proposing a model of 
software sizing applicable throughout the development 
life cycle (1987) Verner and Tate then turned their 
attention specifically to 4GL source code estimation.  In 
their second study (1988) they employed a combination 
of function point analysis and COCOMO to produce size, 
effort and schedule estimates for two increments of the 
same information system.  Notable observations of this 
study included the lack of prior investigations using 
COCOMO in a 4GL environment and the need for novel 
measures of code size given the form-filling nature of 
their particular development toolset.  Given these 
constraints Verner and Tate were able to generate what 
they felt to be reasonably accurate indicators of size and 
effort.  In a subsequent study Verner and Tate (1992) 
developed what they referred to as a “…more general and 
flexible FPA-like approach” (p. 265) for transaction-
centered business systems.  This method adopted a 
different set of elementary software components as 
contributors to code size – menus, screens, reports, 
relations and updates.  Each was assessed using one or 
more measures (number of choices, number of data 
elements, nesting level and so on) with some adjustment 
for algorithmic complexity.  After using regression 
analysis to build a set of predictive models with data from 



one version of a system they then tested these models on 
later increments of the same system.  In general they 
found that they were able to estimate source code size 
very accurately using this method.  Further evaluation of 

their approach on two other systems produced similarly 
accurate estimates once models were tailored to the 
environments in question. 

 

Table 1. A selection of early-phase estimation methods. 

Method Source Aim Scope Comments 

Function point 
analysis (and 
variants) 

 

Albrecht 1979; 
Albrecht and 
Gaffney 1983 

Abstract size based on 
user needs, adjusted for 
complexity to enable 
effort estimation. 

Business systems 
initially.  Many 
variants to widen its 
applicability to other 
system types. 

Wide uptake, 
international 
standards, rigid, driven 
by set of fixed 
parameters with fixed 
weight ranges. 

Bang/Function 
weight 

DeMarco 1984, 
1989 

Abstract size based on 
functional primitives, 
adjusted for input/output 
volume and process 
complexity. 

All system types, 
either data-strong 
(typically business) or 
function-strong 
(typically real-
time/scientific). 

Intuitively appealing 
but not widely 
adopted. 

Mini-Model Kulkarni et al. 1988 Used process 
deliverables at each stage 
to build size and effort 
estimates for the next. 

Built for military 
command/control 
systems. 

Methodology 
dependent, but said to 
be adaptable to other 
environments. 

Mk II FPA Symons 1988, 1991 Contemporary data-
centered approach, using 
past data to calibrate 
weights. 

Business systems. Said to overcome FPA 
shortcomings; 
extensive adoption in 
Europe. 

OO system size Laranjeira 1990 Size and effort 
estimation. 

OO systems Innovative, used 
confidence intervals. 

CK metrics 
suite 

Chidamber and 
Kemerer 1991, 1994 

Design metrics, used 
subsequently for effort 
prediction. 

OO systems Generally accepted in 
OO community. 

Application 
features 

Mukhopadhyay and 
Kekre 1992 

Size and effort 
estimation. 

Process control 
systems. 

Promoted need for 
environment-specific 
models. 

Object points Banker et al. 1992 Adapted, automated 
version of FPA for 
CASE environments. 

Largely centered on 
business systems. 

Popular while CASE 
was a prominent 
technology. 

Specification 
measures 

Tate and Verner 
1991; 

MacDonell 1997 

Automated size 
measurement, effort 
prediction. 

Data-centered 
business systems. 

Proposed at the height 
of CASE and 4GL 
popularity. 

 

Parallel to the work of Tate and Verner was that 
undertaken and reported by Wrigley and Dexter (1991). 
Their empirical analysis of twenty-six 4GL systems 
indicated that source code size could be modeled with a 
high degree of accuracy at both program and system 
levels, using regression-based equations that took into 
account a variety of independent variables – files 
accessed, projections and joins, screen images, input and 
output data elements, and (at the system level) screens, 
reports and files.  Their experiment was sound and 
rigorously conducted, although the authors themselves 
noted that theirs was an assessment of goodness-of-fit 
modeling rather than of prediction. 

Bourque and Côté (1991) describe an experiment in 
which they built predictive models of program size using 
linear regression methods.  Employing simple measures 
extracted from real-world system specifications and 

designs they were able to generate models that were of 
comparable accuracy to those produced using far more 
complex and time-consuming data collection and analysis 
methods.  A similar experiment, this time using a CASE 
environment rather than a 4GL, was reported by 
Cockcroft (1996).  She found that it was possible to 
predict code product size with low error based on 
measures collected from the product specification’s data 
and data flow models (defined in the earlier studies of 
Verner and Tate).  Size in her study, however, was 
measured as a count of CASE generated report lines, 
rather than programmer-developed code.  Since code 
generation requires minimal personnel resources, having 
a priori knowledge of code size in such a situation may 
not be of substantial assistance in allocating labor 
resources or scheduling project activities. 



Dolado (1997) investigated the relationship between 
function point measures and 4GL source code size.  His 
study of 22 student projects found that whilst there was 
indeed a statistically significant relationship between 
function point counts and source lines of code the actual 
amount of variation in size explained by the FPA counts 
was 48% (for Albrecht FPA) and 58% (for Symons Mk II 
FPA).  Dolado speculated on some of the reasons for this, 
but it remained unclear as to whether the underlying cause 
related to problems with function points, with the 4GL 
code, or with aspects of the development process.  
Moreover Dolado’s study was focused on assessing 
goodness-of-fit and so did not assess predictive accuracy 
per se.   Hakuta et al. (1997) aimed instead to produce a 
“universal [size] estimation model independent of the 
program type or characteristics.” (p.253).  Their approach 
utilised the abstract notion of a ‘processing unit’, a 
program module that performs a specified function (either 
visible or invisible to the user).  The size of the 
processing units is then estimated based on reference 
modules, with adjustment for language level, before 
further refinement is undertaken based on processing 
complexity and environmental factors.  Notable in the 
work of Hakuta et al. (1997) is the use of three predicted 
values of size for each observation, being the average and 
a lower and upper limit.  Although rather coarse, this does 
represent an attempt to incorporate uncertainty into the 
estimation process.  Hakuta et al. (1997) also emphasized 
the need for stepwise estimation – that is, the refinement 
of size estimates over time as further work is done and as 
further information becomes available. 

In one of our own earlier studies of database-centered 
systems (MacDonell et al. 1997) we used very simple 
specification-based measures in regression models to 
predict 4GL system size.  A set of seventy small 
transaction-processing systems was available for analysis, 
split into a build set of fifty observations and a validation 
set of twenty project points.  In estimating the total 
number of source statements is each system (SIZE) we 
found that the number of non-menu processes depicted in 
the specification’s functional decomposition chart 
(NONMENU) and the number of attributes in the 
system’s data model (ATTRIB) together explained 65% 
of the variation in size.  The two predictors were related, 
however, so a single variable model using the most 
influential variable – NONMENU – was adopted as the 
most effective in this case.  In order to provide an 
opportunity for model comparison we use the same data 
set here in the development and validation of fuzzy logic 
estimation models for the current study. 

 

3. MODELING ASPECTS OF SOFTWARE 
PROJECT MANAGEMENT 

As is evident in the previous section, most of the attempts 
to estimate software product size (and effort) have 
employed parametric models built using algorithmic or 
regression-based methods.  Complementary approaches 
employing computational intelligence techniques have not 
been widely used in this regard.  That said, these methods 
have been utilised in addressing other software 
engineering research issues.  In general this has been 

motivated by a desire to work with the uncertainty 
inherent in software projects rather than trying to avoid it. 

Padberg (1999) reports the development of a probabilistic 
model for software projects, whereby development time is 
estimated according to probability distributions and risk-
based adjustments.  He illustrates his approach by 
considering schedule projections in a multi-team system 
enhancement process.  Several examples are given to 
demonstrate how project progress varies with differences 
in the input parameters, enabling a form of ‘what-if’ 
analysis to be undertaken in order to determine the 
likelihood that a given schedule will be met. 

In acknowledging the factors that limit the effectiveness 
of multiple regression in software cost modeling, Chulani 
et al. (1999) propose the use of Bayesian analysis in order 
to overcome such limitations (related in particular to their 
earlier work on COCOMO II).  Their empirical 
investigation of 161 project observations found that the 
Bayesian approach, which enables both historical data 
and expert judgment to be incorporated into predictive 
models, outperformed multiple regression modeling 
across fifteen separate samples of the data set.  The fact 
that models could be refined on an ongoing basis as new 
data and information came to hand was promoted as a 
particularly important attribute of the Bayesian analysis 
method. 

Fenton and Neil (1999) comment that our current models 
of software development are too simplistic to fully 
capture cause and effect relationships.  As a result, 
predictions constructed using such models are likely to be 
flawed and/or spurious.  Consequently, the authors 
contend that we need models that are more able to cope 
with diverse sources of evidence (empirical data, 
probability distributions, managers’ insights), genuine 
cause and effect relationships (and the magnitude of each 
effect), missing information, and uncertainty.  To this end 
they have adopted Bayesian belief nets (BBNs), network 
representations that incorporate model variables and their 
interrelationships.  Although not reported extensively in 
their paper, the authors describe several case studies in 
which they have applied their BBN approach to good 
effect. 

In an assessment of three machine learning prediction 
methods – neural networks, case-based reasoning and rule 
induction – Mair et al. (2000) found that in terms of 
model accuracy the neural network proved to be the most 
effective in estimating development effort.  That said, the 
authors also stated that the desire for accuracy needs to be 
tempered by considerations of model configurability and 
explanatory value.  These and other desirable attributes of 
predictive models are also discussed in Gray and 
MacDonell (1997a).  When these issues are taken into 
account Mair et al. (2000) contend that methods that are 
able to both generate and incorporate knowledge (e.g. 
rule-based methods) may be more widely preferred over 
those that are generally less able to do so (e.g. standard 
neural networks). 

Alonso et al. (1997) propose the use of rough sets 
(Pawlak 1991) in estimating the maintainability of 
software modules based on a set of object-oriented design 
metrics, illustrating their approach with a small-scale 



empirical example. They contend that the visibility of the 
rule set and the incorporation of uncertainty afforded by 
the use of rough (rather than crisp) sets mean that such an 
approach would be attractive in software project 
management (although they did not empirically validate 
their method against a set of unseen observations). 

Studies investigating the application of fuzzy logic 
methods to software engineering problems are still 
relatively few in number, but it does appear that interest is 
growing in this area.  One of the earliest reported efforts 
in this domain is that of Putnam (1987), citing the use of 
fuzzy logic in determining early estimates of software 
size.  As this approach was incorporated in their 
commercial SIZE PLANNER product, it was and is 
unclear as to how the method operates in practice.  
Bastani et al. (1993) employed fuzzy logic in the domain 
of software reliability modeling.  Using an experimental 
research method they found that a fuzzy logic approach 
was more effective at classifying mutated programs (as 
correct or incorrect) than a purely probabilistic approach.  
Kumar et al. (1994) provide a well-reasoned justification 
for the use of fuzzy logic in software project 
management, building an illustrative fuzzy system to 
replicate Putnam’s personnel scheduling model. 

An alternative approach utilizing expert-system support 
for effort estimation (based on function point analysis) is 
described by Griech and Pomerol (1994).  Although the 
focus of their work was on the environment rather than on 
accuracy, their initial experiments “…produced a 
posteriori estimations not too far from the actually 
observed effort” (Griech and Pomerol 1994, p. 183).  
Ebert (1997) examined the effectiveness of five 
classification methods in categorizing software modules 
as fault-prone or non-fault-prone.  His analysis indicated 
that the fuzzy logic approach was superior to the other 
four techniques considered, these being neural networks, 
discriminant analysis, classification trees and simple 
Pareto classification.  Moreover, such an approach 
received support on an intuitive basis given that 
“…subjective and qualitative judgement plays an 
important role in [software project and quality 
management].” (Ebert 1997, p. 289).  An attempt to apply 
the principles of fuzzy logic to function point analysis, in 
order to more successfully account for subjectivity and 
uncertainty in software measurement, was described by 
Yau and Tsoi (1998).  A case study was provided to 
illustrate their approach although no empirical analysis 
was reported. 

More recently, Idri and his colleagues (Idri and Abran 
2000; Idri et al. 2000; Idri and Abran 2001; Idri et al. 
2002) have focused their work to date on two areas: the 
use of fuzzy logic in identifying similar observations to a 
target project, which can then be used as the basis of 
predictions for that project; and in fuzzy logic modeling 
of the COCOMO prediction method, particularly the 
specification of fuzzy membership functions for each of 
the cost drivers.  Although their published empirical 
analyses are not extensive (given the early stage of the 
research), their work does highlight the significant 
potential in fuzzy logic modeling when applied to aspects 
of software project management.  Our own work (Gray 
and MacDonell 1997b; MacDonell et al. 1999) has 

similarly indicated the applicability of fuzzy logic 
methods to this domain – one of the aims of the work 
described here is to provide empirical evidence in support 
of this. 

As stated above, these studies reflect acceptance of the 
fact that, since we do not have an underlying theory of 
software construction, we cannot model it without 
uncertainty.  Lind and Sulek (1998) report that, in 
software engineering, we have tended to ignore this 
uncertainty, particularly when estimators are provided 
with other often erroneous or misleading information 
concerning their predictions.  Abdel-Hamid et al. (1993) 
and Jørgensen and Sjøberg (2001) have provided 
empirical evidence for this phenomenon.  In investigating 
the issue of project undersizing, Lind and Sulek (1998) 
found that although the impact of size on effort was 
generally moderated by the opinions of project managers 
in an attempt to incorporate uncertainty and to take the 
influence of external factors (schedule pressure, personnel 
turnover) into account, there was a clear tendency to 
underestimate the real impact.  They conclude by stating 
(p. 267): “Quantitative, predictive techniques that 
incorporate both the systems complexity and the 
behavioural dynamics of team development should help 
to remove the subjectivity and politics from IS project 
estimation.”  Whilst we doubt that this goal is feasible in 
practice, we do support the need to bring together both 
data and knowledge in prediction methods. Several 
options exist for such an approach, including the 
probabilistic and Bayesian methods discussed previously.  
Our preferred means of doing so is through the use of 
fuzzy logic modeling, as described in the following 
sections. 

 
4. CONTEXT FOR ANALYSIS 

Seventy small transaction processing systems, built using 
the same process and same 4GL tool set, were developed 
by groups of senior information science students at the 
University of Otago over a period of five years.  
Specifications for each system had been developed under 
the same prototyping methodology, resulting in the 
provision of a useful set of data in terms of investigating 
potential relationships between specification and design 
characteristics and software source code size.  Whilst 
questions are often raised (and rightly so) in relation to 
the generalisability of analyses performed on student-built 
systems, most can be refuted in this particular case, since 
the systems were built to solve actual business problems 
for real clients operating in a commercial setting; 
moreover, the results per se are less important than the 
potential effectiveness of the more general analysis 
process.  That is, it is not the aim of this work to 
recommend the specific sizing models for use in other 
organisations; rather, it is the model-building process and 
the tools and methods underlying it that may be of 
benefit. 

The specification and design methods used by the 
development teams employed two central system 
representations – an entity-relationship diagram (ERD), 
illustrating the data objects of interest in the system and 
the relationships that existed among them, and a 



functional decomposition chart (FDC), depicting the high-
level menu, screen and report processing hierarchy of the 
system.  We aimed to take measures from each of the two 
representations that would potentially provide coarse but 
early indications of system size from the data and 
processing perspectives respectively.  Thus among the 
measures collected were counts of the numbers of entities, 
relationships and attributes (from the ERD), and counts of 
the numbers of data entry/edit screens and system reports 
(from the FDC).  Whilst these counts were taken 
manually, a verification process was applied (by an 
independent counter) to ensure that the values were 
accurate.  The dependent variable, SIZE, was the total 
number of source statements in each system.  These 
values were collected automatically via a code-parsing 
program.  Again, manual verification of the correctness of 
the values was undertaken on a random selection of ten 
systems to ensure that the parsing program was operating 
as intended.   

The sample of seventy observations was split randomly 
into a model-building sample of fifty data points 
(BUILD) and a model-testing sample of the remaining 
twenty points (TEST).  We used the BUILD sample to 
develop complementary predictive models, using standard 
linear regression and fuzzy logic modeling (via our 
toolset FUZZYMANAGER (MacDonell et al. 1999)).  As 
described at the end of section two, previous regression-
based analysis of the data set had indicated that two 
variables were able to explain the greatest amount of 
variation in product size – NONMENU, the number of 
non-menu processes depicted in the specification’s 
functional decomposition chart, and ATTRIB, the number 
of attributes in the system’s data model.  Our models in 
this study were therefore constructed using the same two 
variables. 

We also repeated the analyses using a second sample, in 
light of the fact that sampling can have a significant 
impact on the models constructed and their resultant 
accuracy against test observations.  By repeating the 
analysis using a second sample we hoped to reduce the 
sampling bias, thus enabling us to have greater confidence 
in the results (as per Shepperd and Kadoda (2001) (two 
samples) and Mair et al. 2000 (three samples)). 

 

5. RESULTS AND DISCUSSION 

We deal with the outcomes of the regression analysis first 
followed by an assessment of the fuzzy logic models.  A 
comparison of the models’ predictive performance is then 
reported. 

5.1 Regression 

Least-squares linear regression modeling resulted in the 
following models being produced: 

 

BUILD1: SIZE = -278.7 + 58.6(NONMENU) + 
4.5(ATTRIB) (Adj R2 0.69) 

BUILD2: SIZE = -230.6 + 50.1(NONMENU) + 
5.6(ATTRIB) (Adj R2 0.73) 

 

The fit for each model is shown in Figure 1.  Such a 
representation enables us to see that whilst the regression 
lines are similar, they are also quite distinct.  This further 
emphasizes the effect of sampling on the resultant model. 
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Figure 1.  Regression models fitted using BUILD samples 1 and 2. 



These models provided a baseline for performance 
against which we could assess the effectiveness of 
the proposed fuzzy models. 

5.2 Fuzzy modeling 

The body of knowledge concerned with fuzzy logic 
modeling is now quite extensive, and the techniques 
employed are being constantly refined.  Where relevant 
data is available as in this case, a variety of clustering 
algorithms can be used to inform the creation of 
membership functions (MFs) for each concept (or 
variable) of interest.  In attempting to obtain greater levels 
of accuracy in classification and modeling, some of these 
algorithms are necessarily complex.   We need to 
consider, however, the trade-off between the accuracy and 
complexity of the method and its understandability.  This 
is an important issue in terms of gaining the trust of 
project managers.  Evidence suggests that managers are 
more likely to use a method that they trust, and that trust 
comes from understanding the process by which the 
estimates are derived (Myrtveit and Stensrud 1999; Sauter 
1999). 

We therefore adopted a very simple approach to the 
development of our fuzzy models, on the basis that such 
an approach would be more acceptable to managers.  
Thus: 

• we considered just two values for the number of 
membership functions for each concept – either five 
or seven MFs.  Scales of this size are used frequently 
in surveys and the like, as it is generally accepted 
that we are comfortable in classifying items or 
answering questions according to five or seven 
options.  Five sets might equate to {strongly 
disagree, disagree, neutral, agree, strongly agree} or 
{very low, low, medium, high, very high}. 

• we utilised fuzzy c-means clustering (Bezdek 1981; 
Billaudel et al. 1999), a relatively simple iterative 
clustering algorithm, to determine first-cut 
membership functions and rule sets from the BUILD 
data samples (see Appendix A for a pseudocode 
description of the algorithms).  Note that this 
approach produces the most influential rules based 
on a combination of all the predictor variables when 
joined by the logical connector AND.  As such the 
rules as generated tend to be very simple in structure. 

• we evaluated only two sizes of rule set – either 
fifteen or twenty rules.  Whilst these numbers may 
be considered to be large, they are by no means as 
high as the number that could be needed, given the 
number of membership functions in the model.  
Potentially, every combination of functions could 
require a distinct rule.  We then begin to encounter 
the ‘rule explosion’ problem, due to the exponential 
relationship between the number of variables, MFs 
and rules (Kosko 1997).  In our case, we will have a 
system comprising two input variables (NONMENU 
and ATTRIB).  If we adopt five MFs for each, then 
we would potentially need 52 = 25 rules.  If we 
instead use seven MFs to represent each variable 
then the number of possible rules rises to 72 = 49.  

Alternatively, we could simply have a rule for each 
and every observation in the sample.  Whilst both 
strategies would be likely to result in very high 
BUILD model accuracy there remain three 
unresolved issues: one, high model accuracy when 
used on the TEST samples is still not assured; two, 
the BUILD models may be over fitted to their 
underlying data sets, leading to a loss of 
generalisability; and three, as the rule set size 
increases, the less understandable it becomes.  We 
were also of the view that if a simple approach 
proved to be comparable to linear regression in terms 
of predictive performance then a more complex 
fuzzy approach would almost certainly result in even 
better outcomes.   

The clustering and rule extraction activities were 
undertaken using the CLUESOME (CLUster Extraction 
for SOftware MEtrics) component of our 
FUZZYMANAGER toolset (MacDonell et al. 1999).  
After experimenting with various membership function 
shapes we restricted ourselves to trapezoidal and 
triangular as being appropriate for the discrete data being 
modeled (Kumar et al. 1994).  For the first of the two 
BUILD samples the best model (in terms of goodness-of-
fit (see the next part of this section for further discussion)) 
was one that employed seven membership functions and 
fifteen rules.  The clusters generated using this model are 
shown in Figure 2, in this case for the relationship 
between NONMENU and SIZE.  For the second BUILD 
sample the best model again used seven membership 
functions for each variable, but in this case the triangular 
shape proved to be the more effective.  Twenty rules 
resulted in greater model accuracy than fifteen for this 
sample.  In both cases the ATTRIB and NONMENU 
variables used the classification {VeryLow, Low, 
LowMedium, Medium, MediumHigh, High, VeryHigh} 
and the SIZE variable {VerySmall, Small, SmallMedium, 
Medium, MediumLarge, Large, VeryLarge}. 

The two rule sets are shown in Figure 3.  It can be 
observed that there are just two specific rules in common 
between the two sets, again reflecting the impact that 
sampling can have on model construction, although there 
are eight rules in total that have a common set of 
antecedent pairs (i.e. the same class combination for 
NONMENU and ATTRIB).  In general, the rules adhere 
to the general principle that higher numbers of attributes 
and non-menu functions in a specification map to a larger 
system in terms of source code size.  In this respect they 
could be viewed as being intuitively plausible and 
understandable to a project manager (although this was 
not tested directly in this study). 

5.3 Comparison of model performance 

In order to compare the predictive accuracy of the two 
modeling methods we needed to select one or more 
appropriate measures of accuracy.  This issue in itself has 
been the subject of quite extensive research in recent 
years (Lo and Gao 1997; Shepperd et al. 2000; Shepperd 
and Kadoda 2001; Kitchenham et al. 2001), and there is 
no consensus on what constitutes the ‘best’ accuracy 
indicator.  This is due in no small part to the fact that 
organisations have different objectives when building 



predictive models.  For instance, some manage projects in 
a portfolio approach, meaning that variations for 
individual projects can be tolerated if over the portfolio 
predictive accuracy is achieved.  This may be contrasted 
to organisations that deal with projects on a case-by-case 
basis, where accuracy for every project is an important 

goal.  As a result of these differing objectives there is a 
need for different accuracy measures.  As we had no a 
priori objective in this regard, we employed a selection of 
measures so that performance could be considered from a 
variety of perspectives.  The measures we chose are 
shown in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Clusters with rule centers for the BUILD1 sample. 

 

The No pred indicator enables us to assess the general 
applicability of a model.  Once constructed, a regression 
model can be used to produce a prediction for any set of 
input values.  Although regression models are constructed 
using a range of sample observations, it is not uncommon 
for models to be used to extrapolate likely values outside 
that range, in spite of the fact that such extrapolation may 
not be appropriate.  As a result, the proportion of cases 
where a prediction is not made using regression analyses 
is generally zero.  In contrast, because fuzzy logic model 
rules are only fired when input values map to membership 
functions, there may be some combinations of input 
values that result in no rules fired.  The No pred indicator 
therefore shows the proportion of such observations in the 
TEST sample.  We therefore also include the pred(n)sub 
measures, enabling us to assess the relative accuracy of 
the models for predicted cases only. 

We used our TEST samples to assess the predictive 
accuracy of the models, first by applying our regression 

models and then using the FUzzy Logic for SOftware 
MEtrics (FULSOME) module of FUZZYMANAGER to 
produce first-cut estimates of SIZE.  Table 3 illustrates 
the summarized performance of the modeling methods as 
applied to the two holdout samples.  Where one model 
performs better in terms of the goal for each accuracy 
indicator this is illustrated in bold typeface. 

In considering the accuracy of the two methods the results 
in Table 3 suggest that the first-cut fuzzy logic models are 
equally or more accurate than regression modeling in 
terms of the MMRE, MedMRE, Sum Abs Diff and Med 
Abs Diff measures, but are worse according to the 
pred(20) and pred(30) indicators.  These results are 
misleading, however, due to the fact that there were a 
number of observations in both samples for which no 
fuzzy rules were fired (six and two observations, 
respectively); hence the results as presented in Table 3 
should not be compared directly.  Instead, we needed to 
consider options for refining our first-cut fuzzy systems. 

 



IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<Low> THEN [Size] IS <SmallMedium> 
 
IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<LowMedium> THEN [Size] IS <SmallMedium> 
 
IF [ATTRIB] IS <Low> AND [NONMENU] IS 
<LowMedium> THEN [Size] IS <Small> 
 
IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<Medium> THEN [Size] IS <Medium> 
 
IF [ATTRIB] IS <VeryHigh> AND [NONMENU] IS 
<High> THEN [Size] IS <Large> 
 
IF [ATTRIB] IS <MediumHigh> AND [NONMENU] 
IS <Medium> THEN [Size] IS <Medium> 
 
IF [ATTRIB] IS <VeryHigh> AND [NONMENU] IS 
<VeryHigh> THEN [Size] IS <VeryLarge> 
 
IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<MediumHigh> THEN [Size] IS <MediumLarge> 
 
IF [ATTRIB] IS <Low> AND [NONMENU] IS 
<LowMedium> THEN [Size] IS <SmallMedium> 
 
IF [ATTRIB] IS <LowMedium> AND [NONMENU] 
IS <MediumHigh> THEN [Size] IS <Large> 
 
IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<MediumHigh> THEN [Size] IS <MediumLarge> 
 
IF [ATTRIB] IS <Low> AND [NONMENU] IS 
<Low> THEN [Size] IS <VerySmall> 
 
IF [ATTRIB] IS <LowMedium> AND [NONMENU] 
IS <Medium> THEN [Size] IS <Medium> 
 
IF [ATTRIB] IS <High> AND [NONMENU] IS 
<High> THEN [Size] IS <Large> 
 
IF [ATTRIB] IS <LowMedium> AND [NONMENU] 
IS <LowMedium> THEN [Size] IS <Small> 

Figure 3. Rule sets generated from BUILD samples 1 (left) and 2 (right). 

IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<MediumHigh> THEN [Size] IS <MediumLarge> 
 
IF [ATTRIB] IS <MediumHigh> AND [NONMENU] 
IS <Low> THEN [Size] IS <Medium> 
 
IF [ATTRIB] IS <LowMedium> AND [NONMENU] 
IS <Medium> THEN [Size] IS <MediumLarge> 
 
IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<Medium> THEN [Size] IS <MediumLarge> 
 
IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<MediumHigh> THEN [Size] IS <Large> 
 
IF [ATTRIB] IS <VeryHigh> AND [NONMENU] IS 
<High> THEN [Size] IS <VeryLarge> 
 
IF [ATTRIB] IS <VeryLow> AND [NONMENU] IS 
<VeryLow> THEN [Size] IS <VerySmall> 
 
IF [ATTRIB] IS <LowMedium> AND [NONMENU] 
IS <Low> THEN [Size] IS <Small> 
 
IF [ATTRIB] IS <MediumHigh> AND [NONMENU] 
IS <High> THEN [Size] IS <VeryLarge> 
 
IF [ATTRIB] IS <High> AND [NONMENU] IS 
<High> THEN [Size] IS <MediumLarge> 
 
IF [ATTRIB] IS <Low> AND [NONMENU] IS 
<LowMedium> THEN [Size] IS <SmallMedium> 
 
IF [ATTRIB] IS <VeryLow> AND [NONMENU] IS 
<Low> THEN [Size] IS <VerySmall> 
 
IF [ATTRIB] IS <Low> AND [NONMENU] IS 
<Low> THEN [Size] IS <Small> 
 
IF [ATTRIB] IS <MediumHigh> AND [NONMENU] 
IS <High> THEN [Size] IS <VeryLarge> 
 
IF [ATTRIB] IS <High> AND [NONMENU] IS 
<Medium> THEN [Size] IS <MediumLarge> 
 
IF [ATTRIB] IS <VeryLow> AND [NONMENU] IS 
<VeryHigh> THEN [Size] IS <VeryLarge> 
 
IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<Medium> THEN [Size] IS <SmallMedium> 
 
IF [ATTRIB] IS <High> AND [NONMENU] IS 
<LowMedium> THEN [Size] IS <Medium> 
 
IF [ATTRIB] IS <High> AND [NONMENU] IS 
<VeryHigh> THEN [Size] IS <VeryLarge> 
 
IF [ATTRIB] IS <Medium> AND [NONMENU] IS 
<MediumHigh> THEN [Size] IS <Large> 



The first step in our refinement process saw us consider 
the effect of weighted rule sets on predictive accuracy.  In 
our first-cut analysis we used CLUESOME to produce 
rules of the same weight, irrespective of the fact that some 
rules were fired more strongly than others. Differences in 
the extent to which rules are fired can be interpreted as an 
indication of the varying degree of confidence we should 

have in the rules.  We therefore re-ran our rule extraction 
process, this time generating weighted rule sets.  When 
these revised models were applied to the TEST samples, 
there was no improvement in the accuracy of the TEST1 
model, but an improved level of performance was 
observed for the TEST2 sample.  These results are 
presented in Table 4. 

 
Table 2. Accuracy measures used in this study. 

Abbreviation Name Definition Goal 

MMRE Mean magnitude of relative error Mean of ((Actual-Predicted)/Actual) for all 
predictions 

Minimize 

MedMRE Median magnitude of relative 
error 

Median of ((Actual-Predicted)/Actual) for all 
predictions 

Minimize 

pred(20) Predictive accuracy at 20% over 
sample 

Proportion of predictions within 20% of actual 
value for all observations 

Maximize 

pred(30) Predictive accuracy at 30% over 
sample 

Proportion of predictions within 30% of actual 
value for all observations 

Maximize 

No pred No prediction proportion Proportion of cases where no predictions are 
made 

Minimize 

pred(20)sub Predictive accuracy at 20% for 
predicted cases 

Proportion of predictions within 20% of actual 
value for all predictions 

Maximize 

pred(30)sub Predictive accuracy at 30% for 
predicted cases 

Proportion of predictions within 30% of actual 
value for all predictions 

Maximize 

Sum Abs Diff Sum of the absolute error Sum of (Absolute Value (Actual-Predicted)) 
for all predictions 

Minimize 

Med Abs Diff Median of the absolute error Median of (Absolute Value (Actual-Predicted)) 
for all predictions 

Minimize 

 
Table 3. Performance of regression and first-cut fuzzy models on TEST samples. 

 TEST1 TEST2 

 Regression model Fuzzy model Regression model Fuzzy model 

MMRE 0.22 0.17 0.31 0.31 

MedMRE 0.16 0.10 0.17 0.17 

pred(20) 55% 50% 55% 45% 

pred(30) 65% 55% 65% 55% 

No pred 0% 30% 0% 10% 

pred(20)sub 55% 71% 55% 50% 

pred(30)sub 65% 79% 65% 61% 

Sum Abs Diff 4463 2367 5557 4992 

Med Abs Diff 175 97 198 146 

  

We next considered how we might be able to address the 
fact that the sample-based model construction process had 
resulted in failure to produce predictions for a total of 
eight of the forty observations.  This required us to 
examine the TEST observations for which no rules had 
been fired and to consider whether amendments and 
additions to the fuzzy systems would in fact enable us to 
provide useful predictions.  (This reflects the real-world 
situation encountered by a manager when they are faced  

 

with a project that has no directly analogous 
counterparts.)  In this respect we could amend the 
membership functions and/or the rule sets.  In examining 
the six observations in the first TEST sample we found 
that three had low ATTRIB values and one had a high 
value for the same parameter, and that these were all 
values that fell just outside the existing membership 
function limits.  Minor adjustments to the lower bound 
parameters for the ATTRIB sets {Low} and {High}, 



along with one label change to the SIZE parameter in one 
of the fifteen rules (from {SmallMedium} to {Small}), 
led to substantial improvement in the effectiveness of the 
model.  Six further observations now had predictions 
associated with them, and although the estimates for two 
other observations had become worse as a result, two 
others had been improved, and ten had remained the 
same.  In looking at similar possibilities for the second 
sample, the addition of a new rule to cope with large 
systems along with slight changes to the {Low} and 
{Medium} ATTRIB fuzzy sets resulted in all twenty 
observations having an associated estimate, with two new 
predictions, four that were slightly worse, two that were 
better, and twelve that were the same.  Over both samples, 

however, overall performance of the fuzzy logic models 
was considerably improved (see Table 5).  The fit of each 
of the models on their respective data set is also shown 
graphically in Figures 4 and 5.  The impact of an unusual 
(yet valid) observation on the regression model (LSR) in 
Figure 4 is clearly evident – this is one of the two 
remaining observations in the sample for which no rules 
were fired in the corresponding fuzzy logic model.  Such 
an outcome reinforces previous comments regarding the 
impact of unusual observations on the effectiveness of 
regression modeling. 

 

 

Table 4. Performance of regression and refined (weighted) fuzzy models on TEST samples. 

 TEST1 TEST2 

 Regression model Fuzzy model Regression model Fuzzy model 

MMRE 0.22 0.17 0.31 0.29 

MedMRE 0.16 0.10 0.17 0.13 

pred(20) 55% 50% 55% 50% 

pred(30) 65% 55% 65% 60% 

No pred 0% 30% 0% 10% 

pred(20)sub 55% 71% 55% 56% 

pred(30)sub 65% 79% 65% 67% 

Sum Abs Diff 4463 2367 5557 4005 

Med Abs Diff 175 97 198 123 

 

Table 5. Performance of regression and refined (amended) fuzzy models on TEST samples. 

 TEST1 TEST2 

 Regression model Fuzzy model Regression model Fuzzy model 

MMRE 0.22 0.18 0.31 0.28 

MedMRE 0.16 0.10 0.17 0.12 

pred(20) 55% 60% 55% 60% 

pred(30) 65% 75% 65% 70% 

No pred 0% 10% 0% 0% 

pred(20)sub 55% 67% 55% 60% 

pred(30)sub 65% 83% 65% 70% 

Sum Abs Diff 4463 2831 5557 4206 

Med Abs Diff 175 90 198 110 

 

This step in our analysis could be justly criticized in that 
in effect it returns the process to a model-fitting exercise 
with all data visible (BUILD + TEST) rather than an 
assessment of unbiased prediction.  We therefore also 
investigated whether a similar strategy would result in 
improvements in the regression-based predictions.  
Instead of creating two separate regression equations from 
our two BUILD samples we generated a single best-fit 
equation from the entire sample of seventy observations.  

We then applied this equation to the two TEST samples 
and assessed its performance according to our accuracy 
criteria.  The results are presented alongside those 
obtained from the existing amended fuzzy logic models in 
Table 6, and graphically in Figures 6 and 7.  It can be 
seen that whilst some improvements in accuracy were 
indeed made, particularly in terms of the pred indicators, 
performance against other criteria actually deteriorated, 
and the fuzzy logic models still performed better overall. 
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Figure 4. Model fit for the TEST1 sample. 
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Figure 5. Model fit for the TEST2 sample. 

 

It should be noted that, apart from the development of the 
model based on the complete data set, we made no 
attempt to revise the regression models in light of their 
performance on the TEST data samples.  However, when 
compared to the very transparent nature of the fuzzy 
models, regression equations do not lend themselves to 
such refinement.  As a result we consider that the 

outcomes of the work are valid for this study.  It is 
therefore the conclusion of this analysis that in terms of 
accuracy, fuzzy logic modeling can outperform 
regression-based estimation in software source code 
sizing. 

 

 



Table 6. Performance of full regression model versus refined (amended) fuzzy models. 

 TEST1 TEST2 

 Regression model Fuzzy model Regression model Fuzzy model 

MMRE 0.23 0.18 0.31 0.28 

MedMRE 0.20 0.10 0.18 0.12 

pred(20) 50% 60% 60% 60% 

pred(30) 75% 75% 70% 70% 

No pred 0% 10% 0% 0% 

pred(20)sub 50% 67% 60% 60% 

pred(30)sub 75% 83% 70% 70% 

Sum Abs Diff 4368 2831 5252 4206 

Med Abs Diff 205 90 166 110 
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Figure 6. Model fit for the TEST1 sample (against full regression model). 

 
6. CONCLUSIONS 

This study set out to investigate whether fuzzy logic 
modeling could be used both in its own right and as a 
viable alternative to least squares regression in the 
estimation of source code size.  Specifically we used very 
simple clustering and rule extraction methods to generate 
first-cut fuzzy models for two samples from a set of 4GL 
project records and compared the accuracy of these 
models to that achieved via regression-based prediction.  
We found that using a variety of criteria, fuzzy logic 
modeling appeared to perform as well as or better than 
least squares regression. 

Given that the accuracy of the first-cut fuzzy models was 
similar to that of their regression-based counterparts it 

may be said that fuzzy logic modeling adds little to 
existing (regression-based) modeling capability.  In our 
view, however, fuzzy logic modeling also has several 
other characteristics that make it an appealing option – it 
is amenable to data, knowledge, or both; it incorporates 
aspects of uncertainty in modeling; there is no fixed 
structure to models; it is easily understood; and the 
reasoning employed via the rule sets is relatively 
transparent.  Moreover, refinement of the fuzzy models in 
this study led to improved predictive accuracy and good 
coverage in terms of the test observations.  These results 
suggest that in terms of estimation accuracy fuzzy logic 
modeling could provide effective assistance to software 
project managers.  On the basis of this we would 
recommend that managers adopt fuzzy logic modeling as 
a technique to be used alongside other complementary 



classification and prediction methods. 

A number of avenues for further research have arisen out 
of this work.  As stated previously, we intentionally 
employed very simple methods in the construction of our 
fuzzy models.  We now intend to investigate whether the 
use of more complex methods and algorithms leads to 
further improvements in predictive accuracy, keeping in 
mind the trade-off with model understandability.  We are 

also presently assessing the impact of sampling, the 
number and shape of membership functions, rule structure 
(in terms of other connectives) and rule set size on the 
accuracy of estimates.  Finally, we are evaluating the 
accuracy of fuzzy logic modeling when applied to other 
software engineering problems, in order to determine the 
breadth of applicability of the approach in this domain. 
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Figure 7. Model fit for the TEST2 sample (against full regression model). 

 

APPENDIX A 

The fuzzy c-means clustering algorithm is as follows: 

1. select an appropriate mathematically defined 
function for the membership functions of the variable of 
interest i, say fi(x)  

2. select the number of membership functions that are 
desired for that particular variable, mi  

3. call each of the mi functions fij([x]) where j = 1…mi 
and [x] is an array of parameters defining that particular 
function (normally a center and width parameter are 
defined)  

4. using one-dimensional fuzzy c-means clustering on 
the available data set find the mi cluster centers, cij  

5. sort the cluster centers cij into monotonic (generally 
ascending) order for the given i  

6. set the membership function center for fij, generally 
represented as one of the parameters in the array [x], to 
the cluster center cij  

7. set the membership function widths for fij in [x] such 
that ∑mi

n=1 fin([cin,…]) = 1, or as close as possible for the 

chosen f(x) where this cannot be achieved exactly (for 
example for triangular membership functions each 
function can be defined using three points a, b and c 
where a is the center of the next smaller function and c is 
the center of the next larger function). 

 

The rule extraction algorithm is as follows: 

1. start with known membership functions fij([x]) for 
all variables, both input and output, where j represents the 
number of functions for variable i and [x] is the set of 
parameters for the particular family of function curves  

2. select the number of clusters k (which represents the 
number of rules involving the k-1 independent variables 
to estimate the single output variable) 

3. perform fuzzy c-means clustering to find the centers 
(i dimensional) for each cluster 

4. for each cluster k with center ck 

(a.) determine the kth rule to have the antecedents and 
consequent fij for each variable i where fij(ck) is 
maximized over all j 



(b.) weight the rule, possibly as ∏ i 
n=1 fij(ck) or ∑ i

n=1 
fij(ck) 

5. combine rules with the same antecedents and 
consequents, either summing, multiplying, or bounded 
summing rule weights together  

6. (optionally) ratio scale all weights so that the mean 
weight is equal to 1.0 to aid interpretability. 
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