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Abstract
Embedded systems, like general-purpose systems, can benefit from
parallel execution on a symmetric multicore platform. Unfortu-
nately, concurrency issues present in general-purpose programming
also apply to embedded systems, protection from which is currently
only offered with performance-limiting coarse-grained locking or
error-prone and difficult-to-implement fine-grained locking. Trans-
actional memory offers relief from these mechanisms, but has pri-
marily been investigated on general-purpose systems. In this paper,
we present Embedded Software Transactional Memory (ESTM) as
a novel solution to the concurrency problem in parallel embed-
ded applications. We investigate common software transactional
memory design decisions and discuss the best decisions for an em-
bedded platform. We offer a full implementation of an embedded
STM and test it against both coarse-grained and fine-grained lock-
ing mechanisms. We find that we can meet or beat the performance
of fine-grained locking over a range of application characteristics,
including size of shared data, time spent in the critical section, and
contention between threads. Our ESTM implementation benefits
from the effective use of L1 memory, a feature which is built into
our STM model but which cannot be directly utilized by traditional
locking mechanisms.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming

General Terms Design, Experimentation, Performance

Keywords Embedded Systems, Multicore, Software Transac-
tional Memory (STM), Synchronization, Locking, Transactions

1. Introduction
When general-purpose processors hit the power wall due to in-
creasing clock frequencies, chip designers turned to multiple sym-
metric cores for increasing performance. In contrast, embedded
systems have been utilizing multiple heterogeneous cores for some
time [17, 32]. However, since they are typically clocked at lower
frequencies, and thus have not hit the same power wall, embed-
ded processor manufacturers have only recently begun to embrace
the transition to multicore chips in the form of Symmetric Multi-
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processing (SMP). Nevertheless, embedded processors can benefit
from adopting a thread-level SMP parallel programming paradigm
for the same reasons that general-purpose systems have. Specif-
ically, running embedded applications in parallel can improve
performance while keeping the clock frequency the same. If we
lower the clock frequency and voltage on each core, we can utilize
two cores effectively to achieve lower power, while maintaining a
given performance level. Since embedded processors are often used
for portable, battery-powered devices, energy reduction provides a
powerful motivation for considering a multicore design path.

Unfortunately, parallel programming presents new challenges,
such as managing race conditions and concurrent access to shared
resources. Traditionally, locks have been used to manage concur-
rent threads in parallel programs, though this method has severe
limitations. Coarse-grained locking is relatively simple to imple-
ment, but in the presence of significant contention, can effectively
serialize program execution and limit performance. Fine-grained
locking can potentially increase parallelism and thus produce per-
formance benefits, but is notoriously difficult to implement and can
result in concurrency bugs and deadlock.

Transactional Memory (TM), first proposed by Herlihy and
Moss [26], addresses the problems associated with locking by pro-
viding the potential for performance on the order of fine-grained
locking, with the ease-of-programming and robustness of coarse-
grained locking. A transaction is a sequence of operations which is
executed speculatively. If there are no conflicts with the addresses
accessed in the transaction, the memory operation will commit, and
all its changes will become permanent to shared memory. If there
are memory conflicts, the transaction will abort, at which point
all associated changes are discarded and the transaction will re-
execute.

Transactional memory approaches can be broadly classified into
one of three types: 1) Hardware Transactional Memory (HTM),
2) Software Transactional Memory (STM), or 3) Hybrid Trans-
actional Memory (HyTM). HTM implementations provide lower
overhead than STM implementations, but have architectural lim-
itations. Specifically, transactions must fit in cache and cannot be
preempted by the scheduler, and are thus limited by size and execu-
tion time. STM implementations, on the other hand, require more
overhead to manage the transactions. However, transactions can be
any size and run for any duration, and can support nesting. Finally,
HyTM implementations incorporate strengths of both methodolo-
gies, by using HTM whenever possible and resorting to STM if
transactions do not fit the limitations of HTM.

In this paper, we present Embedded Software Transactional
Memory (ESTM)—the first full implementation of Software Trans-
actional Memory for an embedded system. As embedded systems
are specialized by nature, implementation decisions and optimiza-
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tions which work for one class of applications may not work for
others. Our ESTM is targeted toward guidance and navigation em-
bedded systems running operations over large matrices and vectors.
We implemented ESTM on the Analog Devices Dual-Core Black-
fin with the Visual DSP++ Kernel (VDK).

Embedded STM is a library-based STM written in C, presenting
a simple API to embedded systems programmers. Because most
embedded systems applications are written in C or assembly, our
STM will interface seamlessly with the procedural programming
style of embedded applications. In this paper, we discuss key de-
sign decisions made in developing our ESTM, as well as the API
and its usage. We test our implementation and compare it to tradi-
tional locking, both fine-grained and coarse-grained, and show that
in many cases, the overhead of the STM is amortized and even over-
shadowed by the performance increase due to the efficient internal
memory usage built into our STM.

2. Related Work

2.1 Hardware and Hybrid Transactional Memory

Hardware transactional memory was first proposed by Herlihy and
Moss [26]; their elegant solution added extensions to the multipro-
cessor cache coherence protocols and a transactional cache for use
in transactional operations. However, transactions were both spa-
tially and temporally limited, in that they were able to access only
a limited number of memory locations and their runtime could not
exceed a scheduling quantum as they could not survive a context
switch.

This problem led to research in unbounded HTMs; unbounded
implementations provide mechanisms for transactions to com-
mit even if they exceed a system’s architectural resources and/or
scheduling quantum [5, 10, 20, 33]. However, this flexibility comes
at a cost in hardware complexity, making most implementations
impractical for modern processors. Another approach to manag-
ing arbitrary transaction sizes is Hybrid Transactional Memory
(HyTM); HyTMs operate on the assumption that most transactions
are small enough to run within the limits of a bounded HTM, and
thus would benefit from the performance of a simple HTM im-
plementation. However, if a transaction overflows the architectural
resources available, a STM is provided as a failover solution to
manage arbitrarily large or long-running transactions [9, 12].

2.2 Software Transactional Memory

Early predecessors of Software Transactional Memory, like Multi-
word Compare-and-Swap (MCAS), provided concurrent wait-free
or lock-free access to shared objects [6, 7, 19]. Earlier implementa-
tions limited parallelism with overly-restrictive comparisons [23];
Anderson and Moir remedied this problem with their MWCAS,
which permits parallel operations on disjoint sets of objects, and
presents a “helping” mechanism by which one process helps a com-
peting transaction to complete [6]. Anderson et al. later presented
additional helping schemes for use on priority-based systems [7].

The problem with MCAS operations is that they do not account
for concurrent read-parallelism, i.e., they cannot detect whether a
thread accessed memory that was subsequently modified by an-
other thread’s MCAS operation. Unless the programmer keeps
track of these references, memory may not be consistent through
the thread’s operation.

2.2.1 Non-Blocking Implementations

Many of the first STM implementations were non-blocking, which
requires that a thread that halts indefinitely or fails cannot prevent
other threads from making progress. The strongest guarantee of
progress is wait-freedom, followed by lock-freedom; early concur-
rency mechanisms were lock-free or wait-free [6, 7, 19, 31, 37].
Later implementations relaxed these restrictions and pursued a

weaker obstruction-free model which results in a less-complex im-
plementation [21, 25, 30].

The first STM model—as well as the terminology “Software
Transactional Memory”—was created by Shavit and Touitou [37].
They found that the cooperative helping mechanisms of previous
MCAS implementations resulted in extra contention and eliminated
the recursive helping structure. They were the first to call their
implementation a static STM: that is, the data set to be accessed
by the transaction, and the transactions themselves, are known in
advance.

The next phase of STMs were dynamic, in that the memory us-
age of a transaction did not need to be known in advance. Herlihy
et al. claim to be the first to present Dynamic STM (DSTM) [25].
This implementation is known to have performance problems be-
cause all data is accessed through a double-level of indirection [14],
resulting in cache misses. The authors comment that their work for
DSTM was more concerned with the basic transactional model and
run-time techniques, and less concerned with providing a simple
and flexible API for programmers. They correct this with DSTM2
through transactional factories, which allow programmers to “plug
in” their own synchronization and recovery mechanisms [24].

Fraser and Harris present three unique APIs to aid in concur-
rent programming [19]. The first is an MCAS reminiscent of the
early MCAS implementations. The second is a Word-based STM or
WSTM which solves the read-parallelism problem of MCAS, but
may result in lower performance compared to MCAS. Their last
API, Object-Based STM or OSTM, presents a more straightforward
implementation than WSTM and often runs more quickly. It ac-
cesses objects through a single level of indirection, which Marathe
et al. suggest leads to better performance than DSTM when con-
tention is low or transactions are largely read-only [29].

2.2.2 Blocking Implementations

Ennals’ work showed that obstruction-freedom is both unnecessary
and interferes with performance-boosting optimizations [16]; as a
result, blocking STMs were introduced and grew in popularity [14,
35].

In their work, Saha et al. discuss and evaluate STM tradeoffs,
and implement their own STM, called McRT-STM, based on their
findings [35]. They show that with certain applications they can
approach or beat fine-grained locking with enough processors. Adl-
Tabatabai et al. integrate the McRT-STM with an optimizing JIT
compiler, and show that their compiler optimizations can reduce the
STM overhead and safely eliminate redundant STM operations [1].
Saha et al. also develop architectural support for McRT-STM with
instruction set architecture (ISA) extensions and call it Hardware
Accelerated STM (HASTM) [36]; they show that it scales as well
as STM and better than HTM.

Another interesting approach is called Transactional Locking or
TL [14]; it presents a strong case for blocking STMs and compares
lock acquisition at both encounter time and commit time, and finds
that commit-time algorithms have the best scalability across typical
contention ranges. In follow-on work [13], TL is improved by
introducing a global version clock. The new TL2 eliminates the
requirement of a “safe” running environment, so that a thread will
not be operating on inconsistent memory states.

2.3 Embedded Transactional Memory

It is worth noting that, though there has been no prior work on
embedded software transactional memory, Ferri et al. explored a
hardware transactional memory solution for MPSoCs [17]. They
modeled their implementation after the original TM of Herlihy and
Moss [26], using a small, fully-associative transactional cache.
This transactional cache manages all memory accesses during a
transaction and is accessed in parallel with the L1 cache.
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3. STM Design Decisions
Given that this is the first implementation of Embedded Software
Transactional Memory, we cannot apply past research directly.
There has, however, been a considerable amount of work done clas-
sifying and evaluating STM design decisions. We can look at the
characteristics of these decisions to determine which are best suited
to an embedded multicore system. This section discusses these de-
sign decisions and motivates the choices made in our implementa-
tion.

3.1 Static vs. Dynamic STM

Transactions can be broadly classified into two categories: static
and dynamic. Static transactions [31, 37] require that data accessed
within a transaction, as well as the transaction itself, are defined
in advance. In dynamic STMs [1, 19, 24, 25, 30, 35, 36], the set
of locations accessed by a transaction is not known in advance, as
transactions and transactional objects are created dynamically. This
STM is particularly well-suited for dynamic-sized data structures,
such as trees and lists [19].

Though fine work has been done in the area of dynamic STM,
we believe that the embedded system environment is better suited
to the older static STM. A major concern in an embedded environ-
ment is keeping the overhead of the implementation low. Though
dynamic STM implementations provide greater ease-of-use to the
programmers using them, there is a greater overhead in both exe-
cution time and implementation complexity. Since embedded sys-
tems software developers fine-tune their applications, they already
have intimate knowledge of its memory behavior. Since our tar-
geted embedded applications typically have strictly deterministic
(i.e., static) data structures, we are not as concerned with com-
plex heap-allocated dynamic-sized data structures. Consequently,
dynamic allocation is not currently supported within transactions,
though lightweight support (such as specialized malloc and free
operations [12, 35]) will be supported in future implementations.

Though we sacrifice some ease-of-use by limiting the ESTM
implementation to static transactions, their use will minimize over-
head and complexity. Even so, we maintain that this STM imple-
mentation will still require less effort than fine-grained locking.

3.2 Granularity of Conflict Detection

An important consideration in any STM implementation is the
granularity of the memory accesses in a transaction. A word-based
or cache-line-based scheme detects conflicts across a range of
memory locations [11, 19, 35], or, as described by Herlihy et al.,
works by intercepting direct memory accesses [24]. A word-based
STM [11, 19] requires its own metadata to be maintained separate
from the data itself, and often code must be inserted around ev-
ery memory access to indicate whether it is a transactional read or
write.

Object-based conflict detection [19, 24, 25, 28, 30, 36] operates
at a different granularity. In an implementation done in an object-
oriented language like Java [24, 25, 36], conflict detection is done
over an abstraction of memory—the object—rather than an address
range of memory. Two transactions writing to disjoint elements
of the same object may create a conflict even though they are
writing to disjoint memory locations. For this reason, object-based
implementations may have a higher conflict rate than a word-
based approach. However, the implementation is simplified, and it
presents a more intuitive interface to the programmer.

Our implementation is closest to a word-based approach, though
the granularity of conflict detection is across an entire array, or
across a field of a struct (rather than the entire struct), so it is
presented intuitively to the programmer as an object-based STM. In
a language like C, which lacks the constructs of an object-oriented
language, it is difficult to implement a pure object-based STM.

Additionally, the ability to manipulate pointers makes C suitable
for a word-based approach. Further, through the use of address
books (described in Section 4.1.1), we do not require that code is
inserted around every memory access, as in previous word-based
STM implementations.

3.3 Blocking vs. Non-Blocking Implementations

Initially, many STM models were non-blocking—that is, they did
not require the use of locks in their implementations [19, 24, 25,
30]. Later research demonstrated the merit of a blocking or lock-
based approach [1, 14, 16, 35, 36]. Lock-based approaches are less
complex and have less overhead, and research has shown them to
be faster than their non-blocking counterparts [14, 16, 35]. The
downside of using a locking implementation is the possibility of
deadlock. However, locks are only used in the STM code, not in
application code, so the programmer does not need to worry about
them in his or her application design. Further, deadlock can be
eliminated with a timeout mechanism within lock acquisitions.

As embedded applications are generally fine-tuned and opti-
mized to achieve best performance, we do not feel the overhead
of a non-blocking implementation is justified. We take steps (as de-
scribed in Section 3.4) to minimize the effects of the locks. Addi-
tionally, with the reduced instruction set of the Blackfin processor,
there are no atomic load-link/store-conditional or compare-and-
swap instructions, eliminating most obstruction-free implementa-
tions from consideration. As the hardware does provide an atomic
test-and-set lock instruction, the decision to implement a blocking
STM is an easy one.

3.4 Object Acquisition

The acquisition of an object occurs when a transaction asserts own-
ership of the object in a non-blocking implementation or when a
transaction acquires the lock for the object in a blocking implemen-
tation [28]. There are two variations for lock acquisition: an eager
acquire and a lazy acquire. In eager acquisition [16, 24, 25, 35],
the objects are acquired as memory locations are accessed; in lazy
acquisition, the objects are acquired only at commit time [13, 19].
The benefit of an eager acquisition is that conflicts between trans-
actions are detected early, so transactions that will eventually abort
do not perform useless work. Using a lazy acquire, a transaction
that will eventually abort does not hold the lock for the duration of
its execution [30].

We chose the latter methodology to minimize the time the lock
is held, and to prevent a lock from being held by an aborting trans-
action. Locking is performed twice: 1) once very briefly at the start
of the transaction, and 2) later at commit time for a longer period of
time. We have a single global lock associated with the initialization
phase of a transaction, in addition to version numbers associated
with individual memory addresses. Our motivation for this global
lock is that it allows each transaction to obtain a consistent view of
memory at initialization for use throughout its execution.

We also account for a common argument against blocking
STMs: that a preempted thread may be holding onto a lock, which
may cause another thread to deadlock or waste cycles until the orig-
inal thread is context-switched back in. We solve this problem by
using kernel functions to temporarily prevent the scheduler from
preempting a thread while it is holding onto the lock.

3.5 Write-Buffering vs. Undo-Logging

Transactional implementations rely on one of two methods for
maintaining consistent views of memory when transactions abort.
A write-buffering mechanism creates a local copy or buffer of all
data used by a transaction; all operations are performed on the
local copy, and the data is written back to shared memory only
at transaction commit. In an undo-log implementation, all writes
occur in-place to the shared memory location, with a consistent
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view of memory saved in an undo-log. In the event of a transaction
abort, the shared memory reverts back to its previous state using
the data from the undo log.

Though Saha et al. show the undo-log implementation has bet-
ter performance [35], we chose a write-buffering implementation
due to the unique embedded system memory architecture. While
general-purpose computers have large amounts of cache to re-
duce slow accesses to main memory, embedded systems often have
only a small amount of on-chip memory which can be used as
a flat address space or cache (though cache is often not recom-
mended due its non-deterministic behavior and high-power char-
acteristics [8]). To address this issue, there has been a great body
of research [15, 18, 27, 34] dedicated to optimizing the use of the
Scratch Pad Memory (SPM) and minimizing access to slower L2 or
external memory.

To keep our STM generic enough to be used on many embedded
systems, we assume there is no cache, and provide a mechanism to
efficiently utilize the internal memory. The fast SPM is private to
each core; therefore, the only shared address space available is in
larger-but-slower L2 and external memory, and as a result, shared
data cannot be stored in the fastest level of memory. To fix this in-
efficiency, we use write-buffering, and create a mechanism which
works as a software prefetch to bring data to fast internal mem-
ory before it is used in execution. Since a write-buffering mecha-
nism requires that each transaction get a local copy of shared data,
we always allocate the private copy in the fastest level of memory
in which it will fit. This mechanism allows us to utilize the local
internal memory more efficiently than if all data remained in L2
memory for all execution, and also fits more data in internal mem-
ory than if it were statically allocated there at link-time. Our L1
memory optimization technique is responsible for the performance
improvements we see over traditional locking.

3.6 Preventing Starvation

One problem in STMs is ensuring that transactions make progress—
that is, ensuring a transaction is not repeatedly aborted due to con-
flicts with other transactions. Methods for preventing this type of
starvation vary in complexity.

One mechanism used to prevent transaction starvation is the
contention manager [16, 19, 25, 35]. In DSTM [25], a transaction
asks the contention manager for permission to abort another trans-
action. The permission to abort a transaction is given based on a
contention management policy.

Despite the prevalence of contention managers in STM imple-
mentations, Dice et al. claim that they are unnecessary and can be
replaced by a timeout [14]. While we like the simplicity of a time-
out, we feel that a more deterministic approach is needed in an
environment where there may be real-time deadlines. Since we use
commit-time locking, a transaction cannot abort conflicting trans-
actions to commit itself, because by the time the transaction discov-
ers there has been a conflict, the conflicting transaction has already
committed. We can, however, provide a contention manager which
allows the “losing” transaction to ensure that no conflicting trans-
actions commit until it is able to commit. Our contention manager
is discussed in more detail in Section 4.3.3.

4. Embedded Software Transactional
Memory (ESTM)

For each transaction, the programmer must declare two objects: 1)
a Transaction object and 2) a local AddressBook object, both
described in Section 4.1. They must delimit the transaction with
one function call each to start and end the transaction. Finally,
they must specify the shared memory addresses which will be
accessed within the transaction with one function call per variable
or array. The AddressBook and Transaction data structures are

described below, followed by the API and a detailed description of
our implementation.

4.1 Data Structures

4.1.1 ESTM AddressBook Structure

In our ESTM, we utilize the concept of an AddressBook to sim-
plify pointer management and allow for as little code transforma-
tion as possible. The AddressBook is a struct defined by the user
and contains pointers to all shared data variables and arrays in the
application. There is a single global address book, which contains
the shared memory (permanent) addresses for each variable or ar-
ray. Each transaction then has a local address book, which contains
the addresses of all its local copies. Then, the only code transforma-
tion required is to reference variables from the local address book
struct. Our motivation was to avoid having to insert code around ev-
ery memory access, which is tedious and makes code more difficult
to read. Consider the simple example of a matrix multiply function
call:

matmult(result, mat1, mat2);

STM implementations requiring a transactional wrapper around
each memory access [19, 22] would transform that matrix multiply
code to:

matmult(temp_result,
txn_read(mat1), txn_read(mat2));

txn_write(result, temp_result);

With our address book mechanism, the annotations should be
more intuitive and do not add lines of code:

matmult(addr_book->result,
addr_book->mat1, addr_book->mat2);

Future work on providing compiler support for embedded STMs
would alleviate the need for manual modification of code, just as
compiler support for some general-purpose STM implementations
has eliminated the manual wrapping of memory accesses in func-
tion calls (as required by library-based STMs).

Since the address book is declared and filled in by the user, the
naming convention is not required (the user will be passing around
a pointer to the structure cast as a void*).

In addition to readability, a primary motivation for the address
book implementation is to make all memory accesses fast. Once
the initial setup is complete, an STM memory access is as fast as a
native memory access (or if the data is allocated to a faster level of
memory, even faster). There is no extra bookkeeping involved for
a memory access: it is simply referencing the data through the new
address.

4.1.2 ESTM Transaction Structure

The Transaction struct maintains all necessary information for
the transaction; it contains a unique ID for the transaction, a flag
indicating whether it is read-only or read/write (used for commit-
time optimization), the maximum acceptable number of aborts be-
fore a forced commit (used by the contention manager), and point-
ers to both the global address book and its local address book. Ad-
ditionally, it contains bookkeeping information for every memory
access which will be made during the course of the transaction.
This metadata includes the address of the variable in shared mem-
ory (called the transaction’s read-write list), the address of the pri-
vate copy, variable read-only status, the size of the variable or array,
and the version number at the time the data was copied into local
memory.
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stm_start_setup(Transaction* trans, void** local_address_book, void* global_address_book,
int address_book_size, int max_aborts);

stm_open_mem(Transaction* trans, void** shared_address, int size_bytes, int read_only);
stm_end_setup(Transaction* trans);
stm_end(Transaction* trans);

Figure 1: Embedded Software Transactional Memory API

4.2 Embedded Software Transactional Memory API

There are only four functions in the ESTM API; the first three are
called at the start of the transaction, and the fourth is called at the
end of the transaction. The API is shown in Figure 1.

4.3 ESTM Implementation

4.3.1 Transaction Setup Phase

Within the body of the stm start setup function, the member
variables of the Transaction object are filled in. Space in local
memory is allocated for the local address book, and the contents
of the global address book are copied to it. Each transaction must
have a consistent view of memory for its execution. Therefore, no
transaction can be allowed to write its results to shared memory
while another transaction is actively copying data from shared
memory to its private memory. To maintain a consistent view of
memory, we use a read counter: a global lock which keeps track
of how many transactions are currently in the setup phase. This
read counter is incremented within the call to stm start.

Next, the programmer makes one call to stm open mem for each
shared variable or array which is accessed within the transaction.
For each call, a local copy of the data is allocated in the fastest level
of memory in which it will fit, and the data from shared memory is
copied to the new address. The pointer in the local address book,
which previously pointed to the shared data address, is redirected
to the new local copy. Thus, for the rest of the transaction, all
accesses to that address will be automatically made to the local
address. Finally, the attributes of the memory access are saved in
the Transaction object, including the shared and local memory
addresses, the data size, the version number, and read-only status.

The last step of the setup is a call to stm end setup. At this
point, the read counter is decremented so that a transaction that
is waiting to commit can do so without disrupting the consistent
state of the new transaction. In this function, we also check the
status of memory accesses to see if all are read-only; if so, we
declare the entire transaction to be read-only allowing for some
optimization in the commit phase.

With our setup complete, the program continues with its nor-
mal, original execution. The body of the original code is not trans-
formed, except that variables are now accessed through the local
address book, as described in Section 4.1.1.

4.3.2 Transaction Commit Phase

At the end of the transaction, a call is made to the function stm end.
Within this function, the transaction must first ensure that no other
transactions are active in the setup phase, at which point they
would be acquiring consistent copies of shared memory. If the
read counter is greater than zero, the transaction yields the pro-
cessor to give a competing thread the opportunity to complete its
setup phase. The transaction also acquires the global lock to ensure
that no other transaction can enter its setup phase, nor can another
transaction attempt to commit its results. The transaction acquires
the version numbers for all the memory accesses in its read/write
list, and if none of those version numbers differ from the versions
recorded in the setup phase, the transaction is allowed to commit.

If the transaction commits, version numbers are incremented
for memory addresses in the read/write set, though not for read-
only memory accesses. Data is copied from local memory to shared
memory using the information stored in the Transaction object.
The private data is then freed, along with the local address book.

If a memory address in the write list is found to be out of date—
that is, its version number has changed since the setup phase—then
the transaction must abort. It consults with the Contention Manager
(described in Section 4.3.3) to determine whether it can block other
transactions from committing in the future to allow itself to commit
in its next iteration. It then frees the memory it allocated for local
data and gets a fresh local address book. It resets the parameters of
the Transaction object and then restarts execution from just after
where stm start left off.

In this paper we target an embedded system commonly used for
Guidance, Navigation and Control Systems, where sensors contin-
ually feed updates into the navigation filter. Sometimes, it is ac-
ceptable for a thread’s read-only data to be an iteration behind the
most up-to-date information (we call this “stale data”), as long its
view of memory is consistent across all the memory it accesses (it
is still not acceptable for write memory accesses to be stale, be-
cause this would result in interleaving at commit time, violating
the atomicity rule of memory consistency). In an optional mode of
operation, we allow read-only data to commit regardless of version
number changes. This allows for faster commits of read-only data,
and automatic commits for read-only transactions. If this policy is
not appropriate for the application, a stricter policy can be used by
declaring all data as read/write.

4.3.3 Contention Manager

The Contention Manager prevents a transaction from starvation.
This occurs when one transaction, which in this case we will refer
to as the losing transaction, accesses the same memory location(s)
as another transaction, which we will refer to as the winning trans-
action, and the winning transaction always beats it to the commit
phase. In this situation, the losing transaction will continually abort.

In order to prevent thread starvation we propose a contention
manager which gives the programmer control over starving trans-
actions: the max aborts member variable of the Transaction
object. At the start of the transaction, the programmer specifies
the max aborts value which indicates how many times a transac-
tion can abort before it blocks commits on conflicting transactions.
A max aborts value of 1 will result in the transaction aborting,
blocking other transactions from committing, and committing it-
self on the first retry. Recognizing that a transaction must abort
at least once before the contention manager interferes (which may
pose a problem for respecting real-time deadlines), we moved the
contention manager to the start of the transaction in a more-recent
implementation.

When a transaction aborts, it increments a value indicating the
number of consecutive aborts. It then asks the contention manager
if it is okay to block future commits. If the number of consecutive
aborts is equal to the maximum allowable aborts, the contention
manager takes over.

While it is too late to abort a conflicting transaction which has
already committed, the contention manager can block future trans-
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actions from committing if they conflict with the losing transac-
tion. To block future commits, the contention manager stores the
addresses of all read/write data accessed by the losing transaction
and the unique ID of the losing transaction. The next time any trans-
action checks to see if it can commit, it checks to see if commits are
blocked. If so, it must compare its write set with the blocked write
set. If there are conflicts, the transaction cannot commit; if there
are no conflicts, the transaction can commit. In the event of two
transactions reaching the maximum aborts state at the same time,
the later arriving transaction must abort, but can block commits as
soon as the first arriving transaction has committed.

5. Experimental Setup
We have implemented our Embedded STM in the C language on the
Analog Devices Blackfin Embedded Symmetric Multiprocessor,
the BF561 [3]. The BF561 has two cores, each with 100K bytes
of private L1 memory, of which 68K bytes can be used for data.
The cores share 128K bytes of on-chip L2 SRAM. We used the
EZ-Kit Lite evaluation kit for the BF561, which has 16M bytes of
off-chip SDRAM.

We used the Analog Devices VDSP++ Kernel, or VDK [4], to
provide support for threading and to manage “unscheduled regions”
to prevent preemption of threads while locks are held. We built our
STM implementation using the atomic test-and-set lock.

5.1 Embedded Application

Embedded systems are inherently special-purpose, so the optimiza-
tion techniques and implementations that work for one target ap-
plication may not work well for another. In this work, we specif-
ically target a Guidance, Navigation, and Control (GNC) system.
Since the motivator of this work is a GNC algorithm, typical bench-
marks used in general-purpose STMs (e.g., operations on linked-
lists, hashtables, red/black trees, or counter incrementing) are not
appropriate for our platform. We have created a synthetic bench-
mark to represent a range of characteristics which model a generic
GNC system, and provide a thorough evaluation of our ESTM.

The computationally expensive part of a GNC algorithm is the
Kalman Filter, which recursively estimates the state of a process
from noisy measurements, including position, velocity, rotational
attributes, and acceleration. The state and error calculations, as well
as intermediate data, are stored as matrices and vectors and are cal-
culated largely using common matrix and vector operations. For
this reason, we focus on matrix multiply as the core of our syn-
thetic benchmark, and modify parameters of this microbenchmark
to represent the range of applications which would utilize it.

The synthetic benchmark consists of a variable number of
square matrices. Each thread randomly picks three matrices and
multiplies two together, storing the result in the third (it may ran-
domly choose the same matrix multiple times for the same opera-
tion). In most cases, this means that two of the memory accesses
are read-only, and one is read-write. There are two threads per
core and a total of 1000 matrix multiplies performed for each test;
threads alternate execution on a core, yielding the processor after
every successful matrix multiply operation. In order to evaluate the
ESTM’s usefulness on our target class of applications, we vary the
microbenchmark in three ways:

• Datasize: The size of the shared matrices.

• Time in critical section: The time spent in the critical section
is varied by adding additional computations to each thread’s
execution. These computations operate only on local data, and
are thus outside the range of the lock or transaction.

• Contention: The number of shared matrices is varied; since a
transaction operates on at most 3 matrices, a larger number of
matrices means there is less probability that two transactions

running in their critical sections simultaneously will be operat-
ing on the same shared matrices.

Though the time spent in a critical section will be large in
a GNC algorithm, since the computationally expensive portion
occurs on the shared Kalman filter matrices, we vary the percent
of time spent in the critical region over a large range to evaluate
the efficiency of our ESTM. Given that the navigation filter may
operate over just a few states to a few dozen states, we vary the size
of the shared matrices between 5x5 and 40x40. Finally, because the
time spent operating on the same few matrices may vary depending
on the other operations present in the GNC system, we vary the
contention for shared data between 5% and 60%.

6. ESTM Experimental Results
In this section, we compare the speedup of our ESTM approach
to both fine-grained and coarse-grained locking. While it would
be very interesting to compare the performance of our ESTM to
general-purpose STMs, this would not be possible because of the
limited kernel functionality and hardware support of the Black-
fin and would be unfair because general-purpose STMs are more
heavy-weight since they need to support a broader class of hard-
ware and applications. The performance results are presented rela-
tive to a sequential (single-core) execution. For the coarse-grained
lock case, there is a single lock protecting all of shared memory.
For the fine-grained lock case, there is a single lock for each matrix
(the same conflict granularity as our ESTM); the locks are acquired
in increasing order of data address to prevent deadlock.

We also compare these results to the ESTM-Optimized, in which
we allow transactions operating on stale reads to commit. We vary
the parameters of our microbenchmark—data size, contention, and
time spent in the critical section—for each of the concurrency
mechanisms.

6.1 Varying Size of Shared Data

In the first set of tests, we compare the speedup of the parallel
implementations as a function of the size of the shared data. For
these tests, we hold the contention rate constant at 30%. Figure 2a
shows the effect that data size has on speedup over a sequential
implementation for the four concurrency mechanisms.

For small shared data sizes, both forms of locking outperform
ESTM due to the overhead associated with the ESTM calls and
required bookkeeping. As shown in Figure 3a, due to the small
matrix size, only a third of the execution time is spent on the critical
section. Nearly 45% of the execution time is spent in the STM setup
and commit phases. With so little time spent executing original
application code, there is no opportunity to offset the overhead of
the STM calls.

As Figure 3a shows, more time is spent on the matrix computa-
tions relative to the STM calls as the data size increases. The over-
head of the STM calls is reduced as the size of shared data (and
thus the time spent executing original application code) increases.
Coarse-grained locking performs poorly as the execution is essen-
tially serialized even with matrices of only 100 words; this is due to
the majority of the execution time being spent in the critical section.

For medium-sized data, ESTM outperforms coarse-grained
locking, and approaches the speedup of fine-grained locking.
Though there is less overhead in the fine-grained locking imple-
mentation, the overhead of the STM calls is amortized by the ben-
efit of operating on data in L1 memory whenever possible, while
fine-grained locking must always operate on data stored in slower
L2 memory. Figure 3b demonstrates the speedup obtained by run-
ning the critical section with ESTM memory management versus
the fine-grained execution of the critical section out of L2 memory.
Whenever the local copy can fit into L1 internal memory, there is
approximately a 1.1x speedup over running the same code out of
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(a) Speedup as a function of size of shared data objects.
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(b) Speedup as a function of percentage of execution time spent in the
critical section.

Figure 2: Speedup vs. serial execution for microbenchmark.

(a) Breakdown of execution of critical section and overhead of STM
calls.

(b) Speedup of critical section due to ESTM memory management
relative to fine-grained execution.

Figure 3: Analysis of application behavior with varying size of shared data.

L2. This is explained by L1 memory accesses occurring in a single
cycle but L2 accesses requiring at least seven cycles [2]. If the ap-
plication were to store shared data in external memory, the speedup
obtained with ESTM memory management would be even greater.

At a data size of 1600 words, local copies can not always fit in
L1 memory, and occasionally are even copied to external memory.
This explains the drop in performance of ESTM relative to fine-
grained locking, as seen in both Figure 2a and Figure 3b. Future
work will look to mitigate this effect by integrating a smarter
memory allocation technique. Currently, our memory allocation
scheme naively allocates data to fast memory in the order in which
it is encountered; we can improve this by selectively favoring high-
profit/low-cost data for placement in L1 memory.

Not surprisingly, ESTM-Optimized outperforms standard ESTM
over all data sizes; it also provides better speedup than fine-grained
locking in all cases except for operations on small data sizes. This is
due to the reduction of conflicts in the ESTM-Optimized. Whereas
threads in the fine-grained locking implementation block if any of
the three locks it needs are already held, transactions in the ESTM-
Optimized implementation will only abort if there is a conflict on
the result matrix.

6.2 Varying Time Spent in Critical Sections

Figure 2b shows how our ESTM compares with both fine-grained
and coarse-grained locking when the percentage of execution time
spent in the critical section is varied. To remove the effect of the

other parameters, we kept the data size constant at 400 words and
the contention rate at 20%.

Our results show that, if less than 50% of the time is spent
in critical sections, both locking mechanisms and STM result in
roughly a 2x speedup over a sequential implementation. This can
be attributed to the low likelihood that two threads will be run-
ning in their critical sections simultaneously, combined with the
20% probability that two threads running in their critical sections
simultaneously will be operating on the same data. The result is that
there are few conflicts between threads. This explains why coarse-
grained locking performs almost as well as fine-grained locking:
there is little opportunity for conflict, so threads will not waste cy-
cles spinning to acquire the single lock. ESTM has the advantage
of the optimized L1 memory usage, but with so little time spent
within the critical section, this gain is offset by the overhead of the
STM calls, and the ESTM speedup is approximately the same as
the speedup for both types of locking. From these results, we can
infer that, for workloads similar to our synthetic application, appli-
cations which are running in critical sections less than 50% of the
time can safely use coarse-grained locking, as it is robust and sim-
ple to implement, though there is no performance disadvantage to
using ESTM in these applications.

As the time spent in the critical section increases, the perfor-
mance of coarse-grained locking quickly degrades; if nearly all
of the execution occurs in a critical section, performance is lower
than in a sequential implementation. There is too much conflict be-
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(a) Speedup as a function of probability of contention in the critical
section.
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(b) Transaction aborts per 1000 commits as a function of probability of
contention in the critical section.

Figure 4: Speedup and number of aborts for varying contention ranges.

tween threads operating in their critical sections and threads waste
time waiting to acquire the single lock. Fine-grained locking and
ESTM speedups do not degrade as quickly, as they experience less
conflict than coarse-grained. Fine-grained locking and STM per-
form approximately the same; both are experiencing memory ac-
cess conflicts, but while the overhead of fine-grained locking is
lower, ESTM has the advantage of internal memory optimization.
Even with nearly all execution time spent in the critical section,
both ESTM and fine-grained locking approach 1.5x speedup over
sequential execution. With speedup approximately equal for fine-
grained locking and ESTM, we claim that ESTM is a better option
for this class of applications across the entire range of time spent in
the critical section as it is easier to implement and more robust than
fine-grained locking, but with little or no performance loss.

6.3 Varying Shared Memory Contention

Finally, in Figure 4 we look at how contention between threads af-
fects the concurrency mechanisms. For all of these tests we use
matrices of size 15x15, where 95% of execution time is spent
in the critical section. As expected, the coarse-grained locking is
not affected by contention, as the same lock is acquired regard-
less of whether threads simultaneously access the same or different
data sets. Fine-grained locking and ESTM both perform best with
less contention, with the benefits of parallelization decreasing as
more conflicts occur. As shown in Figure 4b, the rate of aborts in-
creases as the rate of contention increases. This results in code re-
running more often, and explains the overall performance degrada-
tion against sequential execution. Since it spins more often waiting
for a lock, fine-grained locking performance also degrades, with the
result that fine-grained locking and ESTM perform approximately
the same across all conflict ranges. Fine-grained locking is more
affected by the contention increase than ESTM, and with a 60%
conflict rate, ESTM slightly outperforms fine-grained locking. Fur-
ther, as contention gets higher, a thread using fine-grained locking
may starve indefinitely waiting for a lock. The contention manager
in our ESTM ensures that no starvation will occur. Because ESTM
and fine-grained locking perform approximately the same, it is safe
to assume that the easier-to-implement and more robust ESTM is
a better option for concurrency control across all contention ranges
in this class of applications.

7. Conclusions and Future Work
In this paper, we presented Embedded Software Transactional
Memory (ESTM), a fully-implemented embedded STM. We dis-
cussed six key design decisions to make for any STM implemen-
tation, and showed which decisions were best for an embedded
platform. We described our ESTM implementation, and showed

how two optimizations—L1 memory management and allowing
stale reads—could amortize the overhead of the STM calls. We
tested our implementation on a synthetic workload representative
of Guidance, Navigation, and Control systems. We compared our
implementation to both fine-grained locking and coarse-grained
locking. In most cases, ESTM produced better performance than
coarse-grained locking. Across all ranges of contention and time
spent in the critical section, ESTM performs nearly as well or bet-
ter than fine-grained locking—only performing significantly worse
if the size of shared data is very small. With programmer effort
and robustness closer to coarse-grained locking, ESTM provides
a better alternative to fine-grained locking for our target class of
applications.

Given that ESTM is our first implementation of an embedded
STM, there is great potential for improvements. The overhead as-
sociated with the STM calls proved to be unacceptably high in ap-
plications possessing fine-grained shared data. We will look at ways
to reduce this overhead through code optimization techniques or in
the implementation details in order to support smaller transactions.
This in turn will allow us to look at other classes of embedded ap-
plications which operate on finer shared data sizes. We plan to in-
vestigate the scalability of ESTM by evaluating it on systems with
an increasing number of cores. Finally, we will look at the effect of
ESTM on power consumption, as reduction of power consumption
is an important area of embedded systems research.
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