
International Journal of Mathematical, Engineering and Management Sciences

Vol. 8, No. 2, 293-315, 2023

https://doi.org/10.33889/IJMEMS.2023.8.2.018

293 | https://www.ijmems.in

Software Test Case Generation Tools and Techniques: A Review

Abhishek Singh Verma

Department of Computer Science & Engineering,

Dr. A. P. J. Abdul Kalam Technical University, Lucknow, U.P., India.

SET, Sharda University, Greater Noida, U.P., India.

E-mail: abhiverma2005@gmail.com

Ankur Choudhary
Department of Computer Science and Engineering,

SET, Sharda University, Greater Noida, U.P., India.

Corresponding author: ankur.tomer@gmail.com, ankur.choudhary@sharda.ac.in

Shailesh Tiwari
Department of Computer Science and Engineering,

Krishna Engineering College, Ghaziabad, U.P., India.

E-mail: shail.tiwari@yahoo.com

(Received on November 07, 2022; Accepted on December 12, 2022)

Abstract

Software Industry is evolving at a very fast pace since last two decades. Many software developments, testing and test case

generation approaches have evolved in last two decades to deliver quality products and services. Testing plays a vital role to

ensure the quality and reliability of software products. In this paper authors attempted to conduct a systematic study of testing

tools and techniques. Six most popular e-resources called IEEE, Springer, Association for Computing Machinery (ACM),

Elsevier, Wiley and Google Scholar to download 738 manuscripts out of which 125 were selected to conduct the study. Out of

125 manuscripts selected, a good number approx. 79% are from reputed journals and around 21% are from good conference of

repute. Testing tools discussed in this paper have broadly been divided into five different categories: open source, academic and

research, commercial, academic and open source, and commercial & open source. The paper also discusses several benchmarked

datasets viz. Evosuite 10, SF100 Corpus, Defects4J repository, Neo4j, JSON, Mocha JS, and Node JS to name a few. Aim of this

paper is to make the researchers aware of the various test case generation tools and techniques introduced in the last 11 years with

their salient features.

Keywords- Software testing, Test case generation, Test data, Software reliability, Software engineering.

1. Introduction
Software industry is very dynamic, uncertain and volatile, since 19th century to till date new software

trends are taking place to meet the growing needs of customers. But throughout this tenure, the quality

and reliability of software have always been a prime focus. The increasing dependency of society on the

daily use of the software is making software reliability a more important aspect. The reliability of

software mainly depends on software testing. Better software testing may lead to more reliable software.

Software Testing is a process of applying existing or new test cases on software for verification during

development and for validation of functionality before release. Testing time is an essential key factor that

depends on the scope and complexity of the software. It is identified that testing consumes more than 50%

software development time as it involves various activities. Testing activities include the following tasks:

generation of test cases, forming test suites, execution of test suites, analyze the results of the execution

and prepare the report of testing activity (Baresi and Pezzè, 2006; Setiani et al., 2019).

mailto:ankur.tomer@gmail.com

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

294 | Vol. 8, No. 2, 2023

The main of test case generation is to make test suites for detecting bugs in the software. These test cases

and test suites will ensure that the system satisfies the reliability, standards, and customer requirements of

the software. The test case generation approach contains four main activities: information artifacts,

generation mechanism, test case validity and formation of test oracle. These activities are used to

represent the basic test case generation process shown in Figure 1 (Clark et al., 2021).

Figure 1. Basic test case generation process.

In practicality, a test case generator is a software program that takes a source code of software to be

tested, test case validation criteria, test case specifications and basic data structure definitions of test cases

as input parameters and generates test cases as output. Test case generation algorithms use heuristics or

some explicit strategy to generate test cases which maximize code coverage or fault coverage capabilities

of test cases. According to literature , generating accurate test cases which can fulfil the test requirements

is not an easy task (Narciso et al., 2014). In last decade so many researches have been done in the area of

test case generation. So, it became necessary to review these important literatures for better classification

of approaches and identification of research gaps.

This paper provides a systematic review to present a broad overview of the existing literature on test case

generation tools and techniques since 2011. The motivation behind the paper is to focus on evidences for

identification of research gap in test case generation tools and techniques.

To perform the review process, authors have included almost all the important literature and presented

them in a well-organized manner. This review has been conducted on a set of 125 papers published in

conference and journals of repute between year 2011 and 2021. The selection of these papers is done

using multistage selection criteria in the field of test suite generation.

Followed by introduction, the structure of this paper is as follows: Section 2, describes the research

methods for systematic mapping of existing work which includes the process of review, research

questions, search criteria, the inclusion and exclusion criteria and selection procedure for research articles.

Section 3 discussed the results and provide the answers of research questions with proper evidences. At

last, Section 4 presented the conclusions of the systematic review as well as identifies the future scope for

the current study.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

295 | Vol. 8, No. 2, 2023

2. Research Methods for Systematic Mapping of Literature Review
In last decade, researchers have contributed a lot on test case generation to make the generation process

more efficient and truly automated. Systematic review is the way to look back to the studies. It is a

rigorous and consistent practice for identifying and classifying related research as much as possible and

also focus on selection of relevant findings, analyse data, and perform evaluation or assessment (de

Almeida Biolchini et al., 2007). There are some slandered guidelines to conduct systematic review, such

guidelines provide the steps to perform systematic review. The authors have followed these guidelines

conduct an effective systematic literature review (Budgen and Brereton, 2006; Brereton et al., 2007;

Kitchenham et al., 2009).

This paper reviews existing state of the art tools and techniques of test case generation. In this section,

authors have summarized the research methods used to perform systematic review covers the review

process, research questions, review search and selection criteria. The objective is to mention the

highlighted points of existing literature and summarize the available research work in test case generation

domain.

2.1 Review Process
As suggested by Brereton et al. (2007), the review process has been conducted in three phases: Planning,

Conducting and Reporting.

In the planning phase following activities has been performed:

(i) Analyze the need of literature review.

(ii) Develop a variety of the research questions to address the need.

(iii) Designing the objectives of the review process.

In conducting phase following activities has been performed:

(i) Designing search criteria

(ii) Define review data selection criteria,

(iii) Review selection procedure including inclusion & exclusion selection criteria and selection of the

data from existing literature.

Finally, in reporting phase following activities has been performed:

(i) Reports have been prepared which includes findings of results with discussion in various forms such

as tables, graphs & descriptions.

The objective of overall review process is to answers the research questions with evidences, identify

research gaps and achieve the objectives which may help in future research work (Petersen et al., 2007).

While performing this literature review, following guidelines have been followed (Budgen and Brereton,

2006; Kitchenham et al., 2009). This process involved following steps:

➢ Selection of different e-databases from where the primary research papers were collected.

➢ Design a search string to capture all related publications.

➢ Defining inclusion & exclusion criteria for selection of related publications.

➢ Designing quality research questions to assess the quality of related papers to fulfil the objective of the

review.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

296 | Vol. 8, No. 2, 2023

Figure 2. Critical literature review process.

2.2 Research Questions
Test case generation process is suffering from various challenges. To identify and analyze the impact of

such challenges and their solutions, various research questions (RQ) have been developed. Six questions

have been formed for analysis and synthesis purpose. These questions were formed to analyze the

research gaps and identify the main aspects in the development and design of test case generation research

domain.

The authors have framed following research questions to analyze the literature and conclude to concrete

outcome. The lists of framed research questions for this study are mentioned below:

RQ1: How Test Case Generation techniques are different from each other?

RQ2: Are there any standard programs or datasets available to perform basic test case generation

research?

RQ3: What is the ratio of publishing research articles in conferences and journals of repute on test case

generation?

RQ4: Which type of testing has been explored a lot for research of test case generation?

RQ5: What are the various tools developed and utilized for automatic test case generation?

RQ6: What are the various optimization algorithms used for optimizing the results of test case generation

process?

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

297 | Vol. 8, No. 2, 2023

2.3 Review Search Criteria
The existing literature have been collected by performing different search techniques on various digital

libraries such as IEEE, Springer, ACM, Elsevier etc. & different online platforms of DBLP, Google

Scholar etc. Table 1shows the sources used in this review for selecting various journal and conference

papers.

Table 1. Selected digital libraries for papers.

Digital Library URL

Google Scholar https://scholar.google.com/

IEEE https://ieeexplore.ieee.org/

Springer https://link.springer.com/

ACM https://dl.acm.org/

Elsevier https://www.elsevier.com/

Wiley https://www.wiley.com/

During searching process, related search keywords have been selected to prepare the search strings. An

accurate and systematic approach for searching has been developed. The following steps have been

comprised to select publications using search keywords.

• The literature of test case generation has been explored and most repeated keywords are selected for

searching more articles.

• Explore matching string, alternative keywords and similar words that frequently used.

• Design search strings by using AND, OR and NOT operators and apply in search engines.

• At last, manually verify the searched publications that the research papers are related to the research

questions formed for literature review.

The titles of few of the searched papers were not relevant to this study, so these papers have been

discarded. In second step, the abstract & conclusion of the selected papers has been analyzed, if the paper

is found reverent to the study, then include these papers otherwise discard it. The related search strings

and alternate keywords used for this study are shown in Table 2.

Table 2. Related search string for automatic search.

S. No. Search String Alternate Keywords

I Test Suite Generation (Test suite AND generation) OR (generate AND test suites)

II Test Case Generation (Test case AND generation) OR (generate AND test cases)

III Test Data Generation (Test data AND generation) OR (generated AND test data)

IV Automatic Test Case Generation
(Automatic AND test case generation) OR (generated AND test cases AND
automatically)

After completed the exploration process, authors have included the relevant papers published during a

period of 11 years starting from year 2011 to year 2021 in the domain of Test Case Generation. Figure 3

shows the no. of publications year by year in last decade.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

298 | Vol. 8, No. 2, 2023

Figure 3. Representation of related papers published year wise in test case generation.

2.4 Selection Criteria of Primary Studies
The literature collection is performed into two. The first phase includes publication title including abstract

and conclusion, year & sources, summary of the research study. In second phase, the technical

information collected to provide the satisfactory answer to the research questions formed for this

systematic literature review.

The screening processes of selection of publications for primary studies are shown in Figure 4 and Figure

5.

Figure 4. Representation of selection criteria.

2 3 4

9
5

8
10

22 23
20

16

0

5

10

15

20

25

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

N
o

. o
f

P
u

b
lic

at
io

n
s

Year of Publications

Publication distributation per year (2011-2021)
Total Publications = 125

Define search string as

keywords

Execute/ Start search using

different online databases

Include all papers with

relevant headings &

objective of study

Remove all papers whose

headings have not fulfilled

the objective of study

Remove such papers whose

abstract & conclusion are

not relevant as per study

Complete Review Paper

with appropriate data

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

299 | Vol. 8, No. 2, 2023

After each extraction, the no. of papers is filtered as per extraction selection criteria i.e., remove duplicate

papers, title or abstract does not match, paper is not lying-in specified range, paper is either book, thesis,

project report or non-peer review publication.

For selection of research papers, the inclusion & exclusion selection criteria are applied to exploit the

search process as represented in Table 3. After applying these criteria, some papers were removed from

the pool as these papers were not satisfying the search conditions of review process.

Table 3. Inclusion & exclusion selection criteria.

Selection Criteria ID's Description

Inclusion Criteria

IC1
Studies that include the topics of test case generation, test suite generation etc. that proposing some

approach/ method and applied in some case studies.

IC2 Papers published in either journals or conference proceedings.

IC3 Papers including surveys and qualitative work that address the issue of Test Case Generation.

IC4 Consider the studies in academic & industry.

Exclusion Criteria

EC1 Papers not written in English language.

EC2 Papers not fulfilling the search condition of keywords.

EC3 Books, reports, thesis, tutorials and non-peer review publications.

EC4 Duplicate papers from different resources.

EC5 Papers are not lying in the range of years of selection criteria.

During searching process, the authors found 738 papers with matching keywords from various digital

libraries. After performing 3 round of exclusion process authors have selected 125 papers, which fulfills

the search conditions with their titles, abstracts and conclusions. Now, finally 125 papers found suitable

for critical review process.

Figure 5. Selection procedure of primary studies.

3. Results and Discussion
As software testing having various activities, generation of test cases is one of the crucial and important

activity, as it has a robust impact on the efficiency and effectiveness of the testing process (Zhu et al.,

1997; Bertolino, 2007) Test Case Generation is an activity in which test cases are generated either

manually or automatically by using any automatic test case generation tool (Prasanna et al., 2011;

Avdeenko and Serdyukov, 2021).

This section provides the answer of the research questions formed in this study based on the papers

collected in the previous section. To answer of research questions, the relevant evidences of existing

literature has been used, which will help the researchers of the domain of test case generation.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

300 | Vol. 8, No. 2, 2023

Answer to RQ1

To answer the research question 1, existing literature has been explored. It became clear that there exists

different type of test case generation techniques such as model based, random based, search-based,

specification based and metamorphic software testing approach. Figure 6 and Table 4 further differentiate

the various approaches of test case generation and discuss their advantages & disadvantages.

Figure 6. Test case generation techniques.

Table 4. Descriptions of test case generation techniques.

Name of

Technique

Description of Technique Advantages Disadvantages References of Technique

Model-
Based

Generation

Model-based testing is a technique in
which the test cases are generated

automatically from application

models written in EFSM (Extend
Finite-State Machine). Such models

consist of business logic & is just a

few lines of code.

(1) Communication
improvements.

(2) More Cost-

Effective.

(1) Increasing Complexity
(2) Adaptation To the New

Approach

(Pǎsǎreanu et al., 2009; Nguyen
et al., 2012; Enoiu et al., 2013;

Shirole and Kumar, 2013;

Nabuco ans Paiva, 2014; Li et
al., 2018; Fellner et al., 2019)

Random-

Testing

based

Random-testing method involves

creating random and independent

inputs to test programmes. It's a sort
of black-box testing. The output

created is compared to the software

specifications to see whether the
outcome is correct or not.

(1) Do not require to

know

programming
languages.

(2) it is cheaper,

simpler and
easier.

(1) Many of the tests are

redundant and

unrealistic.
(2) More time is spent on

analysing results.

(Liu et al., 2010; Zhou, 2010;

Huang et al., 2012; Ramler et

al., 2012; Bala Mishra et al.,
2017; Wetzlmaier and Ramler,

2017; Lemberger, 2020)

Search-

Based

Software
Testing

The process of utilizing search

techniques to solve testing problems

in the software is known as Search-
Based Software Testing (SBST).

SBST is a tool for creating test data,

prioritising test cases, reducing test
suites, and optimising software test

oracles, among other things.

(1) It is very quick,

efficient to

implement and
faster in

execution.

(2) It gives a sense
of the landscape

structure.

(1) Poorly defined

requirements.

(2) Some possible inputs
will only be tested.

(Harman, 2007; Ali et al.,

2010; Mairhofer et al., 2011;

Devasena and Valarmathi,
2012; Varshney and Mehrotra,

2013; Rojas et al., 2015; Dave

and Agrawal, 2015; Panichella,
2019; Scalabrino et al., 2021)

Specificatio
n based

Test cases are derived directly from
the specification or another model of

what the system should perform in a

specification-based technique.

(1) Test cases are
independent of

implementation.

(2) Development of
test cases have

done in parallel

with the
implementation.

(1) Substantial
redundancies may exist

in between test cases.

(2) Possibility of gaps of
untested software.

(Fraser and Gargantini, 2009;
Brucker et al., 2011; Vasilache,

2016; Ed-Douibi et al., 2018;

Wang et al., 2019; Sato, 2020)

Metamorphi

c Testing

Metamorphic testing technique is to

test programmes without the use of
an oracle has been proposed. It uses

metamorphic relations, which are

features of the target function, to
produce follow-up test cases and

automatically validate the results.

(1) Simplicity in

concept.
(2) Straightforward

implementation.

(1) No proper framework

for verification,
validation, and quality

assessment.

(2) Metamorphic relations
should not be formally

described.

(Tao et al., 2010; Sun et al.,

2011; Hui and Huang, 2013;
Bandaru and Albert Mayan,

2016; Saha and Kanewala,

2018; Lv et al., 2018; Segura et
al., 2020; Asyrofi et al., 2021)

Test Case Generation

Techniques

Specification

based

Model-Based

Generation

Random-Testing

based

Search-Based

Software Testing

Metamorphic

Testing

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

301 | Vol. 8, No. 2, 2023

Answer to RQ2

During the review processes it becomes clear that many of researchers have utilized various standard

datasets and sample programs to validate their test case generation approaches. Table 5 shows the brief

details of dataset utilized in Test Case Generation.

Table 5. Details of dataset utilized in test case generation.

Year of

Publicatio

n

Dataset

utilized
Title of Paper Reference

2015 EvoSuite 10 “A Memetic Algorithm for whole test suite generation” (Fraser et al., 2015)

2017 SF100 corpus “A detailed investigation of the effectiveness of whole test suite generation” (Rojas et al., 2017)

2017
Defects4J

repository

“Test Case Generation for Program Repair: A Study of Feasibility and

Effectiveness”
(Yu et al., 2017)

2020 Neo4j, JSON “Test case generation based on mutations over user execution traces” (Paiva et al., 2020)

2020
Mocha JS,

Node JS
“Implementing DDD for Automatic Test Case Generation”

(Nachiengmai et al.,

2020)

Answer to RQ3

The classification of research papers may help in tracking the research growth of the domain. The ratio

amongst the papers published in conferences and journals of repute may give a clear idea about the

growth. To provide the answer to RQ 3, authors have classified the research papers in these two classes.

Figure 7 depicts that out of 125 selected papers, 79% papers come from journal publication and 21%

papers have been published in conference publication. The ratio of publication indicates that from year

2011 to 2021 maximum papers of test case generation published in a variety of journals. The lists of few

papers with publication details are mentioned in the Table 8 that may help to the beginner’s level

researchers to explore the important literature.

Figure 7. Publication distribution.

Publication in
Conference

21%

Publication in
Journal

79%

Publication Distribution

Publication in Conference Publication in Journal

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

302 | Vol. 8, No. 2, 2023

Answer to RQ4

The performance of any testing technique depends on test case generation. So, it is important to analyze

research distribution of different types of testing solutions. To answer the RQ4, the Figure 8 has been

drawn, which indicates that there are various types of testing used to conduct research in test case

generation domain. It has been represented that in the field of test case generation 74% research

contributes in software testing domain, 13% research contributes in the domain of regression testing,

approx. 2-2% research distributes in the domain of AI testing & Evolutionary testing and 9% researchers

contributes their work in other different types of testing domain like object oriented, data flow testing,

mutation testing etc.

Figure 8. Research Distribution including various testing domain.

Answer to RQ5

According to literature, various testing tools have been developed to address the challenges of test case

generation. In order to fulfill the requirements and maintain the quality of the software, researchers have

developed a variety of tools for generating new test cases for existing/ new software. To answer the RQ5,

Table 6 has been formed from the literature that list the various testing tools utilized for automatic

generation of test cases. In Table 6, 24 different tools are mentioned which represent the name of tool,

input language used by tool, the category of tool and short description as well as year of development/

modification of tool.

Table 6. List of various testing tools used in test case generation.

Year of

Development/

Modification

Name of Tool Input Language Type of Software Reference

2010 Austin C Language Open Source (Lakhotia et al., 2010)

2010 PET Java Academic & Research (Albert et al., 2010)

2011 Korat Java Open Source (Boyapati et al., 2002)

2011 jPET Java Commercial (Albert et al., 2011)

2012 Palus Java Open Source (Zhang et al., 2011)

2013 MergePoint/ Mayhem binary (32bit, Linux) Commercial (Avgerinos et al., 2014)

Software
Testing

74%

Evolutionary
Testing

2%

Regression
Testing

13%

Others
9%

AI Testing
2%

RESEARCH DISTRIBUTION IN TESTING TYPE

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

303 | Vol. 8, No. 2, 2023

Table 6 continued…

2013 PathCrawler C Language Academic & Research (Williams et al., 2005)

2014 CREST C Language Open Source
(Boshernitsan et al.,

2006)

2014 CAUT C Language Academic & Research (Su et al., 2015)

2014 Jseft JavaScript Academic & Open Source (Mirshokraie et al., 2015)

2015 AgitarOne Java Commercial (Burnim and Sen, 2008)

2015 AutoTest Eiffel
Commercial & Open

Source
(Leitneret al., 2007)

2015 CATG Java Open Source (Tanno et al., 2015)

2015 EvoSuite Java Academic & Open Source (Fraser and Arcuri, 2013)

2016 GRT Java Academic & Research (Ma et al., 2016)

2015 GUITAR GUI application Open Source (Nguyen et al., 2014)

2015 Jalangi JavaScript Open Source (Kalasapur et al., 2013)

2015 JTExpert Java Academic & Research (Sakti et al., 2015)

2015 Randoop Java Open Source (Pacheco et al., 2007)

2015 Symbolic PathFinder Java Open Source (Păsăreanu et al., 2013)

2015 T3 Java Open Source (Prasetya, 2015)

2015 TCG (LoTus) FSM Open Source (Muniz et al., 2015)

2016 UML Test XML Open Source (Herout and Brada, 2016)

2018 Testrecorder Java Open Source (Negara et al., 2019)

Answer to RQ6

As per the selected literature, it is clear that in last decade, most of the researchers have utilized various

optimization/ metaheuristic algorithms to solve test case generation problem. Table 7 gives an effective

summarization of the literature and discusses various optimization algorithms applied for test case

generation during the specified period of critical review. A variety of optimization algorithms including

Particle Swarm Optimization, Genetic algorithms, Bee Colony Optimization, Firefly Algorithm, Ant

Colony Optimization and many more have been utilized by various researchers. The Figure 8 shows that

approximately 26% of the research work done in the field of test case generation by utilizing various

metaheuristic/ optimization algorithms. The Figure 9 shows the utilization of various optimization in the

field of test case generation.

Figure 9. Utilization of various optimization algorithms.

0

1

2

3

4

5

6

7

N
o

. o
f

P
ap

e
r

C
o

u
n

t

Name of Optimization Algorithms

Utilization of Optimization Algorithms

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

304 | Vol. 8, No. 2, 2023

Table 7. Various optimization algorithms used in test case generation.

Year of

Publica

tion

Name of Optimization

Algorithm
Approach/ Technique Reference

2013
Bee-Colony Optimization &

Modified Genetic Algorithm
proposed an approach (Dalal and Chhillar, 2013)

2015 Genetic Algorithms proposed an approach using various operators (Fraser et al., 2015)

2014
Improved environmental
adaption method (IEAM)

proposed a new optimization technique (Mishra et al., 2014)

2014
Multi-Objective Firefly

Algorithm (MOFA)
proposed a technique (Iqbal et al., 2014)

2016 Cuckoo Algorithm
For generation of test data, proposed a new application of Cuckoo
search algorithm.

(Khari and Kumar, 2016)

2016
HARMONY SEARCH

ALGORITHM

Harmony search optimization algorithm has been analyzed for

random test data generation.
(Sahoo et al., 2016a)

2016 Genetic Algorithm the optimization of test case generation using genetic algorithm. (Mateen et al., 2016)

2016 Firefly Algorithm
Firefly Algorithm has been analyzed to generate random test cases
& optimize the results.

(Sahoo et al., 2016)

2018
Modified Particle swarm

optimization algorithm
Proposed a new technique for automatic test data generation. (Wang and Liu, 2018)

2018
Multi-Objectives
Evolutionary Algorithm

approach (MOEA)

proposed an approach (Abdallah et al., 2018)

2018
Artificial Bee Colony
Algorithm

suggest a new strategy focusing on the Artificial Bee Colony
(ABC) Algorithm

(Alazzawi and Rais, 2018)

2019 Cuckoo Search Algorithm
proposes a framework for the generation of an optimal set of test

cases
(Sharma et al., 2019)

2020

Particle-Swarm
Optimization & Adaptive

Particle-Swarm

Optimization

propose a fitness function, Improved Combined Fitness (ICF)

function
(Sahoo and Ray, 2020)

2019 Genetic Algorithm propose a new method for efficient test case generation (Wang et al., 2019)

2020
Ant Colony Optimization

Algorithm
proposed a technique (Saju and Vinod 2020)

2020
Hybrid Cuckoo Search &
Bee-Colony Algorithm

proposed an approach
(Lakshminarayana and
SureshKumar, 2020)

2019
Ant Colony Optimization

Algorithm

proposed a new self-adapting ant colony optimization-based

algorithm using fuzzy logic (ACOF)
(Ahmad et al., 2020)

2020
Improved Crow Search
Algorithm

proposes an Improved
Crow Search Algorithm (ICSA)

(Jatana and Suri, 2020)

2020
Artificial bee colony

algorithm

presented a new algorithm in the domain of data flow testing by

making use of ABC optimization algorithm
(Sheoran et al., 2020)

2021 Genetic programming proposed an approach (Nosrati et al., 2021)

2021 Ant Colony Algorithm developed a strategy (Ramli et al., 2021)

2021
Artificial Bee Colony

algorithm
proposed an approach Archive-based Artificial Bee Colony (Sahin et al., 2021)

2021

Hybrid Migrating Birds

Optimization, Genetic
Algorithm

proposed a new strategy named as Elitist Hybrid MBO-GA

Strategy (EMBO-GA)
(Zakaria et al., 2021)

2021
Adaptive cuckoo search

algorithm
proposed an approach (Sahoo et al., 2021)

4. Conclusions and Future Scope
Now a day everyone is looking for quality software product to ease their day-to-day life. Testing plays an

important role to ensure the quality of software, which can be achieve though generation of testcases. Test

Case Generation is a challenging task that should be more mature. In order to dig out the challenges and

their solutions this paper has presented a comprehensive study of various tools and techniques for test

case generation. To perform a critical review process has been followed such as search keywords,

searching criteria and selection procedure. To make it more effective authors have framed various

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

305 | Vol. 8, No. 2, 2023

research questions, which have been answered one by one in the result discussion section. The list of

tables and figures has been presented in this study to address the answers of the research questions. It is

clear from literature review that huge research work has been performed by various researches in the field

of test case generation in last one decade. The authors also tried to provide a brief description of existing

literature with the help of critical review and provide the answers of research questions with evidences.

During the critical review, it has been found that there are various research gaps available in existing

research. Future work may include development of new testing tools as per more specific requirements or

integrate the features of two or more tools to solve complex problems of test case generation process, also

utilized or create more datasets for research rather than using toy or existing datasets. In future, develop

new metaheuristic/ optimization algorithms to optimize the results of test case generation problems as

well as increase the duration of literature in terms of years and consider maximum no. of papers for

critical review in test case generation or in other domains of software testing.

Appendix

To validate the answer of Research Questions RQ2, RQ3 & RQ4, Table 8 represents the data which

provide the Summary of manuscripts selected for this study and also answers of above-mentioned

questions:

Table 8. Summary of manuscripts selected for this study.

Year Testing Keyword Dataset Approach/ Technique
Conference/

Journal
Reference

2010
Software
Testing

Test Case
Generation

GUI XML file
Proposed a new technique of
test case generation

Conference (Alsmadi, 2010)

2010
Software

Testing

Test Case

Generation
Toy Dataset

proposed a practical test case
generation technique derived

from use case diagram.

Conference
(Daengdej &

Kosindrdecha, 2010)

2013
Software
Testing

Test Case
Generation

Toy Dataset
proposed a model and
proposed an algorithm

Journal
(Dalal and Chhillar,
2013)

2013
Software
Testing

Test Suite
Generation

19 open-source

libraries and
programs, Toy

Dataset

For test case generation,

EVOSUITE tool implements
the approach proposed in this

paper.

Journal
(Fraser and Arcuri,
2013)

2014
Software
Testing

Test Case
Generation

Toy Dataset proposed an algorithm Journal (Mishra et al., 2014)

2014
Software

Testing

Test Case

Generation
Toy Dataset proposed a technique Conference (Iqbal et al., 2014)

2014
Software
Testing

Test Suite
Generation

No Dataset Survey/Review Journal
(Pahwa and Solanki,
2014)

2014
Software

Testing

Test Suite

Generation
No Dataset Survey/Review Journal

(Hooda and Chhillar,

2014)

2015
Evolutionary
Testing

Test Suite
Generation

EvoSuite 10 tool
Memetic Algorithm for test
suite optimization

Journal (Fraser et al., 2015)

2016
Software

Testing

Test Case

Generation
Toy Dataset

proposed a methodology for

generating test cases
Journal (Sahoo et al., 2016a)

2016
Software
Testing

Test Case
Generation

Toy Dataset proposed an approach Journal (Sahoo et al., 2016)

2016
Software

Testing

Test Case

Generation

overview of

different techniques

of automatic test
cases generation

Survey/ Review Journal
(Mahadik et al.,

2016)

2016
Software

Testing

Test Case

Generation
Toy Dataset

Proposed an optimization

approach
Journal (Mateen et al., 2016)

2016
Software

Testing

Test Case

Generation
Toy Dataset

paper proposed a methodology

for generating test cases
Journal (Sahoo et al., 2016b)

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

306 | Vol. 8, No. 2, 2023

Table 8 continued...

2017
Software

Testing

 Test Case

Generation
SF100 corpus empirical study Journal (Rojas et al., 2017)

2017
Software
Testing

Test Case
Generation

Toy Dataset Survey Conference
(Kulshreshtha et al.,
2017)

2017
 Software
Testing

Test Case
Generation

Defects4J
repository

proposed two approaches for
using test case generation

Conference (Yu et al., 2017)

2018
Software
Testing

Test Case
Generation

No Dataset SLR Journal
(Arora and Bhatia,
2018)

2018
Software

Testing

Test Case

Generation
Toy Dataset proposed a new approach Journal (Abdallah et al., 2018)

2018
Software

Testing

Test Case

Generation
No Dataset literature survey Journal (Chauhan et al., 2018)

2018
Regression

Testing

Test Case

Generation
No Dataset Survey Paper Journal (Gupta et al., 2018)

2018
Software

Testing

Test Cases

Generation
Toy dataset proposed a new approach Conference (Din and Zamli, 2018)

2019
Regression

Testing

Test Suite

Generation

five Java

programs under
test

performance evaluation of six

meta- heuristic algorithms
Journal (Khari et al., 2020)

2019
Software

Testing

Test Case

Generation
Toy Dataset

present a model-based

approach
Journal

(Yazdani Seqerloo et

al., 2019)

2019
Software
Testing

Test Case
Generation

No Dataset Survey Paper Journal
(Khari and Kumar,
2019)

2019
Software

Testing

Test Case

Generation
Toy Dataset

proposed an automatic

approach
Journal

(Alrawashed et al.,

2019)

2019
Software
Testing

Test Case
Generation

No Dataset review Journal (Gupta et al., 2019)

2019
Software

Testing

Test Case

Generation
Toy dataset

proposed a method for

demand-based TCG for OO
systems

Journal (Singh et al., 2019)

2019
Regression

Testing

Test Case

Generation
Toy dataset propose a new method Conference (Wang et al., 2019)

2019
Software
Testing

Test Case
Generation

No Dataset systematic review Journal (Mishra et al., 2019)

2019
Software

Testing

Test Case

Generation

10 Java programs

from two open-

source projects
are used as case

studies

Literature Review, two
automatic test case generator

tools are used, Randoop and

Evosuite.

Conference (Setiani et al., 2019)

2020
Software

testing

Test case

generation
Toy dataset

proposed a modified ACO
based approach for the

automated and effective

generation of valid test cases

Conference (Saju and Vinod, 2020)

2020
Software

testing

Test case

generation
Neo4j, JSON

presents a web testing approach

in which test cases are

generated from user execution
traces

Journal (Paiva et al., 2020)

2020
Software

testing

Test case

Generation
Toy dataset

proposed a new method

CSBCA
Journal

(Lakshminarayana and

SureshKumar, 2020)

2020
Software

testing

Test case

Generation
Toy dataset

systematic study of mapping of

test case generation techniques
Journal (Minhas et al., 2020)

2020
Regression
testing

Test Case
Generation

JAVA, Toy
dataset

propose an innovative

technique in order to test the
quality of the cloud-based

software

Journal
(Venkatraman and
Sethumadhavan, 2020)

2020
Software
testing

Automatic test
case generation

Mocha JS, Node
JS

Proposed a technique Journal
(Nachiengmai et al.,
2020)

2020
Software

testing

Test Data

Generation
Toy dataset

Proposed a Meta-heuristic

technique ICSA
Journal (Jatana and Suri, 2020)

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

307 | Vol. 8, No. 2, 2023

Table 8 continued...

2020
Software

testing

Test suite

generation
Toy dataset Present a novel algorithm Journal (Sheoran et al., 2020)

2020
Software

testing

Test suite

generation
Toy dataset

Proposed a DOTSG method for

EFSM models using GA.
Journal (Zhao et al., 2020)

2020
Software

testing

Automated Test

Suite Generation
No Dataset Empirical Evaluation Journal (Khari, 2020)

2020 AI Testing
Test Case

Generation
Toy dataset

two techniques used activation

maximization and Generative
Adversarial Network (GAN)

Journal (Koo et al., 2020)

2021
Software

testing

Test Suite

Generation

Key-Points

detection DNNs
(KP-DNNs)

present an approach to
automatically generate test data

for KP-DNNs using many-

objective search

Conference (Haq et al., 2020)

2021
Software
testing

Test Case
Generation

No Dataset Empirical Evaluation Journal (Brunetto et al., 2021)

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The

authors would like to thank the editor and anonymous reviewers for their comments that help improve the quality of this work.

References

Abdallah, S.A., Moawad, R., & Fawzy, E.E. (2018). An optimization approach for automated unit test generation

tools using multi-objective evolutionary algorithms. Future Computing and Informatics Journal, 3(2), 178-190.

https://doi.org/10.1016/j.fcij.2018.02.004.

Alazzawi, A.K., Rais, H.M., & Basri, S. (2018). Artificial bee colony algorithm for t-way test suite generation. In

2018 4th International Conference on Computer and Information Sciences (ICCOINS) (pp. 1-6). IEEE. Kuala

Lumpur, Malaysia.

Albert, E., Cabanas, I., Flores-Montoya, A., Gómez-Zamalloa, M., & Gutiérrez, S. (2011, October). Jpet: An

automatic test-case generator for java. In 2011 18th Working Conference on Reverse Engineering (pp. 441-

442). IEEE. Limerick, Ireland.

Albert, E., Gómez-Zamalloa, M., & Puebla, G. (2010). PET: a partial evaluation-based test case generation tool for

Java bytecode. In Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program

Manipulation (pp. 25-28). https://doi.org/10.1145/1706356.1706363.

Ali, S., Briand, L.C., Hemmati, H., & Panesar-Walawege, R.K. (2010). A systematic review of the application and

empirical investigation of search-based test case generation. IEEE Transactions on Software Engineering,

36(6), 742-762. https://doi.org/10.1109/TSE.2009.52.

Alrawashed, T.A., Almomani, A., Althunibat, A., & Tamimi, A. (2019). An automated approach to generate test

cases from use case description model. CMES - Computer Modeling in Engineering and Sciences, 119(3), 409-

425. https://doi.org/10.32604/cmes.2019.04681.

Alsmadi, I. (2010). Using genetic algorithms for test case generation and selection optimization. In CCECE 2010

(pp. 1-4). IEEE. Calgary, AB, Canada.

Arora, P.K., & Bhatia, R. (2018). A Systematic review of agent-based test case generation for regression testing.

Arabian Journal for Science and Engineering, 43(2), 447-470. https://doi.org/10.1007/s13369-017-2796-4.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

308 | Vol. 8, No. 2, 2023

Asyrofi, M.H., Yang, Z., Yusuf, I.N.B., Kang, H.J., Thung, F., & Lo, D. (2021). Biasfinder: Metamorphic test

generation to uncover bias for sentiment analysis systems. IEEE Transactions on Software Engineering, 48(12),

5087-5107.

Avdeenko, T., & Serdyukov, K. (2021). Automated test data generation based on a genetic algorithm with maximum

code coverage and population diversity. Applied Sciences, 11(10), 4673. https://doi.org/10.3390/app11104673.

Avgerinos, T., Rebert, A., Cha, S.K., & Brumley, D. (2014). Enhancing symbolic execution with veritesting.

Proceedings - International Conference on Software Engineering, 1, 1083-1094.

https://doi.org/10.1145/2568225.2568293.

Bala Mishra, D., Bilgaiyan, S., Mishra, R., Acharya, A.A., & Mishra, S. (2017). A review of random test case

generation using genetic algorithm. Indian Journal of Science and Technology, 10(30), 1-7.

https://doi.org/10.17485/ijst/2017/v10i30/107654.

Bandaru, R., & Albert Mayan, J. (2016). Novel approach for whole test suite generation using metamorphic

relations. Indian Journal of Science and Technology, 9(10), 1-7. https://doi.org/10.17485/ijst/2016/v9i10/88983.

Baresi, L., & Pezze, M. (2006). An introduction to software testing. Electronic Notes in Theoretical Computer

Science, 148(1), 89-111. https://doi.org/10.1016/j.entcs.2005.12.014.

Bertolino, A. (2007, May). Software testing research: Achievements, challenges, dreams. In Future of Software

Engineering (FOSE'07) (pp. 85-103). IEEE. Minneapolis, MN, USA.

Boshernitsan, M., Doong, R., & Savoia, A. (2006). From daikon to agitator: Lessons and challenges in building a

commercial tool for developer testing. In Proceedings of the 2006 International Symposium on Software Testing

and Analysis (pp. 169-180). https://doi.org/10.1145/1146238.1146258.

Boyapati, C., Khurshid, S., & Marinov, D. (2002). Korat: Automated testing based on Java predicates. ACM

SIGSOFT Software Engineering Notes, 27(4), 123-133.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic

literature review process within the software engineering domain. Journal of Systems and Software, 80(4), 571-

583. https://doi.org/10.1016/j.jss.2006.07.009.

Brucker, A.D., Krieger, M.P., Longuet, D., Wolff, B. (2011). A Specification-Based test case generation method for

UML/OCL. In: Dingel, J., Solberg, A. (eds) Models in Software Engineering. MODELS 2010. Lecture Notes in

Computer Science (vol. 6627). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21210-9_33.

Brunetto, M., Denaro, G., Mariani, L., & Pezzè, M. (2021). On introducing automatic test case generation in

practice: A success story and lessons learned. Journal of Systems and Software, 176, 110933.

https://doi.org/10.1016/j.jss.2021.110933.

Budgen, D., & Brereton, P. (2006, May). Performing systematic literature reviews in software engineering. In

Proceedings of the 28th International Conference on Software Engineering (pp. 1051-1052).

https://doi.org/10.1145/1134285.1134500.

Burnim, J., & Sen, K. (2008, September). Heuristics for scalable dynamic test generation. In 2008 23rd IEEE/ACM

International Conference on Automated Software Engineering (pp. 443-446). IEEE. L'Aquila, Italy.

Chauhan, A., Singhal, R.S., & Yadav, P.K. (2018). Test case generation techniques. International Journal of

Computer Trends and Technology, 57(2), 66-69. https://doi.org/10.14445/22312803/ijctt-v57p112.

Clark, A.G., Walkinshaw, N., & Hierons, R.M. (2021). Test case generation for agent-based models: A systematic

literature review. Information and Software Technology, 135, 106567.

https://doi.org/10.1016/j.infsof.2021.106567.

Daengdej, J., & Kosindrdecha, N. (2010). A test case generation technique and process. ACM SIGSOFT Software

Engineering Notes, EMDT2010.

https://doi.org/10.3390/app11104673

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

309 | Vol. 8, No. 2, 2023

Dalal, S., & Chhillar, R.S. (2013). A novel technique for generation of test cases based on bee colony optimization

and modified genetic algorithm (BCOmGA). International Journal of Computer Applications, 68(19), 12-16.

Dave, M., & Agrawal, R. (2015, June). Search based techniques and mutation analysis in automatic test case

generation: A survey. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 795-799).

IEEE. Banglore, India

de Almeida Biolchini, J.C., Mian, P.G., Natali, A.C.C., Conte, T.U., & Travassos, G.H. (2007). Scientific research

ontology to support systematic review in software engineering. Advanced Engineering Informatics, 21(2), 133-

151. https://doi.org/10.1016/j.aei.2006.11.006.

Din, F., & Zamli, K.Z. (2018, February). Fuzzy adaptive teaching learning-based optimization strategy for GUI

functional test cases generation. In Proceedings of the 2018 7th International Conference on Software and

Computer Applications (pp. 92-96). https://doi.org/10.1145/3185089.3185148.

Ed-Douibi, H., Izquierdo, J.L.C., & Cabot, J. (2018, October). Automatic generation of test cases for REST APIs: A

specification-based approach. In 2018 IEEE 22nd International Enterprise Distributed Object Computing

Conference (EDOC) (pp. 181-190). IEEE. Stockholm, Sweden.

Enoiu, E.P., Sundmark, D., & Pettersson, P. (2013, March). Model-based test suite generation for function block

diagrams using the uppaal model checker. In 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation Workshops (pp. 158-167). IEEE. Luxembourg, Luxembourg.

Fellner, A., Krenn, W., Schlick, R., Tarrach, T., & Weissenbacher, G. (2019). Model-based, mutation-driven test-

case generation via heuristic-guided branching search. ACM Transactions on Embedded Computing Systems

(TECS), 18(1), 1-28. https://doi.org/10.1145/3289256.

Fraser, G., & Arcuri, A. (2013). Whole test suite generation. IEEE Transactions on Software Engineering, 39(2),

276-291. https://doi.org/10.1109/TSE.2012.14.

Fraser, G., Arcuri, A., & McMinn, P. (2015). A memetic algorithm for whole test suite generation. Journal of

Systems and Software, 103, 311-327. https://doi.org/10.1016/j.jss.2014.05.032.

Fraser, G., & Gargantini, A. (2009, May). Experiments on the test case length in specification based test case

generation. In 2009 ICSE Workshop on Automation of Software Test (pp. 18-26). IEEE. Vancouver, BC,

Canada.

Gupta, N., Sharma, A., & Pachariya, M.K. (2019). An insight into test case optimization: ideas and trends with

future perspectives. IEEE Access, 7, 22310-22327. https://doi.org/10.1109/ACCESS.2019.2899471.

Gupta, N., Yadav, V., & Singh, M. (2018). Automated regression test case generation for web application: A

survey. ACM Computing Surveys (CSUR), 51(4), 1-25. https://doi.org/10.1145/3232520.

Haq, F.U., Shin, D., Briand, L.C., Stifter, T., & Wang, J. (2020). Automatic test suite generation for key-points

detection dnns using many-objective search. In Proceedings of the 30th ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA ’21), Virtual, Denmark (Vol. 1, Issue 1). Association for

Computing Machinery. https://doi.org/10.1145/3460319.3464802.

Harman, M. (2007, May). Automated test data generation using search based software engineering. In Second

International Workshop on Automation of Software Test (AST'07) (pp. 2-2). IEEE. Minneapolis, MN, USA.

Herout, P., & Brada, P. (2016, April). Uml-test application for automated validation of students' UML class

diagram. In 2016 IEEE 29th International Conference on Software Engineering Education and Training

(CSEET) (pp. 222-226). IEEE. Dallas, TX, USA.

Hooda, I., & Chhillar, R. (2014). A review: Study of test case generation techniques. International Journal of

Computer Applications, 107(16), 33-37. https://doi.org/10.5120/18839-0375.

Huang, R., Xie, X., Chen, T.Y., & Lu, Y. (2012). Adaptive random test case generation for combinatorial testing.

In 2012 IEEE 36th Annual Computer Software and Applications Conference (pp. 52-61). IEEE. Izmir, Turkey.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

310 | Vol. 8, No. 2, 2023

Hui, Z.W., & Huang, S. (2013, December). Achievements and challenges of metamorphic testing. In 2013 Fourth

World Congress on Software Engineering (pp. 73-77). IEEE. Hong Kong, China.

Iqbal, N., Zafar, K., & Zyad, W. (2014, April). Multi-objective optimization of test sequence generation using multi-

objective firefly algorithm (MOFA). In 2014 International Conference on Robotics and Emerging Allied

Technologies in Engineering (iCREATE) (pp. 214-220). IEEE. Islamabad, Pakistan.

Jatana, N., & Suri, B. (2020). An improved crow search algorithm for test data generation using search-based

mutation testing. Neural Processing Letters, 52(1), 767-784.

Khari, M. (2020). Empirical evaluation of automated test suite generation and optimization. Arabian Journal for

Science and Engineering, 45(4), 2407-2423. https://doi.org/10.1007/s13369-019-03996-3.

Khari, M., & Kumar, P. (2016, March). A novel approach for software test data generation using cuckoo algorithm.

In Proceedings of the Second International Conference on Information and Communication Technology for

Competitive Strategies (pp. 1-6). https://doi.org/10.1145/2905055.2905157.

Khari, M., & Kumar, P. (2019). An extensive evaluation of search-based software testing: a review. Soft

Computing, 23(6), 1933-1946. https://doi.org/10.1007/s00500-017-2906-y.

Khari, M., Sinha, A., Verdú, E., & Crespo, R.G. (2020). Performance analysis of six meta-heuristic algorithms over

automated test suite generation for path coverage-based optimization. Soft Computing, 24(12), 9143-9160.

https://doi.org/10.1007/s00500-019-04444-y.

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature

reviews in software engineering - A systematic literature review. Information and Software Technology, 51(1),

7–15. https://doi.org/10.1016/j.infsof.2008.09.009.

Koo, B., Bae, J., Kim, S., Park, K., & Kim, H. (2020). Test case generation method for increasing software

reliability in safety-critical embedded systems. Electronics (Switzerland), 9(5), 1-16.

https://doi.org/10.3390/electronics9050797.

Kulshreshtha, M., Agarwal, C., & Kamalakannan, J. (2017, November). Comparative study on test case generation:

a survey. In IOP Conference Series: Materials Science and Engineering (Vol. 263, No. 4, p. 042035). IOP

Publishing. https://doi.org/10.1088/1757-899X/263/4/042035.

Lakhotia, K., Harman, M., & Gross, H. (2010, September). AUSTIN: A tool for search based software testing for

the C language and its evaluation on deployed automotive systems. In 2nd International Symposium on Search

based Software Engineering (pp. 101-110). IEEE. Benevento, Italy.

Lakshminarayana, P., & SureshKumar, T.V. (2020). Automatic generation and optimization of test case using

hybrid cuckoo search and bee colony algorithm. Journal of Intelligent Systems, 30(1), 59-72.

https://doi.org/10.1515/jisys-2019-0051.

Lemberger, T. (2020). Plain random test generation with PRTest. International Journal on Software Tools for

Technology Transfer, 1-3. https://doi.org/10.1007/s10009-020-00568-x.

Li, W., Le Gall, F., & Spaseski, N. (2018). A survey on model-based testing tools for test case generation.

In International Conference on Tools and Methods for Program Analysis (pp. 77-89). Springer, Cham.

Liu, Z., Gao, X., & Long, X. (2010). Adaptive random testing of mobile application. In 2010 2nd International

Conference on Computer Engineering and Technology (Vol. 2, pp. V2-297). IEEE. Chengdu, China.

Lv, X.W., Huang, S., Hui, Z.W., & Ji, H.J. (2018). Test cases generation for multiple paths based on PSO algorithm

with metamorphic relations. IET Software, 12(4), 306-317. https://doi.org/10.1049/iet-sen.2017.0260.

Ma, L., Artho, C., Zhang, C., Sato, H., Gmeiner, J., & Ramler, R. (2015, November). Grt: Program-analysis-guided

random testing (t). In 2015 30th IEEE/ACM International Conference on Automated Software Engineering

(ASE) (pp. 212-223). IEEE. Lincoln, NE, USA.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

311 | Vol. 8, No. 2, 2023

Mahadik, P., Bhattacharyya, D., & Kim, H.J. (2016). Techniques for automated test cases generation: A review.

International Journal of Software Engineering and Its Applications, 10(12), 13-20.

https://doi.org/10.14257/ijseia.2016.10.12.02

Mairhofer, S., Feldt, R., & Torkar, R. (2011, July). Search-based software testing and test data generation for a

dynamic programming language. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary

Computation (pp. 1859-1866). https://doi.org/10.1145/2001576.2001826.

Mateen, A., Nazir, M., & Afsar, S. (2016). Optimization of test case generation using genetic algorithm (GA).

International Journal of Computer Applications, 151(7), 6-14. https://doi.org/10.5120/ijca2016911703.

Leitner, A., Ciupa, I., Meyer, B., & Howard, M. (2007, January). Reconciling manual and automated testing: The

autotest experience. In 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07) (pp.

261a-261a). IEEE. Waikoloa, HI, USA.

Minhas, N.M., Masood, S., Petersen, K., & Nadeem, A. (2020). A systematic mapping of test case generation

techniques using UML interaction diagrams. Journal of Software: Evolution and Process, 32(6), 1-21.

https://doi.org/10.1002/smr.2235.

Mirshokraie, S., Mesbah, A., & Pattabiraman, K. (2015, April). JSeft: Automated JavaScript unit test generation. In

2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST) (pp. 1-10).

IEEE. Graz, Austria.

Mishra, D.B., Acharya, A.A., & Mishra, R. (2019). Evolutionary algorithms for path coverage test data generation

and optimization: A review. Indonesian Journal of Electrical Engineering and Computer Science, 15(1), 504-

510. https://doi.org/10.11591/ijeecs.v15.i1.pp504-510.

Mishra, K.K., Tiwari, S., & Misra, A.K. (2014). Improved environmental adaption method and its application in test

case generation. Journal of Intelligent and Fuzzy Systems, 27(5), 2305-2317. https://doi.org/10.3233/IFS-

141195.

Muniz, L., Netto, U.S., & Maia, P.H.M. (2015). A model-based testing tool for functional and statistical testing.

In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS) (pp. 404-411).

https://doi.org/10.5220/0005398604040411.

Nabuco, M., & Paiva, A.C. (2014, June). Model-based test case generation for web applications. In International

Conference on Computational Science and its Applications (pp. 248-262). Springer, Cham.

https://doi.org/10.1007/978-3-319-09153-2_19.

Nachiengmai, W., Ramingwong, S., & Kongkeaw, A. (2020). Implementing DDD for automatic test case

generation. International Journal of Information and Education Technology, 10(2), 117-121.

https://doi.org/10.18178/ijiet.2020.10.2.1349

Narciso, E.N., Delamaro, M.E., & De Lourdes, F.D.S.N. (2014). Test case selection: A systematic literature review.

International Journal of Software Engineering and Knowledge Engineering, 24(4), 653-676.

https://doi.org/10.1142/S0218194014500259.

Negara, S., Esfahani, N., & Buse, R. (2019, May). Practical android test recording with espresso test recorder.

In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP) (pp. 193-202). IEEE. Montreal, QC, Canada.

Nguyen, B.N., Robbins, B., Banerjee, I., & Memon, A. (2014). GUITAR: An innovative tool for automated testing

of GUI-driven software. Automated Software Engineering, 21(1), 65-105. https://doi.org/10.1007/s10515-013-

0128-9.

Nguyen, C.D., Marchetto, A., & Tonella, P. (2012, July). Combining model-based and combinatorial testing for

effective test case generation. In Proceedings of the 2012 International Symposium on Software Testing and

Analysis (pp. 100-110). https://doi.org/10.1145/04000800.2336765.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

312 | Vol. 8, No. 2, 2023

Nosrati, M., Haghighi, H., & Asl, M.V. (2021). Test data generation using genetic programming. Information and

Software Technology, 130, 106446. https://doi.org/10.1016/j.infsof.2020.106446.

Pacheco, C., Lahiri, S.K., Ernst, M.D., & Ball, T. (2007, May). Feedback-directed random test generation. In 29th

International Conference on Software Engineering (ICSE'07) (pp. 75-84). IEEE. Minneapolis, MN, USA.

Pahwa, N., & Solanki, K. (2014). UML based Test case generation methods: A review. International Journal of

Computer Applications, 95(20), 1-6. https://doi.org/10.5120/16707-6859.

Paiva, A.C., Restivo, A., & Almeida, S. (2020). Test case generation based on mutations over user execution traces.

Software Quality Journal, 28(3), 1173-1186. https://doi.org/10.1007/s11219-020-09503-4.

Panichella, A. (2019, May). Beyond unit-testing in search-based test case generation: Challenges and opportunities.

In 2019 IEEE/ACM 12th International Workshop on Search-Based Software Testing (SBST) (pp. 7-8). IEEE.

Montreal, QC, Canada.

Pasareanu, C.S., Schumann, J., Mehlitz, P., Lowry, M., Karsai, G., Nine, H., & Neema, S. (2009, July). Model based

analysis and test generation for flight software. In 2009 Third IEEE International Conference on Space Mission

Challenges for Information Technology (pp. 83-90). IEEE. Pasadena, CA, USA.

Păsăreanu, C. S., Visser, W., Bushnell, D., Geldenhuys, J., Mehlitz, P., & Rungta, N. (2013). Symbolic PathFinder:

Integrating symbolic execution with model checking for Java bytecode analysis. Automated Software

Engineering, 20(3), 391-425. https://doi.org/10.1007/s10515-013-0122-2

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2007). Systematic mapping studies in software engineering.

International Journal of Software Engineering & Knowledge Engineering, 17(1), 33-55.

Prasanna, M., Chandran, K.R., & Thiruvenkadam, K. (2011). Automatic test case generation for UML collaboration

diagrams. IETE Journal of Research, 57(1), 77-81. https://doi.org/10.4103/0377-2063.78373.

Prasetya, I.W.B. (2015, August). T3i: A tool for generating and querying test suites for java. In Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering (pp. 950-953).

https://doi.org/10.1145/2786805.2803182.

Ramler, R., Winkler, D., & Schmidt, M. (2012, September). Random test case generation and manual unit testing:

Substitute or complement in retrofitting tests for legacy code?. In 2012 38th Euromicro Conference on Software

Engineering and Advanced Applications (pp. 286-293). IEEE. Cesme, Turkey.

Ramli, N., Othman, R.R., Hendradi, R., & Iszaidy, I. (2021, February). T-way test suite generation strategy based on

ant colony algorithm to support t-way variable strength. In Journal of Physics: Conference Series (Vol. 1755,

No. 1, p. 012034). IOP Publishing. https://doi.org/10.1088/1742-6596/1755/1/012034.

Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., & Arcuri, A. (2015, September). Combining multiple coverage

criteria in search-based unit test generation. In International Symposium on Search Based Software Engineering

(pp. 93-108). Springer, Cham. https://doi.org/10.1007/978-3-319-22183-0_7.

Rojas, J.M., Vivanti, M., Arcuri, A., & Fraser, G. (2017). A detailed investigation of the effectiveness of whole test

suite generation. Empirical Software Engineering, 22(2), 852-893. https://doi.org/10.1007/s10664-015-9424-2.

Devasena, M.G., & Valarmathi, M.L. (2012). Search based Software testing technique for structural test case

generation. International Journal of Applied Information Systems, 1(6), 20-25. https://doi.org/10.5120/ijais12-

450185.

Saju, S.S., Vinod, C.S.S. (2020). An ant colony optimization algorithm based automated generation of software test

cases. In: Tan, Y., Shi, Y., Tuba, M. (eds) Advances in Swarm Intelligence. ICSI 2020. Lecture Notes in

Computer Science (vol 12145). Springer, Cham. https://doi.org/10.1007/978-3-030-53956-6_21.

Saha, P., & Kanewala, U. (2018, May). Fault detection effectiveness of source test case generation strategies for

metamorphic testing. In Proceedings of the 3rd International Workshop on Metamorphic Testing (pp. 2-9).

https://doi.org/10.1145/3193977.3193982.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

313 | Vol. 8, No. 2, 2023

Sahin, O., Akay, B., & Karaboga, D. (2021). Archive-based multi-criteria artificial bee colony algorithm for whole

test suite generation. Engineering Science and Technology, an International Journal, 24(3), 806-817.

https://doi.org/10.1016/j.jestch.2020.12.011.

Sahoo, R.K., Mohapatra, D.P., & Patra, M.R. (2016). A firefly algorithm based approach for automated generation

and optimization of test cases. International Journal of Computer Sciences and Engineering, 4(8), 1-6.

Sahoo, R.K., Ojha, D., Mohapatra, D.P., & Patra, M.R. (2016a). Automatic generation and optimization of test data

using harmony search algorithm. Computer Science & Information Technology, 23(10.5121).

Sahoo, R.K., Ojha, D., Mohapatra, D.P., & Patra, M.R. (2016b). Automated test case generation and optimization: a

comparative review. International Journal of Computer Science & Information Technology, 8(5), 19-32.

https://doi.org/10.5121/ijcsit.2016.8502.

Sahoo, R.K., Satpathy, S., Sahoo, S., & Sarkar, A. (2021). Model driven test case generation and optimization using

adaptive cuckoo search algorithm. Innovations in Systems and Software Engineering, 18(2), 321-331.

https://doi.org/10.1007/s11334-020-00378-z.

Sahoo, R.R., & Ray, M. (2020). PSO based test case generation for critical path using improved combined fitness

function. Journal of King Saud University-Computer and Information Sciences, 32(4), 479-490.

https://doi.org/10.1016/j.jksuci.2019.09.010.

Sakti, A., Pesant, G., & Guéhéneuc, Y.G. (2015). Instance generator and problem representation to improve object

oriented code coverage. IEEE Transactions on Software Engineering, 41(3), 294-313.

https://doi.org/10.1109/TSE.2014.2363479.

Sato, Y. (2020, December). Specification-based test case generation with constrained genetic programming. In 2020

IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C) (pp. 98-

103). IEEE. Macau, China.

Scalabrino, S., Mastropaolo, A., Bavota, G., & Oliveto, R. (2021). An adaptive search budget allocation approach

for search-based test case generation. ACM Transactions on Software Engineering and Methodology, 30(3), 1-

26. https://doi.org/10.1145/3446199.

Segura, S., Towey, D., Zhou, Z.Q., & Chen, T.Y. (2020). Metamorphic testing: Testing the untestable. IEEE

Software, 37(3), 46-53. https://doi.org/10.1109/MS.2018.2875968.

Sen, K., Kalasapur, S., Brutch, T., & Gibbs, S. (2013, August). Jalangi: A selective record-replay and dynamic

analysis framework for JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering (pp. 488-498). https://doi.org/10.1145/2491411.2491447.

Setiani, N., Ferdiana, R., Santosa, P.I., & Hartanto, R. (2019, January). Literature review on test case generation

approach. In Proceedings of the 2nd International Conference on Software Engineering and Information

Management (pp. 91-95). https://doi.org/10.1145/3305160.3305186.

Sharma, S., Rizvi, S.A.M., & Sharma, V. (2019, January). A framework for optimization of software test cases

generation using cuckoo search algorithm. In 2019 9th International Conference on Cloud Computing, Data

Science & Engineering (Confluence) (pp. 282-286). IEEE. Noida, India.

Sheoran, S., Mittal, N., & Gelbukh, A. (2020). Artificial bee colony algorithm in data flow testing for optimal test

suite generation. International Journal of Systems Assurance Engineering and Management, 11(2), 340-349.

https://doi.org/10.1007/s13198-019-00862-1.

Shirole, M., & Kumar, R. (2013). UML behavioral model based test case generation. ACM SIGSOFT Software

Engineering Notes, 38(4), 1-13. https://doi.org/10.1145/2492248.2492274.

Singh, R., Bhatia, R., & Singhrova, A. (2019). Demand based test case generation for object oriented system. IET

Software, 13(5), 403-413. https://doi.org/10.1049/iet-sen.2018.5043.

https://doi.org/10.1145/2491411.2491447

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

314 | Vol. 8, No. 2, 2023

Su, T., Fu, Z., Pu, G., He, J., & Su, Z. (2015, May). Combining symbolic execution and model checking for data

flow testing. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (Vol. 1, pp.

654-665). IEEE. Florence, Italy.

Sun, C.A., Wang, G., Mu, B., Liu, H., Wang, Z., & Chen, T.Y. (2011, July). Metamorphic testing for web services:

Framework and a case study. In 2011 IEEE International Conference on Web Services (pp. 283-290). IEEE.

Washington, DC, USA.

Sun, C.A., Wang, G., Mu, B., Liu, H., Wang, Z., & Chen, T.Y. (2011, July). Metamorphic testing for web services:

Framework and a case study. In 2011 IEEE International Conference on Web Services (pp. 283-290). IEEE.

Washington, DC, USA.

Tanno, H., Zhang, X., Hoshino, T., & Sen, K. (2015, May). TESMA and CATG: automated test generation tools for

models of enterprise applications. In 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering (Vol. 2, pp. 717-720). IEEE. Florence, Italy.

Tao, Q., Wu, W., Zhao, C., & Shen, W. (2010, November). An automatic testing approach for compiler based on

metamorphic testing technique. In 2010 Asia Pacific Software Engineering Conference (pp. 270-279). IEEE.

Sydney, NSW, Australia.

Varshney, S., & Mehrotra, M. (2013). Search based software test data generation for structural testing. ACM

SIGSOFT Software Engineering Notes, 38(4), 1-6. https://doi.org/10.1145/2492248.2492277.

Vasilache, S. (2016). Specification-based test case generation using dependency diagrams. In Proceedings of the

World Congress on Engineering and Computer Science 2016 (pp. 185-189). San Francisco, USA.

Venkatraman, P., & Sethumadhavan, G. (2020). Regression testing in green cloud based software with the aid of

hybrid PSO-CS algorithm. Journal of Green Engineering, 10(2), 360-375.

Wang, R., Sato, Y., & Liu, S. (2019, June). Specification-based Test Case Generation with Genetic Algorithm. In

2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1382-1389). IEEE. Wellington, New Zealand.

Wang, Z., & Liu, Q. (2018, August). A software test case automatic generation technology based on the modified

particle swarm optimization algorithm. In 2018 International Conference on Virtual Reality and Intelligent

Systems (ICVRIS) (pp. 156-159). IEEE. Hunan, China.

Wetzlmaier, T., & Ramler, R. (2017, September). Hybrid monkey testing: Enhancing automated GUI tests with

random test generation. In Proceedings of the 8th ACM SIGSOFT International Workshop on Automated

Software Testing (pp. 5-10). https://doi.org/10.1145/3121245.3121247.

Williams, N., Marre, B., Mouy, P., & Roger, M. (2005, April). Pathcrawler: Automatic generation of path tests by

combining static and dynamic analysis. In European Dependable Computing Conference (pp. 281-292).

Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408901_21.

Yazdani Seqerloo, A., Amiri, M.J., Parsa, S., & Koupaee, M. (2019). Automatic test cases generation from business

process models. Requirements Engineering, 24(1), 119-132. https://doi.org/10.1007/s00766-018-0304-3.

Yu, Z., Martinez, M., Danglot, B., Durieux, T., & Monperrus, M. (2017). Test case generation for program repair: A

study of feasibility and effectiveness. arXiv preprint arXiv:1703.00198.

Ahmad, M.Z.Z., Othman, R.R., Ali, M.S.A.R., & Ramli, N. (2020, February). A self-adapting ant colony

optimization algorithm using fuzzy logic (ACOF) for combinatorial test suite generation. In IOP Conference

Series: Materials Science and Engineering (Vol. 767, No. 1, p. 012017). IOP Publishing.

https://doi.org/10.1088/1757-899X/767/1/012017.

Zakaria, H.L., Zamli, K.Z., & Din, F. (2021, April). Hybrid migrating birds optimization strategy for t-way test suite

generation. In Journal of Physics: Conference Series (Vol. 1830, No. 1, p. 012013). IOP Publishing.

https://doi.org/10.1088/1742-6596/1830/1/012013.

Verma et al.: Software Test Case Generation Tools and Techniques: A Review

315 | Vol. 8, No. 2, 2023

Zhang, S., Saff, D., Bu, Y., & Ernst, M.D. (2011, July). Combined static and dynamic automated test generation. In

Proceedings of the 2011 International Symposium on Software Testing and Analysis (pp. 353-363).

https://doi.org/10.1145/2001420.2001463.

Zhao, R., Wang, W., Song, Y., & Li, Z. (2020). Diversity-oriented test suite generation for EFSM model. IEEE

Transactions on Reliability, 69(2), 611-631. https://doi.org/10.1109/TR.2020.2971095.

Zhou, Z. Q. (2010, July). Using coverage information to guide test case selection in adaptive random testing. In

2010 IEEE 34th Annual Computer Software and Applications Conference Workshops (pp. 208-213). IEEE.

Seoul, Korea.

Zhu, H., Hall, P.A.V., & May, J.H.R. (1997). Software unit test coverage and adequacy. ACM Computing Surveys,

29(4), 366-427. https://doi.org/10.1145/267580.267590.

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses under the Creative

Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps

and institutional affiliations.

