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Software systems as complex networks: Structure, function, and evolvability
of software collaboration graphs

Christopher R. Myers
Cornell Theory Center, Rhodes Hall, Cornell University, Ithaca, New York 14853, USA

~Received 27 May 2003; published 20 October 2003!

Software systems emerge from mere keystrokes to form intricate functional networks connecting many
collaborating modules, objects, classes, methods, and subroutines. Building on recent advances in the study of
complex networks, I have examined software collaboration graphs contained within several open-source soft-
ware systems, and have found them to reveal scale-free, small-world networks similar to those identified in
other technological, sociological, and biological systems. I present several measures of these network topolo-
gies, and discuss their relationship to software engineering practices. I also present a simple model of software
system evolution based on refactoring processes which captures some of the salient features of the observed
systems. Some implications of object-oriented design for questions about network robustness, evolvability,
degeneracy, and organization are discussed in the wake of these findings.

DOI: 10.1103/PhysRevE.68.046116 PACS number~s!: 89.75.Fb, 89.20.Ff, 87.80.Vt
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I. INTRODUCTION

In both the organic forms of nature and the enginee
artifacts of human society, complex systems grow and evo
to reveal intricately networked organizations. Surprising
the underlying structures of these networks—including
Internet @1#, the World Wide Web@2,3#, collaborations in
science@4,5# and cinema@6,7#, interactions of proteins in
yeast@8#, and metabolic pathways in a variety of organism
@9#—have recently been found to share many ‘‘scale-fre
and ‘‘small-world’’ qualities, which can be rather differen
from those found in simple random networks. These disc
eries have served to draw together many disparate fields
an emerging science of ‘‘complex networks,’’ which aims
unravel the principles by which networked systems for
evolve, and remain robust and adaptable in the face
changing environments@10,11#.

Software systems represent another important clas
complex networks, which to date have received relativ
little attention in this field. Software is built up out of man
interacting units and subsystems at many levels of granu
ity ~subroutines, classes, source files, libraries, etc.!, and the
interactions and collaborations of those pieces can be use
define networks or graphs that form a skeletal description
a system. Software systems are of course important in t
own right, as the centerpiece of the information-based wo
in which we now find ourselves. But they also suggest so
novel perspectives in the study of complex networks. Es
cially important is the fact that software systems are or
nized to be at once both highly functional and highly evo
able, with evolvability often implemented through collectiv
and collaborative designs that target interfacial specificity
an important controlling parameter. This substantial emp
sis on evolvability makes software systems somewhat dif
ent from other engineered systems, and closer in some w
to evolving biological systems.

Design is a central element of software construction, a
many design methodologies deal explicitly with the struct
of software networks, most often addressing the interacti
1063-651X/2003/68~4!/046116~15!/$20.00 68 0461
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of a small set of components at a time. But the combined
persistent action of implementation, refactoring, compo
tion, extension, and adaptation leads to emergent softw
organizations whose structures lie outside the realm of
plicit design. Understanding the large-scale structural or
nizations that form in software networks is increasingly im
portant not only for applications developed by distribute
loosely coupled teams, but also for emergent computati
that arise in adaptive, self-organizing systems of autonom
computing agents. More broadly, understanding the fu
tional organization of evolvable software systems may p
vide models, metaphors, and tools to help us understand
forces that serve to organize other classes of complex
works, whose informational structures may not be as rea
apparent.

The remainder of this section provides an overview
some relevant aspects of software design, and describe
more detail the nature of the collaboration networks exa
ined here, specifically class collaboration graphs and sub
tine call graphs from several existing open-source softw
systems. Section II examines the structure of those colla
ration networks, describes their connection to other rece
studied complex networks, and discusses some of the s
ware engineering implications of those observations. Rela
work by others is discussed in Sec. III. In Sec. IV, I prese
a simple model of evolving software systems based on re
toring processes which captures some of the essential
tures of the observed systems. Section V highlights a
issues suggested by the synergies among software sys
object-oriented design, complex networks, and systems b
ogy. Section VI provides a summary.

A. Collaboration in software systems:
Function and evolvability

Software engineering aims to decompose complex co
putational functionality into many separate but interlocki
pieces. Rather than reimplementing similar computations
plicitly in every new context, programmers develop abstr
tions of functions and datatypes that can be used many tim
©2003 The American Physical Society16-1
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in multiple contexts. The ability to reuse existing code c
both speed the process of adding new functionality~since
new code need not be written! and facilitate the process o
modifying existing functionality~since changes can be mad
to a single reused piece of code, rather than to multiple s
lar versions of code strewn throughout a large applicatio!.
The process of computation, therefore, involves collabo
tion: the distribution of responsibility for computation amon
multiple software elements, such as objects, classes, m
ods, subroutines, modules, and components. These col
rations allow elaborate computational tasks to be built up
a modular and hierarchical fashion, in loose analogy with
way that sophisticated electronic circuits are built up fro
reusable, low-level components.

Software collaborations imply dependency relationshi
in that some computational elements~e.g., classes and sub
routines! need others in order to carry out pieces of th
appointed task. One goal of software design and deve
ment, therefore, is to construct an optimal or near-optim
system of dependency relationships, whereby core elem
are reused in different contexts to perform recurring fun
mental tasks, with minimally constraining specializatio
added in higher functional layers in order to build upon
combine those fundamental tasks. The utility of minimal s
cialization ~typically in the types of data being passed b
tween subroutines and methods! is tied to the goal of code
reuse: software units that function only under highly spec
ized conditions are generally less able to be broadly reu
than those units that require only as much specialization a
required to implement a needed computation. Many fac
can influence the decomposition that is actually chosen
particular software project, however. For example, the p
cess of subdividing computations into minimal units a
generating complexity by combining those pieces does in
some overhead in computational performance. In scien
computing, the need for high performance has historica
outweighed other design concerns, leading to more coa
grained decompositions of data and functionality that ena
efficient numerical processing on large chunks of data un
cumbered by indirection and function calls. Ongoing
search in the field of scientific computing aims to deve
techniques for incorporating advanced software design m
odologies without incurring excessive penalties in perf
mance.

Building up software to carry out complex tasks is on
one goal, however. The resulting system must also beevolv-
able, that is, transformable into a new system to accomp
new but related tasks without excessive cost or disruptio
the system as a whole. The need to accommodate chang
major driving force in software engineering; this might i
clude changes in external user requirements, underly
hardware platforms, forms of input data, or types of alg
rithms used. In poorly structured code, modifying or add
a single feature may require updates to many files or sub
tines, which can themselves then cascade throughout the
tem. To combat this, many strategies have been develope
support the simultaneous demands of function and evolva
ity, so that code modifications remain localized. Many
these strategies hinge on instituting sufficient decoupling
04611
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tween subsystems, which enables developers to avoid
straints and commitments that make it difficult to change o
part of a system without changing many others.

Design patterns@12#, for example, are an important clas
of strategies to support software system evolvability. Th
patterns are motifs describing the relationships among
laborating classes or objects in an object-oriented~OO! soft-
ware system which are effective at encapsulating variab
and change. Different patterns identify different aspects o
system which are likely to change; those aspects might
clude how objects are created, which objects need to c
municate with one another, or what particular algorithms
used to solve a problem. The highly variable elements o
system are then encapsulated behind generic interface
dedicated objects that act as brokers to mediate comp
tional activity, thereby decoupling objects so as to avoid
cess dependencies that can inhibit evolvability. Design p
terns and related techniques are typically applied at a sm
scale, at the microstructural level describing interactio
among a few objects. An open question, therefore, is h
microstructural design methodologies conspire in the larg
form macroscopic software structures.

Evolution and evolvability are of course central conce
in the description of biological systems, different in impo
tant ways from their meaning in software engineering. Wh
software engineering involves intelligent action, biologic
evolution is blind, and does not. Nonetheless, from a syste
perspective, there may be forms of network organizat
which support adaptations that are applicable to both b
biological evolution and intelligent software design. Furth
more, the software engineering community is increasin
recognizing the value of prototyping and other forms of
teractive, trial-by-error design, in an effort to ‘‘embrac
change’’ rather than struggle against the rapid pace of s
ware evolution@13#. Many of the software design pattern
mentioned above, which are now codified and part of a
veloper’s standard repertoire, were initially emergent and
curring solutions that developers uncovered in their ques
build flexible, reusable code that could operate in rapi
changing environments.

The distributed and collaborative nature of software d
sign is increasingly relevant at the social level of progra
mer interaction, as well. Many software projects begin
small efforts led by one or a few people, only to grow in
large activities involving many developers scattered arou
the globe, a transition that has been dubbed ‘‘from the ca
dral to the bazaar’’@14#. While organized design methodolo
gies that support software growth and change are useful e
in the smallest projects, they become especially importan
distributed multideveloper efforts where many individua
may work only on small pieces of the overall system. T
work presented here does not explicitly examine the effe
of transformations in the social infrastructure of develope
but examinations of that sort could prove quite interestin

B. Software collaboration graphs

The interactions among software components are mult
mensional and multifaceted, and any representation of a s
6-2
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SOFTWARE SYSTEMS AS COMPLEX NETWORKS: . . . PHYSICAL REVIEW E 68, 046116 ~2003!
ware system typically involves a slice or projection throu
that complex space of interactions.Call graphsthat describe
the calling of subroutines or methods by one another h
long been used to understand the structure and executio
procedural activity in software systems, whileclass and/or
object collaboration diagramsare used to glean insight int
the relationships among abstract datatypes in OO syste
Static graphs typically describe the set of interactions that
possible, while dynamic graphs generated during prog
execution identify interactions that actually take place un
specific run-time conditions. This work addresses static c
collaboration graphs arising in OO systems and static
graphs arising in procedural systems, both of which can
parsed from source code.

In OO systems, the definition of objects and their inter
tions plays a central role. Objects represent datatypes tha
defined to extend the basic, native datatypes provided
programming languages~integers, floating point numbers
characters, etc.!, in order to develop more complex
application-specific, abstractions of data and their associ
behaviors~which are implemented via methods!. Typically,
layers of objects are defined, building increasingly comp
representations by aggregating simpler ones. An object
resenting a vector field, for example, may combine simp
objects representing vectors and spatial fields, which
themselves be defined independently of each other.~A vector
object, for example, might provide support for adding tw
vectors and computing their dot product, whereas a spa
field object might support a coordinate-based lookup to
trieve the value of the field at a specified location. Bo
vectors and spatial fields might themselves be built up fr
even simpler objects, such as arrays.! Classes describe th
form of objects in OO systems, and objects are instantiate
run time from their class descriptions.

Class collaboration is the process by which more co
plex, multifunctional classes are built from simpler ones.
this work, class collaboration is defined to include the int
action of classes both throughinheritance—i.e., where one
class is defined as a subclass of another—and thro
aggregation—i.e., where one class is defined to hold an
stance of another class. A simple illustrative example of s
a graph is shown in Fig. 1. The direction of class collabo
tion and subroutine calling follows standard software en
neering convention reflecting the flow of control in a syste
an edge in a class collaboration graph is directed from c
B to classA if B makes reference toA in its definition~either
through inheritance or aggregation!, and an edge in a cal
graph points from nodeg to f if subroutineg calls subroutine
f from within its scope. The definition of class collaboratio
used here allows one to decompose the full class collab
tion graph into two separate subgraphs, the inheritance g
and the aggregation graph.

I have examined collaboration networks associated w
six different open-source software systems. These incl
class collaboration graphs for three OO systems written
C11, and call graphs for three procedural systems writ
in C. The class collaboration graphs are from version 4.0
the VTK visualization library@15#; the CVS snapshot date
4/3/2002 of Digital Material~DM!, a library for atomistic
04611
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simulation of materials@16,17#; and version 1.0.2 of the
AbiWord word processing program@18#. The call graphs are
from version 2.4.19 of the kernel of the Linux operatin
system, version 3.23.32 of the MySQL relational datab
system, and version 1.2.7 of the XMMS multimedia syste
Details on the construction and/or origin of these network
provided in the Appendix.

II. RESULTS

A. Connected components

Connected components in a graph are those subgraph
which all nodes in the subgraph are mutually reachable
traversing edges in the subgraph. For a directed graph,
can define both weakly connected components~WCC! and
strongly connected components~SCC!. WCC are those con-
nected components found in an undirected version of
graph~i.e., by treating all edges as bidirectional!, while SCC
are those connected components mutually reachable by
versing directed edges. By definition, every node in a
rected graph will be in some WCC; not all nodes, howev
belong to a SCC.

Connected component analysis reveals trends across
six systems of interest, which are summarized in Table I.
six systems consist of a single dominant WCC, comprisin
large fraction of the total nodes in the system~ranging from
86–99 %!, and a few~5–46! very small remaining WCCs. A
picture of the largest WCC for the VTK system is shown
Fig. 2. Conversely, few nodes belong to any SCC~less than
about 4% in five of the six systems!. The lack of strong
membership in SCCs is rather different from that found
other directed complex networks, such as the WWW@3# and
various metabolic networks@9#. This difference is perhaps
not surprising, given the nature of the software graphs un
investigation, which largely reflect aggregation~of data in
the case of the class collaboration graphs, or function in
case of call graphs!. SCCs reflect subgraphs that are mu

FIG. 1. Sample class collaboration graph~right! representing
relationship among classesA, B, C, andD, as specified by C11
class definitions~left!. Graph nodes are classes, and graph edges
directed collaboration relationships between classes. This defin
of class collaboration involves both aggregation relationshipsB
→A,C→A,C→B, and D→A) and inheritance/subclassing rela
tionships (D→C).
6-3
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CHRISTOPHER R. MYERS PHYSICAL REVIEW E68, 046116 ~2003!
ally reachable, but the hierarchical directionality of use i
plicit in software aggregation makes mutually reacha
clusters of this sort unlikely, and undesirable from a softw
development standpoint. While generic base classes
reachable from their derived subclasses, for example, the
posite is generally not true, since that would undermine
genericity inherent in those base classes. Similarly, one
routine may call another as part of its execution, but, ty
cally, the reverse is not true.

B. Degree distributions

Degree distributions, summarizing the connectivity
each node in a graph, are a feature that distinguish m
complex networks from simple random graphs. For ea
nodei in a directed graph, there is both an in-degreeki

in , the
number of incoming edges to nodei, and an out-degreeki

out ,
the number of outgoing edges from nodei. The in- and out-
degree distributionsPin(k) and Pout(k) indicate the prob-
ability of finding a node with a specified in-degree or ou
degreek, respectively, in a given graph. Many comple
networks have recently been found to possess a ‘‘scale-f
degree distribution@19#, indicating a lack of characteristi
scale~or degree! in the distributionP(k). This implies that
P(k) obeys a power law over an extended range of deg
k: P(k);k2g, or perhaps a power law truncated by an e
ponential cutoff:P(k);k2ge2k/kc. In contrast, a uniform
random graph ofN nodes andk̄ links on average per nod
has a degree distribution with a characteristic scalek̄, with
P(k) decaying exponentially away fromk̄ @20#.

I have examined the in- and out-degree distributions
the large dominant WCC for each of the six software syste
of interest. For each WCC, I have computed the unnorm
ized cumulative frequency distributionsNc

in(k) andNc
out(k),

whereNc(k) indicates the number of nodes in a graph w
degree greater than or equal tok, and have plotted the loga

TABLE I. Connected component analysis for the six softwa
systems of interest. Shown for each graph are the~a! number of
nodes in each graph,~b! number of edges in each graph,~c! number
of WCCs,~d! number of nodes in the largest WCC,~e! number of
edges in the largest WCC,~f! number of SCCs,~g! number of nodes
in the largest SCC,~h! number of edges in the largest SCC, and~i!
the fraction of nodes belonging to any SCC. All six systems
characterized by a single dominant WCC, and little membershi
SCCs.

VTK DM AbiWord Linux MySQL XMMS

~a! 788 187 1096 5420 1501 1097
~b! 1389 278 1857 11 460 4245 1901
~c! 6 10 19 47 10 36
~d! 771 162 1035 5285 1480 971
~e! 1374 258 1798 11 370 4231 1809
~f! 4 2 46 10 12 0
~g! 5 6 25 6 7 0
~h! 8 10 72 9 10 0
~i! 0.0165 0.0428 0.1332 0.0057 0.02 0.0
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rithms of these distributions in Fig. 3.@Nc(k) is an unnor-
malized integral of the probability distributionP(k); for
P(k);k2g, Nc(k);k2g11.# These distributions reveal
power-law scaling region~straight line on a log-log plot!,
followed by a faster decay at largek. The extents of the
power-law regions are admittedly small, particularly for t
out-degree distributions, which one might argue to be rep
sentative of exponential distributions. Power-law fits for
12 distributions have been carried out over the regions
which they exhibit scaling, and the values of the expone
g in andgout are shown in the legends in Fig. 3.

Interestingly, the class collaboration graphs shown in F
3 reveal a marked asymmetry between the in-degree and
degree distributions, whereas the call graphs do not. In
class collaboration graphs, the out-degree exponent app
to be significantly larger (gout'3) than the in-degree expo
nent (g in'2). For the procedural call graphs,g in'gout

'2.5. For both sets of graphs, the in-degree distributio
tend to extend to higherk; that is, it is more likely to find a
node with many incoming links than outgoing links.

As noted, the three class collaboration graphs also e
contain an embedded inheritance graph. Since multiple
heritance is commonly avoided~due to programming diffi-
culties that it introduces!, the out-degree distributions of th
inheritance graphs are strongly peaked atk50 and k51.

e
in

FIG. 2. Largest weakly connected component of the class
laboration graph for the VTK system~layout courtesy of the Tulip
graph visualization package!.
6-4
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SOFTWARE SYSTEMS AS COMPLEX NETWORKS: . . . PHYSICAL REVIEW E 68, 046116 ~2003!
The in-degree distributions for each of the three inherita
graphs, on the other hand, also exhibit rough power-law s
ing, with exponentsg'2 ~not shown!. Therefore, insofar as
the in-degree distributions are concerned, the struct
forms of the overall collaboration graphs mirror those of t
embedded inheritance graphs. The heavy tail in the o
degree distribution, however, arises entirely from no
inheritance-based associations of classes~such as the rela
tionshipsB→A, C→A, C→B, andD→A in Fig. 1!.

Classes and subroutines with small out-degree are ge
ally simple, since they do not aggregate other elements~If
they became too complex, there would be a pressure to b
them up into simpler pieces and introduce outgoing link!
Conversely, elements with large out-degree are gener
more complex because they aggregate behavior from m
others. Therefore, the existence of heavy-tailed and/or sc
free out-degree distributions suggests a broad spectrum
complexities. On the other hand, classes and subrout
with large in-degree are—by definition—reused in ma
contexts, while those with small in-degree are not. Thus,

FIG. 3. Cumulative in-degree and out-degree distributio
Nc(k) for each of the six systems:~a! VTK, ~b! Digital Material,~c!
AbiWord, ~d! Linux, ~e! MySQL, ~f! XMMS. Nc(k) is the number
of nodes in a graph with degree greater than or equal tok. Histo-
gram data for each distribution are shown with symbols. Lines
dicate power-law fits~straight lines on log-log scales! to histogram
data in regions indicated; fits to in-degree distributions are re
sented by solid lines, and fits to out-degree distributions by das
lines. The legends show the values of the power-law exponentsg in

andgout for each fit@whereNc(k);k2g11].
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existence of heavy-tailed in-degree distributions implies
broad spectrum of reuse. Less interesting, perhaps, are t
many classes and subroutines that are neither heavily reu
nor heavily constructed from other elements.

Software engineering practice encourages reuse, tha
large in-degree; so it is not surprising that the largest deg
in these systems are for incoming links. It is not obviou
however, why the class in- and out-degree distributio
should be characterized by quantitatively different scal
exponents. The fact that the procedural call graphs exam
do not exhibit this in-out exponent inequality also sugge
further avenues of study: first and foremost would be
examination of the call graphs associated with the three
systems studied, to ascertain whether in-out asymmetry
property of class collaboration or of object-oriented syste
more generally.

C. Degree correlations

Correlations among degrees can also provide insight
the structure of complex networks. The directedness of th
graphs allows us to examine the relationship between
degrees and out-degrees. Figure 4 shows this relationshi
each of the six systems of interest, where every node in e
graph is represented by its (kout,kin) pair.

It is visually apparent in Fig. 4 that nodes with large ou
degree generally have small in-degree, and those with la

s

-

e-
ed

FIG. 4. Scatter plot of the number of incoming links vs th
number of outgoing links, for every node in each of the six syste
under consideration:~a! VTK, ~b! Digital Material,~c! AbiWord, ~d!
Linux, ~e! MySQL, and~f! XMMS.
6-5



ifie

a

om
e
d

he
co
rg
t
s
he

es
ion

ab
re
th
n

ion
a

fi-
e-
-
ou
on
it

i
he

op

ed

nto
ile
ith
uld
nd
ob-
ms.
nd
re,

or-

by
r
the

that
ees
by
ver-
la-

In
ffi-

f
le
ffi-
ted
oft-
ga-
s
her.
re,
n
for
is a
ile

typi-

een
cal
a
the

y

-
he

of
cts

the
ted
rved
are
the

s
s,
ac
cte
ffi

3

CHRISTOPHER R. MYERS PHYSICAL REVIEW E68, 046116 ~2003!
in-degree have small out-degree. This trend can be ver
by evaluating the linear~Pearson! correlation coefficient be-
tween the sets$kin% and$kout% for those nodes with either
large in-degree or large out-degree~or both!; a threshold
value of at least ten edges has been chosen as a filter, s
what arbitrarily as a demarcation between the dense cor
low-degree nodes and the sparser set of high-degree no
Table II~a! shows the correlation coefficient for each of t
six software systems studied, demonstrating a negative
relation between in- and out-degrees for nodes with la
degree in five of the six datasets. Including the entire se
nodes for each dataset~i.e., not selecting only those node
with k>10) reveals, however, almost no correlation in t
call graph data~Linux, MySQL, XMMS!, and weak positive
correlation in the class collaboration data~VTK, DM,
AbiWord!. This anticorrelation of large in- and out-degre
implies that, for the most part, there is a clear distinct
between large-scale producers of information~with high in-
degree! and large-scale consumers~with high out-degree!.
Simple components tend to be heavily reused, presum
because they are generic and applicable to many diffe
contexts, whereas complex components do not, because
are highly specialized and only applicable in limited co
texts.

There are, however, outliers to that trend of separat
classes with both large in-degree and large out-degree
evident in Figs. 4~a!–4~c!. These classes have both signi
cant internal complexity~associated with aggregating the b
havior of several other classes! and significant external re
sponsibility. There is reason to expect that such classes c
be problematic insofar as software development is c
cerned. By way of informal case study, my experience w
development of the Digital Material~DM! system@Fig. 4~b!#
confirms such a suspicion. TheDMArray class identified
implements both arraylike and treelike functionalities, and
intended to be a primitive data structure for much of t
numerical computation in the system. Curiously,DMArray
caused the most persistent trouble within the DM devel

TABLE II. Degree correlation coefficients.~a! For each of the
six software systems, correlation ofkin and kout for each graph
node, for both the full datasets~‘‘all k’’ !, and for the reduced set
with kin>10 orkout>10. ~b! For each of the six software system
degree mixing coefficients, relating in- and out-degrees for e
edge in the graphs. The left column indicates the specific dire
degree correlation function. Also included is the correlation coe
cient for an undirected version of each graph.

~a! In/out VTK DM Abi Linux MySQL XMMS

k>10 20.48 0.01 20.16 20.18 20.23 20.75
All k 0.09 0.10 0.18 20.01 20.03 20.07
~b! Mixing

In-in 0.088 20.043 0.065 20.005 0.114 0.067
In-out 20.034 20.010 0.083 20.009 20.067 20.036
Out-in 20.169 0.020 0.042 20.098 20.101 20.180
Out-out 0.137 0.098 0.111 0.014 0.179 0.09
Undirected 20.194 20.192 20.084 20.067 20.083 20.114
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ment group. The source of the difficulty largely center
around the conflicting roles thatDMArray plays. On the one
hand, the class is intended to be a primitive black box o
which more complicated functionality is to be layered, wh
at the same time, it is itself a complicated datatype w
substantial internal structure and external behavior. It wo
be interesting to know whether other items with large in- a
out-degrees apparent in Fig. 4 have played similarly pr
lematic roles in the development of those various syste
The complexity of software components with large in- a
out-degrees is highlighted in the software metrics literatu
for example, by the ‘‘fan-in fan-out complexity’’ metric@21#,
which states that complexity of a code module is prop
tional to the square of the product of the fan-in~in-degree!
and the fan-out~out-degree! of the module.

Another measure of degree correlation is the mixing
degree of a graph@22#. This quantity measures the linea
correlation of degrees over all edges of a graph, i.e.,
correlation of degreeski andkj for all sitesi andj that define
an edge in a given graph, aggregated over all edges in
graph. This reflects the tendency of nodes of similar degr
to be connected to one another. Most work on mixing
degree has focused on undirected graphs or undirected
sions of directed graphs, for which there is a single corre
tion coefficient of interest: corr(ki ,kj ), relatingki andkj for
the node pair (i , j ) that are linked by an edge in the graph.
a directed graph, there are four possible correlation coe
cients: corr(ki

out ,kj
out), corr(ki

out ,kj
in), corr(ki

in ,kj
out), and

corr(ki
in ,kj

in), where the indexi refers to the source node o
the directed edge, andj refers to the destination node. Tab
II ~b! shows the values of each of these correlation coe
cients, for each of the six graphs in question. Also compu
is the degree mixing of the undirected version of each s
ware graph. The undirected versions all show a weak ne
tive correlation ~dissortativity! which suggests that node
with similar degrees tend not to be connected to each ot
The directed graphs, however, tell a different story. The
we find—most significantly—a weak positive correlatio
~assortativity! among out-degrees, that is, a tendency
nodes with similar out-degrees to be connected. There
yet weaker positive correlation among in-degrees. Wh
these correlations are rather weak, their magnitudes are
cal of those seen in a variety of other complex networks@22#.

The weak positive assortativity among out-degrees s
in the software networks is due in part to the hierarchi
layering of functionality. For example, in the VTK system,
complex aggregated class with large out-degree such as
vtkUnstructuredGrid does not collaborate directly with ver
low-level objects~such asvtkObject!; instead, it is built up
out of collaborations with ‘‘mid-level’’ objects~such as
vtkPolygon andvtkHexahedron!, which themselves are ag
gregates built up from lower-level classes. Similarly, t
weaker positive assortativity among in-degrees for some
the graphs probably reflects the tendency for simpler obje
with large in-degree to collaborate with each other at
base of a hierarchy of functional layers. In the undirec
versions of these graphs, the negative correlation obse
reflects in part the fact that nodes with a large out-degree
not linked to the nodes with a large in-degree, because of

h
d
-

6-6



d

so
d

b
ra
in
g
ap

s

h-

t

a
le
iz
a

s

st

y

ica
ie
o
th
st
o

ra
as
u
te

h
s

m

e in-
ese
all
ut-

ree.
om-
e

ore
the

l

s

SOFTWARE SYSTEMS AS COMPLEX NETWORKS: . . . PHYSICAL REVIEW E 68, 046116 ~2003!
functional separation between producers and consumers
scribed above. These results further emphasize that the
rectedness of these graphs is important. Newman@22# has
noted that sociological networks~e.g., scientific collabora-
tions! tend to be assortative~positively correlated!, but that
technological and biological networks are generally disas
tative. Clearly, for these software graphs, teasing out the
gree correlations requires examining directed edges.

D. Clustering and hierarchical organization

Clustering—the tendency of a node’s neighbors to
themselves neighbors in the graph—is a significant cha
teristic of small-world networks. While the results above
dicated the importance of graph directedness, clusterin
typically measured on undirected graphs. For such a gr
the clustering coefficientCi of node i is defined asCi

52n/ki(ki21), wheren is the number of pairs of neighbor
of nodei that are linked, andki is the degree of nodei. This
quantity is simply the fraction of all possible pairs of neig
bors of nodei that are themselves linked in the graph.

Recent work by Ravaszet al. @23,24# suggests tha
degree-dependent clustering of the formC(k);k21 is a sig-
nature of hierarchical organization in networks, and c
serve to distinguish hierarchical from nonhierarchical sca
free networks. They also suggest that hierarchical organ
tion serves to resolve the apparent dilemma between sc
free degree distributions on the one hand~which imply no
characteristic scale of connectivity! and modular structure on
the other~which suggest connectivities at the scale of tho
consistent with modular units!. Figure 5 plots, for each of the
six software graphs of interest, the degree-dependent clu
ing C(k), defined as the average clusteringC for nodes in
the undirected graph with degreek. These data are roughl
consistent with those presented in Refs.@23,24#, typically
showing a flatC(k) for smallk which rolls over to ak21 tail
at largek ~more clearly defined for the larger graphs!. The
k21 tail is derived in Refs.@23,24# for a specifically con-
structed hierarchical model; therefore, the existence ofk21

scaling in real graphs would appear to be an indirect ind
tor of hierarchical organization. Nonetheless, given the h
archical nature of software design, further investigation
this sort of clustering in software graphs is warranted. Me
ods for extracting modules and subsystems using the clu
ing data may also provide insight into the organization
these systems@23#.

E. Topology, complexity, and evolution

Software systems can be characterized by a variety
metrics, which can be compared to the underlying collabo
tion network topology. The VTK system, in particular, h
been developed in a manner that facilitates such meas
ments. For every class in the VTK system, I have calcula
three quantities of interest:~a! total source file size for eac
class; ~b! total number of methods defined for each cla
~including inherited methods!, and ~c! average revision rate
for each class over the lifetime of the VTK project~average
number of source file revisions per year, since initial co
04611
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mitment to the VTK CVS source code repository!. Details on
these calculations are presented in the Appendix.

For each class, these three metrics can be related to th
and out-degrees of that class; the linear correlation of th
metrics with degree is reported in Table III. We see that
three metrics have a strong and positive correlation with o
degree, and a weaker, negative correlation with in-deg
Each of these metrics reflects a different facet of class c
plexity ~implementation size, interface size, revision rat!,
and we see that nodes with large out-degrees tend to be m
complex than those with large in-degrees, consistent with
scenario outlined previously.

FIG. 5. Clustering coefficientC(k) vs degreek for undirected
versions of each of the six software systems.C(k) is the average
clusteringC for all nodes in a graph with degreek. Also shown for
each graph isk21 scaling ~dotted line!, suggestive of hierarchica
organization. Graphs are~a! VTK, ~b! Digital Material, ~c! Abi-
Word, ~d! Linux, ~e! MySQL, ~f! XMMS.

TABLE III. For VTK only, correlation of various class metric
~source file size, number of methods, average revision rate! with in-
and out-degrees.

VTK class complexity measures In Out

Source file size 20.28 0.58
Number of methods 20.26 0.61
Average revision rate 20.28 0.68
6-7
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CHRISTOPHER R. MYERS PHYSICAL REVIEW E68, 046116 ~2003!
The evolution of complex networks is a problem of gre
interest, and the class revision history data for the VTK s
tem provide some insight into the evolutionary processe
software development, which are summarized in Fig. 6. F
ure 6~a! shows a comparison of the collaboration graph
gree distributions for the current VTK system~ca. 2002! with
those for the system in its nascent state, at the end of Jan
1994~the VTK ‘‘reptile brain,’’ so to speak!. We see that the
heavy-tailed collaborative structure of the system was
place from the outset, although the in-out asymmetry w
less pronounced. Figure 6~b! examines the coevolution o
classes that collaborate in the VTK system. For every edg
the VTK graph, the revision rates of the outgoing sou
node and the incoming destination node are plotted aga
each other. From these data, we find an interesting, and
haps unexpected, trend. For the entire dataset, there is a
positive correlation among revision rates for connec

FIG. 6. Facets of the evolutionary history of the VTK syste
~a! Comparison of the degree distributions for the VTK system
its nascent state~class collaboration graph as of Jan. 31, 1994!, and
for VTK version 4.0@as presented in Fig. 3~a!#. ~b! Scatter plot of
class revision rates for the VTK collaboration graph. Each po
represents an edge in the graph; thex andy coordinates of the poin
are given by the average revision rates of the outgoing source
incoming destination node, respectively, for that edge. Note
anticorrelation of revision rates for those classes with large r
~e.g., greater than 30 per year!.
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classes~correlation50.10), indicating a weak tendency fo
collaborating classes to evolve at the same rate. But if
restrict our focus to only those classes with large revis
rates, e.g., greater than 30 revisions per year on average
find a strong negative correlation~correlation 520.72).
This implies thatclasses that evolve most quickly tend not
interact directly with each other.

The data in Table III reveal that, in the VTK system
classes with large out-degrees tend to evolve more rap
than do classes with large in-degrees. On the one hand,
might imagine that the information consumers with lar
out-degrees evolve more rapidly simply because they h
greater implementation sizes and a larger number of meth
subject to revision. Alternatively, one might imagine th
evolution rate is primarily governed by the nature of conn
tions to other classes: information producers with large
degrees are constrained to remain stationary~since other
classes depend on them!, while information consumers ar
generally forced to evolve to keep pace with changes in
the other classes that they aggregate but are generally un
strained by large numbers of users. This latter scen
would suggest signatures of coevolution, that is, correlat
of evolution rates that are connected in the collaborat
graph.

We saw in Fig. 6~b! that there was a weak coevolutiona
tendency on average for the entire VTK system, but a str
anticorrelation of coevolution among rapidly evolvin
classes. The rapidly evolving classes are primarily~as seen in
Table III! information consumers with large out-degree
which are part of specialized functional subsystems rat
than the more generic functional substrate. The strong a
correlation of interactions among highly evolving class
may thus reflect a degree of modularity within the syste
that is, the functional separation of different specialized s
systems. Whatever weak coevolution there is, it appear
be confined to the more generic substrate. Further wor
needed to explore the relationships among evolution, c
nectivity, and constraint. Similar explorations are taki
place within biology, to explore the relationship between n
work connectivity~e.g., graphs of protein interactions! and
evolution rate@25#.

III. RELATED WORK

The fields of software metrics and reverse engineer
examine software systems in the aggregate, with signific
emphasis on measures of nodal degree in various softw
graphs. By and large, however, their scale-free nature
pears to have escaped notice within those communities.
tributions of component connectivity are often summariz
in terms of means and variances, which are poor charac
izations of scale-free distributions. The asymmetry betwee
large in-degree and a large out-degree has long been id
fied by software engineers as an important element of des
since a large out-degree indicates significant code re
while a large in-degree indicates excessive object comple
@26#.

The existence of scale-free, small-world networks in so
ware graphs has been noted recently by a few groups, h
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SOFTWARE SYSTEMS AS COMPLEX NETWORKS: . . . PHYSICAL REVIEW E 68, 046116 ~2003!
ever. Valverde and co-workers@27,28# have examined clas
collaboration graphs derived from the Java Developm
Framework 1.2~JDK1.2! and the UbiSoft ProRally 2002 gam
system. They have noted scale-free degree distributions
larger-than-random clustering characteristic of small worl
Their work does not distinguish, however, between incom
and outgoing links in the software networks they have st
ied; that is, they have formed undirected graphs by ignor
edge directionality. With undirected graphs, they could
detect either the asymmetry between the in-degree and
degree exponents evident in Fig. 3 or the anticorrelation
large in-degree and large out-degree seen in Fig. 4. Per
more importantly, ignoring the directionality of edges lea
to different sorts of conclusions about the implications
software engineering guidelines. They claim that softw
design is predicated in part on the ‘‘rule of avoiding hu
~classes with large number of dependencies, that is, la
degree!’’ @27#, which does not recognize that large ou
degrees and large in-degrees have very different softw
engineering implications. Valverdeet al. @27#, however, do
propose an interesting scenario by which minimization
development costs might lead to an optimal trade-off
tween developing a small number of large, expensive co
ponents with few interconnections and a large number
small, inexpensive components with many interconnectio
They suggest that only suboptimal solutions can be foun
large, complex systems, leading to scale-free/small-world
havior; this is an interesting conjecture deserving furt
study, perhaps within the context of synthetic models of s
ware systems, such as the one that I will introduce below

Potaninet al. @29# have examined the structure of obje
graphs, representing run-time snapshots of object inte
tions in several OO programs. Object graphs are the
namic, run-time analogs of the static class collaborat
graphs studied here. Potaninet al. observed power-law in-
degree and out-degree distributions, noting a tendency
in-degree exponents to be clustered near 2.5, and out-de
exponents near 3, somewhat like the trend that I have
served for class collaborations in this work. They also n
the strong separation of large in-degrees and large
degrees, similar to that presented here in Fig. 4. Ultimat
developing a theory of the relationships between static c
graphs and dynamic object graphs might prove useful to
software engineering community.

Wheeldon and Counsell@30# have identified power-law
relationships in several OO measures, including inherita
and aggregation graph degrees, and numbers of meth
fields, and constructors defined by classes in OO syste
They treat inheritance and aggregation as two separate t
of class collaboration~which they are!, while I have chosen
to define collaboration more broadly to include both. They
power laws to the full range of their distribution data, ev
when there are apparent transitions between scaling be
iors ~e.g., from power-law to exponential!, making compari-
son with the present work difficult. The numerical values
the degree-distribution exponents they quote (g'1) are
rather different from those found here and in the work
Valverdeet al. @27# (g'223), but it is not clear whether o
not they have corrected for the exponential bin sizes
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they use to deal with sparse statistics in the tails of the
tributions.

Both Potaninet al.and Wheeldon and Counsell make re
erence to the process of preferable attachment as a me
nism for generating scale-free networks, as outlined by Ba
bási and Albert ~BA! @7#. Preferential attachment wa
originally proposed to describe the growth of the World Wi
Web, but seems less well-suited to describe the growth
software systems, although such attachment is indirectly
lated in that low-specificity ‘‘hubs’’ will generally attrac
more incoming links if they present broadly reusable abstr
tions. But the BA preferential attachment model is acknow
edged to be incapable of generating hierarchical struct
which is clearly relevant for software design, and which
evident in power-law, degree-dependent clustering such
seen here in Fig. 5.

Several features of the present research—including
aminations of degree-dependent clustering, correlation
network topology with various class complexity measur
and the evolutionary history of class collaborations—ha
not been explored in the other works cited above. Also,
present work introduces—in the following section—a mod
of software evolution based on a set of standard pract
that captures some of the salient features of the obse
software networks.

IV. A REFACTORING-BASED MODEL
OF SOFTWARE EVOLUTION

As suggested earlier, software systems have a com
structure not only to support the implementation of comp
cated functionality, but also to allow for low-cost evolvab
ity. It is an interesting question to ask, therefore:How soft-
ware engineering practices used to enhance sys
evolvability might alter the topological structure of softwa
collaboration graphs? An intriguing framework for address
ing such a question, and for generating models of evolv
software systems, is the set of processes collectively kno
asrefactoring@31#, which aim to remove ‘‘bad smells’’ from
code that inhibit evolvability~e.g., extendability, modifiabil-
ity, maintainability, and readability!. Refactoring tends to en
courage the development of smaller, more concise, sin
purpose fragments of code~classes, methods, an
subroutines! that can be reused in a wider range of contex
as opposed to larger, multipurpose pieces of code that o
contain duplicated program logic. Large methods and clas
are often broken up into collections of smaller ones, w
appropriate indirection from the former to the latter, leadi
to the creation of more nodes and more edges in the resu
software graphs. Duplicated pieces of code are extrac
from multiple locations in the source code, and localized i
single place to which other pieces of code refer.~In some
instances, however, a developer may deem such indirec
excessive and not worth the overhead; in those cases, re
toring techniques would suggest the removal of nodes an
the collapsing of hierarchies.! Many refactoring techniques
can be cast in the language of optimization, by minimizi
~or altogether removing! bad smells that pervade software

Motivated by the basic observation that refactoring i
6-9
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CHRISTOPHER R. MYERS PHYSICAL REVIEW E68, 046116 ~2003!
proves code evolvability by reorganizing its internal stru
ture, I have implemented a simple model of an evolvi
software system, based on a few refactoring techniques.
model is overly simplified, insofar as its treatment of so
ware systems and practices is concerned, and can neve
licate the detailed structures of real software systems, wh
are certainly history and project dependent. Neverthel
some coarse features of the observed software networks
be replicated with the simple refactoring model, which poi
the way toward more sophisticated models of this sort,
well as further empirical study of actual software syste
undergoing refactoring.

In the model, binary strings of arbitrary length~i.e.,
strings composed of 0’s and 1’s! serve as proxies for the
subroutines in call graphs and the classes in class collab
tion graphs. No attempt is made here to distinguish betw
call graphs and class collaboration graphs, so I will gen
cally refer to these binary strings as ‘‘functions’’ o
‘‘strings,’’ and to the network of their interactions as a ‘‘ca
graph.’’Aggregation of functions is achieved through conc
enation of strings~represented here via the addition ope
tor!. Therefore, a larger, more complex, string can be built
from smaller, simpler strings: e.g., 01101100100
5011011001100105(011011100)1(100110). Such a
concatenation also has a call-graph-based interpretation
original parent node (0110110010010) has a link to each
the child nodes from which it is composed (01101100 a
10010), as do the second-generation parent nodes to
children. One can think of the original parent node~before
decomposition! as a single long function which calls no oth
functions; after decomposition, the original function consi
only of calls to the new child nodes.~Obviously, such a
decomposition is not unique, but that is true of software s
tems as well.!

In this model, three refactoring processes are imp
mented within the framework of a Monte Carlo simulatio
as schematically represented in Fig. 7:~1! functions that are
excessively long tend to be decomposed into a set of sm
functions;~2! functions that already exist are used by othe
rather than having duplicated versions of the same func
within the system; and~3! some functions that are deemed
support ‘‘excessive indirection’’ are removed, with approp
ate rerouting of the call graph. More precisely, these p
cesses are implemented as follows. With probabilityp, a ran-
domly selected function in the call graph is decomposed
two smaller subfunctions with probability given byP( l )

FIG. 7. Processes implemented in the simple refactoring mo
~a! Long strings are subdivided into two substrings, with links ma
to existing node strings so as to avoid node duplication.~b! On-off
functions are removed to avoid excessive indirection; in this
ample, function 10010 from part~a! is removed, and its parent i
linked directly to its two children (100 and 10).
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51/(11e2(l2l0)/T), where l is the length of the string unde
consideration, andl 0 and T are adjustable parameters. Th
probability is constructed in analogy with the Fermi-Dira
distribution of statistical mechanics, and reduces in the li
T→0 to the rule that any function with length greater thanl 0
will be decomposed~but which allows that threshold to b
fuzzy for nonzero temperatureT). A function that is selected
for decomposition is split into two subfunctions, with th
breakpoint selected at random~uniformly! anywhere in the
string, as long as each subfunction has at least unit lengt
either of the two subfunctions already exists~i.e., is a defined
node in the call graph!, a link from the parent function to tha
child subfunction is created. If a subfunction does not ex
a new node in the call graph is created, and the paren
linked to it. In this model, therefore, no duplication of cod
is allowed~respecting the proclamation of Beck and Fow
that duplicated code is ‘‘Number one in the stink parad
@31#!. The final refactoring process~removing ‘‘excessive in-
direction’’! is carried out with probability 12p. Specifically
targeted are the nodes in the call graph that have only
parent~i.e., are called by only one other function! and only
two children; I will refer to such nodes as ‘‘one-off func
tions.’’ One such node from the set of eligible nodes is ch
sen at random, and is removed from the system, such tha
one parent node is linked directly to its two child nodes. T
specification is admittedly arbitrary, and could be further p
rametrized; but the general purpose of such a process
remove functions that do not represent broadly useful
stractions~i.e., are not used by many parent functions
different contexts! and that do little more than to simpl
aggregate a small number of other functions~i.e., two!.

In the version of the model studied to date, the evolut
process is begun by constructing a call graph consisting
N0 uniformly random binary strings, each of lengthL0, with
no function calls among them. One could think of this initi
set as a group of long functions that are written explicitly
low-level code, with no subroutines defined to abstract s
units of the computations. As the refactoring process unfo
these overly long functions are decomposed into sets
smaller functions, with links developing in the call grap
and with smaller functions separated out for reuse by oth
Initially, the only active refactoring processes are long fun
tion decomposition and reuse of existing functions, sin
there are no one-off functions to be removed at first. O
time, however, one-off functions become available for
moval. Such a system will eventually reach an asympto
steady state where all possible refactorings have been ca
out, although the decomposition of strings with lengthl
, l 0 can be very slow for small, nonzeroT. In the present
work, I have stopped the refactoring process once the siz
the call graph ceases to change for at least 10 000 cons
tive refactoring steps.

Results from one such simulation are shown in Fig.
which plots the in- and out-degree distributions@part~a!#, the
in- vs out-degree correlation@part ~b!#, the relationship be-
tween nodal degree and string length@part ~c!#, and the
degree-dependent clustering@part ~d!# for the refactored soft-
ware graph, in analogy with the results presented in Figs
4, and 5.
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SOFTWARE SYSTEMS AS COMPLEX NETWORKS: . . . PHYSICAL REVIEW E 68, 046116 ~2003!
This simple refactoring model captures many of the
lient features of the observed systems. Figure 8~a! demon-
strates heavy-tailed degree distributions similar to those
the three class collaboration graphs shown in Fig. 3~with
in-degree exponentg in'2 and out-degree exponentgout

'3), although—as noted above—there is nothing spec
cally in the model that distinguishes class collaborat
graphs from call graphs. A detailed examination of the ref
toring process reveals that the heavy tail with large in-deg
is generated by the process of large function decompos
and associated reuse of existing functions~no code duplica-
tion!. The tail with a large out-degree arises from the proc
of one-off function removal. Figure 8~b! reveals an in-out
degree correlation similar to that seen in Fig. 4, with t
large in-degree and the large out-degree separated from
another. Furthermore, the significance of these large deg

FIG. 8. Simulation results for a model of software evolution
refactoring:~a! in- and out-degree distributions,~b! scatter-plot of
in- vs out-degree,~c! in- and out-degree vs string length, and~d!
degree dependence of clustering,C(k) vs k, also showing thek21

dependence suggestive of hierarchical organization. Paramete
ues for the simulation were~see text for discussion!: N0550,L0

51000,p50.7,l 054,T51.0. The initial graph with 50 nodes and
edges evolved into a graph with 3721 nodes and 14 335 edges
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is similar to what was identified previously, as is support
by Figure 8~c!, which plots nodal degree as a function
string length for the resulting call graph. Large in-degre
small out-degrees represent small, simple functions~short
strings! that can be and, in fact, are reused in many conte
by many other larger functions; whereas large out-deg
small in-degrees represent large, complex functions that
gregate many smaller functions but which are themsel
used in few contexts. Finally, Fig. 8~d! reveals degree-
dependent clustering similar to that suggested by the hie
chical organization scenario and as seen in the data in Fi
although the source of the flattening ofC(k) at largek is
unknown. As noted, the large out-degree tail in Fig. 8~a! is
generated by one-off function removal. Were this process
included, the out-degree for every function would be eithe
~not decomposed! or 2 ~decomposed into two substrings!.
Alternative rules for decomposing large strings might p
duce heavy-tailed out-degree distributions even in the
sence of one-off function removal, but further work
needed to explore in detail the behaviors of models insp
by refactoring techniques. Those interested in the trade-
between indirection and computational performance mi
be motivated to construct a variant of this model where
long string decompositions incur a penalty cost associa
with performance degradation; other studies might try
quantify the suboptimality suggested by Valverdeet al. @27#
which could be associated with frustration of the sort seen
other complex, disordered systems.

V. SOFTWARE SYSTEMS AND COMPLEX NETWORKS:
THE IMPLICATIONS OF OBJECT-ORIENTED

DESIGN

A. Robustness, fault tolerance, and evolvability

Researchers grappling to understand the structure, fu
tion and evolution of complex networks highlight robustne
as an important theme in complex networks. Studies h
indicated@8,32# that one by-product of scale-free networks
certain systems is enhanced robustness in the face of ran
node failure~although with increased fragility to failures o
highly connected nodes!. Analyses that highlight the simi
larities between biological systems and engineering syst
often emphasize redundancy in networks as a mechanism
fault tolerance@33#. Software systems, on the other hand, a
notoriously fragile, and at many scales~e.g., single-point
mutations at the level of a typographical error, inability
find a library needed for linking, cascading modificatio
that follow from changes to a single class!. Of course, there
are specialized applications which absolutely require fa
tolerance or are capable of exploiting redundant resource
the case of network disruption~e.g., in distributed processin
applications!.

By and large, however, the complexity that lurks with
software systems is not responsible for implementing fa
tolerance and robust control, as is the case for many com
engineering systems. Rather, much of the structural comp
ity of large software systems—and in object-oriented s
tems in particular—is to support evolvability. The need
continually accommodate and incorporate changes in the

al-
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ternal environment~user requirements, hardware platform
etc.! lead to software designs that support modularity, dec
pling, and encapsulation@12#. This connection between en
vironmental changes and adaptation toward modular netw
structure has been noted in several other contexts, such
models of biological evolution@34# and neural networks
@35#. In contrast, very little of the complexity inherent i
complex engineering systems@33# is in place to support
evolvability and the construction of the next generation s
tem ~despite the fact that design elements do get reused!.

Much of the evolvability that is organized within softwa
systems arises from carefully planned genericity and ass
ated decoupling, using polymorphism and encapsulation
negotiate the inherent trade-offs between specificity
evolvability of interactions. While naive notions of obje
orientation suggest the proliferation of increasingly de
class hierarchies that implement increasingly specialized
jects, the software engineering community has learned
systems based on those sorts of objects and interaction
often hard to modify@12#. Design patterns aim to organiz
the interactions of objects in such a way as to ensure s
cient specificity for regulation and controlwithout unduly
freezing a system intocommitments and constraintsthat are
difficult to evolve. Viewed in this manner, design patterns
similar to biochemical processes such as regulated rec
ment @36# that serve to ensure specificity through the coo
erative action of several, more generic chemical constitue
rather than the specific action of a single, complex com
nent. It may be that scale-free network topologies help
mediate the trade-offs between specificity and evolvabi
and present a mechanism for minimizing constraint wh
ensuring the specificity required for regulation and contro

B. Degeneracy and redundancy

The biological community has begun to make distinctio
between redundancy, involving the ability of identical e
ments to perform identical functions, and degeneracy,
volving the ability of different elements to perform simila
~or perhaps identical! functions@37,38#. This distinction em-
phasizes the role that degeneracy can play in evolvabi
whereas identical and redundant elements are unable to
vide any novel function in the face of changing enviro
ments, similar and degenerate elements offer avenues fo
aptation because they offer the potential to provide differ
behaviors in different contexts. Degeneracy in biological n
works is in fact similar to polymorphism in object-oriente
systems, in that different objects can substitute for one
other to perform structurally similar functions which non
theless differ in detail. This polymorphism imbues OO sy
tems with evolvability by enabling them to be more eas
adapted to changing needs and environments. Tononiet al.
@37# have developed information-theoretic measures to qu
tify redundancy and degeneracy in neuronal networks, an
is an interesting open question as to whether connect
between degeneracy and polymorphism might suggest n
ways of analyzing and interpreting software systems ba
on similar sorts of measures.
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Curiously, Sole´ et al. @28# have commented that softwar
collaboration networks have ‘‘a certain degree of@redun-
dancy# but no @degeneracy#.’’ Their assertion of redundancy
is based on the existence of duplicated code, but this c
fuses duplicated code with redundant code; duplicated c
is not redundant unless it is embedded in the same comp
tional context, in the same way that two identical resist
serving distinct roles in an electrical circuit are not redund
to each other. They claim that there is no degeneracy
software because ‘‘degeneracy is very common@in# natural
systems . . . buttotally unknown with the context of techno
logical evolution.’’ They further note that ‘‘degeneracy is in
timately associated with tinkering in evolution: it reflects t
re-use that is made of different parts of a system in orde
achieve similar functions.’’ I would argue that degeneracy
in fact quite common in some software systems, largely
the form of polymorphism, but perhaps through other mec
nisms as well. Furthermore, generalizing from other tech
logical systems to software systems is problematic, in p
because software is softer and more abstract than othe
gineered systems. And software design does itself involv
significant amount of evolutionary ‘‘tinkering,’’ which is be
comingly increasingly recognized and formalized throu
processes such as refactoring@31# and extreme programming
@13#.

C. Motifs, patterns, and emergent computational structures

There is growing interest in scanning large, emergent n
works to locate statistically significant, recurring motifs, a
ultimately identifying the functional significance of thos
motifs @39,40#. Information processing systems—includin
gene transcription networks, neuronal systems, and e
tronic circuits—are seen to make use of recurring mo
such as feed-forward loops and bifans~and in some cases
biparallel subgraphs! @40#. A preliminary examination of re-
curring motifs in the six software graphs studied here, us
the motif finding algorithm of Alon and co-workers@40#,
identifies these same motifs as being prevalent, but fur
study is needed to examine their significance. It remains
be seen, however, whether such techniques will be abl
identify meaningful software motifs~e.g., design patterns! in
all their glory, given the relatively crude representations
software networks presented here. The software reverse
gineering community is beginning to tackle the problem
extracting complex design patterns from existing softw
systems, but such work relies largely on detailed,a priori
specifications of the structure of those patterns and more
tailed class information than is contained in the graphs st
ied here@41#. An interesting challenge for the software eng
neering community would be to develop systems a
algorithms capable of extracting important patterns and m
tifs from large software networks without such detailed pr
information. Such an effort would not only be useful fo
software design and analysis, but might also help to gu
the field of complex networks in identifying functionally im
portant motifs.

One other interesting connection between software
complex networks involves the very notion of ‘‘software e
6-12
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SOFTWARE SYSTEMS AS COMPLEX NETWORKS: . . . PHYSICAL REVIEW E 68, 046116 ~2003!
gineering.’’ As software systems move increasingly into t
realm of the emergent and the unpredictable, a new notio
‘‘software science’’ may unfold, emphasizing fundamen
phenomena to be explored, as opposed to cut and dried
tems to be built. An interesting question concerns the form
tion of structures akin to software design patterns. In
same way that recurring spatial patterns~vortices, disloca-
tions, fronts, and solitons! can arise in physical systems u
der stress, it may be that recurring functional patterns~adapt-
ers, factories, mediators, and proxies! can arise in
appropriately defined computational systems driven far fr
equilibrium.

VI. SUMMARY AND CONCLUSIONS

In this paper, I have examined several aspects of softw
collaboration networks, inspired by questions in comp
networks, software engineering, and systems biology.
unlike findings by others, the software collaboration n
works studied all exhibit scale-free and/or heavy-tailed
gree distributions qualitatively similar to those observed
recently studied biological and technological networks.
examination of these software systems reveals that the
archical nature of software design has an impact on the o
all network topology. Simpler, more generic classes and s
routines form the heavy tail of the in-degree distribution, a
complex, more specialized aggregates populate the heav
of the out-degree distribution, with the two generally w
separated from one another. While the process of aggrega
facilitates the coregulation of many constituent elemen
such control is also constraining and more difficult to evol
Design patterns, polymorphism, refactoring, and rela
techniques aim to minimize specificity of interactions wh
still enabling specific control, and it may be that the sca
free nature of software collaboration networks reflects th
sorts of trade-offs in the large.

The work presented here highlights the need to prese
edge directions in studies of directed software graphs, a
that has long been recognized within the software engin
ing community. Edge directionality is required to uncov
several network features, such as: differences between
and out-degree distributions, the anticorrelation betwee
large in-degree and a large out-degree, and the positive
sortative mixing among out-degrees. Software collabora
is inherently directed, and any attempt to explain netw
topologies from software engineering principles or proces
without recognizing that asymmetry will most likely fa
short.

More work is needed to better abstract and characte
the software development process, and to uncover the im
cations of that process for large-scale network topology.
hman’s laws of software evolution and their associated in
pretation in the context of feedback and self-regulation@42#
might form the basis of theories or models aimed at unc
ering large-scale structure from small-scale process. Fur
archaeology of existing software systems would also help
to better understand relationships among network struct
object complexities, object interactions, development p
cesses, and system evolution, and to unravel the differe
04611
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between class collaboration graphs and call graphs prese
here. Systems that have undergone large-scale refacto
could be mined to ascertain whether real-world refactor
processes change the nature of software graphs~as they have
in my simple model system!, and large open-source develo
ment projects such as Linux and AbiWord that have ma
transitions from the ‘‘cathedral’’ to the ‘‘bazaar’’@14# could
be investigated for network-level signatures of such tran
tions.

Combining insights from empirical studies of existin
systems with those gleaned from more abstracted mode
software systems—such as the refactoring model prese
here—should be more fruitful than either approach in iso
tion. It would be interesting to learn whether emergent,
tomatically generated computational systems, such as th
uncovered by genetic programming techniques@43,44# or al-
gorithmic chemistries@45#, give rise to the sorts of topolo
gies that are observed here. It remains to be seen, how
whether practical insights into the design and developm
of software can arise from the consideration of software s
tems as complex networks, more broadly construed.

Software systems present novel perspectives to the s
of complex networks. Software is designed to be both fu
tional and evolvable, and those dual needs suggest partic
forms of network organization. Whereas other complex n
works emphasize redundancy to support fault tolerance, s
ware networks highlight other degrees of freedom that pla
central role in supporting evolvability, such as generici
polymorphism, encapsulation, and collaboration. If those
grees of freedom are relevant to the organization and ev
tion of biochemical networks, software systems may be u
ful in suggesting novel insights into collective biologic
function.
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The class collaboration graphs presented here~VTK,
Digital Material, AbiWord! are all based on subgraphs ge
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erated by Doxygen@46#, an automatic document generatio
tool that parsesC11 header files to describe classes, th
methods, inheritance, and collaborations. Doxygen gener
a set of files describing collaboration graphs in the ‘‘do
format @47#, and Doxygen’s definition of collaboration to in
clude inheritance plus association was used for this partic
study. Each class collaboration graph is generated inde
dently of all others, so all the subgraphs must be assem
into a global collaboration graph. Some minor typograp
changes to class names were required to enable program
the GRAPHVIZ package to process the resulting graph files

The call graphs~Linux, MySQL, XMMS! were available
for download on the Web as demonstration data associ
with the CODEVIZ package, developed by Mel Gorman@48#.
CODEVIZ includes patches to the gcc compiler that enable
extraction of static call graphs of functions and macros.
such,CODEVIZ does not include calls through function poin
ers, nor does it capture inline functions or naming collisio
between functions with the same name in multiple files.

Connected component analysis was done using
ccomps and sccmap tools in theGRAPHVIZ package@47#, for
weak and strong connected component analyses, res
tively. As noted, subsequent analyses were carried out on
single, dominant weak connected component found in e
system. Graph data and associated information are avai
online @50#.

The various class metrics for the VTK system presen
in Sec. II E were extracted as follows. Almost every class
VTK is declared and defined in two separate source fi
~header.h and implementation.cpp! whose names corre
spond to the associated class. Two exceptions are i
classes~which are defined within their parent source file
but which are identified by Doxygen as unique classes!, and
templated classes~which in principle can produce multiple
classes emanating from a single pair of source files!. They
are excluded from the analysis relating class metrics to gr
go

-
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degrees, although they do contribute to the source file s
of their parent classes~introducing some error to those sizes!.
The computed source code file size for each class is the
of the total number of lines of code~including comments and
blank lines! in the two source files. The number of metho
defined for each class are derived by combining Doxyg
information on class methods and the embedded inherita
graph defined for each system. Doxygen documents o
those methods defined within a class, which does not incl
methods inherited from base classes. The inheritance g
is thus traced to add to this list of methods defined for e
class those public methods defined by its base classes
nally, because VTK has been developed within the fram
work of the CVS source code revision system, information
available describing the revision history of every source
in the system~and hence, for each class in the system,
cause of the strict mapping of classes to two source fil!.
This CVS revision information is available on the Web@49#,
which can be crawled and parsed. Any change to either
header or implementation file of a class resulting in a n
CVS version number for either of those files was counted
a revision to the class; this, therefore, counts twice a
change to a method signature that would necessitate an
date to both the header and implementation files, leadin
an overestimation of rates, which may or may not be off
by the fact that multiple source revisions could be sw
under a single update to the CVS system. From these d
counts of the total number of revisions of each class w
generated, and divided by that class’s total lifetime in t
CVS repository, to arrive at an average revision rate si
inception ~expressed as average number of revisions
year!. Classes that had been in the CVS repository for l
than 3 million seconds~roughly 35 days! were excluded
from the analysis, since their short lifetime tended to int
duce large errors in the calculation of their revision rates
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