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Abstract

Background: Lipidomics, the comprehensive measurement of lipids within a biological system or substrate, is an

emerging field with significant potential for improving clinical diagnosis and our understanding of health and

disease. While lipids diverse biological roles contribute to their clinical utility, the diversity of lipid structure

and concentrations prove to make lipidomics analytically challenging. Without internal standards to match

each lipid species, researchers often apply individual internal standards to a broad range of related lipids. To

aid in standardizing and automating this relative quantitation process, we developed LipidMatch Normalizer

(LMN) http://secim.ufl.edu/secim-tools/ which can be used in most open source lipidomics workflows.

Results: LMN uses a ranking system (1–3) to assign lipid standards to target analytes. A ranking of 1 signifies

that both the lipid class and adduct of the internal standard and target analyte match, while a ranking of 3

signifies that neither the adduct or class match. If multiple internal standards are provided for a lipid class,

standards with the closest retention time to the target analyte will be chosen. The user can also signify which

lipid classes an internal standard represents, for example indicating that ether-linked phosphatidylcholine can be semi-

quantified using phosphatidylcholine. LMN is designed to work with any lipid identification software and feature

finding software, and in this study is used to quantify lipids in NIST SRM 1950 human plasma annotated

using LipidMatch and MZmine.

Conclusions: LMN can be integrated into an open source workflow which completes all data processing steps

including feature finding, annotation, and quantification for LC-MS/MS studies. Using LMN we determined that in

certain cases the use of peak height versus peak area, certain adducts, and negative versus positive polarity data can

have major effects on the final concentration obtained.

Keywords: Lipidomics, Data-independent analysis, Mass spectrometry, High resolution mass spectrometry, Liquid

chromatography, Lipid quantification, Relative quantification, SRM 1950, Peak picking, MZmine

Background
Lipids partake in diverse and critical biological roles,

such as in cell signaling [1–3], membrane function and

integrity [4], alveoli functioning [5], energy storage [6],

and water retention in the skin [7] and eyes [8]. These

varied biological roles are achieved through the vast het-

erogeneity and complexity in lipid structure, distribu-

tion, and concentration. For example, individual lipids

can differ by over six orders of magnitude in concentra-

tion [9], while chemical and physical properties can vary

in polarity, structural orientation, and charge state

(e.g., charged, zwitterionic, and neutral lipid species).

Advancements in mass spectrometry and the advent

of electrospray ionization (ESI) have enabled researchers

to begin to detect this wide diversity of lipids; however,

quantification of these detected lipids is challenging
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due to their dynamic range and breadth of chemical

properties.

For quantitation in lipidomics, either relative, semi-

quantitative or absolute/accurate quantification can be

performed. Absolute/accurate quantification typically

employs matrix-matched external calibration curves

and/or isotopically labeled internal standards for each

lipid quantified. This quantitative approach has limited

application to untargeted lipidomics analyses due to the

enormous diversity of the lipidome, limited availability

of appropriate standards to cover this diversity, and the

cost associated with purchasing hundreds of standards

[10–12]. Semi-quantification is used when stoichiomet-

ric differences between lipid species is of interest, but

exact quantitative levels within 10–20% are not obtained.

Often both an internal calibrant and external calibration

are used for semi-quantification [10, 13]. Relative quanti-

fication is often sufficient where relative changes are of

concern, for example between diseased and control pop-

ulations [14], but stoichiometric differences between

lipids are not needed. Relative quantification, which does

not employ a calibration curve, and involves the addition

of a smaller set of internal standards representative of

the classes of lipids analyzed, is the most commonly

used approach for quantitation in untargeted lipidomics

experiments.

Currently limited standards exist for quantification;

deuterated standards (often deuterated at the terminal

carbons of fatty acyl chains for easily predicted fragment

mass shifts) and odd chain standards or other standards

with fatty acyl chains which do not exist in the study

system can be used. The selection of the most appropri-

ate internal standard to best represent a lipid feature can

be challenging. The dynamic range and ionization effi-

ciency are both important for quantitation, and can dif-

fer depending on the lipid molecule’s structure, more

specifically lipid class, degrees of unsaturation, and num-

ber of carbons in fatty acyl chains. Lipid class generally

has the greatest effect on ionization efficiency. Previous

reports have shown that lipid internal standards spiked

into samples at the same concentration have orders of

magnitude differences in intensities across different clas-

ses [15]. Therefore, lipids should generally be quantified

using standards from the same lipid class. To account

for the number of carbons and degrees of unsaturation

in fatty acyl chains, which both lead to an increase in

ionization efficiency [15], two or more lipid standards

per class, each with different carbons and degrees of un-

saturation is suggested for polar lipids [16]. For neutral

lipids, where fatty acids play a greater role in ionization

efficiencies, response curves based on a wide range of

internal standards is often employed [11, 16]. The differ-

ences in carbons are often a more significant contributor

to ionization efficiency than that of unsaturation at low

concentrations, while at high lipid concentrations the ef-

fect of unsaturation on ionization efficiency becomes

more pronounced [15].

In addition to lipid structure and sample composition,

overlapping chromatograms, ion suppression, large dy-

namic ranges in lipid concentration, extraction proced-

ure [16], and other methodological and instrumental

factors can affect the amount of lipid signal observed

[10]. Ultra-high performance liquid chromatography

(UHPLC) and high-resolution mass spectrometry (HRMS)

can be employed to increase specificity. HRMS reduces

the overlap of mass spectral peaks from isobars, resulting

in a decrease in residual standard deviations of measure-

ments and more accurate peak integrations, which are

used for more accurate quantification [17]. Chroma-

tography also reduces the possibility of peak overlap

by adding an orthogonal dimension of separation, and

can reduce ion suppression by separating lipid classes

and species, reducing the probability of high abundant

lipid classes suppressing low abundant lipid classes [16].

Problematic issues arise in reverse phase (RP) chroma-

tography, where lipids, even within the same class, have

a large spread in retention time. Hence, analytes will dif-

fer in retention time from their internal standards, lead-

ing to standards not accounting for region specific

effects such as ion suppression. Alternative chromato-

graphic methods such as hydrophilic interaction liquid

chromatography (HILIC) and supercritical fluid chroma-

tography (SFC) can be used, where all lipids of a single

class co-elute. Hence, semi-quantitation using appropri-

ate correction factors to account for differences in

ionization efficiencies based on carbon length and the

number of unsaturation may be possible in HILIC and

SFC, while in RP the use of standards for normalization

should not be considered quantitative. Similarly, ion mo-

bility may be applied to lipidomics, and since ion suppres-

sion occurs in-source before separation by ion mobility,

lipid standards with varying fatty acyl-constituents from

analytes may still be used to account for ion-suppression

effects. In addition, collision cross section obtained from

ion mobility can improve confidence in identifications,

and ion mobility can be used to separate isomers, al-

though in lipidomics there has been limited success as

higher resolution separation by ion mobility is needed for

lipids [9, 18–20].

In summary, the best choice of lipid internal standards

are those that are lipid class representative and elute at

similar retention times to the analytes of interest.

Normalization by internal standards is important to re-

duce variation from sample handling and processing,

data-acquisition, data-processing, and other sources

which are not related to the study design. Reducing vari-

ance from these sources is simplified by the use of LMN,

and may increase the detection of biomarkers and other
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differences between groupings. Manually selecting repre-

sentative spiked internal standards and the associated

lipid analytes to normalize and applying the algorithm

for relative quantitation can be a tedious process prone

to human error, especially with lists containing hundreds

of lipid species. Automation of the quantification

process can lead to increased throughput, a reduction in

errors, and harmonization of quantification methods

within the lipidomics community. Therefore, we devel-

oped LipidMatch Normalizer (LMN), which can be inte-

grated in an open source workflow to select the most

appropriate internal standards for relative quantitation

within acquired LC-HRMS data. While numerous open

source quantification software for direct-infusion based

lipidomics currently exists [21–24], to our knowledge,

Lipid Data Analyzer (LDA) [25, 26] is the only open

source relative quantitation software for LC-based lipi-

domics using class representative lipid standards to re-

turn normalized values. LMN is unique to LDA and

commercial lipid relative quantitation software such as

LipidSearch (Thermo Scientific), SimLipid (PREMIER

Biosoft), and Lipidyzer (SCIEX), in that it was built to be

integrated into workflows using any combination of peak

picking software (including the freely available software

MZmine [27] and XCMS [28]) and peak annotation soft-

ware. For example lipids can be normalized to internal

standards by applying LMN to outputs from MS-DIAL

[29], LipidSearch, and LipidMatch [30]. In addition, the

LMN algorithm for selecting internal standards for fea-

ture quantification is unique; aiding in reducing ion sup-

pression, matrix effects, and other chromatographic

region specific effects by matching individual lipid spe-

cies to lipid internal standards with the closest retention

time and reducing the effect of structure related

ionization efficiency differences by matching lipids to in-

ternal standards by lipid class and adduct. Because no

absolute cutoff of retention time differences between

standards and analytes are currently provided in LMN,

in reverse phase chromatography chromatographic re-

gion specific effects may not be accounted for by in-

ternal standards differing substantially from analyte

retention times.

As discussed, LC-MS based relative quantification has

many more compounding factors influencing the choice

of internal standards and the resulting values obtained

than shotgun approaches, due to ion suppression effects

being specific to elution time, lipid aggregation being en-

hanced during chromatographic purification of lipids,

ionization efficiencies being based on mobile phase gra-

dient, and carry-over. [10] While it is outside of the

scope of this manuscript to comprehensively investigate

all influences on the normalization values obtained, we

investigate previously unstudied data-processing choices

and the influences of these choices on normalized

results. The effect of lipid structure on quantitation has

been investigated previously [11, 16, 17, 31], while to

our knowledge the effect of different data processing

strategies and adducts utilized on final normalized lipid

levels has not been examined thoroughly in UHPLC-

HRMS experiments. Therefore, we investigated different

data processing methods (peak area versus peak height,

smoothing versus not smoothing) and utilization of dif-

ferent ions and polarities for lipid relative quantitation

using LMN. Investigating the effect of various aspects of

the lipidomics workflows on relative quantitation using

open source tools available to the wider community is

an important step in validating the utility and establish-

ing community wide protocols for relative quantitation

in lipidomics.

Implementation
Lipid extraction and data acquisition

Lipids were isolated from 40 μL of National Institute

for Standards and Technology (NIST) standard refer-

ence material (SRM 1950) Metabolites in Frozen Hu-

man Plasma [32]. Lipid internal standards purchased

from Avanti Lipids (Alabaster, AL), which included

lysophosphatidylcholine (LPC(17:0)), phosphatidylcho-

line (PC(17:0/17:0)), phosphatidylglycerol (PG(17:0/

17:0)), phosphatidylethanolamine (PE(17:0/17:0)), phos-

phatidylserine (PS(17:0/17:0)), triglyceride (TG(15:0/15:0/

15:0)), ceramide (Cer(d18:1/17:0)), and sphingomyelin

(SM(d18:1/17:0)), were spiked into the plasma at 1.4 nmol,

0.92 nmol, 0.93 nmol, 0.97 nmol, 0.92 nmol, 0.26 nmol,

1.3 nmol, and 0.98 nmol, respectively (resulting in final

concentrations of 35 nmol/mL, 23 nmol/mL, 23.25 nmol/

mL, 24.25 nmol/mL, 23 nmol/mL, 6.5 nmol/mL, 32.5

nmol/mL, and 24.5 nmol lipid/mL plasma). 13C2-choles-

terol was purchased from Cambridge Isotope Laboratories

(Tewksbury, MA), and spiked in at 1.8 nmol resulting in

concentrations of 45 nmol lipid/mL plasma. The extrac-

tion was performed using the Matyash method [33] and

samples were reconstituted in 200 μL of isopropanol.

Samples were injected onto a Waters (Milford, MA)

BEH C18 UHPLC column (50 × 2.1 mm, 1.7 μm) held

at 50 °C with mobile phase A consisting of acetonitri-

le:water (60:40, v/v) with 10 mM ammonium formate

and 0.1% formic acid and mobile phase B consisting

of isopropanol:acetonitrile:water (90:8:2) with 10 mM

ammonium formate and 0.1% formic acid at a flow

rate of 0.5 mL/min. A Dionex Ultimate 3000 RS

UHLPC system (Thermo Scientific, San Jose, CA)

coupled to a Thermo Q-Exactive mass spectrometer

(San Jose, CA) was employed for data acquisition

using both targeted and data-independent MS/MS ac-

quisition for annotation. Mass spectrometric parame-

ters and scan modes can be found in Additional file
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1. The targeted MS/MS list can be found in

Additional file 2.

Data processing

The open source data processing workflow for lipido-

mics is shown in Fig. 1. The first step in the workflow is

feature finding using MZmine 2 [27], followed by anno-

tation with LipidMatch [30], blank feature filtering (BFF)

[34], relative quantification by LipidMatch Normalizer

(LMN), and reduction to molecular species using an

in-house R script. All scripts and software are employed,

and in-house scripts, LipidMatch, and LipidMatch

Normalizer can be found at secim.ufl.edu/secim-tools/.

Note that LMN can be employed with any feature

finding and lipid identification software, and this is

just one workflow in which it can be employed. More

detailed description of the workflow can be found in

Additional file 1.

LMN user workflow

All steps prior to use of LMN, as well as the steps to use

the LMN software are available as video tutorials which

can be accessed at <https://www.youtube.com/playlist?

list=PLZtU6nmcTb5mQWKYLJmULsfqNy9eCwy7K>

and shown in Fig. 1. The LMN software requires two

comma separated values (.csv) files as input for

proper operation. The first required file is a feature

table with the following content for each feature: (1)

peak height or peak area, (2) lipid annotation, (3)

lipid class, (4) lipid adduct, (5) retention time, and (6)

m/z. Note this allows LMN to be compatible with

any software which generate this information, includ-

ing XCMS and MS-DIAL. The second required file is

an internal standard sheet, which lists the names of

all internal standards added, their concentrations,

retention time, and m/z for each adduct. The names

of the internal standards can be in any format famil-

iar to the user. Examples and templates of the two

input tables can be found in the LipidMatch

Normalizer zip file available at <http://secim.ufl.edu/

secim-tools/> and in the Additional file 3.

The user can easily generate the m/z of the adducts

expected for each lipid internal standard using only the

internal standard name, with a separate tool, LipidPio-

neer [35]. The user then specifies which internal stand-

ard will be used for each lipid class in the internal

standard sheet. Note that multiple lipid classes can be

represented by a single internal standard in the internal

standard sheet. For example in this work, we included

the following lipid classes to be normalized to PC(17:0/

17:0): PC, Plasmanyl-PC, Plasmenyl-PC, and OxPC

(oxidized phosphatidylcholine). We chose to represent

ether-linked species using a non-ether-linked internal

standard, as it has been shown that ether linked glycero-

phospholipids have the same response factor to their

non-ether linked counterparts [31]. This internal stan-

dards sheet can be used for later experiments if the same

internal standards and chromatographic conditions are

employed (and there is no retention time drift).

After open and running the R script in the LipidMatch

zip file, popup boxes prompt the user to select the work-

ing directory folder for all files (feature table and internal

standards sheet). The user is then instructed to select

the feature table and the internal standard sheet. The

user completes a series of input boxes, entering the

location of the columns for m/z, retention time, lipid

class, lipid adduct in the feature table, and the row in

which data starts. By not predefining the format of the

feature table, users can utilize various peak picking and

lipid annotation software and directly, or with minor

Fig. 1 Open source lipidomics workflow employed in this study. Blue titles are software, grey boxes are processes, and red boxes are inputs/

outputs. Note that both LipidMatch and LipidNormalizer are modular: LipidMatch can take in feature tables from any peak picking software, and

LipidMatch Normalizer can normalize data from any identification software, allowing user flexibility. For more ideas and information on different

workflows using these software see the following youtube video tutorials: https://www.youtube.com/playlist?list=PLZtU6nmcTb5mQWKYLJmULsfqNy9eCwy7K

*for AIF both .ms1 and .ms2 files must be provided. Can handle data-dependent and targeted MS/MS data as well
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modification, apply LMN. Other user inputs include re-

tention time and m/z tolerances, which are used for

locating features representing the internal standards in

the feature table using the retention time and m/z values

supplied in the internal standard sheet.

The software outputs a ‘standardsfound.csv’ (all identified

internal standards) and ‘[input_sheet_name]_Quant.csv’

(feature table with normalized lipid levels and information

on the internal standard used for each feature including

standard rank) file. Lipids normalized using a ranking of 2

or 3, should be used only with great caution, as internal

standards which match the lipid class of the feature were

not found. Since lipid class significantly affects ionization

efficiencies, these standards only take into account ion sup-

pression, but not ionization efficiencies. An output table for

LMN can be found in the LMN Additional file 3.

LMN algorithm

LMN algorithms were validated for this dataset by man-

ual relative quantification of all features. A schematic of

the LMN algorithm is shown in Fig. 2. The LMN algo-

rithm incorporates a ranking based approach to classify

internal standards selected for each feature depending

on how close they match the analyte of interest. A rank-

ing represented by a small number indicates better rep-

resentation of the feature by the internal standard while

a ranking represented by a large number indicates

poorer representation (with rankings of 1, 2, and 3). For

each feature, the LMN algorithm associates the appro-

priate internal standard detected. If the feature and

internal standard adduct and class match, the feature is

ranked as a 1. If the current feature class does not match

any of the internal standard lipid classes, but the same

adduct is found for an internal standard representing a

different lipid class, a rank of 2 is given. If no internal

standard is found for a feature with a matching adduct

or class, a rank of 3 is given (Fig. 2).

It is important to note that multiple internal standards

can be provided for a single lipid class. In this case, the

internal standard with the closest retention time is used

for each feature of the respective lipid class. Since reten-

tion time correlates with saturation and carbons in the

lipid fatty acyl chains, this will in part account for differ-

ent ionization efficiencies due to these structural differ-

ences. More importantly, ion suppression can vary

across retention time, and therefore using multiple in-

ternal standards can better account for these differences

in ion suppression. If multiple standards are found using

a rank of 2 or 3, the one with the closest retention time

to the average retention time for the entire lipid class

and specific adduct is used to normalize all lipids with

the class and adduct.

Comparison of quantitating using different data processing

methods and different ions

Different data processing methods and ions were used

for relative quantitation to determine which methods

had the greatest effect on the precision of the final nor-

malized values. The comparisons were: smoothing ver-

sus no smoothing (smoothing set to 15 in MZmine),

peak height versus peak area, relative quantitation with

negative versus positive ions, and quantitation on

[M +Na]+ adducts versus the major precursor ion. The

[M +Na]+ adducts were chosen because for the majority

of lipids in positive ion mode an [M +Na]+ peak is

present, and hence may affect relative quantitation

through competitive ionization. For comparison of simi-

larity, the slope and R2 of linear correlations on the log10

Fig. 2 Simplified schematic of LipidMatch Normalizer (LMN) algorithm. The acronym IS stands for internal standard
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value obtained between the two comparative methods

were used. In addition, Bland-Altman type plots [36]

were used to determine the relative percent difference in

concentrations using two different methods or ions for

quantitation. A distinction was that instead of normalizing

to the average, as is traditionally done for calculating per-

cent difference to be visualized in Bland-Altman plots

[37], the differences were normalized to the minimum

values (hence giving a percent increase from the mini-

mum value). When differences are normalized to the aver-

age, the absolute relative percent difference plotted

against the fold change (fold changes greater than 1) is

non-linear and asymptotic to 200%, while the relative per-

cent difference, calculated by normalization to the mini-

mum, is linear as compared to fold change and hence is

easier to interpret (Additional file 1: Figure S1). The for-

mula used to calculate relative percent difference is shown

below:

Formula 1 : Relative percent difference ¼
x−y

min x; yð Þ
� 100

Where x and y represent concentrations calculated using

different methods or ions

For comparison of overall deviation between measure-

ments, the absolute value of x-y was taken in the for-

mula above. In this case, if relative percent differences

were at or below 50% using modified Formula 1, the re-

sults were considered similar (for example, 0.5 nmol/mL

and 0.75 nmol/mL), while a relative percent difference

above 50% was not considered similar (for example, 0.5

nmol/mL and any value greater than 0.75 nmol/mL). A

sign test was used to determine whether the quantitative

values using different methods or ions provided signifi-

cantly similar results (less than or equal to 50% differ-

ence) across the majority of features or significantly

different results (greater than 50% difference).

Precision of relative quantification using different

methods or ions for replicate injections was determined

using coefficient of variation (CV). A sign test was used

to determine whether features tended to have higher

CVs in one methodology compared to another.

Results
Comparison of targeted MS/MS versus AIF

A total of 129 unique lipid molecular species across 16

lipid types were identified in negative ion mode, of

which 122 had appropriate internal standards for relative

quantification (with phosphatidylinositols not having a

class specific internal standard). In positive ion mode,

225 unique lipid molecular species across 20 lipid types

were identified, with 185 normalized using appropriate

class representative internal standards. A more detailed

description of annotations, including a comparison of

all-ion fragmentation (AIF) annotations with targeted

MS/MS annotations can be found in Additional file 1.

Briefly, Of the features annotated both by AIF and tar-

geted MS/MS, 100% had the same annotation (top

ranked, considering plasmenyl and plasmanyl species

differing by one saturation the same) in negative ion

mode, and 87% had the same annotation in positive ion

mode. Of those in positive ion mode with differing an-

notations between AIF and targeted MS/MS, the annota-

tions only differed by fatty acid composition, not by lipid

class and total carbons and degrees of unsaturations.

Comparison of different data-processing methods on

normalized lipid levels

Different data processing methodologies and ions for

normalization were compared in terms of final normal-

ized lipid levels (normalized lipid levels can be found in

the Additional file 3), as well as each method’s precision

in measuring three replicate injections. The relative

quantitation comparisons were as follows: (1) smoothed

versus non-smoothed peak heights, (2) smoothed versus

non-smoothed peak areas, (3) peak area versus peak

height, (4) negative versus positive polarity (peak areas),

and (5) major adducts versus sodium adducts (peak

areas). The number of features used for each compari-

son, percent difference, and log two of the fold change,

are summarized in Additional file 1: Table S3. For the

comparison of different ions and polarities, only those

lipid molecules which were represented by both ions, or

both polarities, were used.

Comparisons of smoothed versus non-smoothed peak

heights, peak area versus peak height, and normalization on

positive versus negative ions, all had an R2 above 0.97 and

slopes about equal to 1 in log-log plots shown in Fig. 3.

Note that correlation is expected between two methods

aimed at detecting the same concentrations, especially over

wide ranges as in Fig. 3. [33] Hence, the correlation ob-

served only suggests that the measurement methods were

detecting the same phenomenon, not that they provided

the same result. But modified Bland-Altman plots and sign

tests confirmed that the three methods provided compar-

able normalized lipid levels. A significant proportion of

relative percent differences were at or lower than 50% for

comparisons (Fig. 4), with p-values of a two-sided sign test

less than p < 0.05. Smoothing had the least impact on nor-

malized lipid levels, with none of the 185 lipids above 50%

difference, and only two above 25% difference. Peak height

versus peak area also provided relatively similar normalized

lipid levels with only about 13% of the 185 lipids above 50%

difference. Of these three comparisons, polarity had the

greatest effect on normalized lipid levels, with 25% of lipids

having percent differences above 50% (in this case only the

51 lipids common between polarities were utilized

(Additional file 1: Table S3d).
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Precision of measurements using different data-

processing strategies

For all methods, the average CV of normalized lipid

levels was less than 20% (Table 1). Normalized lipid

levels calculated using positive polarity, peak area, and

non-smoothed data were more reproducible across mul-

tiple injections when compared to normalized lipid

levels calculated using negative polarity, peak height,

and smoothed data, respectively, as indicated by a

two-tailed sign test and lower CVs (Table 1). Note that

for the higher CV in negative ion mode, results could be

due to an increased injection volume in one of the nega-

tive ion mode samples.

In addition to the comparisons between each

method, CV was compared before and after

normalization, to determine if normalization to in-

ternal standards using LipidMatch Normalizer reduced

variation in replicate injections. In positive ion mode

the average % CV was nearly 2-fold higher prior to

normalization at 10 ± 7% versus 6 ± 7% after

normalization, with differences significant based on a

student t-test (p-value = 0.00000001). In negative ion

mode, the differences were much more pronounced,

due to an increased injection volume in one of the

samples, which was at least partly accounted for dur-

ing normalization. The average % CV in negative ion

mode was 71 ± 19% prior to normalization, and 14 ±

17% after normalization.

Discussion
Software features compared to other relative quantification

software

Available lipid quantitation software which can process

data from UHPLC-HRMS/MS workflows are compared

in Table 2. To our knowledge, LMN and LDA are the

only software programs for LC-HRMS/MS data which

are both open-source and can employ class representa-

tive relative quantitation using internal standards. While

LDA is a full solution, from feature detection to quantita-

tion, LMN can more easily be integrated into workflows,

Fig. 3 Linear regression comparing the log10 of normalized lipid levels calculated using different workflows and ions. A slope of 1 and R2 close

to 1 are expected if the methods or ions both result in similar normalized lipid levels. The panels show normalized levels calculated using

smoothed versus non-smoothed peak heights (smoothing was done as the final step in MZmine; n = 184; a), peak area versus peak height

(n = 184; b), positive versus negative polarity using peak area (n = 51; c), and sodium adducts versus the major adduct observed in positive polarity

using peak area (n = 76; d). For d, sodium adducts were compared to protonated adducts except in the case of neutral lipids which formed

ammoniated adducts
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leveraging other open source tools, for example MZmine

and LipidMatch, as employed in this manuscript. Peak

picking and lipid annotation can be performed with

various software, and parameter optimization can be ap-

plication, instrument, and workflow specific. Therefore, by

integrating LMN into a larger open source or proprietary

lipidomics workflow, users do not need to validate and

optimize new peak picking and annotation strategies. The

only requirements are a separate column in the feature

table for lipid retention time, m/z, class, and adduct. This

can be obtained using the text to columns function in

Excel if the information is not separated in the native

output format. Aspects of the lipidomics workflow,

including peak picking and identification of lipids, can

take hours to days for even small sample sizes (e.g.

10). Relative quantification of thousands of lipids

across large sample sizes (e.g. hundreds) using LMN

and other open source software have total run times

on the order of seconds to minutes and therefore

computational time is not of concern.

Annotation using LipidMatch and AIF data provides

accurate annotations

Prior to reconstruction of precursor-fragment relation-

ships using LipidMatch algorithms or similar, AIF proves

to be high in false positives. Results show that Lipid-

Match algorithms for annotation using AIF provided the

same results to targeted and data-dependent MS/MS

methods, without increased false positives at the level of

lipid class, total carbons, and degrees of unsaturation.

Fig. 4 Bland-Altman type plots showing differences in normalized lipid levels calculated using different methods and ions. The panels show the

percent differences in normalized lipid levels calculated using smoothed versus non-smoothed peak heights (smoothing was done as the final

step in MZmine) (a), peak area versus peak height (b), positive versus negative polarity using peak area (c), and sodium adducts versus the major

adduct observed in positive polarity using peak area (d). Note that orange lines represent 1.96 x standard deviation (the 95% limits), and hence

are a measure of where you would expect 95% of the percent differences to fall for each comparison. See Formula 1 for relative percent difference

calculation. Arrows delineate the direction of difference. *Note that the differences between major adducts and [M+ Na]+ were drastic and ranged

over several orders of magnitude. Therefore, the log of the absolute percent difference was used and then multiplied by − 1 when the [M + Na]+

normalized lipid level was calculated higher than the major ion
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Comparison of normalized values across studies highlight

that generally lipidomics is not quantitative

The final normalized lipid levels were compared to both

the NIST inter-laboratory study [12] and the LIPID

MAPS consortium analysis of NIST SRM 1950 [38]. The

values diverged significantly between all three studies for

lipids summed at the level of carbons and double bonds

(Additional file 4: Tables S4 and S5). These results

emphasize that single point calibration using class repre-

sentative internal standards in reverse phase is a

normalization method and not quantitative. Hence, the

advantages of internal standard based normalization are

a reduction in variance of measurements and better sta-

tistics as discussed in the prior paragraph, but values are

not absolute amounts which can be comparable across

laboratories and techniques. But other approaches using

LMN could be considered semi-quantitative. Because

standards and analytes co-elute in separation techniques

such as SFC and HILIC (because all species within a

lipid class co-elute), the application of LipidMatch

Normalizer along with appropriate correction factors

for ionization efficiencies could be semi-quantitative.

In the case of SFC or HILIC separation, equivalent

carbon number should be used instead of retention

time to match standards with analytes of similar

ionization efficiencies.

Data-processing methods used affect the accuracy of lipid

levels measured

Polarity was shown to have the second greatest effect on

resulting normalized lipid levels. This has major implica-

tions for which polarity is chosen as “correct” for a given

set of lipids. Often the feature with greater peak areas or

heights is chosen, which would always favor positive ion

mode. On the other hand, negative ion mode has lower

background signal, signal to noise, and, for glyceropho-

spholipids, more accurate identification.

Peak area versus peak height had the third greatest, al-

though minimal, impact on resulting normalized lipid

levels. For comparisons of peak area versus height, the

greatest percent difference was for triglycerides, with

normalized lipid levels calculated in peak area much

greater than those calculated by peak height. For 10 of

the 59 triglycerides, the normalized lipid levels calcu-

lated using peak area were more than 2-fold higher than

those calculated by peak height (over 100% percent dif-

ference; Fig. 4b). A closer look at extracted ion chro-

matograms (EICs) and integration using MZmine 2 of

these peaks showed a common trend (Fig. 5).

Triglyceride isomers are notoriously difficult to separ-

ate, due to the numerous possible combinations of the

three fatty acids which lead to the same number of car-

bons and double bonds, with resulting isomers having

the same or similar retention behavior. For the triglycer-

ides with minimal difference between peak height and

peak area (less than 5% in Fig. 5b and Additional file 1:

Figure S4b), the peaks were well defined (Gaussian

shaped and baseline resolved) without any visual overlap.

For the triglycerides with major differences between

peak height and peak area (over 100% in Fig. 5a and

Additional file 1: Figure S4a), there were overlapping

Table 2 Comparison of different lipid quantification software which can be applied to UHPLC-HRMS/MS data

Output IS: Class Specifica Multiple IS per Classb Response Factorsc Vendor Specific License Modulard

Lipid Data Analyzer Concentratione Yes Yes No No Open Source No

MZmine 2 Normalized Peak
Intensities

No _ No No Open Source No

LipidMatch Normalizer Concentratione Yes Yes No No Open Source Yes

SimLipid Concentratione Yes Yes No No Purchase No

LipidSearch Concentratione Yes No No No Purchase No

aCan internal standard be matched to features for quantification based on lipid class?
bCan multiple internal standards for a single lipid class be used?
cAre response factors based on lipid structures and resulting ionization efficiencies employed?
dCan the tool be used with various feature finding and identification software?
eNote that for these software while outputs are technically in units of concentration, they should not be interpreted as quantitative, but rather as normalized

abundances to class representative internal standards (relative quantification)

Table 1 Comparison of the coefficient of variation (CV) of

normalized lipid levels in three replicate injections calculated

using different methods or ions

Test CV (Avg) CV (# >)a Sign Test

[M + H/NH4]+ 5 ± 3% 31 p = 0.057

[M + Na]+ 10 ± 10% 49

Pos 4 ± 5% 10 p < 0.0001

Neg 12 ± 15% 42

Height 7 ± 5% 126 p < 0.0001

Area 6 ± 7% 59

Smoothed 7 ± 6% 103 p < 0.0001

Not Smoothed 6 ± 5% 82

aThe number of species with CVs greater in the respective method or ion

Note that comparison for ions were made using peak areas, while those for

smooth versus not smoothed utilized peak heights. Note that negative ion

mode had an injection with a different volume than the remaining injections,

and hence this could be the reason for increased CV as compared to positive

ion mode
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isomers without complete deconvolution. Therefore, the

integration of multiple overlapping isomers as one peak

(improper deconvolution and/or poor chromatographic

separation) was the major cause explaining why normal-

ized lipid levels calculated using peak areas were much

greater than those using peak height. In addition, the

number of isomers integrated as one peak varied across

samples (Fig. 5a and Additional file 1: Figure S4a). This

led to a large variation in normalized lipid levels calcu-

lated using peak areas in the case of overlapping peaks,

and hence using peak height in lipidomics may be ad-

vantageous when a large portion of isomeric peaks over-

lap in retention time.

The majority of lipid normalized lipid levels calculated

in positive and negative polarity differed by less than

50%. For those which differed by more than 50%, there

was no clear trend in extracted ion chromatograms

(EICs). For example, the EICs of PC(16:0_20:5) and

PC(18:0_20:4) had similar elution profiles between spe-

cies and as protonated and formate ions (Additional file 1:

Figure S5). While EICs looked similar, normalized lipid

levels calculated in negative and positive polarity for

PC(16:0_20:5) differed by over 2-fold (over 100%), while

for PC(18:0_20:4) normalized lipid levels differed by less

than 10%. This data suggest that certain species may have

very different ionization efficiencies compared to the in-

ternal standard and response curves for negative and posi-

tive polarity, while others do not. Indeed, Zacarias et al.

[31] showed non-linearity in intensity versus normalized

lipid level in negative ion mode irrespective of instrumen-

tal parameters, while lipid intensity versus normalized

lipid level in positive ion mode was relatively linear in

comparison.

While adducts determined in negative ion polarity cor-

related well and gave similar normalized values as ad-

ducts in positive polarity, sodiated adducts gave very

different normalized lipid levels (Fig. 4d) and did not

correlate with their corresponding adducts in positive

polarity (Fig. 3d). For comparison of relative quantitation

using major ions versus sodium ions, a targeted list for

sodium was developed by copying retention times and

changing the masses of the [M +H]+ and [M +NH4]
+

Fig. 5 Extracted ion chromatograms (EICs) and peak integration by MZmine of the triglycerides (TGs) with the most (a) and least (b) percent

difference when comparing quantitation using peak height versus peak area
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ions detected. This conversion of protonated and ammo-

niated species to a sodiated m/z was automated by past-

ing the molecular species into LipidPioneer [35]. The

targeted peak list was then uploaded and the data were

reprocessed using MZmine as described in the methods

section. No trends were observed in the peak heights or

areas of the sodiated species and their corresponding ad-

ducts ([M +H]+ or [M +NH4]
+) (Fig. 3d), suggesting that

a completely different phenomena was controlling ion

signal measured in sodium versus other adduct species.

[33] This is potentially due to sodium not being added

to solution, and hence concentrations of sodiated species

could be impacted by the number of sodium ions dis-

solved in the mobile phase at the point of elution, the

number of competing ions forming sodiated species,

co-eluting isomers, the amount of sodium in the matrix

and the concentration of the analyte. As shown by lack

of correlation to major adducts, the concentration of an-

alyte seems to be a minimal factor in the intensity of so-

dium adducts of the analyte. It is possible that adding

signal intensities of all adducts for the same molecular

species and the associated standard could improve rela-

tive quantitation by improving the amount of signal used

for a given ion and reducing variance from competitive

ionization between adducts, although this was not ob-

served. When adding [M +Na]+ to [M +H]+, there was a

slight increase in the relative percent difference between

the normalized lipid levels calculated in positive ion

mode compared to negative ion mode for LPCs and PCs

and a significant decrease in the percent difference

for ceramides. But due to the instability of the so-

dium adducts intensities across injections, it is not

recommended to perform relative quantification using

sodium adducts (unless summed with all other adduct

intensities).

Lipid normalization using LMN increases precision of

measurements

In certain cases, precision in calculating lipid levels is

more important than accuracy, in order to reduce

measurement variance and increase the likelihood of

observing changes across sample groups. The use of

LMN and lipid normalization reduced variance in

both positive and negative ion mode, as compared to

non-normalized lipid values. The results in negative

ion mode shows that normalization to lipid internal

standards reduces variance from minor or major differ-

ences in injection volume. Therefore the use of LMN and

normalization to a single point calibration in lipidomics

may reduce variance from instrumental, experimental,

and other sources which are not related to the study de-

sign, and increase the potential of discovering changes

across sample groups.

In addition it was found that for replicate analyses of a

sample, the CV varied depending on data-processing strat-

egies. Generally the use of peak area and non-smoothed

samples had less variance than the use of peak height and

smoothing. These results may not be generalizable to all

datasets and workflows, and further experiments should

be done comparing the effect of these parameters on CV.

Conclusions
LipidMatch Normalizer (LMN) employs internal stan-

dards to normalize lipids in UHPLC-HRMS/MS open

source workflows, including both in reverse phase and

in HILIC and SFC (using equivalent carbon number, ra-

ther than retention time, for matching standards to ana-

lytes for SFC and HILIC). The flexibility in the input

feature table format allows LMN to be used as a back-

end to any lipid annotation software. LMN utilizes a

unique algorithm to select a standard to normalize the

lipid analyte by matching lipid class, adduct, and reten-

tion between the feature and the internal standard in

order of priority, respectively. LMN allows for multiple

internal standards per lipid class and provides a ranking

system allowing for transparency, noting how each in-

ternal standard was chosen for each lipid class and ad-

duct. The percent CV across replicate injections was

found to be significantly reduced in both positive and

negative ion mode when applying LMN.

Applying LMN to compare normalized values ob-

tained using various data processing workflows and ions,

we found that the ion chosen for normalization had the

greatest effect on the resulting relative quantification.

Negative and positive ions showed slightly different nor-

malized lipid levels, while sodium ions provided drastic-

ally different lipid levels compared to all other ions. We

suggest not to utilize sodium adducts in calculating lipid

concentration, at least in cases where sodium is not

intentionally added to the mobile phase and samples.

Data processing had less of a significant effect, with the

greatest difference in calculated normalized lipid levels

being attributed to peak area versus peak height, when

the feature consisted of multiple unresolved chromato-

graphic peaks.

Additional features which could be employed for rela-

tive quantification, include response factors based on

instrument response to lipid structure (carbons and de-

grees of unsaturation), and dialogue boxes to aid users in

selecting internal standards when class representative

standards do not exist. Our solution provides automation

for studies where differences between groups, but not ab-

solute quantification, is of interest. It is important to note

that ion suppression and lipid aggregation effects on the

resulting normalized values are not well understood, and

hence fundamental studies on these effects are needed to

optimize and validate relative quantification strategies for
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LC-MS. [10] Therefore, it is important to limit differences

between internal standards used and analytes normalized.

Users should design experiments carefully to choose in-

ternal standards which are exogenous to their sample

(without any overlap in mass and retention time),

best represent the analytes to be quantified, and are

spiked in concentrations similar to the lipids being

quantified.

A suite of new scripts have been introduced which can

be used alongside LMN for lipid feature finding, filter-

ing, identification and combining polarities and adducts.

These are modular, and hence researchers can design

their own workflow to meet their needs. In addition,

LipidMatch Flow is available as a beta version, and com-

bines all portions of the workflow into a single user

interface. All scripts and video tutorials can be found at:

< http://secim.ufl.edu/secim-tools/>.

Availability and requirements
Project name: SECIM tools

Project home page: The current version is available at:

http://secim.ufl.edu/secim-tools/

Operating systems: Most operating systems (tested on

Windows XP, Windows 7, Windows 10, Mac OSX)

Programming language: R (version 3.3.3)

Other requirements: The R Project for Statistical

Computing, Version R 3.3.3, https://cran.r-project.org/

bin/windows/base/old/3.3.3/

License: GNU GENERAL PUBLIC LICENSE Version 3,

29 June 2007

Any restrictions to use by non-academics: no restrictions

Additional files

Additional file 1: Contains Figure S1 through Figure S5, and Table S1

through Table S3. (DOCX 941 kb)

Additional file 2: Inclusion List for targeted MS/MS. Contains a Thermo

formatted inclusion list for targeted MS/MS. (XLSX 19 kb)

Additional file 3: LipidMatch Normalizer Software. The LMN_Software.zip

file contains batch files for lipidomics with MZmine processing and the

LipidMatch Normalizer R script. The .zip file also contains files to guide the

user in using LipidMatch, which include: A manual and troubleshooting

document, and example input and output data (the data used in this

paper). For the most up to date version of LipidMatch Normalizer please

visit: http://secim.ufl.edu/secim-tools/. (ZIP 126 kb)

Additional file 4: LipidMaps, NIST interlab, and this studies lipid values

for NIST SRM 1950. An excel table with the lipids identified in the LIPID

MAPS, NIST Interlaboratory Study for Lipidomics, and this study for NIST

SRM 1950, and the resulting lipid levels. (XLSX 23 kb)
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AIF: All ion fragmentation; BEH: Ethylene bridged hybrid; BFF: Blank feature

filtering; Cer: Ceramide; csv: Comma separated values; CV: Coefficient of

variation (also termed % RSD or percent residual standard deviation);

EIC: Extracted ion chromatogram; ESI: Electrospray ionization; ether-
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plasmanyl triglyceride; HRMS: High-resolution mass spectrometry;

LDA: Lipid Data Analyzer; LIPID MAPS: Lipid Metabolites and Pathway

Strategies; LMN: LipidMatch Normalizer; LPC: Lysophosphatidylcholine; m/

z: Mass to charge ratio; MS/MS: Tandem mass spectrometry;

NIST: National Institute of Standards and Technology; OxPC: Oxidized

phosphatidylcholine; OxTG: Oxidized triglyceride; PC: Phosphatidylcholine;

PE: Phosphatidylethanolamine; PG: Phosphatidylglycerol;

PI: Phosphatidylinisitol; SM: Sphingomylin; SRM: Standard reference

material; TG: Triglyceride; UHPLC: Ultra-high performance liquid

chromatography
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