
AN ABSTRACT OF THE THESIS OF

Marcel lo Visconti for the degree of Doctor of Philosophy in Computer Science

presented on December 2, 1993.

Title: Software System Documentation Process Maturity Model

Abstract approved.

Curtis R. Cook

One major goal of software engineering is to produce the best possible work-

ing software along with the best possible supporting documentation. Empirical

data shows that software documentation process and products are key components

of software quality. These studies show that poor quality, out of date, or missing

documentation is a major cause of errors in software development and maintenance.

Virtually everyone agrees that documentation is important; however, in spite of

these studies, they do not realize that documentation is a critical contributor to

software quality. A solution to the problem of poor quality, out of date or missing

documentation is to improve the documentation process.

This dissertation proposes a Software System Documentation Process Matu-

rity model that provides the basis for an assessment of the current documentation

process and identifies key practices and challenges to improve the process. The

focus is on the documentation used in software development and maintenance, not

end-user documentation. The approach has been influenced by Carnegie Mellon

University's Software Engineering Institute (SEI) Software Process and Capability

Maturity models. A four-level documentation maturity model has been designed.

An assessment procedure (an assessment questionnaire and a scoring method) has

been developed to determine where an organization's documentation process stands

relative to the model. From the responses to the questionnaire it is possible to map

Redacted for Privacy

an organization's experience and past performance to a documentation maturity

level and generate a documentation process profile. The profile indicates key prac-

tices for that level and identifies areas of improvement and challenges to move to

the next higher level.

The software documentation maturity model and assessment procedure have

been used to assess a number of software organizations and projects, and a cost-

benefit analysis of achieving documentation maturity levels has been performed

using CoCoMo, yielding an estimated return on investment of about 6:1 when mov-

ing from the least mature level to the next, and estimating positive returns, though

decreasing, for the higher levels. These results support the main claim of this re-

search: software organizations that are at a higher documentation process maturity

level also produce higher quality software, resulting in reduced software testing and

maintenance effort.

Software System Documentation Process Maturity Model

By

Marcel lo Visconti

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Completed December 2, 1993

Commencement June 1994

Approved:

Professor of Computer Science in charge of major

Head of Department of Computer Science

Dean of Gr du te School \I

Date thesis presented December 2, 1993

Typed by Marcello Visconti for Marcello Visconti

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Acknowledgments

Dr. Curtis Cook, my Major Professor, was the biggest influence during my

tenure as a graduate student at Oregon State University. As a teacher first and then

as a research advisor he provided the guidance, advise, insight and encouragement

without which it would not have been possible for me to complete this Doctoral

degree. I am grateful to him for his support.

I thank the faculty on my committee for their guidance, insight and encour-

agement, and the many anonymous people who contributed to this research, by

either reviewing early drafts or taking part in the experimental assessments. My

sincere thanks to all of them.

I extend my gratitude to the Oregon State University Computer Science

Department, to Universidad Santa Maria in Chile and to the Government of Chile

for providing the financial support.

My wife Silvana and my daughter Bianca made all this effort worthwhile.

This achievement is as theirs as it is mine. Without their love and support I could

not have done it.

Table of Contents

1 Introduction 1

1.1 Overview 1

1.2 Importance of documentation 2

1.3 Proposed solution: a maturity model 5

1.4 Organization of dissertation 7

2 SEI's Process Maturity and Capability Models 8

2.1 Overview 8

2.2 SEI background 8

2.3 SEI's software process maturity model 10

2.4 SEI's maturity model criticisms 10

2.5 New version of the model: the SEI's capability maturity model . 13

2.6 Summary 16

3 Software Process Assessment and Validation 17

3.1 Overview 17

3.2 Assessment 17

3.2.1 SEI models assessment procedure 20

3.2.2 ISO-9000 quality standard 27

3.2.3 Other assessments 29

3.2.4 Costs and difficulties of assessments 31

3.3 Validation 32

3.3.1 Role of measurement in software engineering 33

3.3.2 SEI models "validation procedure"

3.3.3 SEI assessments: state of the practice

3.3.4 Other process improvement success stories

3.3.5 Costs and difficulties of validation

35

37

37

38

3.4 Summary 40

4 System Documentation Process Maturity Model 41

4.1 Overview 41

4.2 The model 41

4.3 Assessment procedure 48

4.3.1 Design of questionnaire 49

4.3.2 Basic definitions 49

4.3.3 Assessment questionnaire 52

4.3.4 Administering the questionnaire 58

4.4 Determination of documentation process maturity 58

4.4.1 Determining the team's answer 59

4.4.2 Determining the maturity levels 60

4.4.3 Beyond maturity levels: determining profiles and chal-

lenges 63

4.4.4 Documentation assessment report 69

4.5 Summary 73

5 Validation of Model 74

5.1 Overview 74

5.2 Errors in software development 75

5.2.1 Role of reviews and software documentation 77

5.3 Validation 79

5.3.1 Software development models and the role of documen-

tation 80

5.4 Bottom line: cost-benefit analysis of maturity levels 90

5.4.1 Associated costs 92

5.4.2 Return on investment 94

5.5 Summary 98

6 Assessment Results 99

6.1 Overview 99

6.2 Initial validation plan 100

6.3 Summary of assessment results 101

6.4 Project breakdown by documentation maturity level 103

6.5 Defect data analysis 103

6.6 Summary 107

7 Conclusions 108

7.1 Contributions of this research 108

7.2 Open issues and areas of further research 110

Bibliography 111

Appendices

Appendix A 116

Appendix B 124

Appendix C 130

List of Tables

2.1 SEI's software process maturity model 11

3.1 SEI assessment results 37

4.1 Documentation process maturity modelsummary table . 42

4.2 Level-to-level transitions table 48

4.3 Documentation process practices and assessment questions 50

4.4 Meaning of answers in range of 1-5 53

4.5 Maturity profile of documentation process practices 72

5.1 MODP effort multipliers by development phase 87

5.2 MODP effort multipliers for maintenance, product size 100k 87

5.3 Percentage effort reduction on testing 89

5.4 Percentage effort reduction on maintenance 90

5.5 Cumulative effort reduction assuming documentation 25% of

MODP 95

5.6 Cumulative percentage reduction on total effort 96

5.7 Cumulative documentation maturity return on investment 96

6.1 Assessment results by company/project 102

6.2 Documentation assessment results 103

6.3 Project 1: cumulative error percentages 105

6.4 Projects 11, 12, 13: summary of errors introduced 105

6.5 QPM Project: cumulative error percentages 106

Software System Documentation Process Maturity Model

Chapter 1

Introduction

1.1 Overview

One basic goal of software engineering is to produce the best possible working

software along with the best possible supporting documentation. And yet, docu-

mentation seems to be considered a second class object and not as important as the

software itself. However, empirical data shows that low quality or missing system

documentation is a major cause of errors in software development and maintenance.

Often documentation does not exist, or if it does, it is incomplete, inaccurate or

out of date. This research addresses the problem of software documentation by

focusing on the software documentation process; and the development of a 4-level

Documentation Process Maturity model and assessment procedure whose objective

is to assess an organization's documentation level and to identify potential areas for

improvement. This approach is based on the principle of improving the quality of

the software product by improving the quality of the software process. In particular,

this thesis focuses on improving the quality of the documentation process.

2

1.2 Importance of documentation

Software quality has been identified as the goal of the 90s in the software

engineering field [Basi91]. This section shows that software documentation process

and products are key components of software quality and that poor or missing

documentation is a major contributor to the software crisis, namely low product

quality and high development and maintenance costs.

Documentation is the written record of what the software is supposed to

do, what it does, how it does it and how to use it. Virtually everyone agrees that

good documentation is important to the analysis, development and maintenance

phases of the software process and is an important software product. However, not

everyone acknowledges how important documentation is.

Documentation is probably most crucial to the maintenance phase, which

accounts for 60%-75% of the total cost of the software [Hager9l, Ke1189]. Osborne

[Osborne87] reports that documentation accounts for more than 60% of mainte-

nance costs, and is involved in about one-third of maintenance tasks. A quick

understanding of the existing software is a key activity of the maintenance process

[Chapin88]. Chapin [Chapin87] asserts that maintenance people spend 40% of their

time dealing with documentation. Fjelstad and Ham len [Fje179] showed that when

making a program modification 47% of a maintenance programmer's time is spent

studying the program source code and associated documentation. They also found

that when correcting errors, the time increases to 62%.

3

Documentation has appropriately been called the castor oil of the software

processit is beneficial but no one likes to do it. Far too often documentation

may not exist, or if it does exist, it may be incomplete, inaccurate, or out of date.

Basili and Rombach [Romb87] studied an industrial maintenance environment and

found that 20% of the maintenance problems were due to bad documentation, with

the most frequent problems being documentation faults and documentation clar-

ifications. They claim that better documentation can solve a big percentage of

maintenance problems. According to Chapin [Chapin88], maintenance program-

mers report that for most maintenance tasks the source code is the only available

and dependable documentation. Buckley [Buck89] claims that in most cases main-

tainers discover that the available documentation is not current. Poston [Post84]

asserts that flawed or outdated documentation is more costly than no documenta-

tion.

Poor quality documentation is a major problem. In a survey of 487 data

processing organizations, Lientz and Swanson [Lien81] found documentation quality

ranked 3rd in the list of 26 maintenance problem items. They identify documenta-

tion quality and adequacy of design specs as accounting for 70% of product quality.

Guimaraes [Guim83] claims that the documentation rating has an inverse rela-

tionship with the average yearly maintenance expenditures and that maintenance

programmers felt that the most important document was an "English narrative

describing what the programs and modules are supposed to do".

Documentation impacts the analysis and development phases as well. Boehm

[Boehm75] estimated that documentation costs run about 10% of total Software

4

Development costs. Scheff and Georgon [Scheff9l] found that 85% of all software

development errors are introduced during requirements, analysis or design. Ra-

mamoorthy [Ramam88] asserts that 80% of software errors in large real-time sys-

tems are requirements and design errors due to ambiguity, incompleteness, or faulty

assumptions. Basili and Perricone [Basi84] conducted a study to analyze the factors

that cause program errors and found that misunderstanding of a module's specifi-

cations or requirements constituted the majority of detected errors. Card, Garry

and Page [Card87] studied a production environment to evaluate the effectiveness of

different technologies and their impact on productivity and reliability. They found

that high-use of documentation improves productivity by 11% and reliability by

27% compared to low-use of it. To improve quality, they suggest effective documen-

tation of each phase of development. Fagan [Fagan76] claims that documentation

quality inspections are as important as program inspections when the goal is to

increase productivity and final software quality. In one experiment he found that

82% of the total number of errors discovered during development were found during

formal design and code inspections. A study at GTE by Howden [How78] compared

the efficiency of design review and testing. Design reviews uncovered 45% of the

errors taking 17% of the development time, whereas testing took up to 75% of the

time to uncover just 10% of the errors.

Development impacts maintenance. Hager [Hager89] claims that 60% of

the software costs associated with development occur during maintenance. This is

because development methodologies do not provide adequate visibility for mainte-

nance concerns. Thus ease and cost of maintenance are greatly affected by what

5

takes place during development. He believes that the documentation process plays

a key role during development by acting as a design medium that helps organize the

information, provides a framework to produce the necessary documents to develop

the product, and addresses the need for continuity between the engineering phases

through clearly defining document relationships.

1.3 Proposed solution: a maturity model

The Software System Documentation Process Maturity model proposed in

this thesis has a structure based upon the structure of the Software Engineering

Institute (SEI) Software Process Maturity and Capability Maturity models. The

problem of poor quality documentation can be regarded as the inability to manage

the software documentation process. The focus is on the documentation used in

software development and maintenance and does not consider end-user documen-

tation. In that perspective, the proposed documentation process maturity model

along with an assessment procedure provides the infrastructure and support to move

towards a solution. The model provides the basis for an assessment of the current

documentation process and identifies practices and challenges to improve the pro-

cess. This research shows that achieving a high documentation maturity level means

producing higher quality software.

The documentation process model consists of 4 maturity levels, with Level

1 representing the most immature and Level 4 representing the most mature.

Level 1 represents an ad-hoc, chaotic situation regarding documentation. Level 2

6

recognizes that documentation is important and there is a type of check-off list to

ensure that all documentation is done. However, there is no consistent assessment

of the quality of the documentation. Level 3 incorporates quality assessment of

the documentation. Level 4 is attained when measurements of the quality of the

documentation are fed into a process of continual improvement.

The model describes an evolutionary improvement path from an ad hoc,

chaotic process to a mature, disciplined one. The model establishes some standard

features against which it is possible to formally judge the maturity of an organiza-

tion's software documentation process. This forms the basis for improvement plans

for its documentation process.

The model is to be used along with an assessment procedure to map an

organization's documentation status to one of the maturity levels, generating a

documentation process maturity profile. The profile indicates the challenges and

areas of improvement to move to next level.

The model was to be validated by showing that for a software project devel-

oped with a higher documentation process maturity level, the fraction of the total

errors discovered during testing that are requirements and design errors was less

than for projects developed with a lower documentation process maturity level. To

get around the difficulties encountered with that approach, software cost estimation

model CoCoMo was used to estimate cost-benefits of achieving each documentation

maturity level. The results support this research's claim that investing in improving

the quality of the documentation process can improve the quality of the software

product, and significantly reduce testing and maintenance effort.

7

1.4 Organization of dissertation

The remainder of this dissertation is organized as follows. Chapter 2 de-

scribes the SEI's Software Process and Capability Maturity models. The documen-

tation process maturity model was highly influenced by the SEI's models. Chapter 3

discusses important issues regarding software process models assessment procedures

and validation. Chapter 4 describes in detail the Software System Documentation

Process Maturity model and its associated assessment procedure. Chapter 5 de-

scribes the validation of the model based on software development model CoCoMo.

Chapter 6 addresses the initial validation approach, its difficulties and the results

from the assessments conducted. Chapter 7 addresses the main contributions of this

work and identifies some open issues and areas for further research. Appendix A con-

tains a sample assessment questionnaire used in the assessment efforts. Appendix

B shows the assessment questionnaire questions sorted by subject area. Appendix

C contains the definitions used to build the documentation assessment report after

conducting a project assessment.

8

Chapter 2

SEI's Process Maturity and Capability Models

2.1 Overview

This chapter presents a summarized vision of the SEI's Process Maturity

model, and its transition to the SEI Capability Maturity model. The chapter is

organized as follows: the first section describes the purpose and objectives of the SEI

and its software process models; the second section introduces the SEI's Software

Process Maturity model; the third section addresses important criticisms generated

in the software community about the model; and the fourth section presents the

new version of the model, the SEI Capability Maturity model (CMM). This work

by the SEI is the basis for the approach used and the documentation process model

proposed in this research.

2.2 SEI background

The Software Engineering Institute (SEI) was formed by the Defense De-

partment at Carnegie Mellon University in 1984 to establish standards of excellence

for software engineering and to accelerate the transition of advanced technology and

9

methods into practice. One of its results was the Software Process Maturity Model,

which was developed to assess software organizations' capabilities and to identify

the most important areas of improvement [Humph88].

An important first step in addressing software problems is to treat the entire

software development task as a process that can be controlled, measured, and im-

proved. A process is a sequence of tasks that, when properly performed, produces

the desired result. A fully effective software process must consider the relation-

ships of all required tasks, the tools and methods used, and the skill, training, and

motivation of the people involved.

To improve their software capabilities, organizations must take five steps:

understand the current status of their development process or processes;

develop a vision of the desired process;

establish a list of required process improvement actions in order of priority;

produce a plan to accomplish these actions; and

commit the resources to execute the plan.

The maturity framework developed at the SEI addresses these five steps by placing

a software process into one of five maturity levels given below and by identifying

those areas where improvement actions are most likely to move the process to the

next level.

10

2.3 SEI's software process maturity model

The model is presented in Table 2.1 [Humph9l]. Each level establishes an

intermediate set of goals to reach higher levels of process maturity.

Humphreys [Humph9l] summarizes the model as follows : The five matu-

rity levels reasonably represent the historical phases of evolutionary improvement of

actual software organizations, represent a measure of improvement that is reason-

able to achieve from the prior level, suggest interim improvement goals and progress

measures, and make obvious a set of immediate improvement priorities once an orga-

nization's status in the framework is known. While there are many aspects to these

transitions from one maturity level to another, the overall objective is to achieve a

controlled and measured process as the foundation for continuous improvement.

The SEI developed an assessment questionnaire with the purpose of assessing

software organizations' capabilities and identifying the most important areas of

improvement [Humph88, Humph89]. The questionnaire consists of 101 Yes/No

questions and determines the maturity level. The SEI Software Process Maturity

Model Assessment Questionnaire and the validation efforts are further addressed in

Chapter 3.

2.4 SEI's maturity model criticisms

SEI assessments have been somewhat controversial because they are closely

related to a program called Software Capability Evaluations (SCE), which is usedby

US government agencies to judge how capable companies are at developing software.

11

Level Characteristics Key Challenges

1

Initial

(Ad hoc/chaotic process)
No formal procedures, cost estimates,

project plans
No management mechanisms to ensure
procedures are followed, tools not well
integrated, and change control is lax
Senior management does not understand

key issues

Project management
Project planning
Configuration management
Software quality assurance

2

Repeatable

(Intuitive)
Process dependent on individuals
Established basic project controls
Strength in doing similar work,
but faces major risks when presented
with new challenges
Lacks orderly framework for improvement

Training
Technical practices
(reviews, testing)
Process focus (standards,

process groups)

3

Defined

(Qualitative)
Process defined and institutionalized
Software Engineering Process Group
established to lead process improvement

Process measurement

Process analysis
Quantitative quality plans

4

Managed

(Quantitative)
Measured process
Minimum set of quality and productivity
measurement established
Process database established with
resources to analyze its data and
maintain it

Changing technology

Problem analysis
Problem prevention

5

Optimizing

Improvement fed back into process
Data gathering is automated and used
to identify weakest process elements
Numerical evidence used to justify

application of technology to critical

tasks
Rigorous defect-cause analysis and

defect prevention

Still human-intensive

process
Maintain organization
at optimizing level

Table 2.1: SEI's software process maturity model

12

Bollinger and McGowan [Bo1191] have criticized the SEI's process maturity model as

a preparatory test for the SCE's. Humphreys and Curtis rflumph9laj have defended

the use of such methods as effective tools to foster the improvement of US industrial

software capability. Details of the controversy can be found in [Bo1191, Humph9la].

The main criticisms in [Bo1191] can be summarized as follows:

Statistical and methodological problems determining the assessment scores.

Final reports are not sufficiently detailed.

Maturity model favors maintenance process rather than development process.

When grading, Level 1 means failed so no effort needed to attain it.

Artificial ordering due to multihurdle grading. Missing a few questions in a

level does not allow answering questions in the next higher level, even though

the answers could be positive.

Grading algorithm too complex given the few questions involved.

Inflexibility in scoring: a few questions missed may mean failing a given level

when the rest of the practices may be quite strong. A profile is more useful.

Specific problems with Yes/No questions: hard to generalize, subject to rapid

obsolescence, encourage fixes of limited scope, overlook complex problems,

unfairness to innovative approaches, ambiguity due to oversimplification, en-

courage myopic views, use of jargon.

13

Yes/No questions cover a broad range of issues that are not clearly correlated.

While levels 1-3 are clearly defined, that's not the case with levels 4-5.

They suggest modifying the assessment method, particularly the grading

system of assigning one of five process-maturity level numbers to software organi-

zations. They go as far as to say that "the SEI's process-maturity model is too

incomplete to be viewed as the improvement goal for the software industry", al-

though they acknowledge its merits as a good initial attempt.

The new version of the SEI model, described in the next section, addresses

most of these criticisms.

2.5 New version of the model: the SEI's capability matu-

rity model

The SEI made the transition from the current Maturity Model to the new

Capability Maturity Model (CMM) in 1991 [Baum91].

The new model decomposes each maturity level -initial, repeatable, defined,

managed and optimizing- into key process areas which identify goals to be reached

before an organization can say it has achieved a particular maturity level. Each

key process area is further defined to contain key practices which are procedures

and activities that contribute most to achieving the goals of the key process area.

Each key practice has one or more key indicators which offer the greatest insight

into whether goals have been satisfied. These indicators form the basis for the SEI's

maturity assessment material.

14

SEI took steps to deemphasize the score of an assessment or evaluation. The

new model's end product is now a key process area profile instead of a single number

indicating maturity level. The profile template lists each key process area as not

satisfied, partially satisfied or fully satisfied. An organization's maturity level is set

at the highest level at which it satisfies all key process areas on a continuing basis.

The CMM (Version 1.0) is fully described in [Paulk9l, Weber9l]. This initial

release was reviewed and used by the software community during 1991 and 1992.

CMM Version 1.1 is the result of that feedback and the feedback from a

workshop held in April 1992. The main differences between CMM Version 1.0 and

Version 1.1 are changes made to improve the consistency of the key-practices struc-

ture, clarify concepts, and provide consistent wording. The maturity framework is

left unchanged [Paulk93].

The following are the key process areas that the CMM maturity framework

defines at each level:

Level 1 No key process areas.

Level 2

Requirements Management

Software Project Planning

Software Project Tracking and Oversight

Software Subcontract Management

15

Software Quality Assurance

Software Configuration Management

Level 3

Organization Process Focus

Organization Process Definition

Training Program

Integrated Software Management

Software Product Engineering

Intergroup Coordination

Peer Reviews

Level 4

Quantitative Process Management

Software Quality Management

Level 5

Defect Prevention

Technology Change Management

Process Change Management

A detailed description of the CMM Version 1.1 and its key practices can be

found in [Paulk93a, Paulk93b].

16

2.6 Summary

The SEI Capability Maturity model (initially SEI Software Process Maturity

model) has become a de facto standard in the software industry. It has generated a

lot of attention given its importance as an evaluation tool for the U.S. Department

of Defense's software contractors. The model has moved away from the initial

version that stressed the numeric maturity level to a version that is much more

concerned with identifying problem areas and potential for improvement. In spite

of that evolution, for many software organizations and managers the main purpose

of undergoing a software process assessment is to achieve a given grade rather than

to determine how to improve their software practices. The SEI has also failed to

conclusively validate its claims that moving to the next level in their model actually

improves software productivity and quality. They have not provided hard data to

support their claims, but have rather reported on a few successful experiences.

Chapter 3 gives a more detailed description on the SEI assessment procedures and

its efforts to validate their models.

17

Chapter 3

Software Process Assessment and Validation

3.1 Overview

This chapter discusses relevant issues of software process models assessment

and validation. It takes a detailed look at different approaches (SEI, ISO-9000,

others) for software process assessments and improvement, and addresses the main

issues on software model validation. The first section addresses relevant issues

regarding software process assessment: the SEI software process assessment proce-

dure, the ISO-9000 standard, and some variations of them as software process im-

provement tools. The second section concentrates on validation of software models;

it discusses the SEI approach to validate its model, and describes other experiences.

The issues discussed in this chapter form the basis of the assessment and validation

effort of this research.

3.2 Assessment

The purpose of the software process assessment procedure for a model is

to determine where an organization stands relative to that model. According to

18

Pressman [Press93], process assessment refers to both qualitative and quantitative

information gathering about the software process. The determination of current

state of process practices lays the foundation for the creation of a transition plan

that should lead to improvement in software engineering procedures, methods, and

use of tools. The primary objective is to improve the quality of the product and

the productivity of the people who build it.

A process assessment helps an organization characterize the current state of

its software process and provides findings and recommendations to facilitate im-

provement. The intent of process assessments is to understand the state of software

engineering practices in the organization, to identify key areas for improvement,

and to initiate actions that will lead to improvements. An assessment instrument

should aid in determining the state of software engineering practices in an organiza-

tion. The assessment instrument can be an assessment questionnaire; an expert (or

team of experts) who assess the state of software engineering practices according to

some ad-hoc ranking scheme by using a system of interviews, observations, or some

other subjective method; or a mixture of them. The assessment instrument must

be applied in the proper context and used skillfully.

There are several contexts in which software process assessments can be

conducted [Humph87]:

. Externally-assisted assessments of an organization in which an assessment

team conducts in-depth interviews with project teams and formulates a com-

posite profile of the state of the practice in the organization.

19

Self-assessments conducted by a project or organization in order to determine

the state of its software engineering practices.

Workshop assessments conducted in conjunction with a conference or other

tutorials. This type of assessment can be useful in quickly gathering industry

profile data, generating a high volume of feedback on the quality of the assess-

ment instrument, and providing broader awareness of the assessment process

and its benefits.

Contractor evaluation assessment.

Humphrey et al. [Humph87] define the following key principles in conducting

a successful assessment:

Confidentiality: A software assessment is done for the benefit of the organi-

zation and must not be used as a means of evaluating individuals. This is

essential, so individual answers to the assessments must be kept confidential.

Action orientation: The entire motivation of an assessment must be directed

toward improvement. The orientation is action so the assessment instrument

must focus on defining those problems that need to be addressed right away.

Senior management involvement: Senior managers must be convinced of the

'action's importance if anything is to happen.

Non-adversarial attitude: Focus on learning and understanding. Convince

people to contribute, so assessment is the catalyst to motivate self improve-

ment.

20

The following section gives an overview of the assessment procedure devised

by the SEI to complement its process maturity models.

3.2.1 SEI models assessment procedure

The SEI process-maturity structure is intended to be used with an assess-

ment methodology and a management system. The assessment methodology identi-

fies the organization's current software process maturity status and the most critical

issues to improve their process. A management system establishes a structure for

actually implementing the priority actions necessary to improve the process. Once

its level in this maturity structure is defined, the organization can concentrate on

those items that will let it advance to the next level [Humph88, Humph89]. A com-

plete description of the SEI assessment methodology can be found in [Humph87].

Assessment phases

SEI-assisted assessments are typically conducted in five phases:

I. During the first phase, an organization is identified as a desirable candidate for

assessment. After the initial contact, the SEI obtains organizational commit-

ment to the full assessment process. This commitment includes the personal

participation of the senior site manager, site representation on the assessment

team, and agreement to follow up on recommended actions. An assessment

agreement, which includes these and other elements of the joint agreement, is

signed by the organization and the SEI.

21

2. The second phase is devoted to preparing for the on site assessment. An

assessment team is selected and trained, and an assessment plan is formulated.

3. In the third phase, the on-site assessment is conducted. On-site presentations

are made to orient site personnel who will be participating in the assessment.

The assessment instrument is applied, and the resulting data and information

is reviewed and evaluated by an assessment team. The final on-site activity

is to present preliminary findings to assessment participants and senior site

management.

4. The fourth phase is concerned with formulation and communication of final

assessment findings and recommended actions. The assessment team prepares

a formal written report which, along with a formal on-site briefing, is presented

to the organization.

5. The final phase consists of post-assessment follow-up activities. An action

team composed entirely of professionals from the organization is assembled

and charged with planning and implementing the recommended actions. Typ-

ically, there is also some continuing support and guidance by the SEI, as well

as a subsequent follow-up assessment to determine the effectiveness of changes.

Assessment questionnaire

The SEI developed an assessment questionnaire with the purpose of assessing

a software organization's capabilities and identifying the most important areas of

improvement [Humph88, Humph89]. The SEI Software Process Maturity Model

22

Assessment Questionnaire is fully described in [Humph87a], along with descriptions

of the technical approach, self-assessment usage guide and guidelines for evaluation

of results. The SEI questionnaire consists of 101 questions organized in the following

way:

Organization and Resource Management (17 questions): Organizational Struc-

ture (7 questions); Resources, Personnel and Training (5 questions); and Tech-

nology Management (5 questions). Questions in this section deal with func-

tional responsibilities, personnel, and other resources and facilities.

Software Engineering Process and its Management (68 questions): Docu-

mented Standards and Procedures (18 questions); Process Metrics (19 ques-

tions); Data Management and Analysis (9 questions); and Process Control

(22 questions). Questions in this section are concerned with the scope, depth,

and completeness of the software engineering process and the way in which

the process is measured, managed, and controlled.

Tools and Technology (16 questions). This section deals with the tools and

technologies used in the software engineering process. It helps determine the

effectiveness with which the organization employs basic tools and methodolo-

gies.

The assessment instrument is a structured set of yes/no questions organized

by software process areas. It has also been designed to assist U.S. Department of

Defense acquisition organizations in identifying software contractors with acceptable

software engineering capabilities. Since the instrument and method for applying it

23

are publicly available, software contractors can use it to identify areas for improve-

ment within their organizations. Besides training its own teams, the SEI provides

training on how to conduct effective assessments for organizations interested in con-

ducting their own assessments. The result of the assessment is the software process

maturity level and a list of recommended actions for improvement.

Evolution of the assessment procedure

The assessment procedure has been the target of criticism [Bo1191, Humph9la].

The main criticism of the assessment procedure is the excessive role assigned to the

numeric maturity level as there is little inherent value in the number itself. The

assessment does not explicitly identify areas of improvement. These problems have

been addressed in the new SEI Capability Maturity model [Paulk9l, Weber9l],

which deemphasizes the numerical score and emphasizes the identification of key

process areas, key practices and key indicators. It produces a key-process-area pro-

file, rather than a single numeric maturity level. This modification of the assessment

procedure supports a more explicit identification of areas of improvement, since each

process area is now judged according to the level of satisfaction.

The SEI Capability Maturity Model uses the same questionnaire, but the

questions were reordered to simplify the identification of key process areas, practices

and indicators introduced in the model, and the transitions among them. Every

process area is decomposed into practices, practices into indicators, and indicators

into questions in a straightforward manner.

24

Composition and training of the assessment team

The assessment team is composed of experienced software developers and

whenever possible at least one member with experience in each phase of the soft-

ware development and maintenance process. Three to five professionals are typical,

although more may be used if desired. A team with more than ten members can

be expensive or hard to manage. The SEI team leader must have had prior assess-

ment experience and be familiar with the software development and maintenance

process. All the team members, however, should be open-minded and capable of

making presentations and gathering information in a non-threatening manner. At

least one member from the organization being assessed should participate as a full

member of the team to facilitate the planning process, to provide a means for the

team to learn about the organization, and to establish a focal point for later action.

Since the local member is so crucial to the success of the entire effort, the senior

site manager should personally make the selection.

The training of the assessment team is intended to familiarize them with

the assessment activity and to build a coherent team. This training consists of the

following sessions:

SEI Overview.

Process Management Overview.

Site Overview.

Assessment Introduction and Guidelines.

25

Assessment Questionnaire Review.

Supporting Material Discussion.

Assessment Evaluation and Findings.

Conclusions and Recommendations.

Planning for site visits.

Conducting the assessment

The assessment is composed of the following activities:

Introductory presentation: Brief statement of the agenda, introduction of

the assessment team members, review of assessment agreement, addressing of

questions or concerns.

Applying the assessment instrument: Detailed discussion of the assessment

process, formulation of initial responses to the questions, initial determination

of maturity level, review progress of assessment.

Functional areas interviews: Determination of actual details of the software

process.

Project feedback reviews: Review of findings for projects, gathering of addi-

tional data, identification of other problem areas.

Presentation of findings: Preparation and presentation of individual projects

and composite organization findings.

26

Final assessment findings and recommendations

The final report should contain the following information:

1. Summary and conclusion: an executive level summary of the assessment

team's findings.

2. Software assessment: a brief description of the context of the assessment and

a chronology of key events.

3. Site status: a description of the software site under software process assess-

ments in terms of composite maturity levels and technology state.

4. Key findings: a list with the most important findings regarding the status of

the software process practices.

5. Recommendations: the assessment team's recommended actions to improve

the practices as identified above.

6. Assessment agreement: a copy of the signed assessment agreement as an ap-

pendix (agreed upon at the beginning of the assessment).

Post assessment follow-up

The goal of the initial assessment is to characterize the current state of

software engineering practice in the organization and identify key next steps for

improvement, but the ultimate intent is to be the catalyst for improvement. The

following activities can increase the likelihood that improvements will occur:

27

Action plans.

Periodic site-management review.

Process group formation.

SEI continuing support and guidance.

Follow-up reassessment (after a year or so).

3.2.2 ISO-9000 quality standard

Many nations (particularly in Europe) are making the International Stan-

dards Organizations (ISO) certification a prerequisite for doing business. Their

intention is to exclude suppliers who aren't serious about quality. As a result, or-

ganizations must have explicit ISO certification in order to prove their capabilities.

The general purpose of ISO 9000 is to improve quality by assuring a con-

tractual basis for defining it. The ISO 9000 series consists of five documents, two

guidelines (ISO 9000 Quality Management and Quality Assurance Standards and

Guidelines for Selection and Use, and ISO 9004 Quality Management and Qual-

ity System Elements) and three models of quality assurance systems (9001, 9002,

and 9003). Software and information systems developers are instructed to use 9003

"Guidelines for the application of ISO 9001 to the Development, Supply and Main-

tenance of Software", published in 1991. Strictly speaking, the software developer's

process must conform to requirements specified in ISO 9001. Certification of confor-

mance is actually a registration (accreditation) of an audited and accepted quality

management system. The certification is performed by trained certifiers. ISO 9001

28

and the accompanying, interpretation in, 9003 guidelines, represent an international

standard but compared to government standards like the mandatory DoD 2167A

and 2168 and the voluntary industry standards like IEEE's software engineering

series, ISO 9003 is more like a complete quality system framework rather than an

explicit directive.

The intention of ISO 9000 was to bring the various competing standards

under a single standard. It actually originated in 1959, with DoD's Quality Man-

agement Program (MIL-Q-9858). This standard itemized a set of quality system

requirements which was adopted with slight changes by NATO (AQAP-1) and used

by both through the 1970s. In 1979, the British Standard Institute (BSI) developed

the first quality management standard for industry (BS 5750) from the AQAP-1

standard. The general intent of BS 5750 was to define the requirements for a qual-

ity system that would fit most businesses. None of this was specifically software

related. In 1987, ISO began publishing the ISO 9000 series (developed directly from

BS 5750). The U.S. adopted ISO 9000 through the Q-90 standards published by

the American National Standards Institute (ANSI) and the American Society for

Quality Control (ASQC). Under normal circumstances, a company can use prepa-

ration for ISO 900x audit to assess, consolidate and improve their quality assurance

systems as a means of quality process management [Jovan93].

Both SEI and ISO deal with the promotion of quality within a conventional

life-cycle. Each extensively covers management of development, training, testing

and reviewing, change control, standards and metrics. As for the differences, the

SEI emphasizes the whole process of software production. Accordingly, it stresses

29

such factors as productivity, sizing and costing and the transfer of experience across

and within projects, e.g. reuse of designs, prototyping, process improvement and

the use of a metrics database, whereas ISO does not greatly concern itself with

these.

However, ISO has emphases which SEI omits. SEI is not particularly con-

cerned with project control when the development process is virtually complete.

Hence, large sections of ISO (acceptance, replication, delivery and installation) re-

ceive little coverage in SEI. Nor, surprisingly, does maintenance, being presumably

treated as an extension of the original contract. The BSI rightly recognizes the

unique problems of maintenance by supporting ISO with a separate Quality Assur-

ance Schedule for maintenance.

SEI does not reflect, as ISO does, the immense problem of documentation

control on projects, and some aspects of project control are not found in SEI, e.g.

"included software product" and "product requirement specification", if done by the

supplier. ISO places more emphasis on interfaces, both managerial and technical

[Gilch92].

3.2.3 Other assessments

Gilchrist [Gilch92] 'adapted the SEI Process Maturity model for individual

projects and assessed a set of software projects of all sizes and over an extensive

period. He proposed using a spreadsheet to store and process the information, and

analyzed some merits and difficulties with the approach. While Gilchrist downplays

30

the maturity level concept, he does stress the importance of identifying a project's

deficiencies and a prioritized action list to remove them.

Seddio [Seddio92] describes the application of review and product metrics

to the software engineering process at Eastman Kodak. Reviews were held for

software requirements specification and high level design, and for software programs,

subsystem test plans and code coverage results. The assessment tools employed

were a software requirements specifications checklist to determine documentation,

completeness and testability ratings, and a code review measurement matrix. Seddio

claims that the use of this simple software assessment approach has resulted in

enhanced understanding of the software process, more objective assessments of the

quality of the software products, and more objective software products reviews.

Henry and Henry [Henry92] propose a methodology for assessing the soft-

ware process used by an organization, integrating the principles of Total Quality

Management (TQM) and the work of the SEI. The basis for integrating these 2

approaches is that the SEI assessment specifies the activities comprising the soft-

ware process, and the TQM implementation phase evaluates the effectiveness of the

activities. The 4 steps of their assessment methodology are: investigate the pro-

cess, model the process, gather data, and analyze data. They claim their approach

provides insight into both the content and the effectiveness of an organization's

software process.

Other efforts to drive company-wide or industry-wide software process im-

provement have been reported in [Foster93, Strig93, King93, Cousin93].

31

3.2.4 Costs and difficulties of assessments

The costs for process assessments are the time and effort involved to prepare

the assessment instrument, to prepare for the assessment, to conduct it, to analyze

its results, and to draw the conclusions. This is highly variable depending on

the assessment instrument used and the extent of the process under assessment

[Press93].

Some of the difficulties of process assessments are:

The creation of an assessment instrument that will properly cover the topics

under investigation and that will gather the information sought. This means

to determine which questions to ask, how many, in which order, the type of

answers, among others.

The potential variability of the answers that the respondents in a given or-

ganization may provide. A thorough pre-assessment analysis of the questions

with the potential answerers can be very helpful in achieving consistency in

the interpretation of the questions.

The training of assessment experts, i.e. people who will make up the assess-

ment teams used to assess organizations.

The limited scope of the assessment: the assessment instrument cannot cover

all the issues regarding the process, but should cover the most critical ones.

The analysis of answers, determination of findings and recommended actions,

and the implementation of improvement plans.

32

3.3 Validation

Validation of a software model is the process of developing convincing evi-

dence that the model works, i.e. the model does explain the software phenomenon

of interest. Ejiogu [Ejiogu93] stresses the difference between validation and corre-

lation analysis: while the latter has the goal of calculating the degree of correlation

or agreement between two or more target models, the former has the goal of finding

any logical grounds to accept or reject a given model based on some admissible

properties it possesses, so that the validation of a model means proving that its

definitions, target attributes of software behavior, and mathematical function pos-

tulates are correct. By necessity a model only incorporates what is believed to

be important and excludes what is not considered important. Achieving proof of

correctness for software models is almost impossible, for more than one model may

represent the same software phenomenon and it is not possible to prove one as the

correct model over the others, and because many software factors modeled cannot

be precisely expressed in unequivocal mathematical terms. This is reflected on an

ever-present inability to prove correctness of software models.

Traditionally, software models have been validated by demonstrating they

produce the results claimed, rather than by proving their correctness. One way to

do that involves the collection of data to be statistically interpreted (i.e. correlation

analysis). Analyzing historical records or performing controlled experiments are

two ways to gather data [Conte86]. Data can also be gathered through software

analyzers, report forms, and interviews. The goal of statistical interpretation is

33

the identification of significant relationships between and among software features,

so that the variation on one software feature can be explained by the variation of

another. Many software estimation models have been validated that way. CoCoMo

is a good example: a widely known software cost estimation model proposed by

Boehm [Boehm8l], this model was validated against a database of 63 projects com-

pleted during a 15-year period. The projects were written in different languages,

vary in size and type. Cost driver attributes ratings were assigned to each project

using expert judgment. To derive the equations, the author used a combination of

experience, results of other cost estimation models, the subjective opinion of expe-

rienced software managers, and trial-and-error to arrive at initial model parameters

that were further refined and calibrated. The Intermediate version of the model pro-

duced excellent results, at least when applied to its own database. Other software

models and their validation approaches are described in [Conte86].

3.3.1 Role of measurement in software engineering

Without measurement it is impossible to determine whether any improve-

ment is made. By evaluating productivity and quality measures, senior management

can establish meaningful goals for improvement of the software engineering process.

To establish goals for improvements, the current status of software development

must be understood. Hence, measurement is used to establish a process baseline

from which improvements can be assessed. The collection of software quality metrics

(e.g. number and distribution of software defects by phase) enables an organization

34

to tune its software engineering process to remove the vital few causes of defects

that have the greatest impact on software development [Press93].

Metrics should be an integral part of all transition plans. Grady and Caswell

[Grady87] define 10 steps of a successful transition strategy for software metrics:

1. Define a set of objectives for your measurement program.

2. Assign responsibility.

3. Do research.

4. Select the metrics that you plan to collect during the early stages of your

measurement work.

5. Sell the metrics program to management and technical people.

6. Obtain tools that enable automatic collection and analysis of metrics data.

7. Establish a metrics education program.

8. Encourage participation by publicizing success and soliciting feedback.

9. Create a metrics database.

10. Remain flexible.

Measuring a software process is not simple. Before one can use the measured

data with confidence, one needs to be aware of many potential issues [Yeh93]:

Calibration of measurement. Lack of calibration will introduce a large corn-

ponent of variability into the measured result.

35

Measurement vs. interpretation. What is measured and what is wished to be

measured may not be the same thing.

Measurement errors. Watch out for potential errors introduced through mis-

understanding of the metrics or counting rules or errors in the measurement

tools, which cause the errors to show up in a systematic pattern.

Be aware of assumptions. Interpretation of measurements results through

certain models or assumptions.

Lack of data issue. Many of the software processes generate only one or two

data points over a long period of time. This makes doing meaningful data

analysis very difficult. Even in that case it is useful to take measurements to

have a benchmark to detect improvement.

The after the fact issue. Some of the data are not complete until after the

fact. It is important to collect these data in order to complete the feedback

loop to improve the process.

Comparing measures. Quality and productivity data from different projects

must be compared very carefully, to draw a meaningful conclusion from the

data set. To do that, set up precise definitions and counting rules, and apply

them uniformly and rigorously.

3.3.2 SEI models "validation procedure"

As part of its effort to validate the initial version of its process matu-

rity model and assessment procedure, the SEI conducted 2 process assessments for

36

Hughes Aircraft's Software Engineering Division (SED) : one in 1987 and the other

one in 1990 [Humph9l]. According to the SEI, between 1987 and 1990 Hughes' SED

moved from level 2 to level 3 in its 5-level maturity model. The 1987 assessment

identified the strengths and weaknesses of the SED, and proposed some actions for

process improvements. The 1990 assessment found a strong level 3 organization.

SEI claims that the process improvement was tremendously cost-effective. The as-

sessment itself cost Hughes $45,000 and the two-year improvement plan cost about

$400,000. The revenues (represented by better working conditions, employee morale,

scheduling, and costs) were estimated at $2 million annual savings, by comparing

the Cost Performance Index variation in the period.

A detailed description of the assessment procedure can be found in [Humph87,

Humph87a, Humph9l], although the SEI does not provide details about how they

arrived at the costs and estimated savings figures they claim. For a true validation

of its model, the SEI needs to obtain quantitative estimations of costs and benefits

associated to achieving each software process maturity level, and show those estima-

tions are actually supported by real-world data by applying its assessment procedure

and process improvement plan to a number of companies/projects at all maturity

levels. Without that, the SEI has not actually validated its maturity model and

associated assessment procedure, but rather reported on a successful experience.

Hence, the data presented in these validation studies is mostly anecdotal.

The fact that the SEI has not provided a quantitative estimation of the

savings and costs of moving from one level to the next for all 5 levels shows how

difficult it is to validate maturity models like the one proposed in this thesis.

37

Software Process Maturity Level % of Sites

1 81

2 12

3 7

4 0

5 0

Table 3.1: SEI assessment results

3.3.3 SEI assessments: state of the practice

The results of SEI software process assessments of 296 projects at 59 sites

indicate that many organizations have low maturity software process [Over93]. Ta-

ble 3.1 presents a summary with the percentage of sites found for each software

process maturity level. The small number of organizations at SEI maturity level

2 and 3 suggest that, in general, the process used in most organizations lacks the

controls, precision, and accuracy required to achieve predictable, repeatable results.

Further, the lack of organizations at SEI maturity level 4 and 5 indicates that pro-

cess measurement and evolution are nonexistent at the organization level. Based

on this data, the software engineering state-of-the-practice can be characterized as

largely crisis-driven, or ad-hoc [Humph89a].

3.3.4 Other process improvement success stories

Raytheon's Equipment Division started a process-improvement initiative in

1988, and has improved its bottom line, increased productivity, and changed the

corporate culture. They have been able to convince top-level management that

software process improvements within that division have yielded a $7.7 return on

38

every dollar invested, a two-fold increase in productivity, and an evolution from level

1 (Initial) to level 2 (Repeatable) to level 3 (Defined) process maturity according

to the SEI's Capability Maturity Model [Dion93]. Their software improvement

effort generated an $8.2 million savings from reduced cost of non-conformance (costs

savings generated by reduction in rework). Their investment in software process

improvement totaled $1.1 million [Over93].

The Aircraft Software Division (LAS) of the Oklahoma City Air Logistics

Center assessed their Test Program Set and Industrial Automation processes using

the SEI process assessment methodologies. They implemented 44 improvements,

and gathered return-on-investment data on 18 of them. They concluded that the 18

improvements cost $462,000 and generated $2.935 million for a return-on-investment

of 6.35 to 1 [Lipke92].

3.3.5 Costs and difficulties of validation

Validation by correlation analysis has the problem that it requires many

data points to be statistically significant. Moreover, when dealing with process

improvement there are some situations that create problems that cannot be easily

solved, if at all. Some of these problems are:

Difficulty of gathering data. Many organizations do not keep historical records

of their developments, and when these are kept they are not always accurate.

In the case of a software process maturity model it may be the case that there

are no organizations at the higher levels, as happens in the SEI models. Is

39

it worth the extra effort to achieve the higher levels? That question is very

difficult to answer without actual supporting data.

It may be very difficult to associate quantitative improvements with a sin-

gle cause. It is perfectly possible that a given improvement in the software

process comes about as a result of implementing concurrently two or more

recommended actions. One action alone may not produce the desired effect

unless other changes are also made. How much improvement can be credited

to each action?

It is even more difficult to completely determine the costs and benefits asso-

ciated with any improvement for many of these are non-tangible ones.

One way to try and get around some of those problems is by using generally

accepted software development models that describe similar software issues. A

study done at Lockheed [Over93] predicts some substantial improvements in quality

and productivity using the SEI's model. Based on a comparative study of several

projects at Lockheed, the data (normalized for a 500 KSLOC (thousand source lines

of code) project and extrapolated for level 4 and 5) predicts that the increases in

quality and productivity between a level 1 organization and a level 5 organization

are on the order of 100-fold for quality and 10-fold for productivity. Unfortunately,

the actual confirmation of these claims is impossible given the lack of organizations

at the levels 4 and 5. Therefore, increases in quality and productivity for the two

highest levels are just good guesstimates.

40

3.4 Summary

Assessments are unavoidable in any improvement plan. It is absolutely nec-

essary to know the current status of the assessed organization to identify potential

problems, to be able to propose improvement actions and to measure their effects.

The validation of assessment procedures that complement process models like the

SEI's or the one proposed in this thesis is a very difficult task, because they need

to be proved as reasonable predictors of the software process. By themselves, as-

sessments are not a solution to the software process problems. The actions taken

to improve the key practices as indicated by the assessments are the solution.

The following chapters describe the documentation process maturity model,

its assessment procedure and its validation.

41

Chapter 4

System Documentation Process Maturity Model

4.1 Overview

This chapter describes in detail the 4-level System Documentation Process

Maturity model introduced in this thesis, which is based on both the SEI Soft-

ware Process Maturity model and the Capability Maturity model. The first section

presents the System Documentation Process Maturity model; the second section

concentrates on the assessment procedure devised to complement the model; and

the third section addresses the process of determining documentation process ma-

turity and the improvement actions associated with each maturity level.

4.2 The model

The System Documentation Process Maturity Model consists of 4 maturity

levels. Each proposed maturity level is described as follows:

Name

Keywords

42

Ad-hoc Inconsistent Defined Controlled

Keywords Chaos
Variability

Standards
Check-off list
Inconsistency

Product assessment
Process definition

Process assessment
Measurement, Control
Feedback
Improvement

Succinct
Description

Documentation
not a high
priority

Documentation
recognized as
important and
must be done

Documentation
recognized as
important and
must be done well

Documentation
recognized as
important and
must be done well
consistently

Key
Process
Areas

Ad-hoc process
Not important

Inconsistent
application
of standards

Documentation
quality assessment
Documentation
usefulness assurance
Process definition

Process quality
assessment
and measures

Key
Practices

Documentation
not used

Check-off list
Variable content

SQA-like teams for
documentation
quality and usefulness
Consistent use of
documentation tools

Minimum process
measures
Data collection
and analysis
Extensive use of
documentation tools
and integration
with CASE tools

Key
Indicators

Documentation
missing or
out of date

Standards
established

SQA-like practices
Consistent use of
documentation tools

Data analysis
and improvement
mechanisms

Key
Challenges

Establish
documentation
standards

Exercise quality
control over
content
Assess documentation
usefulness
Specify process

Establish process
measurement
Incorporate control
over process

Automate data
collection and analysis
Continual striving
for optimization

Table 4.1: Documentation process maturity modelsummary table

43

Key Process Areas (to define the basic characteristics)

Key Practices (procedures, activities and typical scenarios)

Key Indicators (needed in the assessment)

Key Challenges (to move to the next level)

Key Significance (to software development and maintenance)

The concepts key process areas, key practices and key indicators were taken

from the SEI's Capability Maturity model whereas the concept key challenge was

taken from the SEI's Software Process Maturity model. The concept key significance

has been added to stress the impact of each level of documentation on software

development and maintenance.

A summary of the model is presented in Table 4.1.

Level 1 : Ad-hoc

Keywords: Chaos, variability.

Key Process Areas : Non-dependable documentation. System documen-

tation process non-existent, ad-hoc or chaotic. Importance of system

documentation not understood.

Key Practices : Since documentation may not exist or may be out of

date, documentation is not used. No company standards about types of

documentation that should or must be created.

Key Indicators : Missing documentation or out of date documentation.

Use of code rather than documentation during maintenance.

44

Key Challenges : Realization of importance of documentation. Establish

required documentation standards. Define what documentation must be

created.

Key Significance :

* Development : The non-dependability of the documentation creates

heavy reliance on informal communication creating the conditions

for ambiguities, inconsistencies, incompleteness, etc. This results in

an environment conducive to errors.

* Maintenance : The only dependable documentation is the source

code, so program modifications are costly, time-consuming and error-

prone.

Level 2 : Inconsistent

Keywords: Documentation standards, required documentation, inconsis-

tency

Key Process Areas : Inconsistent application of documentation stan-

dards. Poorly controlled documentation process. No consistent use of

documentation tools. No attempt to gauge usefulness of documentation

or how frequently it is used.

Key Practices : Documentation exists, but varies in content and com-

pleteness. Check-off list of required documentation. Use of simple doc-

umentation tools in creation and maintenance of documentation. No

quality control over content.

45

Key Indicators : Documentation standards (IEEE, DoD, local). Docu-

mentation tools used.

Key Challenges : Institute quality control over content of documenta-

tion. Keep documentation up to date. Assess quality of documentation

products. Assess usefulness of documentation products (Are they used?

If not used, why not?). More effective use of documentation tools.

Key Significance :

* Development : Standards for which documents must be generated.

Since no quality assessment, documentation may be incomplete and

may not be up to date. Much informal communication.

* Maintenance : Both the source code and associated documentation

are available. However, the utility of the documents is suspect, given

the lack of quality control.

Level 3 : Defined

Keywords: Documentation process, product assessment, documentation

team.

Key Process Areas : Documentation products quality assessment and

usefulness assurance. Documentation process definition. System docu-

mentation teams established, to monitor for quality and usefulness.

Key Practices : Independent units established to monitor quality and

usefulness of documentation (like SQA). Consistent use of documentation

46

tools, through a defined documentation process. Documentation updated

after each change.

Key Indicators : Documentation team goals and procedures. Consis-

tent use of documentation tools. Documentation quality and usefulness

assessment methods.

Key Challenges : Establish measures of documentation process quality.

Case tool integration. Establish mechanism for user feedback concerning

usefulness of documentation.

Key Significance :

* Development : Existence of higher quality documentation will im-

prove the communication process, and attack the causes of errors.

This will affect maintenance, by improving visibility for maintenance

concerns.

* Maintenance : Extensive use of documentation, allowing mainte-

nance programmers to work at a higher level of abstraction, reducing

complexity, time and costs.

Level 4 : Controlled

Keywords: Process assessment, measurement, control, feedback, im-

provement, optimization

Key Process Areas : Documentation process quality assessment and mea-

surement. Data analysis used as feedback into process improvement loop.

47

Key Practices : Establishment of minimum measures for documentation

process quality. Data collection and analysis. Mechanism to feed mea-

surements into process to identify areas of improvement. Extensive use

of documentation tools. Documentation tools integrated with Software

CASE tools. Mechanism for incorporation of feedback, from users of the

documentation.

Key Indicators : Data analysis mechanism used to assess the process.

Improvement-feedback mechanisms.

Key Challenges : Automate collection and analysis of process data.

Maintain a continual optimization of documentation process. Contin-

ual striving for improvement incorporated into process.

Key Significance :

* Development : Existence of a measurable documentation process

provides specific indication as to how to proceed making the process

more formal and encouraging its reusability.

* Maintenance : Overall maintenance costs and time decreased with

a well-defined and measurable documentation process. A key aspect

in maintenance is having quick access to and understanding of the

supporting documentation items relevant to the task at hand.

Table 4.2 shows how the challenges identified at one level are specifically

addressed at the next level. The table also helps in understanding how the model

progresses from one level to the next.

48

Level Challenges Practices at next level

Ad-hoc Realize importance of documentation

Establish required documentation
Define documentation to be created

Documentation exists, but varies
in content and completeness
Documentation standards
Check-off list of required documents

Inconsistent Institute control over content

Keep documentation up to date
Assess quality of documentation products
Assess usefulness of documentation products
More effective use of documentation
tools

Independent unit established to monitor
quality
Documentation updated after each change
Documentation quality assessment methods
Documentation usefulness assessment methods
Consistent use of documentation tools

Defined Establish measures of documentation
process quality

Further tool integration

Establishment of minimum measures
for documentation process quality
Data collection and analysis
Extensive use of documentation tools
and integration with CASE tools

Controlled Continual optimization of
documentation process

Mechanism to feed improvements into
process to identify areas of
improvement

Table 4.2: Level-to-level transitions table

The model is to be used along with the assessment procedure to map an

organization's documentation status to one of the maturity levels, generating a doc-

umentation process maturity profile. Then, the organization can work on identified

areas of improvement to move on to the next level.

4.3 Assessment procedure

The purpose of the assessment procedure for a model is determine where an

organization stands relative to that model. For this model, the assessment maps an

organization's experience and past performance to a documentation maturity level

and generates a documentation process profile. The profile indicates key practices

for that level, what practices the organization is doing well, what practices need

improvement, and challenges to move to the next level.

49

The assessment questionnaire is presented in this section. A sample of the

actual questionnaire used in the assessments is included in Appendix A.

4.3.1 Design of questionnaire

The questions have been derived directly from the model and the practices

determined for each maturity level. Each practice defines one or more questions

whose answer determines the degree of satisfaction of the practice. A total of 18

practices for the 4 maturity levels have been defined, and 56 questions are used to

determine their degree of satisfaction. Table 4.3 maps each maturity level's practices

into a number of questions.

4.3.2 Basic definitions

Definitions of basic terms that are extensively used:

Software Documentation: Includes all documents generated as part of software

development, i.e. software requirements specifications, design documents,

code, test plans and history (test cases). Software documents refer to either

hard copy or electronic form. It excludes end-user documentation, i.e. user

manuals and operations manuals; and it excludes managerial documentation,

i.e. project plans, schedule and staff plans, etc.

Software CASE tools: Software designed to assist software engineers and pro-

grammers cope with the complexity of the process and the artifacts of Software

Engineering {Lewis911.

50

Level Key Practices Number of Questions

1 Creation of basic software development documents 5

Documentation generally recognized as important 1

2 Written statement about importance of documentation 1

Adequate time and resources for documentation 3

Adherence to documentation standards 4

Use of a check-off list of required documentation 1

Use of simple documentation tools 1

3 Use of software documentation generated 5

Mechanisms to update documentation 7

Mechanisms to monitor quality of documentation 5

Methods to assess usefulness of documentation 1

Use of common sets of documentation tools 1

Use of advanced documentation tools 1

Documentation-related technology and training 3

4 Measures of documentation process quality 7

Analysis of documentation usage and usefulness 5

Process improvement feedback loop 4

Integrate CASE and documentation tools 1

Table 4.3: Documentation process practices and assessment questions

51

Documentation tools: Software designed to aid software engineers to cope

with the complexity of the process and artifacts of documentation.

Types of documentation tools [STSC92]:

Simple:

1. Text processors: word processors, desktop publishers, editors, spelling

checkers, electronic mail.

2. Graphics: flowcharting, technical drawing.

Advanced:

1. Document management systems: storage, retrieval, browsing, distri-

bution, sharing, consistency checking.

2. Integrated documentation/CASE tools.

Quality of documentation: Quality includes the following characteristics: ad-

equacy, completeness, usability, consistency, currency, readability, ease of use,

ease of modification, tracebility [Humph89, Lee87, Oman91, Post85, Stev88].

Usefulness of documentation: Extent to which the documentation products

are used by software developers and maintainers, the documentation users.

52

4.3.3 Assessment questionnaire

The assessment questionnaire consists of 56 questions, decomposed as fol-

lows:

By maturity levels:

Level 1 : 6 questions

Level 2 : 10 questions

Level 3 : 23 questions

Level 4 : 17 questions

By subject area:

Lifecycle documentation : 10 questions

Documentation standards : 4 questions

Documentation tools : 4 questions

Documentation quality control : 16 questions

Documentation usefulness determination and assurance : 4 questions

Documentation error analysis and improvement feedback : 13 questions

Documentation-related training : 3 questions

Management attitude towards documentation : 2 questions

A list of questions sorted by maturity level is presented below. A list of

questions sorted by subject area is presented in Appendix B.

53

1 never

2 seldom

3 sometimes

4 usually

5 always

Table 4.4: Meaning of answers in range of 1-5

Types of answers

35 of the questions in the assessment questionnaire are to be answered in

the range of 1-5, and 21 are yes/no questions. The numbers in the range of 1-5

represent how often a given action is performed. Table 4.4 matches a number with

its meaning.

Questions sorted by maturity level

The questions that are to be answered in the yes/no mode are highlighted.

Level 1: Ad-hoc

1. Are software documents other than code created during development?

2. Are software requirements specifications (including prototyping docu-

ments) generated?

3. Are design documents (including prototyping documents) generated?

4. Are test plan Documents generated?

5. Are test cases used in testing recorded in a document?

6. Does management have a policy (not necessarily written) sup-

porting the importance of software documentation?

54

Level 2: Inconsistent

1. Are there check-off lists that indicate which software documents must be

created?

2. Are there standards indicating what must be included in each software

document?

3. Is there any procedure or form used to specify how and when to write

each software document?

4. Is there a formal procedure used for checking that document contents

satisfy standards?

5. Is adequate time allocated to develop software documentation during

software development?

6. Are software documents checked to see that they have been done?

7. For each software project, is there a person responsible for collecting the

documentation?

8. For each software project, is there a person responsible for maintaining

the documentation?

9. Are simple documentation tools (text processors, graphics) used to create

and maintain software documentation?

10. Does management view software documentation as of major

importance and have written policies to this effect?

55

Level 3: Defined

1. Are all software documents generated in the development phase used?

(SRS in design, design document in coding, SRS and design in mainte-

nance, etc)

2. Are software documents other than code used during develop-

ment?

3. Are software documents other than code used during mainte-

nance?

4. When software documents are not used, is it because they are

unreliable, incomplete, or out of date?

5. When software documents are not used, is it because they are

not easily accessible?

6. Is there a mechanism for checking that a software document

has been completed satisfactorily?

7. If so, how frequently is it used?

8. After a change has been made to the code, is there a mechanism

for checking that all related documentation is updated?

9. If so, how frequently is it used?

10. After a change has been made to the design, is there a mecha-

nism for checking that all related documentation is updated?

11. If so, how frequently is it used?

56

12. After a change has been made to the requirements, is there a

mechanism for checking that all related documentation is up-

dated?

13. If so, how frequently is it used?

14. Is affected documentation updated after each maintenance change?

15. Is there a mechanism to monitor the quality of the documen-

tation?

16. If so, how frequently is it used?

17. Is there an independent group whose function is to assess the

quality of the documentation generated in a project?

18. Is there a mechanism to assess the usefulness of the documen-

tation generated in a project?

19. Is formal training available for the use of documentation standards?

20. Is formal training available for the use of documentation tools?

21. Are advanced documentation tools (integrated, documentation manage-

ment) used during development and maintenance?

22. Are common sets of documentation tools used in the different develop-

ment environments throughout the organization?

23. Is there a mechanism to foster the incorporation of advances in

documentation technology across the organization?

57

Level 4: Controlled

1. Are documentation errors and trouble reports tracked to the solution?

2. Are documentation process data and error data for software projects

recorded in a database?

3. Are statistics gathered on documentation errors?

4. Is documentation error data analyzed to determine distribution

and characteristics of errors?

5. If so, how frequently is this done?

6. Is there a mechanism to analyze documentation error root causes?

7. If so, how frequently is it used?

8. Is there a documentation usage profile generated for software

development?

9. If so, how frequently is this done?

10. Is there a documentation usage profile generated for software

maintenance?

11. If so, how frequently is this done?

12. Is there a mechanism for users of the documentation (software

developers and maintainers) to provide feedback to improve

documentation usefulness?

13. If so, how frequently is it used?

58

14. Are measures of usefulness of documentation collected?

15. Is there a mechanism to feedback improvements to documen-

tation practices or standards?

16. If so, how frequently is it used?

17. Are advanced documentation tools integrated with software

CASE tools?

4.3.4 Administering the questionnaire

The assessment is to be conducted as follows:

Determine the company and project(s) that will undergo a documentation

process maturity assessment.

Gather the project team(s) under assessment, explain to them the goals and

procedures of the assessment and clarify any unresolved issue.

Have the project team(s) complete the questionnaire. This phase should not

exceed 30 minutes.

4.4 Determination of documentation process maturity

This section describes the algorithm to determine maturity levels, profiles

and challenges. The determination of maturity levels is based upon the team an-

swers for all questions. To satisfy a given maturity level, the team needs to answer

positively certain questions. Positive answers of just a partial set of questions for

59

each level can determine a maturity level to be either weak, solid or strong. This

distinction of solidity for maturity levels is useful to determine practices that must

be improved in the current level before incorporating improvements to move to

higher maturity levels. The answers to each question are then used to determine

the degree of satisfaction of each practice (each practice is addressed by one or more

questions) which is in turn used to determine a documentation process maturity pro-

file and an action plan of improvements. The next subsections describe the method

to determine team's answers, to determine maturity levels, to determine degree

of satisfaction for the practices and to generate a documentation assessment re-

port (documentation maturity profile, and improvement plan). The questions have

been designed to facilitate the determination of maturity levels and documentation

practices and their degree of satisfaction.

4.4.1 Determining the team's answer

The maturity level is based on the answers that the project team provides

to each question. Some of the questions are answered in the range of 1-5, and some

are yes/no questions. The questions must be analyzed individually and the team

answer to a question is determined as follows:

For answers in range of 1-5, an average of the scores remaining after removing

the highest score and the lowest score is computed.

For yes/no answers, the mode (i.e. the most frequent answer) is taken as the

team answer.

60

4.4.2 Determining the maturity levels

The maturity levels are determined according to the following rules. The fol-

lowing question numbers are those used in the previous section where the questions

were sorted by maturity level.

Level 1: Since this is the first level in our model, no effort is needed to attain

it. So, the main interest at this level is to determine whether the organization

shows a strong performance.

Strong: The practices that are relevant at this level are: Creation of

software development documents and Documentation generally recognized

as important.

Answers needed: Questions 1 through 5 receive a score of 4 or 5. Question

6 (yes/no) is answered positively.

Level 2: At this level, the organization could be in either one of three situa-

tions: weak, solid, or strong performance.

Weak: The practices that are relevant at this level are: Use of a check-off

list of required documentation and Use of simple documentation tools.

Answers needed: Questions 1 and 9 receive a score of 4 or 5.

Solid: The practices that are relevant at this level are: Use of a check-off

list of required documentation, Use of simple documentation tools and

Adherence to documentation standards.

61

Answers needed: Besides requirements for weak performance, questions

2,3,4 and 6 receive a score of 4 or 5.

Strong: The practices that are relevant at this level are: Use of a check-

off list of required documentation, Use of simple documentation tools, Ad-

herence to documentation standards, Written statement about importance

of documentation and Adequate time and resources for documentation.

Answers needed: Besides requirements for a solid performance, questions

5,7,8 receive a score of 4 or 5. Question 10 (yes/no) is answered positively.

Level 3: This level is defined in terms of a solid or a strong performance.

Solid: The practices that are relevant at this level are: Use of software

documentation generated, Mechanisms to update documentation, Mecha-

nisms to monitor quality of documentation and Methods to assess use-

fulness of documentation.

Answers needed: Questions 1,2,3 and 6 through 18 receive a score of 4

or 5, or are answered positively if they are (yes/no) questions.

Strong: The practices that are relevant at this level are: Use of software

documentation generated, Mechanisms to update documentation, Mecha-

nisms to monitor quality of documentation, Methods to assess usefulness

of documentation, Use of common sets of documentation tools, Use of

advanced documentation tools and Documentation-related technology and

training.

62

Answers needed: Besides requirements for a solid performance, questions

19 through 23 receive a score of 4 or 5, or are answered positively if they

are (yes/no) questions.

Level 4: This level is defined only in terms of a solid performance, given its

optimizing nature.

Solid: The practices that are relevant at this level are: Measures of doc-

umentation process quality, Analysis of documentation usage and useful-

ness, Process improvement feedback loop and integrate CASE and docu-

mentation tools.

Answers needed: All questions 1 through 17 receive a score of 4 or 5, or

are answered positively if they are (yes/no) questions.

63

4.4.3 Beyond maturity levels: determining profiles and challenges

One of the goals of the assessment procedure is to determine where the orga-

nization stands and what are the challenges to move up to the next maturity level.

Determining a numeric documentation process maturity level will be of little use if

it is not complemented with a description of what's being done well and what isn't

(a documentation process maturity profile), a list of satisfactory practices, practices

needing improvements, missing practices and challenges to move to the next level.

This section describes how to map answers into maturity profiles and challenges for

improvement. The improvements associated with the partially satisfied practices

and the actions associated with the missing practices define the challenges.

Key practices and their satisfaction

This section describes the key practices for each level and which answers

contribute to the satisfaction of them. The degree of satisfaction may be either

one of: none, partial and full. Since each practice's degree of satisfaction is defined

directly by the answers to a set of questions each degree of satisfaction is determined

in terms of the proportion of relevant answers that are either positive or negative. A

fully satisfied practice requires that all relevant questions be answered positively; a

not satisfied practice occurs when more than half of the relevant answers are negative

(threshold defined arbitrarily), and a partially satisfied practice is determined when

it is neither fully nor not satisfied. The questions numbers are those used in section

of questions sorted by maturity level.

64

Level 1

Creation of basic software development documents

Not satisfied: If more than 3 of the 5 answers (1-5) are negative (below

3)

Fully satisfied: If all 5 answers (1-5) are positive (above 3)

Partially satisfied: Any other case for answers (1-5)

Documentation generally recognized as important

Not satisfied: Answer 6 is negative (no)

Fully satisfied: Answer 6 is positive (yes)

Partially satisfied: Any other case for answer 6

Level 2

Written statement about importance of documentation

Not satisfied: Answer 10 is negative (no)

Fully satisfied: Answer 10 is positive (yes)

Partially satisfied: Any other case for answer 10

Adequate time and resources for documentation

Not satisfied: If more than 1 of the 3 answers (5,7,8) are negative (below

3)

65

Fully satisfied: If all 3 answers (5,7,8) are positive (above 3)

Partially satisfied: Any other case for answers (5,7,8)

Adherence to documentation standards

Not satisfied: If more than 2 of the 4 answers (2,3,4,6) are negative (be-

low 3)

Fully satisfied: If all 4 answers (2,3,4,6) are positive (above 3)

Partially satisfied: Any other case for answers (2,3,4,6)

Use of a check-off list of required documentation

Not satisfied: If answer 1 is negative (below 3)

Fully satisfied: If answer 1 is positive (above 3)

Partially satisfied: Any other case for answer 1

Use of simple documentation tools

Not satisfied: If answers 9 is negative (below 3)

Fully satisfied: If answer 9 is positive (above 3)

Partially satisfied: Any other case for answer 9

66

Level 3

Use of software documentation generated

Not satisfied: If more than 1 of the 3 answers (1-3) are negative (below

3 or a no)

Fully satisfied: If 3 answers (1-3) are positive (above 3 or a yes)

Partially satisfied: Any other case for answers (1-3)

Mechanisms to update documentation

Not satisfied: If more than 2 of the 4 answers (8,10,12,14) are negative

(no)

Fully satisfied: If all 7 answers (8-14) are positive (above 3 or a yes)

Partially satisfied: Any other case for answers (8-14)

Methods to monitor quality of documentation

Not satisfied: If more than 1 of the 3 answers (6,15,17) are negative (no)

Fully satisfied: If 5 answers (6,7,15,16,17) are positive (above 3 or a yes)

Partially satisfied: Any other case for answers (6,7,15,16,17)

Methods to assess usefulness of documentation

Not satisfied: If answer 18 is negative (no)

Fully satisfied: If answer 18 is positive (yes)

Partially satisfied: Any other case for answer 18

67

Use of common sets of documentation tools

Not satisfied: If answer 22 is negative (below 3)

Fully satisfied: If answer 22 is positive (above 3)

Partially satisfied: Any other case for answer 22

Use of advanced documentation tools

Not satisfied: If answer 21 is negative (below 3)

Fully satisfied: If answer 21 is positive (above 3)

Partially satisfied: Any other case for answer 21

Documentation-related technology and training

Not satisfied: If more than 1 of the 3 answers (19,20,23) are negative

(below 3 or a no)

Fully satisfied: If 3 answers (19,20,23) are positive (above 3 or a yes)

Partially satisfied: Any other case for answers (19,20,23)

68

Level 4

Measures of documentation process quality

Not satisfied: If more than 3 of the 5 answers (1-4,6) are negative (below

3 or a no)

Fully satisfied: If all 7 answers (1-7) are positive (above 3 or a yes)

Partially satisfied: Any other case for answers (1-7)

Analysis of documentation usage and usefulness

Not satisfied: If 3 answers (8,10,14) are negative (below 3 or a no)

Fully satisfied: If 5 answers (8-11,14) are positive (above 3 or a yes)

Partially satisfied: Any other case for answers (8-11,14)

Process improvement feedback loop

Not satisfied: If 2 answers (12,15) are negative (no)

Fully satisfied: If 4 answers (12,13,15,16) are positive (above 3 or a yes)

Partially satisfied: Any other case for answers (12,13,15,16)

Integrate CASE and documentation tools

Not satisfied: If answer 17 is negative (no)

Fully satisfied: If answer 17 is positive (yes)

Partially satisfied: Any other case for answer 17

69

4.4.4 Documentation assessment report

Based on the responses to the questionnaire a Documentation Assessment

Report is generated. It contains an executive summary with the maturity level

number, a documentation process maturity profile and an action plan. The profile

indicates satisfactory practices, practices needing improvement, missing practices,

and challenges to move to the next level. The action plan describes specific actions

to improve existing practices and to address missing practices to enable the orga-

nization to move to the next higher maturity level. The following is an example of

an actual report generated after conducting an assessment for a software project at

a software company identified as project Y and company X. A complete descrip-

tion of the actions defined for each practice that is either partially satisfied or not

satisfied is given in Appendix C.

70

Example Documentation Assessment Report

Contents of the Report

This report presents an executive summary of the main findings of the assessment
conducted or project Y at company X on month day, year. It includes the process
maturity level, a documentation process maturity profile table, and an action plan
of needed improvements and challenges.

Executive Summary

Maturity Level

The maturity level for this project is: Strong Level 1

Documentation Process Profile

Satisfactory practices

Documentation generally recognized as important

Use of simple documentation tools

Practices needing improvement

Creation of basic software development documents

Adherence to documentation standards

Allocation of adequate time and resources for documentation

Use of software documentation generated

Missing practices

Creation of written policy about importance of documentation

Use of a check-off list of required documentation

Challenges to move

to next level

Figure 4.1: Documentation Process Profile

71

Action Plan

The assessment has defined the project to be at a Strong Level 1 maturity level,
which means that documentation is not given a high priority.
The followings lists describe the actions needed to solidify the current practices and
the actions needed to move to the next maturity level.

Satisfactory current practices

Documentation is generally recognized as important.

Use of a check-off list of required documentation.

Use of simple documentation tools

Current documentation practices needing improvement

All basic software documents must be created for all phases of software devel-

opment. This includes software requirements specification, design documents,
test plans, and test implementations.

Documentation standards must be followed in the creation of all software
documents.

Software documentation generated must be used in all subsequent phases of
the software process.

Interview software developers and maintainers to assess usefulness of all doc-

uments.

Use of a common set of tools by the software developers when working in a
particular software development environment.

Documentation practices that need to be addressed

Create written policy on importance of documentation and make that policy
an important part of each software development project.

Allocate sufficient time and resources to create software development docu-
mentation that meets the standards for each phase of the development.

72

Level Key Practices Degree of Satisfaction

1 Creation of basic software development documents

Documentation generally recognized as important

Partial

Full

2 Written statement about importance of documentation

Adequate time and resources for documentation

Adherence to documentation standards

Use of a check-off list of required documentation

Use of simple documentation tools

None

None

Partial

Full

Full

3 Use of software documentation generated

Mechanisms to update documentation

Mechanisms to monitor quality of documentation

Methods to assess usefulness of documentation

Use of common sets of documentation tools

Use of advanced documentation tools

Documentation-related technology and training

Partial

None

None

Partial

Partial

None

None

4 Measures of documentation process quality

Analysis of documentation usage and usefulness

Process improvement feedback loop

Integrate CASE and documentation tools

None

None

None

None

Table 4.5: Maturity profile of documentation process practices

73

4.5 Summary

The problem of low quality of system documentation has been long neglected

despite its importance. This research proposes a system documentation process

maturity model as a means to manage the complexity of the documentation process.

The process maturity approach is a novel one, but has gained widespread attention

due to the SEI's maturity models and their impact in the software community.

Chapters 5 and 6 show that the documentation process maturity model proposed

is indeed a valuable tool to improve the quality of software.

Chapter 5

Validation of Model

5.1 Overview

74

The goal of the validation of a software model is to show that it is accurate,

i.e. it does represent the reality claimed and that the estimations it provides fit

the actual phenomenon. There are different ways to do validation: expert opinions,

statistical analysis of data gathered (from historical records or through controlled

experiments), or related software models and their estimations.

The ultimate goal of the validation of the proposed documentation process

maturity model is to show that organizations at a higher documentation maturity

level produce higher quality software (i.e. organizations at a high maturity level

catch a larger proportion of errors earlier in the development phase than organiza-

tions at a lower maturity level). Initially, it was decided to concentrate on software

errors because errors were thought to be a commonly accepted measure of quality

and that organizations were most likely to collect error data. This last assump-

tion proved wrong, given the fact that only a small proportion of the organization

assessed actually kept records of their error detection and correction activities. De-

75

Marco [DeMarc82] points out that software defects are simply out of control in the

software industry because many software companies avoid collecting defect data.

Given this unpleasant scenario and the difficulties in gathering sufficient empirical

data to perform significant statistical analysis, it was decided to use software devel-

opment models to show the impact of documentation maturity on software quality

and software testing and maintenance effort. The SEI has validated their software

process maturity models using software development model estimated results and

a few actual data points that do not cover the whole maturity level spectrum, but

that are consistent with the model's claims. A similar approach is used in this

research.

This chapter discusses causes of errors in software development, analyzes soft-

ware development models and their relation to software documentation, presents the

results from applying CoCoMo model as a validation tool, and estimates costs and

benefits associated with each maturity level in the documentation process model,

i.e. the bottom-line justification behind documentation process improvement.

5.2 Errors in software development

Many empirical studies of errors discovered during integration testing and

maintenance have shown the following:

The majority of errors were introduced before any code was written.

Most errors are removed long after they were introduced, resulting in very

expensive testing and maintenance processes.

76

Studies have consistently shown that the majority of errors were introduced

before coding, but discovered and removed after coding. Boehm [Boehm8l] esti-

mates that 42% of the errors discovered during testing were introduced during the

program design phase. Alberts [A1b76] found that 46-64% of all errors were design

errors and Grady and Caswell [Grady87] found that 50% of errors are design errors.

In Basili and Perricone [Basi84] 48% of errors were attributed to misinterpreted func-

tional requirements or specifications. Endres [Endres75] analyzed software errors

and their causes, and concluded that 46% of them relate to poor communications

and problem understanding. Ramamoorthy [Ramam88] states that the majority of

requirements and design errors are caused by ambiguity, incompleteness, or faulty

assumptions in the specifications. Grady and Caswell [Grady87] claim that doc-

umentation is responsible for 50% of design errors. Seddio [Seddio92] describes

an application of review and product metrics to the software process at Eastman

Kodak. He found that 63% of errors in software specification documentation are

caused by incomplete specifications and that 24% violate documentation standards.

Boehm [Boehm8l] believes that typically there are twice as many design errors as

coding errors. All of these studies clearly indicate that most errors are design and

requirements errors and in most instances these errors are discovered and corrected

during testing and maintenance.

It is much less expensive to repair an error early in the software life cycle than

later in the life cycle. Boehm [Boehm8l] estimates that it may cost 50 times more

to discover and repair a design error during testing than during design and it may

cost 100 times more if the error is repaired during maintenance. Alberts [A1b76]

77

estimated that up to 70% of design errors are not found during development and

the cost to remove these errors is almost half (47%) of the development costs. His

analysis of the costs associated with errors revealed that 80% of the cost can be

related to design errors.

5.2.1 Role of reviews and software documentation

What can be done to reduce the number of errors in the early stages of

software development, most of which are system documentation errors inaccurate,

incomplete, or missing information? The most effective techniques would seem to

be ones aimed at improving the quality of system documentation and the docu-

mentation process. This has been confirmed by several studies. In one experiment

Fagan [Fagan76] found that 82% of the total number of errors discovered during de-

velopment were found during formal design and code inspections. A study at GTE

by Howden [How78] compared the efficiency of design review and testing. Design

reviews uncovered 45% of the errors taking 17% of the development time, whereas

testing took up to 75% of the time to uncover just 10% of the errors. Software

reviews are a filter for the software engineering process [Press92]. A formal techni-

cal review (inspection or walkthrough) is an effective means for improving software

quality. Properly conducted reviews are the single most effective way to uncover

and correct errors while they are still inexpensive to find and fix[Press93]. The

obvious benefit of formal technical reviews is the early discovery of software defects

so that each defect may be corrected prior to the next step in the software engi-

neering process [Press92]. A number of industry studies (TRW, Nippon Electric,

78

Mitre Corp., among others) indicate that design activities introduce between 50

and 65 percent of all errors (defects) during the development phase of the software

engineering process. However, formal reviews techniques have been shown to be

up to 75 percent effective in uncovering design flaws. By detecting and removing

a large percentage of these errors, the review process substantially reduces the cost

of subsequent steps in the development and maintenance phases.

A major threat to software quality comes from a seemingly benign source:

changes. Every change to software has the potential for introducing error or creating

side effects that propagate errors. The change control process contributes directly

to software quality by formalizing requests for change, evaluating the nature of

change, and controlling the impact of change. Change control is applied during

software development and later, during the software maintenance phase. Software

documentation plays a key role in these activities, because it contains the informa-

tion about the changes and must be easily accessible and usable, and it needs to be

updated properly after each change to ensure it will continue to be useful during

the remainder of the software product lifetime.

Documentation and technical reviews go hand in hand. It has been shown

that technical reviews of design and code are more cost-effective than testing the

code. These studies suggest that high quality documentation is required to review

effectively, to avoid a costly effect later on especially during maintenance. Software

documentation whose quality is periodically and formally reviewed requires a soft-

ware organization to be at a documentation maturity level of 3 or higher, because

at that level is when quality control is instituted in the process.

79

5.3 Validation

The documentation process maturity model proposed in this thesis has been

subjected to a number of reviews by many developers and managers in the software

industry. It has been generally regarded as a valuable and useful tool to assess the

state of software documentation practices and to move towards their improvement.

Many assessments have been conducted and the feedback received on their results

and recommendations has been very positive.

This section is devoted to provide supporting evidence and demonstrate the

validity of this model as a process improvement tool.

As part of the validation effort, 14 software projects on 5 different companies

were assessed. Chapter 6 presents the results obtained from those assessments, as

well as an analysis of the trends about early error detection capabilities drawn from

the (insufficient) defect data actually collected. While many companies were willing

to participate as subject of an assessment, most of them did not have defect data

available.

The collection of software development defect data (and other kinds of data)

require a fair amount of effort that competes with other pressing necessities. Unfor-

tunately, many software managers and practitioners are not convinced that collect-

ing data is beneficial, so they ignore the subject altogether. This situation generates

a data vacuum that prevents finding a solid answer to questions like what's the re-

turn on investment for process improvement?. This data vacuum poses one of the

biggest problems the software engineering community must address [Hersh93].

80

The lack of sufficient data to validate the documentation maturity model

prompted a change in the approach, and it was decided to consider software doc-

umentation models that involve documentation as one of their factors to see what

kind of an impact software documentation maturity had on software quality and

software testing and maintenance effort according to them. The SEI used a similar

approach to gauge cost and benefits of its models.

5.3.1 Software development models and the role of documentation

There are many software development models that estimate and quantify

the software process: time of development, effort invested, productivity, etc. Unfor-

tunately most of them do not consider the quality of the documentation produced

as a distinct factor in their models, or group documentation together with many

factors as one without providing guidelines to isolate the effect of a single factor on

software productivity or software quality. Putnam's model and its technology factor

is a good example: the Putnam Estimation Model [Press92, Conte86, Boehm8l] is

a dynamic multi-variable model that assumes a specific distribution of effort over

the life of a software development project, called the Rayleigh-Norden curve. This

curve is used to derive the equation that relates the number of delivered source code

to effort and development time:

L = CkK1I3t4d13 or K = Alrkt,

81

where K is the effort expended (in person-years) over the entire life cycle for software

development and maintenance, L is the number of delivered lines of code, td is the

development time in years, and Ck is a state of technology constant and reflects

"throughput constraints that impede the progress of the programmer". Typical

values might be: Ck = 2,000 for a poor software development environment (e.g.

no methodology, poor documentation and reviews, a batch execution mode); Ck =

8,000 for a good software development environment (e.g. methodology in place,

adequate documentation/reviews, interactive execution mode); Ck = 11,000 for an

excellent environment (e.g. automated tools and techniques). The constant Ck can

be derived for local conditions using historical data collected from past development

efforts. Because of the high-order of the factors in the equation for K, relatively

small variations on some of the factors can impact greatly the predicted effort to

the project.

Even though this model includes documentation in the state of technology

constant, it does not provide enough information to determine the weight of docu-

mentation as a factor of Ck. Neither does it allow the determination of documen-

tation improvement trade-offs. So, it is not possible to determine the impact of

documentation quality improvement using Putnam's model.

The most noted software development model that does consider software

documentation as a cost driver is Barry Boehm's CoCoMo [Boehm81], albeit the

consideration is implicit rather than explicit.

82

CoCoMo (Cost Construction Model) was developed by Boehm based on a

set of observed factors which influence development time and effort. These factors

are referred to as drivers in the model.

CoCoMo model is broken down in 3 levels or sub-models:

Basic CoCoMo

Intermediate CoCoMo

Detailed CoCoMo

CoCoMo estimates development time and effort, including management time

and effort during development, documentation time and effort. It excludes user

training, installation of the finished product, conversion to new product. CoCoMo

estimates cover the period starting after approval of software requirements and

ending when the product is released.

Maintenance issues are not included in these CoCoMo estimates, but Boehm

provides a similar separate model whose structure is as follows:

(MM)AM = (1.0)(ACT)(MM)DEv

where ACT stands for annual traffic change, (MM)AM stands for annual

maintenance effort and (MM)DEV stands for development effort.

The basic CoCoMo model for software development computes development

effort and time, so it consists of 2 equations of the following form:

Kd = MM = a(KDSI)b

td = T DEV = c(MM)d

83

Kd corresponds to the development effort in man-month (MM).

td corresponds to the development time in months (T DEV).

K DS I are the thousands lines of delivered instructions.

a, b, c, d are parameters that depend on the kind of product being developed

and the development mode (or level of difficulty).

Development modes:

Organicrelatively small software development team on a well-understood

application, in a highly familiar, in-house environment, usually small pro-

grams.

Semidetachedmore complex problems, more rigorous demands on commu-

nication, time and size.

Embeddeddemanding time constraints, interactions between hardware and

software, high degree of interaction (real-time transaction system or concur-

rent processing).

Development effort and time needed are derived from estimated size in lines

of code.

The intermediate CoCoMo model adds 15 cost drivers to compute the effort

and time:

Product Factors

required software reliability (RELY)

size of the database (DATA)

84

product complexity (CPLX)

Computer Factors

execution time constraints (TIME)

main storage constraints (STOR)

machine stability (VIRT)

computer turnaround time (TURN)

Personnel Factors

programmer analyst capability (ACAP)

programmer familiarity with the application (AEXP)

programmer capability (PCAP)

machine familiarity and experience (VEXP)

programming language experience (LEXP)

Project Factors

modern programming practices (MODP)

use of software tools (TOOL)

development schedule (SCED)

Each of these 15 factors are estimated, converted into a number and used as

a multiplier to adjust the effort and time provided by the basic CoCoMo formulae.

Each factor is assigned 1 of 6 values (Very low, Low, Nominal, High, Very High

85

and Extra High) that in turn corresponds to a numeric value. Boehm also provides

sample phase distributions that can be used to estimate development effort and

time for the different activities on each phase.

The intermediate CoCoMo model for maintenance has the following struc-

ture:

(MM)AM = (1.0)(ACT)(M M)Nom(EAF)

where (MM)NOM represents the nominal development effort (i.e. without

considering the 15 cost drivers), and EAF represents the effort adjustment factor,

computed as the product of the 15 factors but using the maintenance multipli-

ers. These may be different from the multipliers used for development because the

ratings in maintenance may be different, and the factors RELY and MODP have

different effort multipliers for maintenance.

Documentation does not have a role as a distinct cost driver in CoCoMo

model, but it is included in the cost driver modern programming practices (MODP).

The specific practices defined as modern are:

Top-down requirements analysis and design. Developing the software require-

ments and design as a sequence of hierarchical elaborations of the users' infor-

mation processing needs and objectives. This practice is extended to include

the appropriate use of incremental development, prototyping, and anticipa-

tory documentation.

Structured design notation. Use of modular, hierarchical design notation

(PDL, structure charts, HIPO) consistent with structured code constructs.

86

Top-down incremental development. Performing detailed design, code, and

integration as a sequence of hierarchical elaborations of the software structure.

Design and code walkthroughs or inspections. Performing preplanned peer

reviews of the detailed design and the code of each software unit.

Structured code. Use of modular, hierarchical control structures based on a

small number of elementary control structures, each having only one flow of

control in and out.

Program librarian. A project participant who operates an organized reposi-

tory and control system for software components.

The ratings are defined in terms of the range of modern programming prac-

tices used in software development:

Very Low: no use of modern programming practices.

Low: beginning, experimental use of some modern programming practices.

Nominal: reasonably experienced in use of some modern programming prac-

tices.

High: reasonably experienced in use of most modern programming practices.

Very High: routine use of all modern programming practices.

Table 5.1 shows MODP effort multipliers broken down by development phase.

These effort multipliers reflect the impact on effort (and cost) on the different phases

87

MODP

Rating
Requirements and

Product Design
Detailed
Design

Code and
Unit Test

Integration
and Test Overall

Very low 1.05 1.10 1.25 1.50 1.24

Low 1.00 1.05 1.10 1.20 1.10

Nominal 1.00 1.00 1.00 1.00 1.00

High 1.00 0.95 0.90 0.83 0.91

Very high 1.00 0.90 0.80 0.65 0.82

Table 5.1: MODP effort multipliers by development phase

MODP
Rating Maintenance

Very low 1.40

Low 1.18

Nominal 1.00

High 0.85

Very high 0.72

Table 5.2: MODP effort multipliers for maintenance, product size 100k

when the particular cost driver shows a poor or good rating. A multiplier of 1.50

means a 50% increase on effort. A multiplier of 0.90 means a 10% decrease.

Table 5.2 shows the MODP effort multipliers for the maintenance phase,

assuming a product size of 100,000 deliverable source instructions (other multipliers

are provided for other product sizes too).

Table 5.1 shows that the biggest impact of MODP occurs on the integration

testing phase, with respect to the nominal rating, where a very low rating translates

88

into a 50% increase in testing effort and a very high rating represents a 35% decrease

in testing effort.

How is this related to the documentation maturity model? An analysis of the

practices that compose the cost driver MODP shows that documentation impacts

and influences many of them, most notably the quality and effectiveness of design

walkthroughs. Tables 5.3 and 5.4 show the percent of reduction in testing and

maintenance effort due to improvements in documentation maturity. The entries in

the tables represent cumulative percentages of effort reduction assuming the impact

of documentation in MODP ranging from 5% to 50%.

The values have been computed using the effort multipliers identified in Ta-

bles 5.1 and 5.2 and using Level 1 as the baseline. The effort multipliers are adjusted

properly with the documentation impact assumed and the percentage effort reduc-

tions from level 1 to each of the next levels are computed. For example, when

documentation impact is assumed at 25% the effort multipliers are adjusted from

(1.50, 1.20, 1.00, 0.83, and 0.65) to (1.125, 1.05, 1.00, 0.9575 and 0.9125), i.e. the

increases and decreases from the nominal rating are reduced to 25% of the initial

value. The entries in the 25% column in Table 5.3 are the percent changes due

to 25% documentation impact. Moving from a rating of 1.125 to a rating of 1.05

means a reduction of 6.7%; moving from a rating of 1.125 to a rating of 1.00 means

a reduction of 11.1%; moving from a rating of 1.125 to a rating of 0.9575 means a

reduction of 14.9%; and finally moving from a rating of 1.125 to a rating of 0.9125

means a reduction of 18.9%. The rest of the table for testing effort reduction and

the table for maintenance effort reduction are completed in the same fashion.

89

MODP Documentation Testing Effort Reduction by % of Documentation Impact on MODP
Rating Maturity Level 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Very low Level 1 - - - - - - - - -

Strong Level 1
Weak Level 2

Low Level 2 1.5 2.9 4.2 5.5 6.7 7.8 8.9 10.0 11.0 12.0
Nominal Strong Level 2 2.4 4.8 7.0 9.1 11.1 13.0 14.9 16.7 18.4 20.0
High Level 3 3.3 6.4 9.3 12.2 14.9 17.5 20.0 22.3 24.6 26.8
Very high Strong Level 3 4.1 8.1 11.9 15.5 18.9 22.2 25.3 28.3 31.2 34.0

Level 4

Table 5.3: Percentage effort reduction on testing

Each documentation maturity level has been mapped to one of the MODP

ratings, using the definitions provided in CoCoMo for cost driver MODP, and the

definitions provided in Chapter 4 for the documentation maturity levels. Given

the mismatch between the number of MODP ratings and documentation maturity

levels, some of the documentation maturity levels (Strong Level 1, Weak Level 2 and

Level 4) do not have an associated effort reduction value directly from CoCoMo's

MODP multipliers. These 3 values can be inter- or extrapolated if needed.

One of this research's main claims is that as the documentation maturity level

increases, the proportion of errors caught early in the development cycle increases

also, resulting in decreasing integration testing and maintenance effort. Tables 5.3

and 5.4 support this claim, suggesting that even a small improvement in documen-

tation (and in MODP) will result in savings in the form of effort reduction in testing

and maintenance phases.

A cost-benefit analysis of documentation maturity levels is explained in the

next section. A very conservative assumption is made for cost-benefit analysis pur-

poses: documentation determines 25% of MODP, and so it is responsible for 25%

of the effort reduction due to improvements in MODP. The assumption is conserva-

90

MODP Documentation Maintenance Effort Reduction by % of Documentation Impact on MODP
Rating Maturity Level 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Very low Level 1 - - - - - - - - - -

Strong Level 1
Weak Level 2

Low Level 2 1.1 2.1 3.1 4.1 5.0 5.9 6.8 7.6 8.4 9.2

Nominal Strong Level 2 2.0 3.8 5.7 7.4 9.1 10.7 12.3 13.8 15.3 16.7

High Level 3 2.7 5.3 7.8 10.2 12.5 14.7 16.9 19.0 21.0 22.9

Very high Strong Level 3 3.3 6.5 9.6 12.6 15.5 18.2 20.9 23.4 25.9 28.3

Level 4

Table 5.4: Percentage effort reduction on maintenance

tive because documentation is directly involved in half of the modern programming

practices that define MODP (namely the requirement of design notation, use of

reviews and existence of central repository for software components) so 25% is most

likely an under-estimation.

5.4 Bottom line: cost-benefit analysis of maturity levels

In order to convince decision-makers of the benefits of adopting new tech-

nologies they have to be presented with hard and convincing evidence that the ben-

efits of the change will outweigh the costs. This is also known as bottom-line cost

justification or return on investment. For instance, Pressman [Press93] shows that

3 to 5 percent improvement in software development productivity can be achieved

simply by installing state-of-the-art document production capability.

Cost-benefit analysis is a useful tool as a method of decision making that

involves looking for solutions that maximize the difference in the expected values

of benefits and costs. Yeh [Yeh93] describes a procedure for cost-benefit analysis as

follows:

91

Identify all the important sources of costs and benefits.

Estimate the values of the costs and benefits.

When there are uncertainties, estimate the probabilities of obtaining the costs

and benefits.

Compute the expected values of the costs and benefits.

An unfortunate drawback in cost-benefit analysis is that some of the costs

and benefits are intangible (e.g. improved staff morale), and are all but impossible

to quantify. So the analysis must concentrate in showing that the tangible benefits

have greater value than the tangible costs, and in producing convincing evidence

that the intangible benefits and costs do not reverse that situation.

Another problem stems from the fact that people resist change. Yeh [Yeh93]

presents some reasons for that resistance: they are busy, probably as a result of poor

process; the priority is getting the product out; there is little interest in changing

the process; they fear that quality metrics will be used to punish them, and they

may be concerned with job security; they may not be used to a disciplined ap-

proach to producing software; they may have the misconception that standards and

procedures will stifle creativity.

Pressman [Press93] lists the following common managers' objections about

new technologies:

We don't have the money this year; we are going to have to put this off. Need

justification that any expenditure will pay itself back in a relatively short time

period.

92

We can't free up the people to do this; they are all tied up with on-going critical

projects.

But we already have standards for software works. Standards by themselves

offer little benefit. Practice is improved by implementing new technology in

the context of a disciplined approach.

This will put us on a learning curve that will really slow things down; we can't

afford the time lag for ongoing projects.

Our people are happy with things as they are. It is likely that they'll resist this

stuff.

Show me scientific data that proves that software engineering and CASE will

give us the benefits you suggest. Sadly, most data published on these subjects

are anecdotal; few scientific experiments have been conducted.

5.4.1 Associated costs

The costs associated with the levels as specified in the Documentation Pro-

cess Maturity model are of two kinds: investment costs and continuing costs. In-

vestment costs are those associated with attaining the level. Continuing costs are

those associated with maintaining it.

At level 1 there is virtually no cost needed to attain it. It is the baseline

scenario.

At level 2, the investment costs are establishing check-off lists of required doc-

uments, documentation standards, and to adopt simple documentation tools. The

93

continuing costs are the on-going utilization of documentation standards and tools.

An intangible cost is associated with recognizing the importance of documentation

as a legitimate software aspect, particularly at the managerial level.

At level 3, the investment costs are establishing documentation quality mon-

itoring and usefulness assessment procedures and control units, and to adopt more

advanced documentation tools. The continuing costs are the permanent activities

required for documentation quality and usefulness assessments, and the utilization

of advanced documentation tools.

At level 4, the investment costs are establishing documentation error track-

ing and process measurement methods, as well as an effective process improvement

feedback loop, and to integrate CASE tools and documentation tools. The contin-

uing costs are associated to using those methods effectively and routinely.

An exact determination of costs of achieving and maintaining each docu-

mentation maturity level is impossible. But a reasonable estimation can be made

based on Boehm's estimate [Boehm8l] that the activities comprising the tasks of

Configuration Management and Quality Assurance (CM/QA) represent about 5%

of the total effort spent in software development and maintenance. Since quality

of the documentation process and products are only one of the many factors that

determine the tasks of CM/QA, it seems reasonable to estimate the cost of achiev-

ing each documentation process maturity level as a percentage of CM/QA effort,

and then as a percentage of the total effort. Therefore, if the cost of achieving

each documentation maturity level is assumed as 10% of the cost of CM/QA, that

represents 0.5% of total costs; if the assumed cost is 25% of CM/QA, then the

94

cost of achieving each documentation maturity level is 1.25% of total costs. If the

assumed cost is 50% of CM/QA, then achieving each documentation maturity level

will represent 2.5% of total costs.

5.4.2 Return on investment

In order to establish the return on investment ratio for each documentation

maturity level, all the benefits must be identified.

In this research, and given the particular approach used in its validation, the

only tangible benefit considered will be the reduced software testing and mainte-

nance effort as a result of higher quality software and higher early error detection

capabilities as maturity levels increase, assuming a very conservative impact of

documentation on MODP of 25%, as explained before. In that way, testing and

maintenance reduction effort percentages due to documentation are summarized

in Table 5.5 which shows the estimated cumulative proportion of software testing

and maintenance effort reduction as documentation maturity levels increase. The

entries in the table are those corresponding to a 25% documentation impact rate

taken from Tables 5.3 and 5.4.

The values on Table 5.5 are absolutely consistent with this research's initial

belief that the documentation process improvement biggest payoff is obtained when

a software organization moves from a state of total disarray (level 1) to a more

structured one (level 2). The payoffs of moving from level 3 to level 4 (and for

intermediate cases between levels 1 and 2) can't be determined given the lack of

relevant data. The values could be inter- or extrapolated, according to each case.

95

Documentation
Maturity Level

Integration Testing
Effort Reduction

Maintenance
Effort Reduction

Level 1

Strong Level 1

Weak Level 2

Level 2 6.7% 5%

Strong Level 2 11.1% 9.1%

Level 3 14.9% 12.5%

Strong Level 3 18.9% 15.5%

Level 4

Table 5.5: Cumulative effort reduction assuming documentation 25% of MODP

Table 5.6 shows the total cumulative effort savings associated to achieving

each documentation maturity level, assuming that documentation has a participa-

tion of 25% on modern programming practices (MODP) as explained in CoCoMo

model, and assuming the following typical software lifecycle phase distribution: de-

velopment 40% (analysis and design 40%, coding 20%, testing 40%) and mainte-

nance 60% [Press92]. The entries have been computed by weighing testing effort

reduction with a factor of 0.16 (development 40%, testing 40% of development) and

maintenance effort reduction with a factor of 0.6 (maintenance 60%).

Since the costs of achieving each documentation maturity level and main-

taining it were assumed to be between 0.5% and 2.5% of total costs, each docu-

mentation maturity level defines a range of positive returns on investment as shown

in Table 5.7. The entries for Levels 2 and 3 have been computed by dividing the

96

Documentation
Maturity Level

Estimated Total
Effort Reduction

Level 1

Strong Level 2 7.5%

Strong Level 3 12.1%

Level 4

Table 5.6: Cumulative percentage reduction on total effort

Documentation
Process

Maturity Level

Ratio of Total Effort Reduction to Cost
Cost of Documentation as % of CM/QA

Assuming 10% Assuming 25% Assuming 50%

Level 1

Strong Level 2

Strong Level 3

Level 4

15:1

12:1

9:1

6:1

5:1

4:1

3:1

2.5:1

2:1

Table 5.7: Cumulative documentation maturity return on investment

estimated total effort reduction from Table 5.6 by the estimated cost range, i.e.

dividing the total percent of effort reduction by the percent cost of documentation

assumed as 10%, 25% and 50% of CM/QA costs. The entries in Table 5.7 repre-

sent the cumulative benefit/cost ratio. The range of return on investment for Level

4 has been extrapolated considering the fact that return on investment decreases

as documentation maturity level increases. The range of payoffs defined for Level

4 is consistent with the decreasing nature of the returns and the actual figures

determined for the levels 2 and 3.

97

Intangible benefits are almost impossible to quantify. The following list shows

some of the intangible benefits associated to each documentation maturity level

above level 1.

Level 2:

Higher likelihood that all projects will be developed in a more uniform

fashion.

Easier for technical staff to move across projects.

More predictable deliverables and documentation.

A more predictable technical format that makes reviews easier.

Level 3:

Improved ability to use automated tools to help manage projects.

Better morale among technical managers resulting from improved man-

agement oversight and control.

Ease in enforcing quality assurance activities.

Improved documentation quality.

Improved consistency in documentation, notation, and modeling.

Better enforcement of standards for documentation, notation, and mod-

eling.

98

Level 4:

Improved ability to predict and measure progress.

Creation of a central repository for information produced during the

process.

Easier to assess the impact of change.

Better management control.

5.5 Summary

The documentation process maturity model has been shown to be an ef-

fective tool to assess the status of the software documentation practices with the

purpose of improving the quality of the final software product. Reduced software

testing and maintenance effort, as a result of a higher quality software product, has

been shown to be correlated with moving up in the scale of documentation process

maturity levels. The initial goal of this research was to show that organizations

at a higher documentation process maturity also produce higher quality software

than those that don't: the CoCoMo model-based software effort reduction analysis

results confirm it with a positive return on investment for achieving higher docu-

mentation process maturity. The empirical evidence described in next chapter offers

further support for the claim.

Chapter 6

Assessment Results

6.1 Overview

99

This chapter presents the documentation process assessment results for sev-

eral companies obtained during this research. It describes the validation approach

initially devised, presents the summarized assessment results and analyzes the re-

lation between early error detection and documentation maturity level. 14 assess-

ments were conducted during the period March November 1993 for 5 different

software organizations. In all 14 software projects assessed the answers were pro-

vided by the people directly involved in their development and maintenance. A

Documentation Assessment Report was generated for each assessment accord-

ing to the guidelines detailed in Chapter 4. This chapter presents a summary with

the results from those reports and the breakdown of projects by documentation

process maturity levels. For the projects for which defect data was available, the

data supports the hypothesis that the fraction of the total errors discovered during

testing that are requirements and design errors is less than for projects developed

with a lower documentation process maturity level.

100

6.2 Initial validation plan

The main goal of the research is to show that an organization at a higher

level of documentation process will produce a higher quality product. Since most

errors are introduced before coding and high quality documentation should aid in

the discovery of these errors, a higher level documentation process should lead to

the discovery of more of these errors than a lower level documentation process. To

validate the model the initial approach was to show that for a software project

developed with a higher documentation process maturity level, the fraction of the

total errors discovered during testing that are requirements and design errors will

be less than for projects developed with a lower documentation process maturity

level. The fraction of total errors that are requirements and design errors was chosen

rather than the total number of errors as our measure because the total number of

errors depends on the type of application, the size of the application, programmer

training and experience, and a variety of other factors. We believe the fraction

measure best reflects the influence of the quality of documentation on errors.

To gather the empirical data the plan was to select project teams and specific

projects in an organization. Each team would complete the assessment question-

naire for a particular project and provide the error data for that project. The

error data would include: number of errors introduced in each phase (requirements,

design, coding, testing, maintenance), severity of each error (serious, moderate, mi-

nor), number of errors detected during each phase, and number of errors corrected

during each phase. From the assessment questionnaire the team's documentation

101

maturity level was to be determined. The error data would be then correlated

with maturity levels and errors to verify the hypothesis. It was expected that the

data would show that the higher the project team documentation process level, the

smaller the fraction of requirements and design to total errors. This would enable

us to estimate the cost/benefits of achieving higher documentation maturity levels.

Clearly it is far less expensive to discover and to correct errors in the phase in which

they are introduced than in a later phase. We did not expect to be able to make any

statements about the total number of errors being less for teams at higher maturity

levels since the number of errors depends on the size of the project, application area,

and so forth. However, we expected to see a different error distribution by phases

for teams with higher maturity levels than for teams with lower maturity levels.

Next section presents the actual results and defect data gathered. Although

the data gathered was not sufficient to allow us to perform a meaningful statistical

analysis as described in this plan, it did support the claims from previous Chapter

5 which describes the change in validation approach.

6.3 Summary of assessment results

Fourteen assessments were conducted during the period March Novem-

ber 1993 on 5 different software organizations. These organizations were a large

hardware manufacturer's software lab, two medium-size health systems company's

software divisions, a small software house and a small federal agency's software

department. Table 6.1 summarizes the results obtained from the 14 assessments.

102

Company A Project 1 Strong Level 1

Company B Project 2 Level 1

Company C Project 3 Strong Level 1

Company D Project 4

Project 5

Project 6

Project 7

Project 8

Project 9

Project 10

Level 1

Level 1

Weak Level 2

Weak Level 2

Level 2

Level 2

Strong Level 2

Company E Project 11

Project 12

Project 13

Project 14

Strong Level 1

Weak Level 2

Level 2

Strong Level 2

Table 6.1: Assessment results by company/project

103

Software Documentation Maturity Level Number of Projects

Level 1 3

Strong Level 1 3

Weak Level 2 3

Level 2 3

Strong Level 2 2

Level 3 0

Level 4 0

Table 6.2: Documentation assessment results

6.4 Project breakdown by documentation maturity level

Table 6.2 shows a breakdown of projects by software documentation process

maturity level. The distribution of the projects by documentation maturity level

appears quite predictable: no projects at the levels 3 and 4, and equal distribution

in the first two levels.

6.5 Defect data analysis

Out of the 14 projects under assessment, only four of them had defect data

available that is shown in Tables 6.3 and 6.4. The data corresponds to Projects

1, 11, 12 and 13 whose documentation maturity levels were determined as Strong

Level 1, Strong Level 1, Weak Level 2 and Level 2 respectively. For Project 1 in

Table 6.3, cumulative introduction and detection error percentages by phase are

shown. Projects 11, 12 and 13 (all from same company) are shown in Table 6.4.

104

The error data for Project 1 in Table 6.3 shows a need for improved early

error detection, especially during design: while 83% of the errors are introduced

before testing, 64% of them are found during testing or after. 6% of all errors are

introduced in design, but only 1% of them are found before implementation. This

behavior is consistent with the thesis that improving the documentation process

should significantly increase the proportion of errors that are caught in the same

phase in which they are introduced.

Table 6.3 shows the cumulative percentages of errors introduced and found

by the end of every phase. The data is presented for critical and serious errors and

for all errors. The data shows that by the end of design only low severity errors

have been found.

The error data for Projects 11,12 and 13 in Table 6.4 shows a clear match

between documentation maturity level and percentage of errors introduced early

during requirements and design. The percentage of serious errors is similarly high

for all 3 Projects, but the ones at a higher documentation maturity level (Projects 12

and 13) show a smaller proportion of errors introduced early on in the development

compared to Project 11. Projects 12 and 13 are assessed at documentation maturity

level 2 and the percentage of errors introduced early is :----- 25%. Project 11 is assessed

at level 1 and its percentage of errors introduced early is P.--:. 40%.

Lanphar [Lanph90] describes a project that was under way over the last

decade at the Hughes Aircraft Company, Ground Systems Group, Software Engi-

neering Division to improve the productivity and quality aspects of their software

development process. Known as Quality Process Management (QPM), it was cre-

105

At the
end of

Critical and Serious errors All errors

% introduced % found % introduced % found

Design 5 0 6 1

Implementation 83 39 83 36

Test 99 94 98 91

Post-release 100 100 100 100

Table 6.3: Project 1: cumulative error percentages

Project Maturity Level % Serious Errors % Req&Des Errors

11 Strong Level 1 78 41

12 Weak Level 2 77 25

13 Level 2 85 27

Table 6.4: Projects 11, 12, 13: summary of errors introduced

106

At the
end of

All errors

% introduced % found

Design 37 30

Implementation 98 89

Test 100 95

Post-release 100 100

Table 6.5: QPM Project: cumulative error percentages

ated to provide management with a better understanding of the process and the

needed changes by incorporating statistical process control to the software develop-

ment activities to obtain a more predictable process change management system.

While this organization has not been assessed regarding documentation pro-

cess maturity, it can be used as an example in this validation effort because its

practices are consistent with a documentation process maturity level of 2 or higher.

This is so because QPM incorporates check and balances, formal reviews, standards

to create the project reports, documentation of the process, maintenance of a his-

torical repository, among others features. A full description of QPM can be found

in [Lanph90]

Lanphar also reports on historical defect detection capabilities since the

adoption of QPM. The data has been consolidated and is summarized in Table 6.5.

The error data for QPM Project in Table 6.5 shows that while 98% of the

errors are introduced before testing, only 11% of them are found during testing or

after. QPM Project documentation maturity level is at least level 2.

107

6.6 Summary

The assessments performed and the actual, although limited, defect data

gathered supports this research's documentation process maturity model as an ef-

fective tool to assess the status of the software documentation practices with the

purpose of improving the quality of the final software product. The defect data

gathered suggests that software development projects that show higher documen-

tation maturity level also show higher early error detection capabilities.

108

Chapter 7

Conclusions

7.1 Contributions of this research

This research addressed an important, but neglected problem: the low quality

of the documentation produced during software development. Even though

everyone in the software community agrees that documentation is an impor-

tant factor in the quality of their development and maintenance efforts, most

organizations don't invest enough in resources (time, personnel, tools) to im-

prove the quality of their documentation process. This thesis work is a vivid

quantitative demonstration of the importance of documentation.

The approach used in this thesis is a novel one: development of a process

maturity model. The principle behind this approach is to improve the software

product quality by improving the documentation process quality. The model

and the assessment procedure are the tools that permit the assessment of the

software documentation practices and the identification of an action plan for

improvement.

109

This research and its products (the documentation maturity model and its

assessment procedure) is not a silver bullet, i.e. it does not solve all the

problems regarding development and maintenance of software. It is just a

step in the right direction, because it focuses on an important problem and

provides some guidance for its solution.

This research has demonstrated the successful extension of the concepts of

SEI's process maturity models to the documentation process, a specific soft-

ware development process.

The documentation maturity model emerges as a valid and useful tool to

manage complexity of the process. It allows the determination of the state

of the software documentation practices and the generation of action plans to

improve them.

This research quantifies the return on investment in terms of reduced software

testing and maintenance effort as a result of higher quality software products

associated with higher maturity documentation processes. This research's

estimations are a return of investment of 3:1 to 15:1 for achieving a Strong

Level 2, 2.5 to 12:1 for attaining a Strong Level 3. The extrapolation for Level

4 yields a 2 to 9:1 return on investment. The values are cumulative, using

Level 1 as the baseline. Each level defines a range of return on investment

rather than a single value because different percentages of total effort are

assumed as the cost associated with improving documentation. The biggest

return on investment occurs when a software development organization moves

110

from Level 1 to a Strong Level 2, i.e. when the organization replaces its

obscure and chaotic documentation process for a structured one. Attaining

the other higher levels is also very cost-effective, but not as much.

7.2 Open issues and areas of further research

Extend the validation study to do more assessments and collect hard defect

data to produce stronger support for the results obtained in this thesis.

Study the impact of documentation maturity on software productivity. While

it has been shown that the quality of the software process and products im-

proves as the documentation process matures, the issue of software produc-

tivity during development is less understood.

Development of a Documentation Maturity CASE tool, to be used as a facil-

itator to self-assessments and automatic generation of actions plans. While

decision-making on software processes still remains a human activity, such a

tool could be very useful for software managers dealing with software docu-

mentation process improvement issues.

Extend process maturity model ideas to other software development processes,

e.g. testing, design, maintenance.

111

Bibliography

[A1b76] Alberts, David S. The economics of software quality assurance. Conference
Proceedings, NCC, New York, 1976.

[Basi84] Basili, Victor R. and Perricone, Barry T. Software errors and complexity:
An empirical investigation. Communications of the ACM, Vol. 27, No. 1,
1984.

[Basi91] Basili, Victor R. and Musa, John D. The future engineering of software: a
management perspective. IEEE Computer, September, 1991.

[Baum91] Baumert, John. New SEI maturity model targets key practices. In the
news, IEEE Software, November 1991.

[Boehm75] Boehm, Barry W. The high cost of software. From Horowitz, Practical
Strategies for Developing Large Software Systems, Addison-Wesley, Read-

ing, Mass, 1975.

[Boehm8l] Boehm, Barry W. Software engineering economics, Prentice-Hall, 1981.

[Bo1191] Bollinger, Terry B. and McGowan, Clement. A critical look at software
capability evaluations. IEEE Software, July 1991.

[Buck89] Buckley, J. Some standards for software maintenance. Standards, IEEE
Computer, November 1989.

[Card87] Card, David N., Mc Garry, Frank E. and Page, Gerald T. Evaluating soft-
ware engineering technologies. IEEE Transactions on software engineering,
Vol. SE-13, No. 7, 1987.

[Cousin93] Cousin, Larry. Improving software quality through practical CMM level
progression. Proceedings Pacific Northwest Software Quality Conference,
Portland, Oregon, October 1993.

[Chapin87] Chapin, Ned. The job of software maintenance. Proceedings Conference
on Software Maintenance, IEEE, 1987.

[Chapin88] Chapin, Ned. Software maintenance life cycle. Proceedings Conference
on Software Maintenance, IEEE, 1988.

[Conte86] Conte, S.D., Dunsmore, H.E., Shen, V.Y. Software Engineering metrics
and models. Benjamin/Cummings, 1986.

112

[DeMarc82] De Marco, Tom. Controlling software projects: management, measure-
ment and estimation. Yourdon Press, 1982.

[Dion93] Dion, Raymond. Process Improvement and the Corporate Balance Sheet.
IEEE Software, July 1993.

[Ejiogu93] Ejiogu, Lem 0. Five principles for the formal validation of models of
software metrics. ACM SIGPLAN Notices, Vol. 28, No. 8, 1993.

[Endres75] Endres, Albert. An analysis of errors and their causes in system pro-
grams. IEEE Transactions on Software Engineering, Vol. SE-1, No. 2, 1975.

[Fagan76] Fagan, M.E. Design and code inspections to reduce errors in program
development. IBM Systems Journal, Vol. 15, No. 3, 1976.

[Fje179] Fjelstad, R.K and Ham len, W.T. Application program maintenance study
report to our respondents. Proceedings GUIDE 48, Philadelphia, PA, 1979.

[Foster93] Foster, Lynne. Using the Motorola Quality System Review (QSR) to
drive software improvement. Proceedings Pacific Northwest Software Qual-
ity Conference, Portland, Oregon, October 1993.

[Gilch92] Gilchrist, J.M. Project evaluation using the SEI method. Software Quality

Journal 1, 37-44, 1992.

[Guim83] Guimaraes, Tor. Managing application program maintenance expendi-
tures. Communications of the ACM, Vol. 26, No. 10, 1983.

[Grady87] Grady, Robert B. and Caswell, Deborah L. Software metrics: establish-
ing a company-wide program. Prentice-Hall, 1987.

[Hager89] Hager, James A. Software cost reduction methods in practice. IEEE
Transactions on software engineering, Vol. SE-15, No. 12, 1989.

[Hager9l] Hager, James A. Software cost reduction methods in practice: a post
mortem analysis. Journal of systems and software, Vol. 14, No. 2, 1991.

[Henry92] Henry, Joel and Henry, Sallie. An integrated approach to software process
assessment. Proceedings of the Pacific Northwest Software Quality Confer-
ence, Portland, Oregon, October 1992.

[Hersh93] Hersh, Art. Where's the return on process improvement? IEEE Software,
July, 1993.

[How78] Howden, William E. Empirical studies of software validation. Tutorial:
Software Testing & validation Techniques, IEEE Computer Society, 1978.

[Humph87] Humphrey, Watt S. and Kitson, David. Preliminary report on conduct-
ing SEI-assisted assessments of software engineering capability. CMU/SEI-
87-TR-16, ESD-TR-87-117, July 1987.

113

[Humph87a] Humphrey, Watt S. and Sweet, W. L. A method for assessing the
software engineering capability of contractors. CMU/SEI-87-TR-23, ESD-
TR-87-186, September 1987.

[Humph88] Humphrey, Watt S. Characterizing the software process: a maturity
framework. IEEE Software, March 1988.

[Humph89] Humphrey, Watt S. Managing the software process. Addison-Wesley,
Reading, Mass, 1989.

[Humph89a] Humphrey, Watt S., Kitson, David H., Kasse, Tim C. The state of
software engineering practice: a preliminary report. CMU/SEI-89-TR-1,
ESD-TR-89-01, February 1989.

[Humph9l] Humphrey, Watt S., Snyder, Terry R. and Willis, Ronald R. Software
process improvement at Hughes Aircraft. IEEE Software, July 1991.

[Humph9la] Humphrey, Watt S. and Curtis, Bill. Comments on "A critical look".
IEEE Software, July 1991.

[Jovan93] Jovanovic, Vladan and Shoemaker, Dan. ISO 9000-3 self-auditing using
the SDI method. Proceedings Pacific Northwest Software Quality Confer-
ence, Portland, Oregon, October 1993.

[Ke1189] Kellner, Marc I. Non-traditional perspectives on software maintenance.
Panel, Proceedings Conference on Software Maintenance, IEEE, 1989.

[King93] King, Karen S. Implementing software process improvement. Proceedings

Pacific Northwest Software Quality Conference, Portland, Oregon, October
1993

[Lanph90] Lanphar, Robert. Quantitative Process Management in Software En-
gineering, a reconciliation between process and product views. Journal of
Systems and Software, December 1990.

[Lee87] Lee, Joan. To See Ourselves as Other See Us: Evaluating Software Docu-
mentation. ACM SIGDOC * Asterisk, Vol. 13, No. 1, 1987.

[Lewis9l] Lewis, Theodore G. CASE: Computer-Aided Software Engineering. Van
Nostrand Reinhold, 1991.

[Lien81] Lientz, Bennet P. and Swanson, E. Burton. Problems in application soft-
ware maintenance. Communications of the ACM, Vol. 24, No. 11, 1981.

[Lipke92] Lipke, Walter H. and Butler, Kelley L. Software process improvement: a

success story. Field Reports, Cross Talk, November 1992.

[Oman91] Oman, P., Hagemeister, J., Ash, D. A Definition and Taxonomy for Soft-
ware Maintainability. Technical Report 91-08 (revised version), Computer
Science Department, U. of Idaho, January 1992.

114

[Osborne87] Osborne, Wilma M. Building and Sustaining Software Maintainability.
Proceedings Conference on Software Maintenance, IEEE, 1987.

[Over93] Over, James W. Motivation for process-driven development. Software En-
gineering Technology, Cross Talk, January 1993.

[Paulk9l] Pau lk, M. C., Curtis, B., Chrissis, M. B., et al. Capability Maturity
model for software. CMU/SEI-91-TR-24, August 1991.

[Paulk93] Pau lk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. Capability
Maturity Model, Version 1.1. IEEE Software, July 1993.

[Paulk93a] Pau lk, M. C. et al. Capability Maturity model for software, version 1.1.
CMU/SEI-93-TR-24, 1993.

[Paulk93b] Pau lk, M. C. et al. Key Practices of the Capability Maturity model for
software, version 1.1. CMU/SEI-93-TR-25, 1993.

[Post84] Poston, Robert M. When does more documentation mean less work?. Soft-

ware Standards, IEEE Software, October 1984.

[Post85] Poston, Robert M. Selecting software documentation standards. Software
Standards, IEEE Software, May 1985.

[Press92] Pressman, Roger S. Software engineering: a practicioner's approach.
Third Edition. McGraw-Hill, 1992.

[Press93] Pressman, Roger S. A manager's guide to software engineering. McGraw-

Hill, 1993.

[Ramam88] Ramamoorthy, C.V. Our job is to reduce the errors. From Myers, Ware.

Can software for the strategic defense initiative ever be error free? IEEE
Computer, Vol. 21, No. 11, 1988.

[Romb87] Rombach, H. Dieter and Basili, Victor R. Quantitative assessment of
maintenance: an industrial case study. Proceedings Conference on Software
Maintenance, IEEE, 1987.

[Scheff9l] Scheff, Benson H. and Georgon, Thomas. Using documentation
blueprints to produce mandated DoD data items. Journal of Systems and
Software, Vol. 14, No. 2, 1991.

[Seddio92] Seddio, Carl. Applying review and product metrics to the software en-
gineering process: a case study. Software Quality Journal 1, pp. 133-145,

1992.

[Stev88] Stevens, K. Todd, Arthur, James D. and Nance, Richard E. A Taxon-
omy for the Evaluation of Computer Documentation. SRC-88-008, Virginia
Polytechnic Institute and State University, June 1988.

115

[Strig93] Strigel, Wolfgang B. Industry-wide software process improvements. Pro-
ceedings Pacific Northwest Software Quality Conference, Portland, Oregon,
October 1993.

[STSC92] Crosby, D., Petersen, G., Sorensen, R. Documentation Tools Report,
Software Technology Support Center (STSC), March 1992.

[Weber9l] Weber, C.V., Pau lk, M.C., Wise, C.J., Withey, J.V. Key practices of the
Capability Maturity model. CMU/SEI-91-TR-25, August 1991.

[Yeh93] Yeh, Hsiang-Tao. Software Process Quality. McGraw-Hill, 1993.

Appendices

116

Appendix A

Assessment Questionnaire

Instructions to Administer Questionnaire

This questionnaire should take about 30 minutes to complete.

Only identification needed is the software project.

The questions must be answered regarding the project only, and not the or-
ganization as a whole.

The questions refer to software documentation produced during development
intended to be used by software developers and maintainers, not by end users.

When referring to users, it means users of the documentation (software devel-
opers and maintainers), not end users.

Simple documentation tools refer to text processors and graphic tools.

Advanced documentation tools refer to integrated documentation/CASE tools
or document management systems.

117

Software System Documentation Process Maturity

Sample Questionnaire Form

Project Identification:

Please read carefully the following term definitions

Software Documentation: Includes all documents generated as part of software

development, i.e. software requirements specifications, design documents,
code, test plans and history (test cases). Software documents refer to either
hard copy or electronic form. It excludes end-user documentation, i.e. user
manuals and operations manuals; and it excludes managerial documentation,
i.e. project plans, schedule and staff plans, etc.

Software CASE tools: Software designed to assist software engineers and pro-

grammers cope with the complexity of the process and the artifacts of Software

Engineering.

Documentation tools: Software designed to aid software engineers to cope
with the complexity of the process and artifacts of documentation.

Types of documentation tools:

Simple:

1. Text processors: word processors, desktop publishers, editors, spelling

checkers, electronic mail.

2. Graphics: flowcharting, technical drawing.

Advanced:

1. Document management systems: storage, retrieval, browsing, distri-
bution, sharing, consistency checking.

2. Integrated documentation/CASE tools.

Quality of documentation: Quality includes the following characteristics: ad-
equacy, completeness, usability, consistency, currency, readability, ease of use,

ease of modification, tracebility,

Usefulness of documentation: Extent to which the documentation products
are used by software developers and maintainers, the documentation users.

118

For each question, circle answer that best fits project

Each question is to be answered with either

a yes/no answer, or

an integer in range of 1-5 with the following meanings:

1: never

2: seldom

3: sometimes

4: usually

5: always

1. Are software documents other than code created during development?

1 2 3 4 5

2. Are software requirements specifications (including prototyping documents)
generated?

1 2 3 4 5

3. Are design documents (including prototyping documents) generated?

1 2 3 4 5

4. Are test plan documents generated?

1 2 3 4 5

5. Are test cases used in testing recorded in a document?

1 2 3 4 5

6. Are all software documents generated in the development phase used? (SRS
used in design, design document used in coding, etc)

1 2 3 4 5

7. Are software documents other than code used during development?

Yes No

119

8. Are software documents other than code used during maintenance?

Yes No

9. When software documents are not used, is it because they are unreliable,
incomplete, or out of date?

Yes No

10. When software documents are not used, is it because they are not easily
accessible?

Yes No

11. Are there check-off lists that indicate which software documents must be cre-
ated?

1 2 3 4 5

12. Are there standards indicating what must be included in each software docu-
ment?

1 2 3 4 5

13. Is there any procedure or form used to specify how and when to write each
software document?

1 2 3 4 5

14. Is there a formal procedure used for checking that document contents satisfy
standards?

1 2 3 4 5

15. Are simple documentation tools (text processors, graphics) used to create and
maintain software documentation?

1 2 3 4 5

16. Are advanced documentation tools (integrated, documentation management)
used during development and maintenance?

1 2 3 4 5

120

17. Are common sets of documentation tools used in the different development
environments throughout the organization?

1 2 3 4 5

18. Are advanced documentation tools integrated with software CASE tools?

Yes No

19. Is adequate time allocated to develop software documentation during software

development?

1 2 3 4 5

20. Are software documents checked to see that they have been done?

1 2 3 4 5

21. For each software project, is there a person responsible for collecting the
documentation?

1 2 3 4 5

22. For each software project, is there a person responsible for maintaining the
documentation?

1 2 3 4 5

23. Is there a mechanism for checking that a software document has been com-
pleted satisfactorily?

Yes No

24. If so, how frequently is it used?

1 2 3 4 5

25. After a change has been made to the code, is there a mechanism for checking
that all related documentation is updated?

Yes No

26. If so, how frequently is it used?

1 2 3 4 5

121

27. After a change has been made to the design, is there a mechanism for checking
that all related documentation is updated?

Yes No

28. If so, how frequently is it used?

1 2 3 4 5

29. After a change has been made to the requirements, is there a mechanism for
checking that all related documentation is updated?

Yes No

30. If so, how frequently is it used?

1 2 3 4 5

31. Is affected documentation updated after each maintenance change?

1 2 3 4 5

32. Is there a mechanism to monitor the quality of the documentation?

Yes No

33. If so, how frequently is it used?

1 2 3 4 5

34. Is there an independent group whose function is to assess the quality of the
documentation generated in a project?

Yes No

35. Is there a mechanism to assess the usefulness of the documentation generated
in a project?

Yes No

36. Is there a mechanism for users of the documentation (software developers and
maintainers) to provide feedback to improve documentation usefulness?

Yes No

122

37. If so, how frequently is it used?

1 2 3 4 5

38. Are measures of usefulness of documentation collected?

1 2 3 4 5

39. Are documentation errors and trouble reports tracked to solution?

1 2 3 4 5

40. Are documentation process data and error data for software projects recorded

in a database?

1 2 3 4 5

41. Are statistics gathered on documentation errors?

1 2 3 4 5

42. Is documentation error data analyzed to determine distribution and charac-
teristics of errors?

Yes No

43. If so, how frequently is this done?

1 2 3 4 5

44. Is there a mechanism to analyze documentation error root causes?

Yes No

45. If so, how frequently is it used?

1 2 3 4 5

46. Is there a documentation usage profile generated for software development?

Yes No

47. If so, how frequently is this done?

1 2 3 4 5

123

48. Is there a documentation usage profile generated for software maintenance?

Yes No

49. If so, how frequently is this done?

1 2 3 4 5

50. Is there a mechanism to feedback improvements to documentation practices
or standards?

Yes No

51. If so, how frequently is it used?

1 2 3 4 5

52. Is formal training available for the use of documentation standards?

1 2 3 4 5

53. Is formal training available for the use of documentation tools?

1 2 3 4 5

54. Is there a mechanism to foster the incorporation of advances in documentation
technology across the organization?

Yes No

55. Does management have a policy (not necessarily written) supporting the im-
portance of software documentation?

Yes No

56. Does management view software documentation as of major importance and
have written policies to this effect?

Yes No

End of questionnaire

124

Appendix B

Assessment Questionnaire: Questions by Subject Area

The questions that are to be answered in the yes/no mode are highlighted.

Lifecycle documentation

1. Are software documents other than code created during development?

2. Are software requirements specifications (including prototyping docu-

ments) generated?

3. Are design documents (including prototyping documents) generated?

4. Are test plan documents generated?

5. Are test cases used in testing recorded in a document?

6. Are all software documents generated in the development phase used?

(SRS in design, design document in coding, SRS and design in mainte-

nance, etc)

7. Are software documents other than code used during develop-

ment?

8. Are software documents other than code used during mainte-

nance?

9. When software documents are not used, is it because they are

unreliable, incomplete, or out of date?

125

10. When software documents are not used, is it because they are

not easily accessible?

Documentation standards

1. Are there check-off lists that indicate which software documents must be

created?

2. Are there standards indicating what must be included in each software

document?

3. Is there any procedure or form used to specify how and when to write

each software document?

4. Is there a formal procedure used for checking that document contents

satisfy standards?

Documentation tools

1. Are simple documentation tools (text processors, graphics) used to create

and maintain software documentation?

2. Are advanced documentation tools (integrated, documentation manage-

ment) used during development or maintenance?

3. Are common sets of documentation tools used in the different develop-

ment environments throughout the organization?

4. Are advanced documentation tools integrated with software

CASE tools?

126

Documentation quality control

1. Is adequate time allocated to develop software documentation during

software development?

2. Are software documents checked to see that they have been done?

3. For each software project, is there a person responsible for collecting the

documentation?

4. For each software project, is there a person responsible for maintaining

the documentation?

5. Is there a mechanism for checking that a software document

has been completed satisfactorily?

6. If so, how frequently is it used?

7. After a change has been made to the code, is there a mechanism

for checking that all related documentation is updated?

8. If so, how frequently is it used?

9. After a change has been made to the design, is there a mecha-

nism for checking that all related documentation is updated?

10. If so, how frequently is it used?

11. After a change has been made to the requirements, is there a

mechanism for checking that all related documentation is up-

dated?

12. If so, how frequently is it used?

127

13. Is affected documentation updated after each maintenance change?

14. Is there a mechanism to monitor the quality of the documen-

tation?

15. If so, how frequently is it used?

16. Is there an independent group whose function is to assess the

quality of the documentation generated in a project?

Documentation usefulness determination and assurance.

1. Is there a mechanism to assess the usefulness of the documen-

tation generated in a project?

2. Is there a mechanism for users of the documentation (software

developers and maintainers) to provide feedback to improve

documentation usefulness?

3. If so, how frequently is it used?

4. Are measures of usefulness of documentation collected?

Documentation error analysis and improvement feedback

1. Are documentation errors and trouble reports tracked to the solution?

2. Are documentation process data and error data for software projects

recorded in a database?

3. Are statistics gathered on documentation errors?

128

4. Is documentation error data analyzed to determine distribution

and characteristics of errors?

5. If so, how frequently is this done?

6. Is there a mechanism to analyze documentation error root causes?

7. If so, how frequently is it used?

8. Is there a documentation usage profile generated for software

development?

9. If so, how frequently is this done?

10. Is there a documentation usage profile generated for software

maintenance?

11. If so, how frequently is this done?

12. Is there a mechanism to feedback improvements to documen-

tation practices or standards?

13. If so, how frequently is it used?

Documentation-related training.

1. Is formal training available for the use of documentation standards?

2. Is formal training available for the use of documentation tools?

3. Is there a mechanism to foster the incorporation of advances in

documentation technology across the organization?

129

Management attitude towards documentation.

1. Does management have a policy (not necessarily written) sup-

porting the importance of software documentation?

2. Does management view software documentation as of major

importance and have written policies to this effect?

130

Appendix C

Documentation Assessment Report: Action List

The following lists the practices and the improvement actions needed when it is

either unsatisfactory or missing.

Level 1

Creation of basic software development documents

* Partial satisfaction: All basic software documents must be created

for all phases of software development. This includes software re-

quirements specification, design document, test plans and test im-

plementations.

* No satisfaction: Incorporate software documentation as a legitimate

part of software development. Software requirements specification,

design document, test plans and test implementations must be cre-

ated besides the code.

Documentation generally recognized as important

* Partial satisfaction: Increase awareness about importance of docu-

mentation in software development and maintenance.

* No satisfaction: Recognize documentation as an important part of

software development and maintenance.

131

Level 2

Written statement about importance of documentation

* Partial satisfaction: Written policy on importance of documentation

must be available and be a part of all software development projects.

* No satisfaction: Create written policy on importance of documenta-

tion and make that policy an important part of each software devel-

opment project. This translates into allocating sufficient resources

for documentation.

Adequate time and resources for documentation

* Partial satisfaction: Increase the time allocated to create software

development documentation. Appoint a person to be responsible for

collecting and maintaining the documentation.

* No satisfaction: Allocate sufficient time and resources to create soft-

ware development documentation that meets the standard for each

phase of the development.

Adherence to documentation standards

* Partial satisfaction: Documentation standards must be followed in

the creation of all software documents.

* No satisfaction: Adopt documentation standards and a plan to sat-

isfy them in all software development projects.

132

Use of a check-off list of required documentation

* Partial satisfaction: A check-off list of required software development

documents for all software development projects.

* No satisfaction: Define a specific check-off list of required software

development documents for all software development projects.

Use of simple documentation tools

* Partial satisfaction: Simple documentation tools (text processors,

graphics) must be used by all software development projects and

maintenance activities.

* No satisfaction: Define a set of simple documentation tools (text

processors, graphics) to be used in software development and main-

tenance.

Level 3

Use of software documentation generated

* Partial Satisfaction: Software documentation generated should be

used in subsequent phases of the software process. Investigate why

documentation is not used in subsequent phases of the software pro-

cess.

* No satisfaction: Define a mechanism to ensure that all software doc-

umentation generated is used throughout the software lifecycle.

Mechanisms to update documentation

133

* Partial Satisfaction: Documentation (requirements, design, code)

must be updated after each change.

* No satisfaction: Define a mechanism to update affected documenta-

tion after each change in code, requirements or design.

Mechanisms to monitor quality of documentation

* Partial Satisfaction: All software development documents must be

checked for satisfactory completion, and their quality monitored and

assessed by an independent group.

* No satisfaction: Define a mechanism to check that software develop-

ment documents have been completed satisfactorily, and to monitor

quality of the documents.

Methods to assess usefulness of documentation

* Partial Satisfaction: Interview software developers and maintainers

to assess usefulness of all documents.

* No satisfaction: Establish a mechanism to assess usefulness of all

documentation, by getting feedback from the users of the documen-

tation, i.e. software developers and maintainers.

Use of common sets of documentation tools

* Partial Satisfaction: Use of a common set of documentation tools

by the software developers when working in a particular software

development environment.

134

* No satisfaction: Define a common set of documentation tools to be

used on each software development environment.

Use of advanced documentation tools

* Partial Satisfaction: Advanced documentation tools (integrated, doc-

umentation management) must be used by all software development

projects and maintenance activities.

* No satisfaction: Define a set of advanced documentation tools (in-

tegrated, documentation management) to be used in software devel-

opment and maintenance.

Documentation-related technology and training

* Partial Satisfaction: Every software developer and maintainer must

be trained in the use of documentation tools, satisfaction of docu-

mentation standards and advances in software documentation tech-

nology.

* No satisfaction: Establish a program to train software developers

and maintainers in the use of documentation tools and about satis-

faction of documentation standards, and to transfer documentation

technology to the software personnel.

135

Level 4

Measures of documentation process quality

* Partial Satisfaction: Collect and analyze measures of errors for all

software development projects.

* No satisfaction: Establish a measurement program to gather error

data, analyze their causes, distribution and characteristics.

Analysis of documentation usage and usefulness

* Partial Satisfaction: Analyze documentation usage and usefulness

for all software development projects.

* No satisfaction: Establish a mechanism to analyze documentation

usage in software development and maintenance, and to measure

documentation usefulness.

Process improvement feedback loop

* Partial Satisfaction: Further incorporate improvements to the doc-

umentation process, based on feedback obtained through error anal-

ysis.

* No satisfaction: Establish a mechanism to feedback improvements

to the documentation process.

Integrate CASE and documentation tools

* Partial Satisfaction: Use integrated software CASE tools and soft-

ware documentation tools in all software projects.

136

* No satisfaction: Integrate software CASE tools and software docu-

mentation tools.

