
SOFTWARE TOOL TO READ, REPRESENT, MANIPULATE, AND APPLY N -DIMENSIONAL

SPATIAL TRANSFORMS

O. Esteban1, M. Goncalves1, C. J. Markiewicz1, S. S. Ghosh2, and R. A. Poldrack1

1Dept. of Psychology, Stanford University
2McGovern Institute for Brain Research, MIT and Dept. of Otolaryngology, Harvard Medical School

ABSTRACT

Spatial transforms formalize mappings between coordinates

of objects in biomedical images. Transforms typically are

the outcome of image registration methodologies, which esti-

mate the alignment between two images. Image registration

is a prominent task present in nearly all standard image pro-

cessing and analysis pipelines. The proliferation of software

implementations of image registration methodologies has re-

sulted in a spread of data structures and file formats used to

preserve and communicate transforms. This segregation of

formats hinders the compatibility between tools and endan-

gers the reproducibility of results. We propose a software

tool capable of converting between formats and resampling

images to apply transforms generated by the most popular

neuroimaging packages and libraries (AFNI, FSL, FreeSurfer,

ITK, and SPM). The proposed software is subject to continu-

ous integration tests to check the compatibility with each sup-

ported tool after every change to the code base (https://

github.com/poldracklab/nitransforms). Com-

patibility between software tools and imaging formats is a

necessary bridge to ensure the reproducibility of results and

enable the optimization and evaluation of current image pro-

cessing and analysis workflows.

Index Terms— image registration, spatial transforms,

software infrastructure, BIDS

1. INTRODUCTION

During the development of fMRIPrep [1], we found the most

challenging issues to arise from the large proliferation of

software tools implementing image processing and analysis

methods. fMRIPrep is a robust pre-processing pipeline for

functional magnetic resonance imaging (fMRI) that executes

several image registration tools from neuroimaging packages

such as AFNI [2], FSL [3], FreeSurfer [4], and ANTs [5].

While all these packages meet some minimum coverage in

the implementation of the NIfTI format that ensures certain

compatibility for imaging data between them, they all gener-

ate incompatible objects and file formats to describe spatial

This work was supported by the Laura and John Arnold Foundation, the

NIH (NBIB R01EB020740), NIMH (R24MH114705 and R24MH117179).

transforms. For example, the very popular ANTs registration

tools are based on the Insight Toolkit (ITK), and thus ex-

press all transforms in a right-handed, continuous coordinate

system with physical units (e.g., mm). FSL, on the other

hand, utilizes an intermediate, left-handed coordinate system,

whose interpretation is influenced by the origin and destina-

tion coordinate systems. In other words, to correctly interpret

a linear transform estimated with FSL tools, it is necessary to

read the orientation affine matrices of reference and moving

images. A large development effort in fMRIPrep was directed

to overcome compatibility issues, and particularly those gen-

erated by these differences in the implementation of spatial

transforms.

Compatibility and exchangeability issues derived from

neuroimaging data formats and structures have been previ-

ously addressed. NiBabel [6] provides a Python implemen-

tation of tools to read, write and handle data in a range of

3D image formats, as well as surface formats and mixed vol-

ume and irregular points formats. More recently, the Brain

Imaging Data Structure [7, BIDS] prescribes how neuroimag-

ing data and metadata should be stored and preserved at the

study level. BIDS specifications are currently being extended

along several lines. In particular, the BIDS-Derivatives ex-

tension deals with the organization and naming conventions

of the final product of processing and analysis pipelines to

ensure their shareability. The proposed software tool will

be distributed as a new module within the NiBabel pack-

age, although it was originally conceived and designed as an

offspring of the BIDS-Derivatives specifications for spatial

transforms.

2. MATERIALS AND METHODS

2.1. Spatial transforms and image alignment

Let x represent the coordinates of a point in the reference

coordinate system F , and x
′ its projection on to another co-

ordinate system M:

F ⊂ R
n

→ M ⊂ R
n

x 7→ x
′ = f(x). (1)

https://github.com/poldracklab/nitransforms
https://github.com/poldracklab/nitransforms


In an image registration problem, M is a moving image from

which we want to sample data in order to bring the image

into spatial alignment with the reference image F (or “fixed”

image). Hence, f here is the spatial transformation function

that maps from coordinates in F to coordinates in M. There

are a multiplicity of image registration algorithms and corre-

sponding image transformation models to estimate linear and

nonlinear transforms.

The problem has been traditionally confused by the need

of transforming or mapping one image (generally referred to

as moving) into another that serves as reference, with the goal

of fusing the information from both. An example of image

fusion application would be the alignment of functional data

from one individual’s brain to the same individual’s, corre-

sponding anatomical MRI scan for visualization. Therefore,

“applying a transform” entails two operations: first, trans-

forming the coordinates of the samples in the fixed image F

to find their mapping x
′ on M via f , and second, an interpo-

lation step as x′ will likely fall off-the-grid of the moving im-

age M. Counter-intuitively, while the spatial transformation

projects from F to M, the voxel data flows in the opposite

direction after the interpolation of values of M at the mapped

coordinates x′ (Figure 1).

2.2. Linear and nonlinear transforms

For the case of linear transforms, the mathematical operation

f can be described as the dot product of an affine matrix A

and the input vector x given in homogeneous coordinates:









x′

1

x′

2

x′

3

1









= A ·









x1

x2

x3

1









,

where A is an (n + 1, n + 1) matrix. When the transform is

nonlinear, f in (1) can be rewritten as: f(x) = x + u(x),
where u(x) can be a nonparametric map of displacements

(or “displacements field”) or a parametric function. A widely

used parametric basis to support nonlinear transforms are ten-

sor product B-Splines. In the following example, tensor prod-

uct B-Spline bases of degree three β3 are applied: f(x) =
x + β3(x). For numerical stability reasons, one can be in-

terested in including the original position x within the map-

ping function. Some authors have referred to this implemen-

tation decision as “deformation” fields (nonparametric case)

or models (parametric case): f(x) = U(x).

2.3. Composition and inversion of transforms

Transforms are generally composed sequentially to achieve

the desired transformation. A typical example is first approx-

imating images via a linear registration step followed by a

nonlinear step. In such a case, (1) can be rewritten for a com-

posite transform C as: C(x) = x
′ = flinear(fnonlinear(x)).

Reference image ("fixed") "Moving" image

1

2

3

Find the spatial transform: Estimate the function that, given the coordinates of

features in the reference imate, returns the location of the corresponding features 

in the moving's coordinate system.

Map the reference image's grid: For every voxel center, feed its coordinates to

the transform function, and obtain their locations in the moving image.

Interpolation or resampling:

Because the coordinates found in

step 2 are likely to fall at off-grid positions,

the values at those off-grid locations can be

interpolated from surrounding samples.

Once the data has been interpolated, a clone

reference grid is filled with them, in fact "moving"

the data onto the reference frame.

Fig. 1. Resampling the moving image onto the fixed image

via a spatial transform.

Finally, a useful operation to handle transforms is inversion:

M ⊂ R
n

→ F ⊂ R
n

x
′
7→ x = f−1(x′). (2)

For linear transforms, there is an analytical inversion of f .

However, for nonlinear transforms, only a numerical approx-

imation might be possible.

2.4. Software architecture

The proposed tool is based on NiBabel, and complements

it for the spatial transforms. Initially, it is being developed

open-source (https://github.com/poldracklab/

nitransforms), as an isolated module, which will be

integrated and distributed with NiBabel. The module is

designed to require minimal dependencies beyond those al-

ready present in NiBabel. Three main components sustain

the division of functional requirements: a base submodule

where most abstract classes are defined, a linear sub-

module implementing n-dimensional linear transforms, and

a nonlinear submodule for both parametric and non-

https://github.com/poldracklab/nitransforms
https://github.com/poldracklab/nitransforms


parametric nonlinear transforms. To ensure the consistency

and uniformity of internal operations, all transforms are de-

fined using a left-handed coordinate system of physical co-

ordinates. In words from the neuroimaging domain, the

coordinate system of transforms is RAS+ (or positive direc-

tions point to the Right-hand for the first axis, Anterior for the

second, and Superior for the third axis). The internal repre-

sentation of transform coordinates is the most relevant design

decision, and implies that a conversion of coordinate sys-

tem is necessary to correctly interpret transforms generated

by other software (e.g., ITK, where the internal coordinate

system is LPS+, or positive on Left, Posterior, and Superior).

An additional requirement is to provide an easy interface

for researchers to 1) map point sets via transforms; and 2)

apply transforms (i.e., mapping the coordinates and interpo-

lating the data) to data structures seamlessly (Figure 1). In

addition to the generally easy toolset available to apply trans-

forms onto NIfTI images, the tool also provides convenient

methods to apply transforms to point sets or surfaces or mixed

types combining point sets/surfaces/regularly gridded points

(supporting the GIFTI format). An example of particular in-

terest of the latter category (combining surface and volume

sampling) are ”grayordinates” files (see the CIFTI format).

2.5. Software tests and validation

The proliferation of existing tools and their internal imple-

mentations makes software testing and validation the most

important element of this study. Using a test-driven develop-

ment paradigm, we first wrote the battery of tests the software

will need to pass. The tests are included in a continuous in-

tegration framework which assesses the continuity of the im-

plementation along the development life, ensuring that new

features and code changes do not break existing functionali-

ties. We implemented two categories of tests: unit tests and

cross-tool comparison tests. Unit tests evaluate the formal

correctness of the implementation, to check the robustness of

the software across data inputs and the coverage of all the

functional requirements with an easy API (application pro-

grammer interface). Cross-tool comparison tests assess the

correct implementation of third-party software, and are based

on two test oracles:

• Loading transforms of software S: applying the same

transform file, given in the format of one particular neu-

roimaging tool S, to a pair of images should arrive to

the same resulting image if nearest-neighbor interpola-

tion is used.

• Writing transforms for software S: consistently, gener-

ating some transform and writing it to a particular soft-

ware S format should generate the same interpolated

images if nearest-neighbor interpolation is used.

3. RESULTS

3.1. Software implementation

As a result of the design proposed in subsection 2.4, software

contributions are released including the following salient fea-

tures:

An easy-to-use, comprehensive interface. The software

follows NiBabel’s standards for the input/output interface,

providing a global load() function to read in transform

files written by any of the supported software tools, and a

<transform object>.to filename() function that

writes the transform object out to hard disk. Transform ob-

jects have a function call implementing f in (1).

import nitransforms as nt

f = nt.io.load("from-FSL.txt")

x_prime = f([10.0, -5.0, 2.0])

The transform object also provides an apply() method to

resample any given image, surface/point-set or hybrid (vol-

ume and surface) object via the transform.

f = nt.io.load("from-FSL.txt",

reference="ref.nii")

f.apply("moving.nii").to_filename(

"moved-to-ref.nii.gz")

f.apply("moving.nii",

reference="surface.gii"

).to_filename("moved-to-surf.gii")

Finally, the composition and inversion operations are also

available. For the case of composition, let f1 be a linear

transform and f2 a nonlinear refinement that should be con-

catenated (please note that the concatenation operation + re-

quires operators to be ordered; i.e., it’s non-commutative):

(f1 + f2).apply("moving.nii",

reference="surface.gii"

).to_filename("moved-to-surf.gii")

Since transforms are converted into the internal representa-

tion at loading time, composition allows the combination of

transforms from multiple software packages. Inversion (2) is

implemented following an API similar to that of the NumPy

package:

f_inv = nt.inv(f, reference="moving.nii",

approx=True)

f_inv.apply("reference.nii").to_filename(

"apply-inverted.nii")

Tests coverage. Tests coverage is broadly defined as the

percentage of lines of code that have been exercised (exe-

cuted) at least once during some of the tests. Although this

metric does not guarantee any theoretical correctness of the



implementation, it is a good indicator of sections of the imple-

mentation that should be more thoroughly tested. The project

has a 98% coverage.

Linting and other forms of validation. The software code

adheres to the current standards in code style recommended

by Python, and code is linted (i.e., formally validated) with

every change to the code base. Linting checks the syntax of

code, and applies a series of rules and heuristics to highlight

potential points of fault. For instance, defining a variable that

is seemingly never used.

3.2. Compatibility with existing software instruments

A test set checks that transforms written by any of the neu-

roimaging packages supported (AFNI, FSL, FreeSurfer, and

ITK) are correctly loaded and interpreted, ensuring that the

result of applying such a transform is the same as, within an

acceptable margin of error, that obtained using the original

tool. Similarly, we also test that transforms generated inter-

nally by the test battery are correctly exported to the formats

of the above mentioned tools, and that the results of trans-

forming an image with the proposed software and the sup-

ported tools are equivalent within the margin of error. These

tests are run with every code change to ensure that function-

ality is preserved throughout maintenance and development

cycles.

4. DISCUSSION

We present a piece of software that will be fundamental to

those trying to create reproducible neuroimaging pipelines

that make use of several available toolboxes. Such an en-

deavour was nearly impossible before the NIfTI standard ex-

isted, but spatial transforms have remained uncovered by any

common solution across packages. Although we do not pro-

pose any purely theoretical or methodological contribution,

the software instruments proposed here are currently lacking

and crucial to enable single-step, uncomplicated resampling

of images and surfaces in pipelines like fMRIPrep. On the

methodological aspect, we propose that infrastructural con-

tributions as ours must be supported by thorough, continu-

ous testing, stringent formal checks (e.g., language linting),

and extensive documentation. The project has been driven by

these software engineering “good practices” from the start,

to ensure the highest standards for the implementation. As

if it were a preregistration of an experiment, we first wrote

the tests that assess whether all functional requirements have

been met, and then initiated the implementation (test-driven

development).

The software is built as a base for the larger effort in stan-

dardization of the BIDS-Derivatives, an extension of BIDS to

describe the outcomes of processing and analysis pipelines.

In particular, this software instrumentation is conceived as

part of the BIDS Extension Proposal 14 for linear and non-

linear spatial mappings.

A limitation of the software is its potential confinement

to neuroimaging tools and formats. However, generalization

to other domains is straightforward considering that the the-

oretical foundations are shared. Implementation-wise, the

software finds a limitation when applying surface-to-surface

transforms on the surface’s manifold (typically conducted on

the sphere). Future versions of the tool will implement this

feature.

The field of neuroimaging is experiencing a paradigm

shift, where the knowledge of computational methods re-

quired of scientists is approaching that of the required neuro-

science domain knowledge. Therefore, it is essential to engi-

neer new software instruments that help unload the method-

ological details of software implementation without creating

black-boxes that scientists operate blindly. By making it con-

ceptually clearer, with an easy-to-use interface, the proposed

software will increase the reliability of scientific findings,

enable a more thorough assessment and comparison across

tools, and maximize the shareability and reproducibility of

the results.

5. REFERENCES

[1] O. Esteban et al., “fMRIPrep: a robust preprocessing

pipeline for functional MRI,” Nat Meth, vol. 16, no. 1,

pp. 111–116, 2019.

[2] R. W. Cox and J. S. Hyde, “Software tools for analysis

and visualization of fmri data,” NMR Biomed, vol. 10, no.

4-5, pp. 171–178, 1997.

[3] M. Jenkinson et al., “FSL,” NeuroImage, vol. 62, no. 2,

pp. 782–790, 2012.

[4] B. Fischl, “FreeSurfer,” NeuroImage, vol. 62, no. 2, pp.

774–781, 2012.

[5] B. Avants et al., “Symmetric diffeomorphic image reg-

istration with cross-correlation: Evaluating automated la-

beling of elderly and neurodegenerative brain,” Med Im-

age Anal, vol. 12, no. 1, pp. 26–41, 2008.

[6] M. Brett et al., “nipy/nibabel: 3.0.0,” Zenodo, Dec. 2019.

[7] K. J. Gorgolewski et al., “The brain imaging data struc-

ture, a format for organizing and describing outputs of

neuroimaging experiments,” Sci Dat, vol. 3, pp. 160044,

2016.


	 Introduction
	 Materials and methods
	 Spatial transforms and image alignment
	 Linear and nonlinear transforms
	 Composition and inversion of transforms
	 Software architecture
	 Software tests and validation

	 Results
	 Software implementation
	 Compatibility with existing software instruments

	 Discussion
	 References

