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Abstract 

Among the needs usually expressed by teams using mass spectrometry imaging, often arise 

user-friendly software able to quickly manage huge data volume and to provide efficient 

assistance for the interpretation of data. To answer this need, the Computis European project 

developed several complementary software tools to process mass spectrometry imaging data.  

Data Cube Explorer provides a simple spatial and spectral exploration for MALDI-ToF and 

ToF-SIMS data. SpectViewer offers visualization functions, assistance to the interpretation of 

data, classification functionalities, peak list extraction to interrogate biological database, 

image overlay and can process data issued from MALDI-ToF, ToF-SIMS and DESI 

equipments. EasyReg2D is able to register two images, in ASCII format, issued from different 

technologies. 

The collaboration between teams being hampered by the multiplicity of equipments and data 

formats, the project also developed a common data format (imzML) to facilitate the exchange 

of experimental data and their interpretation by the different software tools. The BioMap 

platform for visualization and exploration of MALDI-ToF and DESI images was adapted to 

parse imzML files, enabling its access to all project partners and more globally to a larger 

community of users.  

Considering the huge advantages brought by the imzML standard format, a specific editor 

(vBrowser) for imzML files and converters from proprietary formats to imzML were 

developed to enable the use of imzML format by a broad scientific community. This initiative 

is paving the way towards the development of a large panel of software tools able to process 

mass spectrometry imaging datasets in the future. 

Introduction 



Since the emergence of mass spectrometry imaging almost twenty years ago in SIMS,1-2-3-4 

and MALDI technologies,5-6-7 this technique appeared as a major discovery tool in life 

sciences for detection, localization and identification of molecules in biological tissues,8-9 and 

for understanding the cellular processes involved in both health and disease,10. 

Since then, the technology was perfected,11 to improve the sensitivity, accuracy and spatial 

resolution of mass spectrometry imaging instruments,12-13-14-15 and to optimize ionization and 

reproducibility with appropriate sample preparation and treatment methods not introducing 

analyte delocalization or degradation,16-17-18-19-20. The range of molecules was considerably 

extended so that it is now possible to measure molecular weights above 200 kDa,21-22 to reach 

mass measurement accuracy of sub-parts per million,23-24 and to detect a particular compound 

in the order of low fmol/µ²,25.  

Datasets acquired with state-of-the-art instrumentation often include thousands of mass 

spectra, each of which comprising thousands of mass channels, therefore mass spectrometry 

imaging outputs regularly amount gigabytes of data and it is essential to develop automated 

software to analyze the huge spectra rapidly and efficiently,26-27 and specific methods adapted 

to process such amount of data,28-29-30-31. 

For imaging mass spectrometry, available software is limited to proprietary software 

developed by the equipment manufacturers and linked to specific equipment (flexImaging 

from Bruker Daltonics, TissueView from AB Sciex, SurfaceLab from IonTof), and very few 

free of charge software such as BioMap or MITICS,32. If all these software tools provide 

image reconstruction and exploration functions, few of them include processing 

functionalities such as clustering or multivariate analysis,33-34-35-36 to help users in data 

analysis and interpretation. 

To contribute to the improvement impetus of mass spectrometry imaging technology, the 

Computis European project (2006-2010) http://www.computis.org/ was devoted to the 

development of high-resolution imaging instruments, software affording a large panel of 

analytical functions, and to use these new capacities in biological and medical applications. 

The Computis project dedicated large efforts to the development of software tools for data 

processing and visualization. Many basic but largely used features such as zooming, region-

of-interest analysis, image cropping, intensity-scale and color palette for image display, 

intensity profiles, peak and pixel picking, true-data or binned-data display, were developed. 

More specialized processing functions such as denoising and baseline subtraction, clustering, 

multivariate analysis and image registration, were also elaborated with the constraint to 

identify methods adapted to the management of enormous amounts of spectral data obtained 

from the imaging of tissue sections. 

Three software tools were developed during the Computis project: Data Cube Explorer for a 

simple exploration of data and classification with the Kohonen network, SpectViewer for 

exploration, classification, data interpretation and connection with biological databases, and 

EasyReg2D for image registration. 

One of the goals of the Computis project was to develop software compatible with data of all 

partners. Nevertheless, the multiplicity of data formats - issued from the use by the partners of 

various devices from several manufacturers in MALDI and SIMS imaging - quickly resulted 

difficult to manage. The need clearly appeared to have a common format allowing the 

comparison of images and datasets from the different partners.  

To address this limitation, the partners examined the different standards available: 

netCDF/ANDI-MS,37 from ASTM International, mzXML,38-39 from the Institute of Systems 

Biology, mzData,40 from Human Proteome Organization (HUPO) and the joint format 



mzML,41-42 (released in 2008 but under development at the time). However, it appeared that 

mzML could not completely describe a 2D MS imaging experiment as some 2D parameters 

(including x/y position, scan direction/pattern, pixel size) were not available and that data 

storage was not efficient enough. Therefore the Computis European project developed the 

imzML data format,43-44-45 for imaging MS data and Justus Liebig University took the 

leadership of this development. 

In the imzML format, the MS imaging data is divided in two separate files. The mass spectral 

data is stored in a binary file to ensure efficient storage. All metadata (instrumental 

parameters and sample details) are stored in a XML file with an extended controlled 

vocabulary to include specific parameters of mass spectrometry imaging. The two files (XML 

and binary) are connected by offset values in the XML file and are unambiguously linked by a 

universally unique identifier. The resulting datasets are comparable in size to the raw data and 

the separate metadata file allows flexible handling of large datasets. Specifications and 

example files for imzML can be downloaded at http://www.imzML.org. 

Considering the advantages brought by the imzML standard format and its interest for the 

mass spectrometry community, the Computis project developed a specific editor for imzML 

files and converters from proprietary formats to imzML format to help the scientific 

community to use the imzML format. As all data formats of the Computis partners could not 

be read by the BioMap platform developed by Novartis, BioMap was also adapted to parse 

imzML files, enabling its access to all project partners and more globally to a larger 

community of users.  

Data Cube Explorer 

Data Cube Explorer is a user-friendly tool under Windows to provide an easy spectral and 

spatial exploration of MALDI-ToF and ToF-SIMS imaging mass spectrometry datasets. It 

enables zooming within spectra and scrolling through the dataset masses for images with a 

manual greyscale tuning to improve image contrast. Regions Of Interest can be selected with 

the display of the associated spectra. Developed by the Dutch Foundation for Fundamental 

Research of Matter (FOM-Amolf), Data Cube Explorer,46-47-48 can be downloaded at 

http://www.maldi-msi.org. 

The “self-organizing map” functionality classifies images according to the intensity of all 

pixel places and automatically selects a given number of images as different as possible. The 

classification method used is unsupervised competitive learning, also known as Kohonen 

neural network,49. For performing this analysis, the image data set is converted into a set of 

images, defined by a start mass and an end mass, the mass bin per image and the step size to 

move to a next image. A threshold value is used to distinguish between images containing 

noise and images containing real image data. 

One after the other, the images are fed into the network; a winning output image is calculated, 

where winning means that the “distance” of the fed image to the output images is minimal. 

The distance is defined as root mean square of the difference in the pixel intensities of all 

pixel places. The winning output image (and the images around it defined by the 

neighborhood value) are adapted to the input image with an learning rate factor. During the 

process both the neighborhood value and the learning rate are reduced (to respectively 1 and 

0).  

Figure 1 illustrates the use of Data Cube Explorer on a rodent urinary bladder dataset (image 

from Justus Liebig University). An image of the peak at m/z 171.10 Th is presented as well as 



spectra associated to the entire image, and the two Regions of Interest selected in the image. 

The self-organizing map is able to bring out the most interesting images in the dataset. 

 

Figure 1: Application of Data Cube Explorer on a rodent urinary bladder dataset 

Bottom: Selection of a mass interval 171.1<m/z<171.4 in the spectrum; display of the sample 

average spectrum (black line) and the spectra of the selected regions of interest (red and green 

lines)  

Top left: Image of the mass interval selected in the spectrum and selection of two Regions of 

Interest by coloring the area by moving the computer mouse 

Top center: Parameters for the self-organizing map computation (zone of the spectrum, 

number of images, parameters of the self-organizing map algorithm) 

Top right: Images selected by the self-organizing map method (143.1 Th, 153.1 Th, 156 Th, 

171.2 Th)  

SpectViewer 

SpectViewer is a software module developed by French Atomic Energy Commission (CEA) 

under Windows and Linux for processing and visualization of MALDI-ToF, ToF-SIMS and 

DESI mass spectrometry imaging, with several tools providing user assistance for the 

interpretation of data. SpectViewer handles datasets in Analyze 7.5 (Applied Biosystems), 

GRD generated by SurfaceLab6 software (IonTof), BrukerFlex (Bruker), Orbitrap 

(ThermoFisher) and imzML formats. SpectViewer is available through partnership with 

French Atomic Energy Commission. 

In addition to classical data display and exploration functionalities (spectrum and image 

display, peak and pixel picking, zooming on spectra and images, ROI selection), SpectViewer 



extracts the peak list for faster molecule identification with public biological databanks, and 

provides some more specialized treatments such as denoising spectra or structure analysis by 

clustering methods. SpectViewer offers a fast processing and display of original data: no 

binning for MALDI and DESI data, no binning or user-defined binning for SIMS data. It also 

enables to overlay the images of two or three peaks of the dataset to compare their respective 

locations in the sample. 

As assistance to the interpretation of data, SpectViewer computes several indicators:  

 The relative variance spectrum is an indicator of how much the image corresponding to a 

peak deviates from a uniform Poisson noise image. This simple and fast tool greatly 

highlights peaks that have a highly contrasted spatial distribution. 

 Moran index,50 is an autocorrelation indicator measuring the spatial auto-covariance of a 

point with the neighbour points. This index evaluates if a local pattern is clustered, 

dispersed or random. It highlights peaks associated to clustered spatial areas, which is 

particularly adapted to detect thin local structures such as membranes, in images. 

 The correlation matrix can be calculated between all peaks (computed from binned data) 

or between one given m/z and all other bins of m/z. The correlation spectrum associated to 

one given m/z brings out correlated m/z, which are often co-localised or complementary 

with the given m/z. 

SpectViewer also includes several clustering tools to perform spatial (i.e. pixel-based) 

classification or spectral (i.e. m/z-based) classification. The K-means clustering is one of the 

simplest and fastest classification methods. The time for running a K-means clustering,51 

usually lasts only some seconds. Stochastic K-means,52 optimizes both the cluster position 

and the cluster number. The random projection tree clustering,53-54 consists in classifying data 

by random tree coupled to random projection sorting rules and a dimensionality reduction 

method. The hierarchical clustering performs clustering inside a zone defined by a preceding 

clustering,55.  

The diffusion map method,56-57-58 uses the eigenfunctions of a Markov transition matrix, 

defining a random walk on the data, to represent spectral data as a cloud of points in the 

Euclidean space. The eigenvectors of the Markov matrix are used as coordinates of the data 

set. The diffusion distance between a pair of points is calculated as a L2 Euclidean distance 

weighted by the eigenvalues of the Markov matrix. By keeping only the top eigenvectors, it is 

possible to reduce the dimensionality of the problem with a limited precision loss. Then a 

clustering analysis can be performed in the reduced data.  

According to our experience, it is necessary to have several classification methods available 

as no method is able to classify perfectly all biological samples. The K-means algorithm is 

often giving good results at little CPU cost  and provides structured classification images that 

can be physically interpreted. But in some cases, the K-means method is not able to classify 

data and more complex methods, such as the diffusion map method, are necessary.  

The use of SpectViewer is presented on a coronal section of mouse brain tissue (part of the 

corpus callosum and caudate putamen of 256*256 µm²) analyzed by French National Center 

for Scientific Research – Institute for Natural Substance Chemistry (CNRS-ICSN) in positive 

mode with Tof-SIMS equipment. 

Figure 2a presents the total image with the associated total spectrum, the relative variance 

spectrum enabling to discriminate interesting peaks in the spectrum, and the correlation 

spectrum with m/z 385.34 Th. The relative variance highlights cholesterol (m/z 385.34 Th) in 



the corpus callosum and m/z 158.92 Th in the caudate putamen. Peak at m/z 158.92 Th is also 

inversely correlated to m/z 385.34 Th. Both peaks provide complementary images. 

Figure 2b displays a zoom of the total image with m/z included in 1 to 100 Th, as the red 

spots are particularly visible below 100 Th. In order to characterize the high-intensity spots in 

the caudate putamen (red spots in the total image), the spectra of pixel (x=118, y=185) in a 

red spot and pixel (x=129, y=175) in a green zone were displayed. By comparison of the 

spectra, it appears that m/z = 66.01 and 107.02 Th are localized in the spots.  

Figure 4c shows a K-means classification on pixels with 4 clusters, associated to the cluster 

spectra. The cluster image shows cluster 0 in blue, cluster 1 in green, cluster 2 in orange and 

cluster 3 in red (color correspondence is indicated in the bar scale on the right side of the 

cluster image). The corpus callosum and the caudate putamen are well separated and subzones 

fitting with the spots are identified. 

 

Figure 2: Application of SpectViewer on a mouse brain tissue dataset 

 



EasyReg2D 

EasyReg2D is a data fusion module developed by French Atomic Energy Commission (CEA) 

under Linux to register two images. The method supports multimodal registrations, for 

example microscopic image coming from a histopathology analysis with an image extracted 

from mass spectrometry data. Input image format is a plain ASCII file, containing a 

bidimensional array of gray intensity values (integers or floating numbers). Images in 

standard formats (jpeg, tiff, gif, bmp) can be converted in ASCII format by ImageJ free 

software http://rsbweb.nih.gov/ij/.  

The geometric transformation registering the two images is an affine transform (6 degrees of 

freedom in 2D); the merit function is the mutual information,59-60. The merit function is 

minimized using a Quasi-Newton method. If needed, the graphical user interface allows the 

user to provide the optimizer with a good starting point (semi-manual registration). 

Figure 3 shows the application of EasyReg2D on a microscopy image and a Tof-SIMS image 

of a rat brain tissue provided by French National Center for Scientific Research – Institute for 

Natural Substance Chemistry (CNRS-ICSN). Registration is initialized with two user-defined 

starting values (top). Initial images are superimposed without registration (middle) and after 

registration (bottom). 

 



Figure 3: Application of EasyReg2D on a rat brain tissue dataset 

BioMap 

BioMap,61 is a free image analysis platform for Mass Spectrometry and Magnetic Resonance 

Imaging developed by Novartis under IDL. Visualization is based on multi-planar 

reconstruction allowing the extraction of arbitrary slices from a 3D-volume. Initially 

dedicated to data in Analyze format for MSI, Novartis adapted BioMap during the Computis 

project to also read imzML format. BioMap is available under Windows and Linux for 

MALDI-ToF and DESI data. It can be downloaded at http://www.maldi-msi.org 

Well-known by proteomics teams for its visualization capacities and biology well-adapted 

functionalities, BioMap allows spectrum and image display with numerous colour tables, 

geometrical transformations (translation, rotation, flipping and resizing of images), 

adjustment of intensity, zooming on images and spectra, selection and treatment of multiple 

ROIs, statistical and histogram analysis, geometrical operations, and annotation of images. 

Simple calculations on images are available: spatial or temporal filtering, baseline correction, 

detrending (removal of a linear drift of the signal). 

In order to manage large datasets with limited memory computers, BioMap offers the 

possibility to download and process only part of a dataset (a range of m/z). Display functions 

enabling to view simultaneously all images of a dataset or to create a movie are particularly 

useful to find the interesting m/z. Co-registration enables to superimpose and compare several 

images issued from different slices of a sample or different compatible samples, or to compare 

the position of patterns appearing at different m/z. 

An example of BioMap is presented on a human cadaveric abdominal skin biopsy which was 

treated topically with an anti-acne development compound at m/z 466 (image from Novartis). 

The tissue was sectioned to provide a cross section of the full thickness of the skin (from 

epidermis to hypodermis/subcutaneous fat). 



 

Figure 4: Application of BioMap on a sebaceous gland dataset 

Figure 4a displays some characteristic m/z in positive mode, highlighting specific parts of the 

image: 227.22 Th,62 (halaminol A C14H29NO, a sphingoid base with an antimicrobial activity 

present at the skin surface), 265.9 Th, 290.44 Th (dihydrotestosterone), 466 Th (anti-acne 

compound), 655.63 Th,63 (18:1 cholesteryl ester C45H73D5O2) and 860.9 Th. Figure 4b shows 

the total spectrum of the sample.  

Figure 4c illustrates the co-registration function of Biomap. Complementary images at m/z 

290.44 and 655.63 Th were co-registered after a rotation of 180° of the first image. The image 

at m/z 228.2 Th was superimposed with the one at m/z 291 Th and the one at m/z 466.1 Th to 

show the position of this thin zone compared to the others.  

In figure 4d, three Regions Of Interest (ROI) were selected and the spectra of each ROI are 

displayed. 

vBrowser editor and imzML plug-in 

VBrowser provides a single frontend application to the networked resources. It renders a file-

based GUI for the access of the resources, similar to an explorer-like browser. It supports 

Grid-based file systems like Grid-FTP, SSH-FTP, SRM, LFC and SRB out of the box while 

presenting them to the user in a homogeneous and familiar tree-like structure. vBrowser is 

developed by Power Computing & Communication and is part of the Dutch Virtual 

Laboratory for e-sciences,64-65.  

The imzML plugin (Figure 5) from VBrowser provides advanced features for browsing 

imzML data files. It provides both tree-like and text based navigation of imzML metadata. 



The imzML metadata can be represented as an organized tree, an XML text, or can be edited 

with any text editor. 

 

Figure 5: imzML metadata browser for file exploration and navigation in imzML data 

imzML converters 

Two converters were developed under Windows to generate imzML files out of proprietary 

formats. The “raw to imML converter” was developed by Justus Liebig University for raw 

files from Thermo Fisher Scientific. This tool can also combine multiple raw files into one 

imzML file, which can be used to process DESI imaging data. It can be freely downloaded on 

http://www.imzml.org. 

The converter “ToimzML” was developed by French Atomic Energy Commission for 

Analyze 7.5 files from Applied Biosystems, GRD files generated by SurfaceLab6 (versions 

6.0, 6.1 and 6.2) from Ion-Tof, BrukerFlex files and Orbitrap files from ThermoFisher. It is 

available on demand at marie-france.robbe@cea.fr, with a manual and example files. 

Conclusions 

To extend the panel of software tools able to process mass spectrometry imaging datasets, two 

user-friendly tools for visualization and data analysis with multiple processing functionalities 

were specially developed by the Computis European project. Data Cube Explorer is an easy 

visualization freeware for MALDI-ToF and ToF-SIMS images, with an image-classification 

tool. SpectViewer offers, in addition to visualization functions, an assistance to the 

interpretation of data, classification functionalities, image overlay, and peak list extraction to 

interrogate biological databases. SpectViewer is able to deal with original datasets (no 

binning) issued from MALDI-ToF, ToF-SIMS and DESI equipments. The capacities of 



SpectViewer are complemented by EasyReg2D data fusion module for multimodal 

registration of images. 

The well-known BioMap free platform was adapted to parse imzML files, thus enlarging the 

access to its multiple visualization and processing capacities, particularly dedicated to 

biologists, to a larger community of users.  

Table 1 summarizes the main functionalities offered by the three visualization and processing 

software tools. 

 BioMap Data Cube Explorer SpectViewer 

Data MALDI-ToF, DESI 

Binning 

MALDI-ToF,  

Tof-SIMS 

Binning 

MALDI-ToF, DESI, 

Tof-SIMS 

No binning or user-

binning 

Spectrum processing Temporal filtering 

Baseline correction 

Detrending 

 Denoising 

Baseline correction 

Spectrum display 1 spectrum 

1D-zooming 

1 spectrum  

1D-zooming 

Up to 6 spectra  

2D-zooming 

Image display Up to 30 images 

Numerous color 

tables 

Intensity adjustment 

Zooming 

Geometrical 

transformations 

1 image 

1 grey table 

Intensity adjustment 

Up to 9 images 

3 color tables 

Intensity adjustment 

Zooming 

Region of Interest Several named ROIs 

Annotation of images 

Statistical analysis 

3 ROIs 1 ROI 

Assistance to find 

interesting peaks 

Multi-image display 

Video 

 Relative variance 

Moran index 

Correlation matrix 

and spectrum 

Clustering  Self-organizing map K-means 

Stochastic K-means 

Hierarchical 

Random Projection 

Trees 

Diffusion map 

Image registration Registration with  Image overlay 



different models of 2 

images (identical 

number of pixels) 

Registration via 

EasyReg2D 

Peak list   Parametrical peak list 

extraction 

Table 1: Main functionalities of BioMap, Data Cube Explorer and SpectViewer 

The joint efforts of the Computis project partners led to a major success: the development of 

software tools able to process imaging datasets issued from the majority of the mass 

spectrometry imaging instruments thanks to the definition of the common imzML format and 

the development of converters from equipment proprietary formats towards this standard 

format. In order to make easier the use of imzML format, the Computis project developed the 

vBrowser editor for imzML files to offer a comfortable lecture of imzML datasets with a tree-

like display of imzML keywords.  

Proteomics and mass spectrometry teams have now at their disposal a complete range of 

software tools to visualize and process mass spectrometry imaging data. Teams are no longer 

limited to the use of proprietary software to process their data; they can now choose the best 

suited software for their application and can process and compare images issued from 

different instruments with the same software.  
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