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ABSTRACT 
 

The advent of multicore processors has put the performance of 
traditional parallel programming techniques in question. The 
traditional lock-based parallel programming techniques are error prone 
and suffer from various problems such as deadlocks, live-locks, 
priority inversion etc. In the last one and half decade, a considerable 
amount of the research has been carried out to achieve the 
synchronization among the parallel applications without using locking. 
One of most promising technique which has come out as a result of 
this research work is Transactional Memory (TM). Transactional 
Memory system commits the data in atomic code sequences called the 
transaction. Research has shown that Transactional Memory has the 
potential to out perform traditional locking mechanisms. In order to 
understand the design and implementation trade-offs of different 
implementations of the Software Transactional Memory, a 
comprehensive comparative study is required. Although some 
comparative studies have been carried out in the past, they were very 
focused in their scope and covered only few STM implementations. In 
this master thesis, a qualitative literature survey is conducted and the 
state of the art in Software Transactional Memory is presented, 
covering prominent approaches to date while discussing their design 
and implementation trade offs. 
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1. INTRODUCTION 
 
Now-a-days, we are living in an era of multi-core processor systems where we need robust and 
scalable, parallel applications to utilize the full power of multi-core architecture systems. Parallel 
applications share data, and therefore need synchronization among multiple processes. The 
locking mechanism and mutual exclusion have been used to achieve this synchronization. 
However, it may create performance bottle-necks, and it is more time consuming and vulnerable 
to the errors. In the last two decades, a considerable amount of research has been carried out to 
achieve synchronization in the parallel applications without using locks. One of most promising 
technique that has come out as a result of this research work is Transactional Memory (TM) 
[3][34][59]. 
 
Transactional Memory allows data sharing without using locking mechanisms. The Transactional 
Memory can be implemented in software as well as in hardware. It commits the data in atomic 
code sequences called transactions [26]. Before committing a transaction it checks whether the 
data which it read was not outdated or changed by another transaction. When there is a read/ write 
conflict, it aborts the transaction and rolls back and process the transaction again until it has no 
conflict. So in this procedure, Transactional Memory maintains a log for each transaction so that 
it would go back to its previous state. Software Transactional Memory has a flexible framework 
for executing parallel operations with contention manager for resolving the conflicts and load 
balancing. Transactions have been used a lot in databases since long ago and it do not suffer from 
resource starvation and deadlocks [27]. 
 
Research has shown that the Transactional Memory has the potential to out perform traditional 
locking mechanism. The idea of Transactional memory was first introduced by Herilhy et al. [34] 
based on the hardware approach in 1993. Later on in 1995, Shavit and Touitou [59] came up with 
the idea of Software Transactional Memory. Now-a-days, several Hybrid Transactional Memory 
(HTM) implementations have also been released [44]. However, this research report is based on 
study of Software Transactional Memory as well as some of the Hybrid Transactional Memory 
implementations. There are many implementations of Software Transactional Memory which 
have been developed over the period of time. Some of the Transactional Memory techniques 
developed are the Dynamic Software Transactional Memory (DSTM) [36], the Fast Software 
Transactional Memory (FSTM) [23][24], the Lock Based Software Transactional Memory (TL2) 
implemented by a research group at Sun Microsystems Laboratories [16], and the Light Weight 
Library (LibLTx) a C language implementation of the Software Transactional Memory by the 
Robert Ennals [20]. 
   
In order to understand the design and implementation trade-offs of different implementations of 
the Software Transactional Memory, a comprehensive comparative study is required. Such 
studies will help practitioners and researchers to develop better Software and Hybrid 
Transactional Memory systems. Although some comparison studies have been carried out in the 
past but those were very focused in their scope and covered only few STM implementations. A 
comparative study has been done by the Marathe and the Scott [46] in which they compared the 
FSTM, the DSTM and a hash table based STM system design. Similarly, a book has been written 
by Larus and Rajwar [41] in which overview of all the current STM implementations has been 
discussed latest by mid 2006. However, this master thesis discusses total fifteen Transactional 
Memory systems out of which eight TM systems are new and have not been discussed by Larus 
and Rajwar [41]. In other words, this is a state-of-art report describing the current research front 
in the area of software transactional memory. 
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1.1  Aims and Objectives 
The main objective of this thesis project is to identify and discuss design issues of the Software 
Transactional Memory (STM) systems so that it may help in understanding and developing better 
STM systems. Following sub-objectives are achieved in this master thesis to support the main 
objective.  
 

1. Identifying and discussing the problems in traditional locking mechanism in parallel 
applications. 

2. Analyzing and discussing the need for STM systems. 
3. Discussing the early STM systems and problems associated with them. 
4. Identifying and analyzing the modern STM systems.  

1.2 Research Questions 
Following research questions are addressed in this thesis project. 
 

1. Which approaches exist to support software-based transactional memory?  
2. What are the designs and implementations trade-offs of various approaches? 

1.3 Outcomes 
The outcomes of the thesis project are as below; 

1. A state-of-art report describing the current research front in the area of software 
transactional memory systems. 

1.4 Research Methodology 
The qualitative research methodology is adopted in this master thesis. The qualitative research 
methodology is chosen because in the qualitative study a large pool of software and hybrid 
transactional memory implementations can be analyzed and discussed. On the other hand, in an 
empirical study not many systems can be tested, compared and discussed due to the increased 
complexity of the work and limitation of the time. A comprehensive qualitative survey is 
conducted to identify and discuss the current approaches which support Software and Hybrid 
Transactional Memory systems and their design and implementation trade offs. 
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2. BACKGROUND 
 

In this chapter we will look at different generic approaches to achieve synchronization in parallel 
applications and would briefly discuss the problems associated with them. 
 
2.1 Achieving Synchronization in Parallel Applications 
Parallel applications share data and the traditional mechanism to achieve synchronization has 
been a locking mechanism.  Locking uses mutexes, semaphores etc. to ensure mutual exclusion in 
resource sharing.  Figure 2.1, shows a code in which the variable counter is accessed exclusively 
using a locking mechanism. 
 

Lock () 
{ 

// shared variable counter 
counter++; 

} 
Unlock () 
 
Fig. 2.1. A Shared variable with Lock. 

Locking ensures mutual access to the shared data but it creates a bottleneck for other threads or 
parallel processes. Other processes have to wait until the thread which is holding the lock 
completes its execution. Blocking a process can lead to the following problems [34]. 

2.1.1 Priority Inversion: Priority inversion takes place when a lower priority process is 
holding a resource which is required by a higher priority process, which makes the higher priority 
process wait until resource is released. 

2.1.2 Convoying: Convoying takes place when a process holding a lock is re-scheduled due 
to the different reasons, such as, if the process has consumed its processing quantum of time and 
yet not completed its execution, may be due to the page fault or due to some other interference. 
Meanwhile other threads waiting in queue to acquire the lock will not be able to progress ahead 
until this thread release the lock. Even if the lock is released, it will take some time to re-set the 
queue, which as a result will slow down the processing.   

2.1.3 Deadlock and Livelock: A deadlock is a situation where one or more processes are 
waiting for each other to release a resource and this situation lead to a circular chain of wait with 
no progress taking place on part of each process. A good example of a deadlock can be explained 
in a client-server database application.  

Let suppose a client application has acquired lock over a database table and it requests for an 
exclusive access to another table which is locked by another client application and that client 
application is waiting for the first client application to release the table, it is holding. In this way 
both clients are waiting for each other to release locks over the tables they are holding while none 
is doing so, which leads to deadlock situation. 

On the other hand, livelock does not wait for anything but keeps on processing based on the 
erroneous input. A good example of the livelock can be endless loop. It is analogous to the 
deadlock that no real progress is made ahead yet differs in a sense that no process is blocked or 
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waiting for any resource. A daily life example of the livelock can be two people meeting in the 
corridor. Both change their position to give way to the other person, but both are unable to make 
any real progress because both move the same side at the same time. 

The error prone nature of the locking mechanism also creates performance bottleneck. Therefore 
researchers focused their efforts towards non-blocking algorithms, techniques and data structures. 
Non-blocking approaches allow sharing data without acquiring a lock over the data.  

A system is non-blocking if suspension of one process may not stop other processes to progress 
ahead [25]. In other words, in locking mechanism, if one process is having a lock over a shared 
resource and it is stuck, then the other process will have to wait until this process release the lock, 
hence locking mechanism blocks other process to progress ahead. Non-blocking synchronization 
approaches try to avoid mutual exclusion. Non-blocking design property of a parallel system 
leads to the high throughput and better performance by avoiding deadlocks, live-locks and 
priority inversion and this is the reason of shifting from locking to lock-free and non-blocking 
approaches for synchronization in parallel applications. Basically there are three generic 
properties of non-blocking systems, based on which these are classified, Wait Freedom, Lock 
freedom, obstruction freedom [25].  

2.1.4 Wait-Freedom:[25] This property of the non-blocking system allows each process to 
progress without taking the contention into the context. Wait-freedom infact ensures that there 
would not be any starvation. However practically its not possible to develop efficient wait-free 
algorithms in parallel applications as the memory cost increases linearly with the number of 
processes. Therefore not much attention has been paid in this regard. 

2.1.5 Lock-Freedom:[46] The Lock-freedom ensures that multiple processes run at the 
same time but only one process goes ahead and completes its execution within finite number of 
execution time. The rest of the processes have to wait. The Lock-freedom ensures deadlock 
prevention but suffers from starvation. In lock-freedom, every process try to complete its 
execution but when it identify that original values have been changed by another process then it 
rolls-back and starts its processing again based on new values.    

2.1.6 Obstruction-Freedom:[36] An algorithm is obstruction-free if it allows completing 
a process only if it is not obstructed by another process. This is a very weak property of a non-
blocking algorithm as it is hardly possible that another process will not contend the currently 
executing process. Furthermore, Obstruction-free algorithm introduces the problem of livelock 
[36]. Therefore to avoid livelock and deadlock, roll-back is used. Moreover, a contention 
manager can be used to decide which processes have higher priority and based on the priority 
level higher priority process is allowed to execute while lower priority processes are obstructed.  

Wait-freedom seems to be a more efficient design property of Non-blocking synchronization 
algorithms, but practically obstruction-freedom leads to more simplicity and design tradeoffs 
[46]. So in practice obstruction-freedom is more efficient than lock-freedom and wait-freedom. 

2.2 Speculative Locking and Synchronization     
Another approach to achieve synchronization in Parallel applications is speculative locking of 
shared data. This technique was introduced by Rajwar and Goodman [52] with name of SLE 
(Speculative Lock Elision). SLE is hardware based synchronization technique for 
multiprocessing. The hardware dynamically monitors the synchronization operations and detects 
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if the synchronization is found un-necessary then it is eliminated. The detection of un-necessary 
synchronization is achieved by cache coherence mechanism. If hardware found that 
synchronization is required then it performs a recovery operation and explicitly lock is acquired. 
See the example code below in figure 2.2. 

Process No. 1 
lock(employee_struct.mutex) 
Struct Struct_Employee; 
If (Struct_Employee.Salary >1000) 
{ 
Struct_Employee.Bonus=10/100*1000; 
} 
unlock(employee_struct.mutex) 
 

Process No. 2 
lock(employee_struct.mutex) 
Struct Struct_Employee; 
If (Struct_Employee.Salary >1000) 
{ 
Struct_Employee.Rank=”Manager”; 
} 
unlock(employee_struct.mutex) 

Figure 2.2. Example of Speculative Lock Elicitation. 
 
In this example two threads are working on the shared data Struct_Employee but as they are 
modifying different properties of shared data Struct_Employee hence lock is not required to 
synchronize the operation. Furthermore, if there is a conflict in synchronizing the parallel 
operation then operation is rolled back and a proper lock is acquired to complete the process. The 
conflict detection and lock acquisition is done with the help of the Cache Coherence mechanism. 
SLE has many similarities to Software Transactional Memory which would be discussed in 
chapter 3. The problem arises with SLE when data conflicts take place and locks are acquired 
which as result creates bottle neck and other similar problems which are associated with typical 
locking mechanism. 
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3. SOFTWARE TRANSACTIONAL MEMORY 
CONCEPTS 

 
In this chapter we will discuss the basic artifacts and constructs of Software Transactional 
Memory. A memory transaction is basically a finite sequence of instructions, preserving the 
serializability and atomicity properties [34]. These properties will be discussed later in this 
chapter, in detail.  
 
3.1 Transactions in Database Programming 
Transactions have long been a part of database programming while their importance is now 
realized in parallel programming [41]. Database Systems allow multiple queries to run in parallel 
and it maintains concurrency with consistency. In other words, if a concurrent transaction is left 
in an illegal state, then it is aborted and rolled back. In the last few decades it is realized that a 
programming model which has been successfully used by databases can also be utilized in 
parallel programming. 
 
The main building block in database execution environment is Transaction. A transaction 
execution procedure defines the flow of the database computation. A transaction is a set of 
instructions which executes atomically and it may interact with other transactions but its results 
are separate from other transactions. Multiple transactions run over a database and produce 
accurate and consistent results. 
 
The transactions have a great deal of abstraction in itself which makes them simpler to understand 
and develop as atomic. Abstraction can be achieved in two ways i.e. data abstraction and process 
abstraction. Abstraction implies, hiding the implementation details of a compound data object or 
a process object from its usage details [7]. The data used by a transaction is not visible to other 
transactions and it executes independently but it may interact with other transactions if required 
through a proper interface.  
 
Transactions in parallel programming are similar to database system transactions [41]. Since 
today is an era of multi-core processors, parallel programming can unitize the old concepts of 
database transactions which have long been playing a vital role in the concurrent programming 
environment of database systems. 
 
3.1.1 Database Transaction Taxonomy   
A transaction is a set of instructions which are basically one unit. It has proper start and end with 
consistent results. A particular database transaction has four basic properties: Atomicity, 
Consistency, Isolation and Durability also known as ACID, to ensure that transactions take place 
with correctness. 
 
1. Atomicity: Atomicity means that a transactions either successfully completes or it fails 
and roll back. On successful completion it commits its results and on failure it aborts. 
  
2. Consistency: Consistency means that every transaction has the same view of the data. 
When a transaction starts the data which it reads remains on-changed until it completes its 
operation and it commits its results. The same updated data is visible to all the transactions. 
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3. Isolation: Isolation is a property which makes sure that each transaction can execute in 
parallel independently and its internal execution and data should be isolated and hidden from 
other transactions and failure of one transaction may not affect the result of other transactions. 
 
4. Durability: Durability implies that when a transaction completes, its results should be 
committed and should remain permanent and the same results should be visible to all other 
transactions. 
 
3.2 Memory Transactions vs. Database Transactions 
In this section we will look at the differences and similarities between database transactions and a 
typical memory transaction.  
 
Database transactions are usually very long and may take quite long time to complete and may 
consist of numerous instructions [12]. A typical memory transaction usually contains low number 
of instructions and would execute in faster.   
 
In a database transaction, data resides on hard disk and it makes the data retrieval slow and hence 
total execution time of the transaction is longer. On the other hand, memory transactions reside in 
the main memory and the cache, hence executed quickly. 
 
Moreover database transactions are often nested while memory transactions are usually not nested 
[12]. Database transaction are based on the properties discussed in section i.e. Atomicity, 
Consistency, Isolation, Durability while memory transactions support linearizability and 
atomicity [34]. However if linearizability and atomicity is achieved then consistency and 
Isolation is automatically attained. Linearizability is more explained in next section.  
 
3.2.1 Linearizability 
The concept of linearizability in parallel computation was first introduced by Herlihy and M. 
Wing [35]. They said that a parallel computation is linearizable if its results are equal to its 
sequential version. In other words if a parallel or concurrent computation is run sequentially and 
it comes up with same results then it has the property linearizability. 
 
Linearizability is basically a correctness criterion for concurrent transactions which makes sure 
that every running processes, and runs instantaneously and has some valid pre and post conditions 
which give meaning to existence. In other words every process is invoked by some valid events 
or by other processes and it runs in a single point in time, and it executes and ends with some 
valid results and response. Linearizability creates an illusion that each concurrent process runs 
instantaneously [35]. Linearizability is also a non-blocking property and it supports the parallel 
computation and concurrency. 
 
3.2.2 Failure Atomicity 
Failure atomicity ensures that a transaction either successfully completes its execution and 
commits its results or entirely aborts. Failure atomicity play very important role in order to make 
the system execution consistent. In other words, if a transaction aborts all the changes made by a 
transaction are reverted back.   
   
3.2.3 Isolation 
Isolation, as discussed in section 3.1.1, implies that operation of one transaction may not effect 
other transactions. Isolation is more categorized in to strong isolation and weak isolation [9]. 
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Inside an STM-based system there can be two types of operations, i.e., transactional and non-
transactional. So, non-transactional operations may have a negative effect over transactional 
operations which may lead to data races and inconsistencies. 
 
Strong Isolation implies that data access is always restricted to a transaction only. However, this 
assumption is not much practical as transactions sometime require data which is not available 
inside a transaction. The idea behind strong isolation is this that data confliction should be 
minimum.  
 
The concept of Weak Isolation believes that data can be accessed inside a transaction as well as 
outside a transaction. But as data inside a transaction is atomic and consistent but not necessarily 
outside transaction. So, in this case data outside a transaction can be formed in to a transaction 
and thus a transaction can communicate with other transaction through an interface hence 
reducing the possibility of data race and helps in conflict management.  
 
3.3 Software Transactional Memory Semantics and Constructs  
In this section we will discuss the basic building blocks of Software Transactional Memory and 
their usage details. 

3.3.1 Atomic Block 
A memory transaction is in fact contained inside a block, called an Atomic Block. This Atomic 
Block defines the boundaries of a memory transaction [33]. Figure 3.3.1 shows an example of 
memory transaction.   
 

Atomic 
{ 

int x, y, radius; 
CalculatePieVal (int radius, int x, int y);       

} 
 
Figure 3.3.1. Atomic Block. 

 
A transaction executes with atomicity and serializability as discussed in section 3.2. The memory 
transaction only exposes their execution outcome to the system and performs its processing in 
isolation, hence hiding the implementation details from rest of the system. In other words, 
atomicity leads to abstraction in memory transaction. The memory transaction has states like 
running, and if it successfully completes then it commits its results to main memory after 
identifying that no data conflicts are detected.     
 
3.3.2 Retry Statement 
In a software transactional memory system, multiple transactions execute concurrently and there 
is no specific order in which the transactions should update their results. Moreover if one 
transaction updates the result, other transactions may have to restart and execute again based on 
updated values. So in this context there should be some mechanism which could re-execute a 
transaction. Harris et al. [32] suggested a retry statement to synchronize the transactions in time. 
A Retry statement aborts a transaction and then re-executes it.  Figure 3.2.2 shows an example of 
use of the retry statement. 
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Atomic 
{ 
  int x, y, radius;   

CalculatePieVal (int radius, int x, int y); 
if (OriginalVal.updated==True) 
{ 
  retry; 
} 

} 
 

Figure 3.3.2. The Retry Statement. 
 
3.3.3 OrElse Statement 
OrElse is another conditional control statement introduced by Harris et al. [32]. For example, if 
there are two processes within a transaction, then the OrElse statement can be very useful in order 
to coordinate them. Figure 3.3.3 illustrates the use of the OrElse statement. 
 

Atomic  
{ 
  //Process A  

{ 
  obj1.CalculateMatrixMulti(); 
} 

  orElse 
//Process B 

  { 
  obj2.CalculateMatrixMulti(); 
} 

} 
 
Figure 3.3.3. The OrElse Statement. 

 
In the figure 3.3.3, the Process A is executed first and if it retries then Process A is left behind 
and the control goes to the Process B. If Process B also fails and retries as well then whole atomic 
block is executed again from the beginning [32].    
 
3.4 Software Transactional Memory Design Issues 
In this section we will discuss more STM related design issues and their trade-offs on STM 
systems. Earlier on, in section 3.2.1 and 3.2.2 we discussed basic properties of memory 
transaction i.e. Linearizability and Isolation. 
 
3.4.1 Nested Transactions 
A transaction is nested when it contains one or more transactions inside it. The behavior of the 
inner and the outer transaction can be related with each other in many ways. Initially, outer 
transaction initiates the inner transaction, then, depending on the how control shifts between two 
transactions, Nested Transactions are divided into many categories.  
 
If an inner transaction aborts and it causes the outer transaction to abort, then this type of the 
nested inner transaction is called a Flattened Transaction [41]. In the flatten transactions, changes 
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are not committed until the outer transaction commits, its changes. Flatten transactions are simple 
in implementation. As Flattened Transactions cause the outer transaction to abort, this may 
decrease the overall performance of the system [50]. 
 
Two other categories that are different from flatten transactions, are Closed and Opened 
Transactions [41]. A Closed Transaction aborts without terminating its outer transaction. If an 
inner transaction commits or aborts then control is passed to outer transaction. In the case, when 
Nested Transaction commits, its updates are visible to the outer transaction or surrounding 
transactions. Having said this, a non-surrounding transaction can only see the changes when the 
outermost transaction also commits its changes successfully.  
 
In Open Transactions, changes committed by the inner transaction become visible and remain 
permanent to all the running transactions in the system; even if the outer parent transaction is still 
in process or it may fail or abort. 
  
However flattened nested transactions actually threaten the isolation property of the transaction. 
Isolation implies that if one transaction fails or abort it may not affect other transactions. 
Similarly, in open transactions changes made by inner transactions may not be visible by the 
outer transactions, and vice versa as it is against the essence of isolation which emphasizes that 
inner data of transaction may not be visible to other transactions unless the transaction commits 
completely with success. 
 
3.4.2 Exception Handling in Transactions 
Exceptions are meant to prevent the whole software system from crashing. Exception handling is 
also a part of a STM system. Exception handling inside a transaction has two design issues, i.e., 
while exception occurs, the transaction may save its results and then quit the system or quit 
without saving results. Moreover the transaction may re-execute or just quit simply. Committing 
the inconsistent results can be fault prone, so more appropriate approach can be that when 
exception occurs, the transaction may abort and execute again.  
 
3.4.3 Transaction Granularity 
Transaction granularity refers to the storage space on which the STM system detects conflicting 
access to data [41]. Granularity can be implemented at an object level, word level, and block level. 
All these levels refer to the shared resource which is infact different amount of data. 
 
An ideal STM system maintains meta-data about each running object in order to track them, and 
avoid any possible conflicting access and to maintain consistency [41].  There are two ways to 
maintain Meta-data; first that meta-data should be part of each object which is at the object level 
granularity, secondly there can be a separate data structure where meta-data, about all the running 
process, and data may be maintained in a separate memory block, this approach is called block 
level granularity. 
 
Block level granularity offers more precise sharing of resources than object level granularity but 
mapping meta-data from memory to another data-structure is another overhead besides keeping a 
separate data storage. Object level granularity is more understandable to the programmer than 
block level granularity as objects are more visible to programmer than memory blocks. Aggregate 
data structure such as arrays are very helpful in block level fine grained sharing of the data, as 
aggregate data structure can be portioned logically [41]. 
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3.4.4 Data Update 
When a transaction completes successfully it updates the original values with updated values. 
Based on the update strategy there are two approaches, i.e., Direct Update and Deferred Update 
[41].  
 
Direct update implies that a transaction modifies the original value directly. However the system 
maintains the original value so that meanwhile if the transaction aborts then it is able to roll back 
the changes made by the transaction. In order to keep record of the original value, an STM system 
maintains a log of the activity. The cost of aborting is high in case of direct update as every 
transaction which read the updated value will have to roll back. 
 
Another approach to update the values is Deferred Update. In this approach a running transaction 
maintains a separate copy of the updated values and when it successfully completes its execution 
then it copies all the values from temporary copy to the original memory locations. However, in 
this approach, maintaining a separate copy of variables is another overhead besides copying from 
temporary locations to original locations [41]. As the cost of a roll back in direct update is more 
than a successful commit, so deferred update seems more performance oriented than direct 
update. 
 
3.4.5 Concurrency Control 
Another design issue of the STM system is concurrency control which is an integral part of an 
STM, in order to facilitate the concurrent execution of the processes. Concurrency control is 
equally important both in direct update as well as in deferred update.  
 
When more than one transaction try to access a shared memory then a conflict arise. As a result, 
in order to resolve the conflict one of the transactions either has to wait or it has to abort its 
processing. The concurrency control is always based on three events, which occur in a sequence. 
First of all, a conflict occurs and a STM system detects that conflict, and in the third step it 
resolves the conflict. Basically there are two categories of concurrency control, i.e., pessimistic 
concurrency control and optimistic concurrency control [41].  
 
Pessimistic concurrency control is based on the fact that all three events i.e. conflict occurrence, 
conflict detection, and conflict resolution take place at the same point in execution. This means 
that as soon as a conflict arises it is detected by the STM system and resolved. Pessimistic 
concurrency control gives exclusive access of a shared object to a transaction. This exclusive 
access can be acquired while aborting other transactions. 
 
However, optimistic concurrency control assumes that conflict detection and resolution take place 
after conflict arises. In this case of concurrency control multiple transactions are allowed to 
access a shared resource. Optimistic concurrency control detects and resolves the conflict when a 
transaction commits its results. Conflict resolution is implemented by aborting conflicting 
transaction or by putting them in wait queue. The Optimistic approach of concurrency control is 
suitable when conflict does not arise too frequently. As result more transactions can complete 
their execution with acquiring an exclusive access of shared resource [41]. Another dimension of 
concurrency control is blocking and non-blocking synchronization approaches which has already 
been discussed in chapter 2 in detail. 
 
3.4.6 Conflict Detection Schemes  
The Conflict can be detected at different stages of a running transaction and every approach has 
its relative advantages and disadvantages and potential influence on the performance of a STM. 
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All the approaches which detect the conflict before commit falls in to the category of early 
conflict detection. While detecting conflict on commit is late conflict detection. There are 
basically three approaches as discussed by James Larus and Rajwar [41] below; 
 
 Conflict Detection before Validation and Commit:  

In this approach, a conflict is detected while a transaction tries to access a shared resource or 
memory.  
 
 Conflict Detection on Validation: 

Another way to detect conflicts is to check regularly whether any transaction has accessed a 
conflicting resource previously. The checking of transactions regularly is a part of the validation 
strategy.  
 
 Conflict Detection on Commit:  

Another point where a conflict can be detected is on commit. While a transaction try to commit 
its results it may check whether it has read any values which have been modified and no longer 
are valid. 
 
Early conflict detection reduces the amount of computation which goes in aborting a transaction.  
On the other hand, there are situations where a transaction could have completed its processing if 
conflict would have not been detected earlier. Consider the problem where there is a transaction 
T1 and T2 and both have a conflict with Transaction T3 over two different objects. Meanwhile T2 
aborts as soon as it identify that it has conflict with T3 .Similarly T3 aborts because it had conflict 
with T1.  Now in this situation if conflict would have been identified late then there was chance 
that T1 and T2 could complete their processing successfully without aborting. 
 
However late fault detection is costly, due to that fact that when a transaction, which has 
developed a conflict, and is suppose to be aborted at the end, keeps on executing and when late 
fault detection aborts it, it has consumed a lot of processing power of system and resources, 
which goes in waste. In this case, if conflict would have been detected earlier then the transaction 
will not have consumed resources of system. 
 
In order to detect that a value has been modified, there should be some kind of mechanism which 
could identify it. One way of doing this is version number management. A transaction can check 
the version number of the data object which it read by comparing it with the existing data objects’ 
version number and hence can avoid any conflict. The version number is basically a counter 
which is incremented on every modification to the data object.   
 
3.4.7 Contention Management 
In order to resolve the conflicts between running transactions in STM based system, ideally there 
should be a contention manager. A contention manager can resolve a conflict either by aborting a 
transaction or putting one transaction in a wait queue. A dynamic contention manager should 
incorporate several contention management policies for different situations in order to re-act 
efficiently. Similarly an ideal contention manager should ensure forward progress. Transactions 
should execute and system must proceed ahead and it should not be stuck in a state where it can 
not proceed further.  
 
There are several contention management policies to resolve the conflicts; most of them have 
been discussed in detail by William Scherer and Michael Scott [58]. Some of the better 
performing contention managers, based on their work are discussed below;  
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1. Polite Manager 
This contention manager uses exponential back-off for a certain amount of time, called spinning 
time, for resolving the conflict. The spinning time is calculated by the formula shown in figure 
3.4.7.1. Polite manager, counts the number of times, a transaction has been trying to access an 
object. After a particular number of access attempts, the Polite manager, aborts all the conflicting 
transactions and give access to the competing transaction.  
 

Spinning Time = 2 n+k 
Where  

n = Number of times, a conflicting access took place for an object 
 K = Architectural tuning constant 
 m = Maximum number of spinning rounds 
 

Ideal values for m = 22, and k = 4 
 
Figure 3.4. The Exponential Back-off formula.  

 
2. Karma Manager 
The karma manager resolves the conflicts among competing transactions by considering the 
amount of the data processed by a particular transaction. It prefers to abort a competing 
transaction which has just started its processing compare to that transaction which is in its final 
stage of execution. However finding the amount of data processed by a transaction is difficult to 
judge. 
 
The Karma manager uses number of objects opened by a transaction as measure of data 
processing. And this number is maintained in a counter with every transaction. If transaction 
commits then this counter is set to zero. However on abort of a transaction this counter is not 
changed, which gives a higher priority to this transaction to complete, next time. 
 
3. Kindergarten Manager  
Kindergarten manager is based on the conflict resolution strategy for Dining Philosophers 
problem [11]. In this scenario, all the transactions try to access the shared object. Each transaction 
maintains a hit list of the enemy transactions which are competing for the access of a shared 
object. Initially hit list is empty. Hit list contains the identity of the transactions which have been 
aborted in favor of a transaction.   
 
Whenever a transaction has a conflict accessing an object, Kindergarten manager, aborts the 
transactions which are in the hit list of this transaction. If it is not in the hit list, then it is added to 
it, and Kindergarten manager, backs off for specific interval of time to give them a chance to 
complete their execution. If the transaction still can not proceed ahead, then Kindergarten 
manager aborts its own transaction and kick-off a restart.    
 
4. Timestamp Manager 
Timestamp manager records the starting time of each transaction. And it aborts the enemy 
transactions which has newer time stamp. Otherwise, Timestamp manager sets a flag on enemy 
transaction, considering it as dead transaction. Timestamp manager checks the flag after some 
interval of time, if it is there then it kills that transaction. However, active transactions clear their 
flag. Timestamp manager is considered to be a fair contention manager. 
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4. SOFTWARE TRANSACTIONAL MEMORY 
IMPLEMENTATIONS 

 
In this chapter we will discuss different implementations of Software Transactional Memory 
systems, with their design and implementation trade offs. In the beginning, Transactional memory 
was supported only in the hardware, but in 1995, Shavit and Touitou introduced Software 
Transactional Memory. Since then, many STM systems have been introduced.  Software 
Transactional Memory has many advantages over the hardware based Transactional Memory 
Systems [41]:    
 
 STM is easy to implement, more flexible and diverse. 
 STM is more evolvable and easy to modify than a hardware approach. 
 STM memory can be made a part of a programming language which increases its usability. 
 STM has less internal limitations as compare to a Hardware approach, e.g., limited size of 

cache  
 
Though till now there exist many implementations of software transactional memory but we 
would focus on Software and Hybrid Transactional Memory System implementations, show in 
table 4.1 shows;  
 

Table 4.1. The Brief History of STM. 

Year Software Transactional Memory Systems Synchronization  
1995 STM (Shavit, Touitou) Lock-free 
2003 WSTM (Fraser, Harris) Lock-free 
2003 OSTM (Fraser) Lock-free 
2003 DSTM (Herlihy et al) Obstruction-free 
2006 RSTM (Marathe) Obstruction-free 
2006 Time based STM (Riegel) Obstruction-free 
2006 DSTM 2 (Herlihy OOPSLA) Obstruction-free 
2005 McRT-STM ( Saha et al ) Lock-based 
2006 TL2 (Dave Dice, Ori Shalev, Nir Shavit) Lock-based 
2007 DRACO STM  Lock-based 
2007 NZTM (TABBE) Hybrid TM 
2006 HyTM (Damron) Hybrid TM 
2006 HybridTM (Kumar) Hybrid TM 
2007 PhTM (Lev) Hybrid TM 
2007 SigTM (Chi Cao Minh) Hybrid TM 
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4.1 Software Transactional Memory (STM) 
The STM system proposed by Shavit and Touitou [59] identifies and tries to get access of all the 
memory locations which it would need for a particular transaction. The basic unit of memory, on 
which this system is based on, is word. In other words, the transaction granularity is at word 
level. The basic design features of Shavit and Touitou’s STM are shown in table 4.1.1. When a 
transaction holds the control of memory word, it becomes the owner of that memory word. 
Ownership information is stored separate beside the actual data as shown in figure 4.1.  
 

Table 4.1. The Basic Design features of STM. 
STM 

Synchronization Non-blocking  (Lock-freedom ) 
Concurrency Control Pessimistic 
Conflict Detection level (Granularity)   Word  
Update Strategy Direct Update 
Conflict Detection Early 
Conflict Management Strategy Helping 
Nested Transaction Type N/A 

 
The ownership record either has a valid address of the owner or it has a Null value which 
indicates that no transaction owns the data. Although each transaction can access shared data, but 
one memory block can be owned by only one transaction at a time. This implies that only that 
transaction can make changes to that memory block. The system ensures acquiring of memory 
objects in increasing order which avoid the possibility of deadlocks. 
 
If a transaction fails to acquire ownership of a memory object then it aborts and releases the 
memory locations which it already has acquired. If a transaction manages to take all the desired 
memory locations then it completes its execution and updates the results without the risk of 
rollback. This implies that system uses the Direct Update approach. 
 
The system ensures non-blocking access with forward progress. No matter some transactions will 
fail and abort but at least one transaction will manage to complete its execution. Concurrency 
control is pessimistic, i.e., system assumes that conflict occurrence, conflict detection and 
resolution events take place in separate course of time. The System has an early conflict detection 
mechanism and uses a concept called helping for conflict resolution, which implies that if a 
transaction can not proceed further then it should abort and help other transaction in completing 
their execution.  
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4.1.1 Design Limitations  
One of the major draw back which Shavit and Touitou’s system have is its helping mechanism for 
conflict resolution. This conflict resolution technique is based on the concept that if a transaction 
can not proceed ahead due to some conflict then it should help other transaction in their 
completion. In this case two threads are executing the same transaction. This means that if 
transaction X found that it is conflicting with transaction Y then transaction X makes update on 
behalf of transaction Y. 
 
Shavit and Touitou originally adopted the concept of helping from Greg Barnes [5], who gave the 
concept of recursive helping. In recursive helping a transaction being helped may be helping 
another transaction. Moreover, consistent helping can deteriorate the performance by unnecessary 
conflicts [59]. However, in Shavit’s STM, helping is restricted to a specific level only; even then 
it leads to a great level of complexity, as it exposes data to one or more threads [8]. However, 
later conflict resolution strategies, e.g., stealing, by Harris and Fraser [31] overcame the draw-
backs of helping strategy. More on stealing would be discussed in chapter 4.2. 
 
One of the limitations this system, includes the advance declaration of the memory locations that 
a transaction will acquire. This restricts the transaction from acquiring a memory location 
dynamically [46]. However, recent versions of the STM can acquire the memory locations 
dynamically e.g. Hash table based STM developed by Harris and Fraser [31].     
 
Another drawback found in Shavit and Touitou’s STM is maintaining separate memory locations 
for ownership records beside data values. This is not very efficient approach to keep ownership 
records. Consider the example, when a data object is extended over two or more words of 
memory with same redundant ownership records. This makes the memory requirement for a data 
object double and redundant as shown in the figure 4.1.  
 

Record 1 
 
Status   --- 
Version --- 
Description --- 
Size ---- 
Old Values 

-----

Record 2 
 
Status   --- 
Version --- 
Description --- 
Size ---- 
Old Values 

-----

Record 3 
 

Memory 
 
Ownerships 

Status   --- 
Version --- 
Description --- 
Size ---- 
Old Values 

-----

Figure 4.1.1. The Shavit and Touitou’s STM Shared Memory Model [59]. 
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4.2 Word based Software Transactional Memory (WSTM) 
Harris and Fraser [31] in 2003 introduced a first ever STM system that is an integrated part of an 
object oriented programming language, Java. WSTM was the first STM that detects the conflicts 
at the word-level hence given the name, Word-based Software Transactional Memory (WSTM). 
It has weak isolation with a deferred update mechanism. Moreover, it supports flattened, nested 
transactions. Other characteristics include optimistic concurrency control and synchronization 
achieved through non-blocking mechanism (obstruction freedom).  

 
Table 4.2. The Basic Design features of WSTM. 

WSTM 
Synchronization Non-blocking  (Obstruction-freedom ) 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Word  
Isolation Weak 
Update Strategy Deferred Update  
Conflict Detection Late 
Conflict Management Strategy Helping 
Nested Transaction Type Flattened 

 
The basic design features of WSTM are shown in table 4.2.1. This system has late conflict 
detection mechanism. The conflict resolution is achieved through stealing [31]. The stealing 
strategy allows a transaction to take the ownership of the memory locations from a conflicting 
transaction by an atomic, compare-and-swap operation. However, this strategy ensures that the 
logical state of the memory locations must not change in stealing operation. Secondly, after the 
new transaction has taken the ownership of the memory locations, it is made sure that the new-
owner transaction commit before the former owner-transaction. 
 
WSTM does not require that memory locations are declared in advance for transactions like 
Shavit and Touitou’s STM. WSTM is basically inspired by Hoare’s conditional critical regions 
(CCRs) [39] and Lomet’s [43] atomic blocks using CCRs. In CCR, a programmer can protect a 
particular code region under a boolean condition. Figure 4.2.1 shows an example of a CCR. In 
this figure atomic block is guarded by a condition that index is greater than or equal to zero. The 
control will not enter the critical condition region unless the index is not greater than or equal to 
zero. 
 

public int get_Item(int index)  
{ 

atomic (index >= 0) 
 { 

index ‐‐; 
return buffer[inde]; 

 } 
} 
 
Figure 4.2.1. The Conditional Critical Region [31]. 

 
Harris and Fraser, built the system by improving Lomet’s work and presented a system that 
prevents deadlock with two phase locking, more-over it does not require defining the conditional 
variables for control synchronization in advance [31]. In contrast to Lomet, WSTM facilitated the 
CCRs to function on the basis of program state instead of specific variables. WSTM enhanced the 
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earlier version of CCRs. WSTM pauses the execution of a transaction until one of the condition 
variables is updated by another transaction [31]. WSTM can support procedural languages as well 
although it was implemented as part of an object oriented language, Java. WSTM introduced a 
novel statement in Java which allows declaring an atomic block of code with proper managed 
CCR. Fig. 4.2.2 shows the structure of a WSTM atomic block.  
 

bool done = false; 
while (!done)  
{ 

STMStart(); 
try  
{ 

if (<condition>) 
{ 

<statements>; 
done = STMCommit(); 

}  
else  
{ 

STMWait(); 
} 

} 
catch (Exception t) 
{ 

done = STMCommit(); 
if (done)  
{ 

throw t; 
} 

} 
} 
 
Figure 4.2.2. The Structure of Atomic Block [31]. 
 

An important thing to note in the Atomic block shown in Figure 4.2.2, that it commits the 
transaction when the exception takes place. However, usually exceptions are only used for 
handling the errors and preventing the system to crash completely. The basic idea behind putting 
commit statement is to save the processing done, so far, in the transaction. Moreover, in nested 
transactions if the inner transaction fails, then, in order to save the outer transaction, committing 
inside the exception can be very useful [31].  
 
Basic building blocks of WSTM library are as below [31]; 
 
1. void STMStart() 
2. void STMAbort() 
3. boolean STMCommit() 
4. boolean STMValidate() 
5. void STMWait() 
 
WSTM maintains different helping data structures beside the main data structure i.e. the Heap. 
One of the data structures is Unique Transaction Descriptor, which uniquely identifies the 
transactions. Transaction status data structure maintains the status of a transaction. A transaction 
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has four states. It begins with Active state, and then changes its states to ASLEEP, ABORTED or 
COMMITTED. Another data structure is Transaction Entry which keeps the addresses of the 
different values like location of old value and version and its version, location of new value and 
its new version etc as shown in figure 4.2.3. Version numbers are very helpful in conflict 
management.   
 
Another supporting data structure is the Transaction Descriptor which keeps the records like 
status of transaction, its nesting depth, and link to transaction entries as shown in figure 4.2.3. 
Basically Transaction Descriptor holds the transaction status data structure and transaction entry. 
 
WSTM also maintains a data structure OREC (Ownership record), which keeps the records of 
ownership for every transaction [31]. Moreover it maintains the version number of memory 
address which has been updated or committed recently by any transaction. A typical OREC 
contains a pointer to the transaction which owns the memory location or a version number of it 
[31]. 
 
 

Transaction Entry 

 
 

Figure 4.2.3. The WSTM Data Structure [31]. 
 
 
 
4.2.1 Design Details  
 
The STMStart operation is used to allocate descriptor for a transaction and set its status to Active. 
STMAbort updates the transaction status to Aborted. In STMRead method, there are two cases, if 
the descriptor has no entry for a required memory location then it is a new entry otherwise system 
will find the current state of the location and start a new entry with new and old value while the 
version of the value would also be recorded as old-version and new-version [31].  
 
MemRead function is used to get the memory location value and its version number. Information 
about value and version number is kept at different places based on the status of the transaction. If 
a location has not been accessed by any transaction then current value would reside in the 
memory location and ownership record would be holding the version number.  
 
If a transaction accessed the memory location and committed its results then the latest value 
would be found in the new-value field and version in the new-version memory location of the 

Hash table 
containing 
Ownership records 

Orec 

Transaction 

Status 

Nesting Depth 

Entries 

Location 

Old Value Transaction Descriptor 

New Value 

Old Version 

New Version 

Next 

 27



transaction. Similarly if transaction has not committed but it is in process then the value is kept in 
the old-value memory location of the transaction and version in the old-version memory location. 
 
STMWrite is another method used by WSTM library. STMWrite, first make sure that entry exist 
for the memory location that is accessed. This is achieved through read operation. New value is 
written over old value and old version is incremented and set as new version and stored in a new 
location, separate from old version [31].  
 
STMCommit operation takes the ownership records of all the memory locations which are 
accessed by the transaction. When transaction completes successfully it updates the transaction 
state to Committed and updates the memory locations with new values and releases the ownership 
records [31].   
  
Transaction status updation, releasing the ownership records and releasing the values all step take 
place in an atomic and concurrent fashion. WSTM detects the conflicts while committing the 
transactions however it does not do validation continuously as in DSTM. So some time 
transaction may go into an inconsistent state and in this case transaction is aborted and executed 
again. WSTM However uses STMValidate to make sure that no loops inside a transaction run to 
infinity [31].  
 
Nested transactions are bit more complicated when it comes to committing a transaction as outer 
transaction can expose the updated values. Moreover, inner transaction can cause the outer 
transaction to abort. Transaction descriptor tracks the number of nested transactions inside a 
transaction and keeps the commit operation pending until the outer-most transaction commits 
[31]. If inner transaction aborted then transaction can not commit at all.  
 
STMValidate doesn’t write or update anything; instead it is a read-only operation which verifies 
the ownership records for each memory location with its relevant version number [31]. WSTM 
library has STMWait that is used in CCRs for holding a transaction until another transaction 
modifies the memory location accessed by this transaction. In order to do so it first acquires the 
ownership of the transaction entry record and updates the status of the transaction to ASLEEP 
and stop the thread executing the transaction. Mean while the another transaction updates the 
memory locations, however it will conflict with the thread halted but conflict manager should 
permit the active thread to proceed ahead and then later on let the suspended transaction continue. 
As result, suspended thread will have to re-execute.  
 
4.2.2 Design Limitations  
 
Haris and Fraser [31] have identified several optimization shortcomings in their WSTM design; 
 
1. One ownership record can be accessed by only transaction. 
2. Read and Write operation requires searching the transaction descriptor for transaction entries 

in a specific orec. 
3. Processing a read only access involves updating the orec twice, which is an overhead. 
4. Retry operation prevents the system from being non-blocking. 
 
In fact, WSTM is well suited for applications where concurrent operations are possibly conflict 
free [31]. Figure 4.2.3 shows the performance of WSTM in comparison with single lock and fine 
grained locking in hash table operations.  
 

 28



 
Figure 4.2.4. The Hash table update operations performance [31]. 

 
 
4.3 Dynamic Software Transactional Memory (DSTM) 
The concept of DSTM was presented by Herlihy, Luchangco, Moir, and Scherer [36]. DSTM 
basically overcame the deficiency of the previous STM’s where the transaction size and memory 
requirement was statically defined in advance. DSTM is designed using dynamic sized data 
structures like Lists and Trees, hence given the name, Dynamic STM.  
 

Table 4.3. The Basic Design features of DSTM. 
DSTM 

Synchronization Non-blocking  (Obstruction-freedom ) 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Object  
Isolation Weak 
Update Strategy Deferred Update  
Conflict Detection Early 
Conflict Management Strategy Contention Manager 
Nested Transaction Type Flattened 

 
 
DSTM is basically an Application Programming Interface (API) for programming dynamic data 
structures for synchronized applications without using locks. Prototype version of API is 
available in C++ and Java Language.  DSTM uses obstruction-freedom property in order to 
achieve non-blocking synchronization. However obstruction freedom is a weaker property than 
lock-freedom that makes it simple to implement [36]. Obstruction-freedom assumes that a 
waiting thread does not hinder other thread from making progress.  
 
In contrast to lock freedom, obstruction freedom does not completely prevent the occurrence of 
live locks. In other words, multiple running threads might interfere and hinder each other to 
progress ahead [37]. The obstruction-freedom property provides simple techniques for 
prioritizing the transactions as any transaction can abort another transaction at a particular point 
in time. However, a high priority transaction often aborts a lower priority transaction.  
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In contrast to the obstruction-freedom, in the locking mechanism, when a lower priority 
transaction acquires a lock on a memory location then higher priority transaction will have to wait 
until lower priority transaction completes its execution. This leads to priority inversion. Similarly 
in lock-freedom, a higher priority transaction may have to wait for a lower priority transaction in 
order to help it to complete its processing, under the assumption that some transaction may 
complete its processing [37]. 
 
DSTM offers obstruction freedom, a simple way of guaranteeing progress and prioritizing 
transactions. In DSTM, one transaction can foresee that it is going to abort another transaction 
and in this situation it corresponds with contention manager to find out whether it should abort 
the transaction or wait and let it complete its processing. DSTM has modular implementation of 
contention manger which implies that new contention management policies can be plugged-in 
without any possibility of disturbing the correctness of transaction code [37].  
 
4.3.1 Basic Design Features 
Following is a summary of basic design artifacts of DSTM, also shown in table 4.3.1 [36] 
 
 DSTM uses Obstruction freedom as synchronization and non-blocking progress. 
 DSTM uses an explicit contention manager to resolve the conflicts among transactions and 

decide whether to abort a transaction or let it proceed further. 
 Another novel property which DSTM introduced is its ability to release an object before 

committing the transaction. This property, in the best-case scenario, can be very efficient 
however there is possibility of errors which can lead to an inconsistent state. This 
characteristic puts significant responsibility on the programmer to use it carefully and 
efficiently.  

 DSTM is has weak Isolation property. 
 Transaction granularity is at object level. 
 DSTM is a Deferred Update system i.e. System keeps a separate copy of the data and after 

processing the data updates the original data. 
 DSTM maintains optimistic concurrency control. 
 DSTM has early conflict detection policy. 
 Nested Transactions are flattened. 

 
4.3.2 Overview with Example 
In this section we will discuss how to use the DSTM in programming and what methods and 
procedures it has for different purposes. 
 
DSTM maintains a collection of data objects that are concurrently accessed by different 
transactions. Actually Transaction object encapsulates the simple java objects and whenever there 
is a need to access it by any transaction, it is opened, read and modified as required. The updates 
and changes made by a particular transaction are not visible outside the transaction, until it 
commits. However, if a transaction aborts then its changes are discarded [36].  
 
Transactions can be created dynamically, at any point in time. However, creating a new 
transaction and its initialization can not be done as a part of another transaction [36]. TMThead 
Class is responsible for the handling the activity of the threads. TMThread Class is inherited from 
regular java class, Thread. TMThread class provides methods for starting, terminating, running, 
committing and getting the status of the thread. Transactional Objects can be implemented by 
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TMObject class. In the example shown in figure 4.3.1, we encapsulate a simple counter object, 
inside a TMObject class object.  
  

Counter aCounter = new Counter (100); 
TMObject aTMObj = new TMObject (aCounter); 

 
Figure 4.3.1 Encapsulating the Object inside TMObject [36] 

 
Here is another, important point to note, that when a class inherits the TMObject class for 
encapsulating its objects then it must also implement the Interface, TMCloneaable. This interface, 
in fact, make it compulsory for the class that is implementing it to declare and implement a 
method that returns a clone of the object of the same class i.e. a separate isolated copy. This 
method is used for opening transactional objects as shown in figure 4.3.2. When a clone is 
created, it is made sure that object may not change, while it is cloned.  
 

Counter aCounter = (Counter) tmObject.open(Write); 
aCounter.increment(); // incrementing the counter 

    
Figure 4.3.2 Opening a transaction in Write mode [36] 

 
A transaction is started with beginTransaction() method, and it remains active until it aborts or 
commits. While a transaction is active, it can access the Transaction object by opening it. The 
method Open() creates a clone of original version and then transaction can perform its processing 
on it and commit its changes to the original version. Synchronization is only required when a 
clone is created that no other transaction modify it at that time later on synchronization is not 
required [36].   
  
A transaction, commits its changes by triggering the method commitTransaction(), and  it returns 
true if commit is successful otherwise false. Similarly a transaction can be aborted using the 
method abortTransaction(). DSTM ensures [36] that committed transactions linearizable. In other 
words, transactions are executed as if they are run one by one. However, inconsistencies in 
reading TMObject can lead to synchronization problems. For example a transaction may notice 
that the TMObjects it opened or will access next has already been modified. In order to deal with 
such situations DSTM uses validation.  
 
The validation checks are triggered whenever a transaction object is opened by a transaction, and 
it finds out whether the same transaction object is not opened by another transaction, at the same 
time [36]. When it is opened then Open() method throws an exception instead of creating a clone 
of that object. Throwing an exception indicates that transaction object is opened at the moment by 
another transaction, and then aborts itself. Hence validation process avoids conflicting access of 
Transaction objects.  
 
4.3.3 Design Details 
Transaction object has an attribute, named, status that can have values like active, aborted and 
committed. As we know that Transaction class is container for other user class objects and a 
Transaction object has three attributes as below; 
 
i) Transaction  (refers to the transaction which is active at the moment) 
ii) Old Object (refers to the old version of the transaction) 
iii) New Object (refers to the new version of the transaction) 
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Figure 4.3.3. The Transactional Object Structure. 
 

 
The transaction version can be find-out by the attribute, status of a transaction object. If the 
transaction status is committed then this is the new version and old version is discarded. In case, 
if transaction aborts then the old version becomes current version and new version become 
useless. Third case can be that a transaction is active, in this situation old version is current 
version and new transaction object is the temporary version of active transaction.  
 
Consider the example where multiple transaction Objects have been opened by a single 
transaction and when this transaction commits, all the transaction objects replace their current 
version of transaction object with new transaction object. These versions were basically the 
clones which transaction acquired using Open() method, figure 4.3(a) and 4.3(b) shows the 
indirection from old version to new version.  
 

Transaction Committed 
Start 

New Object 

Old Object 

 
 
 

Old LocatorTMObject 
Data 

Data 

Transaction

New Object 
Active 

Old Object 
Data 

New Locator

Figure 4.3 (a). The Opening Transactional Object after Commit [36]. 
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If we look at the figures 4.3(a) and 4.3(b), we can see that TMObject has single pointer which is 
referencing to a Locator. This locator further has three fields as we discussed earlier i.e. 
transaction, new object and old object. Using the CAS operation (compare and swap), old values 
are replaced with new one. The locator is basically a data structure consisting of pointers referring 
to transaction objects. It points to a read only transaction object if it is opened by another 
transaction for modifying. If there is a conflicting access then STM system using its conflict 
resolution policy, decide which transaction to suspend or abort and which one to progress ahead 
[36]. However there is no hard and fast rule that a particular transaction will always be allowed to 
progress ahead.  
 
DSTM implements an interface for contention manger which allows numerous conflict resolution 
policies to act at the same time. The basic aim of contention manager is to make sure that a 
particular transaction attempting to access a transaction object must be given a chance to 
progress. This implies that if this particular transaction is trying to abort another conflicting 
transaction then it must be granted the permission after several attempts. Each running transaction 
has its own contention manager instance which every transaction deals with and decides whether 
to abort a transaction or wait and let it finish off first. Moreover contention managers of different 
transaction may communicate with each other to see the priorities and decide accordingly in 
different situations [36].  
 
Contention manager implements two sorts of methods i.e. notification and feedback. Notification 
methods tells contention manager about different events, e.g., commitTransactionSucceeded(), an 
event which is triggered when some transaction completes it execution successfully. Moreover, 
other notification methods are commitTransactionFailed(), triggered when transaction fail to 
commit. The contention manager calls the feedback method to decide what to do in different 
conflicting situations. A good example of feedback method is shouldAbort(), which is called by 
contention manager when it finds out that transaction object is already opened by some other 
transaction. So it tells the transaction to abort.  
 

Old LocatorTMObject 
Data 

Data 

Transaction

New Object 
Active 

Old Object 
Data 

New Locator

Figure 4.3 (b). The Opening Transactional Object after abort [36]. 

 33



4.3.4 Design Limitations  
The contention management policies in DSTM are still an open area of research, where one can 
contribute and come-up with more efficient contention management policies. Another interesting 
design feature of DSTM is release operation which allows a transaction to release a transaction 
object before committing its results. Releasing the transaction object lowers the validation cost; 
however it may become possible source of conflict leading to abort.  
 
4.4 Transactional Locking II (TL2) 
Dice, Shavit and Shalev introduced Transaction locking II STM, in 2006 [16]. TL2 is an 
improvement of their work in Transaction Locking (TL) STM, in 2006 [17], hence, given the 
name, TL2. In this algorithm they introduced commit time locking with a global version clock, 
validation technique. Synchronization is achieved through commit time locking and global 
version clock validation. Whenever a transaction writes to the memory, global version clock is 
incremented and it is visible to other transactions for reading.    
 
The idea of time stamping is not new instead it has been used in database transactions, long 
before [65]. However time-stamping used in TL2 is much faster and efficient than the databases 
as STM system is more robust and faster. Similar idea of time-stamping has been introduced by 
Reigel et al. [53] but TL2 is different than Reigel STM. TL2 is locked based and simple while 
Reigel’s STM is non-blocking and complex in its design and more costly performance-wise [16]. 
 

Table 4.4. The Basic Design features of TL2. 
TL2 

Synchronization Blocking  (Lock-based ) 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Object, word, or region  
Isolation Weak 
Update Strategy Deferred Update  
Conflict Detection Early or Late (Selectable) 
Conflict Management Strategy Aborting 
Nested Transaction Type N/A 

 
TL2 is a deferred update STM with blocking concurrency control. The basic design features of 
the TL2 are shown in table 4.3.1. Conflict detection is achieved through delaying other 
transactions or aborting them. Conflict detection can be early or late i.e. selectable. TL2 protect 
each memory location by locks and every lock has a version number. Transactions read the 
memory locations while validating with clock. When a transaction commits its updates the global 
version clock value and release the locks associated with that transaction [16].  
 
Robert Ennals [21] has argued that deadlock prevention is the sole reason for making operating 
system non-blocking otherwise there is no need to provide such mechanism at user level. Dice 
and Shavit at el. also support this idea [16]. Locks eliminate the need for indirection in shared 
memory. However, locks still need a closed memory system. A closed memory system allows 
memory to be free up automatically, intermittently. TL2 manages the deadlocks and live locks by 
time-outs and by requesting other transactions to abort.    
 
Studies [21] have shown that locked-based STM supersede non-blocking STM’s due to its simple 
nature and implementation. But there are two limitations which still there to be addressed. The 
limitations are as below; 

 34



1. Closed Memory System 
The closed memory system implies that a memory which is not in use must be free up 
automatically or in other words it has safe garbage collection mechanism. Some programming 
languages has this facility built in, while other have different commands to do it explicitly like 
malloc() and free() in C language. In java if memory is not referenced by any object then it is 
automatically released. Unfortunately, all the non-blocking STM systems require closed memory 
system, while lock-based STM systems also require closed memory and some time achieve it 
through malloc() and free() methods.    

 
2. Specialized Managed Runtime Environment 
STM systems require such environment which may over-comes the inconsistencies like infinite 
loops, illegal memory accesses and other run-time discrepancies [16]. Such kind of 
inconsistencies can be overcome by aborting and retrying a transaction. Moreover, infinite loops 
can be caught by validation checks. However validation on every read-set is a big overhead on 
performance of a STM system. This overhead can be reduced by intermittently checking for 
infinite loops instead of continuous checking [56].    
 
In TL2, writing a transaction involves a collection of reads and writes sets and then acquiring the 
lock over the memory locations, for committing updates. A lock is also acquired over the global 
version clock for incrementing it. After a transaction commits, it update the memory with new 
value of global version clock and release the associated locks [16]. 
 
Dice and Shavit et al. believe that TL2 has overcome the majority of the safety and performance 
issues that were creating a bottle neck for lock-based STM implementations. TL2 has following 
design improvements compare to other STM systems [16].  
 
1. In contrast to former lock-based STM implementations TL2 avoids the errors-proneness 

related to inconsistent memory states. Previously, either compiler assistance was required in 
this regard or explicit checks by a programmer.  

 
2. Like other STM’s, TL2 makes the memory to be automatically re-cycled for garbage 

collection and this is achieved with no significant complexity.  
 
3. Concurrent Red-black trees are a data structure for STM that are infact derived from TL2. 

Generally TL2 is concurrent and faster than sequential single lock.  
 
4.4.1 Design Details  
TL2 is basically global version clock variant of Transaction Locking (TL), which was introduced 
by Dice and Shavit earlier [38]. TL2, uses two phase locking mechanism for commit-time 
locking, as TL used. Two phase locking implies that in the first phase transaction gradually 
acquires all the locks. This phase is called expending and once all locks are acquired then it 
commits. The second phase gradually releases, all the locks acquired. This phase is called 
shrinking.  
 
Every transaction has an associated write lock with its corresponding memory location. A single 
bit is used to indicate that lock is acquired and it maintains a version number separately. This 
version number is incremented each time a transaction releases lock. The versioned write-locks 
provide a great deal of performance and correctness. In order to implement a data structure for 
write locks in case of shared memory location, there are several strategies like (i) Assigning locks 
per object (PO) (ii) Assigning locks per stripe (PS).  

 35



 
Writing Transaction in TL2 
In this section we would discuss the steps involved in writing a transaction in TL2 [16].  
 
1. Reading Global Version Clock. A transaction reads the current value of the global 
version clock and stores it in the local thread variable, called read-version number (rv). The rv, 
later on helps in detecting changes to the data by comparing rv with lock’s version-number. 
 
2. Speculative Execution. In TL2, a transaction execution is done speculatively. It is called 
speculative because while the transaction is executing, it does not have any effect on the shared 
memory. A transaction executes separately and later on commits the results. Moreover, while 
reading the data form the shared memory it checks the version of the data, so that it may not have 
changed. More-over it is checked that the attribute lock-version is less than the rv and lock is 
active.   
3. Locking the Write-Set 
In this step transaction acquires the lock for all the required memory locations, if it is successful 
then it proceeds to the next step otherwise, it aborts and try again.  
  
4. Updating Global Version-Clock 
If a transaction successfully acquires all the locks, then it increments the global version clock and 
records the value in write-version number (wv) attribute.  
 
5. Validating the read-set 
The read-set validation includes checking-out that every location in read-set has version number 
less than the version of write locks i.e. rv. Also it is verified that these memory locations were 
locked by other locks [16]. In case of validation failure, transaction is roll-backed. However, in 
case of abort step 3 and 4 is only repeated and it is made sure that meanwhile, no memory 
locations are updated. Moreover, if read version of lock, rv +1 is equal to write version of lock, 
(wv), then read-set is not required to be validated again, as it is made sure that meanwhile, no 
transaction will have modified it.       
 
6. Committing and Shrinking Locking 
The last step is to commit the results and update the write-set and release the locks and clear the 
lock bit. Similarly write-version, wv, is updated.  
 
4.4.2 Design Limitations 
The major difficulty with global version clock is that it introduces more contention and expensive 
cache coherent sharing [16]. However this can be reduced by making global version clock 
variable to include the properties like version number and thread ID. The transactions do not need 
to change the version number, if it is different than the last time it wrote. In such a situation it can 
store its version number in a separate memory location. This will lead to a reduced number of 
version clock increments.   
 
Dice and Shavit et al. believes that TL2 is at least ten times faster and robust in performance than 
simple locking. Moreover TL2 can easily be used with hardware transactional mechanism [16]. 
The TL2 has given a new hope to use the locking in STM. More work is required in TL2, with 
regards to its integration with hardware approach and making the global version clock and read-
sets more efficient [16]. 
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4.5 Dynamic Software Transactional Memory II (DSTM2) 
Herlihy et al. [38] introduced the Dynamic Software Transactional Memory II (DSTM2), based 
on their earlier work on the DSTM [36], discussed in chapter 4.3.  DSTM2 is JavaTM based 
software library. It provides a flexible framework for implementing software transactional 
memory. DSTM2 introduced a novel concept of transactional factories that are used to convert 
the un-synchronized sequential classes into synchronized one. More about transactional factories 
will be discussed, later in section 4.5.1.   
 

Table 4.5. The Basic Design features of DSTM2. 
DSTM2 

Synchronization Obstruction-freedom OR Locking 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Method  
Isolation Weak 
Update Strategy Deferred Update  
Conflict Detection Early 
Conflict Management Strategy Conflict Manager 
Nested Transaction Type Not Supported 

 
DSTM2 uses obstruction-freedom as well as a locked-based, synchronization approach [38]. 
DSTM2 does not support nested transactions. This feature may be added to it in the future. 
DSTM2 provides the transaction granularity at method level. DSTM2 provides a thread, called 
dstm2 that intercepts the method calls and checks their validity and decides whether a method can 
commit or not. Another significant aspect of the DSTM2 is that it facilitates the users in order to 
plug-in their own contention management, synchronization, and recovery strategies and 
techniques in the form of transactional factories, in the DSTM2 library [38]. DSTM, the earlier 
version, also supported the concept of plugging-in contention management techniques. 
 
4.5.1 The DSTM2 Library Features  
The DSTM2 library considers that there are several concurrent threads are sharing the data 
objects.  The DSTM2 library introduces a novel way of declaring atomic classes. In order to 
declare an atomic class, a sequential interface is defined with a collection of methods for 
maintaining the consistency in the execution of transactions [38]. This interface is then passed to 
a constructor of a transactional factory. A transactional factory uses this interface and creates a 
synchronized version of anonymous class, implementing the interface and its methods. Later on, 
different objects of this anonymous class can be created. The Transactional factories, uses two 
different synchronization and contention management techniques i.e. obstruction-freedom and 
locks. The programmers are enabled to use their own contention management and 
synchronization techniques as well while plugging them into the DSTM2 library [38]. 
 
The design of the DSTM2 library is inspired by the lessons learned from the DSTM API. DSTM 
was a wrapper API, which works as a container for the transactional objects.  DSTM was a good 
API for experimental purposes but it has several flaws in it [38]. Some of those flaws are as 
mentioned below; 
 
1. When a memory location is opened for reading, then it must not be modified by another 

transaction, meanwhile. 
2. When a memory location has been opened by a transaction for writing, its changes would 

be visible, afterwards, to other transactions that will open it for reading. But if we reverse 
the order of this scenario, then DSTM may not give correct results. In other words, if a 
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transaction has read values from a memory location and later on this memory location has 
been written by another transaction, then these changes may not be noticed by the first 
transaction. 

3. The references, to the opened objects, for read or write operations, are valid until the 
lifetime of the transactions. Therefore, programmer must take especial care and must not 
use dangling pointers or references. 

 
4.5.2  Transactional Factories 
Transactional factories provide its own implementation for the methods declared in user defined 
atomic interfaces [38]. It is possible that one interface can be implemented by more than one 
class. Similarly, multiple factories can be merged with each other to construct a new factory, 
provided that the transactions created by these factories have a logical order and sequence [38]. 
DSTM2 provides a package, called, dstm2.Thread, that manages all the basic functions for the 
factories. Some of these functions are listed below; 
 
1. Registering a method. 
2. Aborting the method when method can not commit. 
3. Identifying that a particular method can commit.  
4. Helping the commit when a method can commit, otherwise cleaning up and aborting it, 

when it cannot commit. 
 
1. Base Factory 
In DSTM2, all the factories are inherited by the BaseFactory class. The class BaseFactory 
provides the basic functionality for all the other factories. When a DSTM2 defined factory tries to 
open an object, it checks that this object is not opened by another conflicting transaction. If it is 
already opened then the transactional factory consult the contention manager [38] to decide about 
whether to abort the conflicting transaction or wait for it to commit. 

 
2. Obstruction-free Factory 
The obstruction-free factory is based on the obstruction-freedom algorithm introduced in DSTM 
[36]. The structure of the objects created by the obstruction-free factory has three levels as shown 
in the figure 4.5.1. The first level is a cell, containing the reference to the locator. The locator 
further has three attributes. One of them is a reference to the new version of the object and the 
second is a reference to the old version of the object. Third attribute contains reference to the 
transaction descriptor.  The obstruction-free factory is responsible for non-blocking execution of 
a transaction. The working mechanism of the obstruction-free factory is the same as discussed in 
section 4.2.3 for obstruction-free execution of the transactions for DSTM [38]. 
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Figure 4.5.1 The Transactional Object Structure. 
 

3. Shadow Factory 
The shadow factory uses locks for the execution of the transactions. The shadow factory 
maintains shadow fields for each attribute defined in the interface beside the regular attributes 
[38]. The shadow factory avoids the indirection and memory allocation costs of the obstruction-
free factory. However, the shadow factory is not well suited for multithreaded programming [38]. 
The shadow factory uses the method backup(), to copy each regular field defined in an interface 
to its shadow field as shown in the figure 4.5.2.  Whenever a transaction opens an object, it finds 
out that the last operation performed by any transaction on this object was a commit or abort. If it 
is a commit then this implies that the current values in the regular fields are the latest. Therefore, 
the backup() method is called to copy the current values to shadow fields as shown in the figure 
4.5.3. However, if the last transaction aborted while writing to this object, then it means that the 
shadow fields contain the latest values. Therefore, the restore() method is called to copy the 
original values from the shadow fields to the regular fields.  In other words, shadow factory has 
the ability to restore and maintain the state of transaction in both cases, i.e. abort and commit.  
  
DSTM2 have following novel features and advantages [38]; 

1. DSTM2 is the first flexible framework for programming STM applications. 
2. DSTM2 does not depend upon the changes to the compiler or run-time system. 
3. DSTM2 is simple, flexible, and portable 
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Figure 4.5.2 The Backup operation in shadowfactory.
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Figure 4.5.3 The Recovery operation in shadowfactory.

 
4.5.3 Design Limitations 
DSTM2 is implemented in Java that has a built-in garbage collection mechanism. In other words 
DSTM2 is dependant on the runtime environment of the Java language regarding memory 
management. Moreover, DSTM2 creates a copy of every class and transforms it to a transactional 
factory which eventually exhausts the memory [18]. Although a single version of a class may be 
enough, instead of creating two versions. Fixing this problem needs considerable amount of re-
work on DSTM2.    
  
4.6 Object Based Software Transactional Memory (OSTM) 
Keir Fraser, in 2004, presented the first lock-free, Object based Software Transactional Memory 
as his Ph.D. thesis [23]. It is also called Fraser’s STM (FSTM). OSTM has transaction granularity 
at the level of an object; hence it was given the name OSTM. OSTM works on contiguous blocks 
of memory called objects. These objects are the basic unit of currency and update in OSTM [38]. 
The data structure in OSTM contains references to these objects. OSTM is quite similar to DSTM 
by Herlihy et al. [36]. The basic difference between two systems is this that DSTM uses 
obstruction-freedom for synchronization while OSTM is based on lock-freedom.  Moreover, 
OSTM has weak isolation and late conflict detection approach. OSTM does not support nested 
transactions [38]. The basic design features of OSTM are shown in table 4.6.1. 
 

Table 4.6. The Basic Design features of OSTM. 
OSTM 

Synchronization Non-blocking  (Lock-freedom ) 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Object  
Isolation Weak 
Update Strategy Deferred Update 
Conflict Detection Strategy Late 
Conflict Management Abort 
Nested Transaction Type Not Supported 
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4.6.1 Design Details  
The contents of the OSTM objects are stored in contiguous memory locations called data-block. 
In other words, nodes of linked-list are objects in OSTM. The contents of these objects are not 
accessible directly in an application, unless a pointer to an object-header for the current node is 
obtained. A reference to an OSTM object is in fact a pointer to a word-size object-header which is 
further used to track the current data-block as shown in figure 4.6.1. This pointer is updated to 
point a new data-block after each successful commit [23].  
 

Object ref Old data New data Next Handle 

 
 
Multiple objects can be opened by a particular transaction for processing. Each transaction has a 
transaction descriptor. The transaction descriptor maintains a status field that can have values, 
e.g., Undecided, Read-checking, Committed, and Aborted. The transaction descriptor helps in 
tracking the objects opened by a particular transaction for read or write operations. The 
transaction descriptor maintains two linked list for this purpose, i.e., read-only list and read-write 
list. The read-write list is used for the objects which are opened for writing purpose [23]. Each 
node in the read-write list contains fields like Object-ref that is an object reference to concurrent 
object header, old-data that is a pointer to concurrent object, new-data that is reference to the 
shadow copy of the concurrent object, and finally the pointer to the next object, i.e., next handle. 
The updates to the shadow copy are kept invisible and private until the transaction commits. The 
read-only list has similar structure but it does not have a shadow copy of concurrent object [23]. 
 
Whenever, a transaction opens a data object for ready only access it is added to read-only list. 
Similarly, whenever a transaction opens a data object to write, it is added to read-write list. The 
OSTM has two phase commit operation. In the first phase, a transaction acquires control of the 
data objects need to commit, while in the second phase acquired objects are released. In the 
Acquire phase, data objects are acquired in a global logical order by replacing the data-block 
pointer with a pointer to the transaction descriptor. The next stage is decision phase. In this phase, 
transaction status is changed according to the final outcome of the transaction indicating success 
or failure. A transaction commits successfully when it updates all the shared memory objects 

UNDECIDED 
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Read-write list 

Transaction Descriptor 

Shadow 
Copy

Object 
Header

Current 
Object

Figure 4.6.1. The OSTM data structure [23].
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successfully in the read-write list. The last phase is release phase. In this phase, a transaction 
releases all the objects which it acquired in the acquire phase [23].  
 
4.6.2 Design Limitations 
One of the major performance bottlenecks that OSTM suffers is its read-only mechanism.  The 
read-only operations have to go through acquire and release phases. This may introduce 
unnecessary conflicts among the transactions. In other words, it is un-necessary to acquire the 
concurrent objects for read-only access. Like other search algorithms that have a single entry 
point, i.e., root, for every operation, will suffer from performance bottleneck [23]. Tree data 
structure is good example to elaborate this drawback. In a tree data structure, if we want to access 
the extreme bottom leaf/node, we have to go through the root and traverse until we reach that 
particular leaf/node.  
 
In order to overcome this drawback, Fraser modified the algorithm to acquire only those objects 
that are in a read-write list of a transaction. The acquire phase, is followed by a read phase. The 
read-phase checks the current data object in the transaction’s read-only list for consistency. It 
compares current data object version with the version that was identified when it was first time 
opened. If the entire references match then the transaction commits successfully, otherwise, the 
transaction fails. If the read-phase notices that an object header is at the moment opened by 
another transaction then it will not help the conflicting transaction [23]. 
 
Fraser has discussed this scenario by an example [23]. Consider the transactions T1 and T2, 
running at the same time. Let suppose T1 opens a data object Xi for reading and Yi for writing and 
the T2 opens Xi for writing and Yi for reading. According to OSTM implementation both, T1 and 
T2 will commit successfully. However, these transactions violate the consistency and correctness 
criteria of OSTM. Since the transactions are not seriablisable, therefore changes made by T2 are 
not visible to T1 or vice versa. Fraser solved this problem by introducing two more changes [23]: 
 
1. Fraser introduced a new transaction status value with the name of read-checking. This 

status value indicates that a transaction is in a read-phase. 
2. A transaction successfully commits or aborts when transaction status changes to read-

checking. 
 
When the transaction completes the acquire phase, it turns to the read-checking state. In the read-
phase, a transaction traverses through its read-only list and checks the consistency of the objects 
in the list. If any of the data object has changed since the transaction read it last time, and the 
transaction status is in Undecided state, then the transaction aborts. If the transaction comes 
across the conflict in read-checking state, then depending upon transactions position in the global 
total order in the memory is determined. If the current transaction is preceding the conflicting 
transaction then the current transaction aborts the conflicting transaction. Otherwise, the current 
transaction helps the conflicting transaction. OSTM allows only single fixed size objects. The 
fixed size objects are not suitable for applications that support heterogeneous collection of data 
objects or objects with variable size, e.g., skip lists. Moreover the OSTM does not support the 
nested transactions. It is another limitation in its design.  
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4.7 Rochester Software Transactional Memory 
 
The Rochester Software Transactional Memory (RSTM) is designed for non-garbage collection 
programming languages by Marathe et al. [47]. RSTM is developed as a C++ library but an 
equivalent library can be developed in the C language. RSTM was an effort to lower the possible 
overheads experienced by its predecessors STM systems, e.g., OSTM, ASTM and DSTM, while 
exploiting their good qualities. The basic design features of RSTM are shown in table 4.7.1. 
   

Table 4.7. The Basic Design features of RSTM. 
RSTM 

Synchronization Non-blocking  (Obstruction-freedom ) 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Object  
Update Strategy Deferred Update 
Conflict Detection Strategy Both Early and Late (Selectable) 
Conflict Management Conflict Manager 
Nested Transaction Type Flattened 

 
RSTM has transaction granularity at object level and it is a non-blocking obstruction-free 
deferred update STM system. It can switch between late and early conflict detection strategy. 
RSTM introduced following prominent features [47]; 
 
1. RSTM uses single level indirection to access data objects. 
2. RSTM uses its own garbage collector and avoids dynamic memory allocation and 

collection. Due to its own garbage collector, RSTM can work with non-garbage 
collecting languages, e.g., C++.   

3. RSTM supports several options for contention management and conflict detection. 
  
4.7.1 Design Details 
In RSTM, ObjectHeader is the basic entry point through which an object is accessed. The 
ObjectHeader directly points to the current version of the object as shown in the figure 4.7.1, 
above. Inside the ObjectHeader, there is a clean bit which indicates that this data object is the 
current version or not [47]. If the clear bit is set to zero, then it means that this is the latest version 
of the data object and currently not referenced by any other transaction. However, when the clear 
bit is set to one, it indicates that this data object is currently opened by another transaction. The 
ObjectHeader of the data object references to the TransactionDescriptor of the owner 
transaction. The status of the transaction determines that the transaction is active, committed or 
aborted [47]. If the owner transaction has committed, then the new data object is the latest 
version. Otherwise, if the state of the transaction is active or aborted then old object is the valid 
and recent object.  
 
Another prominent feature that RSTM introduced is visible and invisible read lists [47]. The data 
object header has a read list, called visible read list, which contains entries for the transactions 
which are currently reading it. Whenever a transaction open the data object to read, it adds itself 
to the visible read list. If there is no space to add a transaction entry to the read list, then 
transaction add its entry to its own private read list, called invisible read list. The invisible read 
list help transaction in validating its version of data. Let suppose, if a data object has changed 
since a transaction read it last time, then a transaction’s invisible read list will help the transaction 
to validate its read version and abort if required. Similarly, when a transaction commits its 
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changes to a data object, it aborts all the transactions that are in the visible read list of the data 
object [47]. Therefore, visible and invisible read lists play an important role in the correct 
execution of RSTM.  

 
A transaction descriptor also maintains a write list [47]. Whenever a transaction writes data to a 
data object it adds that data object to its write list. When a transaction commits successfully, it 
uses the write list to clean the data objects it accessed. In other words, on successful commit, a 
transaction set the clean bit from one to zero in all the data objects it accessed for a particular 
commit operation. In order to commit changes to a data object, a transaction needs to own that 
data object. If a data object is already owned by another transaction then transaction will consult 
the contention manager. Let suppose, contention manager aborts other transaction in favor of this 
transaction. Now, in order to commit changes this transaction will perform following steps [47]; 
 
1. The transaction will create a NewDataObject and copy values from the old data object to the 

newly created data object and initialize its Old Data and Owner fields.  
2. The transaction will add the data object to its private write list. The write list will later help in 

cleaning the header of the data object. 
3. The transaction will abort all the transaction in the read list of the data object. 
4. The transaction will commit its changes and set the clean bit to zero. 
 
4.7.2 Design Limitations  
The most prominent design feature offered by RSTM is that it can run without garbage collection 
and can reclaim its data structures after completion of a transaction [47]. However, the read lists 
introduced by RSTM generate more traffic and becomes costly. Moreover, late conflict detection 
with RSTM is more efficient than early conflict detection. As in late conflict detection more 
transactions has a chance to commit successfully. 
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4.8 Time Based Transactional Memory 
Riegel et al. presented a new time-based software transactional memory in 2006 [54]. Riegel’s 
STM uses the notion of time to maintain the consistency in data access and the order in which the 
transactions commit their results. Basic design features of Riegel’s STM are shown in table 4.8.1. 
Former implementations of the time-based transactional memory systems used a single clock 
which is incremented whenever a transaction commits. However, in large time-based STM 
systems, contention on a single global counter is a major bottleneck [54].  
 

Table 4.8. The Basic Design features of Time-based STM. 
Time-based STM 

Synchronization Non-blocking  (Obstruction-freedom ) 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Object , Word (Any) 
Update Strategy Deferred Update 
Conflict Detection Strategy Early 
Conflict Management Conflict Manager 
Nested Transaction Type NA 

 
4.8.1 Design Details 
Riegel’s STM achieves synchronization without validation cost [54]. The Transactional memory 
systems usually suffer from validation overhead. Whenever a data object is accessed, it is 
checked for validation. However, a time-based STM does not suffer from validation cost. 
Moreover, Riegel’s STM does not require any specific underlying implementation. In other 
words, Riegel’s STM can be implemented at word level, object level or even with hardware 
approach [54]. However, timestamp information is stored with every data object or word. Infact 
time-based STM uses time to impose synchronization. The time-based STM system can be 
implemented using simple counter shared by all the transactions. However Riegel’s STM focuses 
on scalable time-bases that do not suffer from contention overhead. Moreover, clocks that work 
on time-bases can either tick whenever required by the STM e.g. on commit of every transaction 
or they can work independently like real time clocks [54].  
 
Riegel et al. has presented a novel STM algorithm called Lazy Snapshot Algorithm (LSA) that 
uses real-time clocks to optimistically synchronize the concurrent transactions [54]. The LSA 
algorithm is later on modified to use externally synchronized clocks. Empirical study has shown 
that real time clocks are more scalable in large systems [54]. However, in both cases i.e. real-time 
and externally synchronized clocks; both do not actually need to be real-time clocks. In other 
words, neither the speed nor the values for these clocks need to be synchronized with real-time. 
However, the global real-time clocks help in implementation of externally synchronized clocks 
[54]. The local clocks approximate their time with real time clocks, which help in getting the 
unique time value. In the LSA algorithm, the clock ticks on every commit of transaction. Riegel’s 
STM read the current time at the beginning of the every transaction in order to make the 
transactions linearizable [54]. 
 
Moreover every data object has a version that is valid for a certain period of time, called validity 
range. The validity range of transaction is a time range within which all the data objects accessed 
by a transaction are valid. The LSA algorithm uses two methods for getting the time stamps, i.e., 
GETTIME and GETNEWTS.  The GETTIME method returns the current time while GETNEWTS 
returns a timestamp which is greater than anytime other time used by a transaction. However, 
timestamps are not necessarily be unique. Other transactions may use the same timestamp. In 
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some cases, it may be difficult to find-out which time stamp was read later and which one earlier. 
In order to resolve this uncertainty in LSA algorithm, we consider an example. Let suppose a time 
t1 was read no later than the time t2.   In this case, sometime, we can say that t1 and t2 are equal. 
However, it is not possible that t1 could be greater than t2. The basic theme of the LSA is to 
generate snapshots of the data version and lazily extend validity range on demand. By doing so, 
two objectives are achieved [54]. First, consistent snapshots of the data lead to consistent reads by 
transactions. Second, identifying, that there is a conflict between the data validity ranges. 
However on commit linearizability is maintained.  A transaction can only commit when it can 
extend its validity range up to a time that includes commit time. In other words, a transaction 
enters the commit state when it has determined that it can commit otherwise it aborts. In this way 
multiple transactions commits as long as their validity range is not in conflict [54]. The 
conflicting transaction is aborted by conflict manager. 
   
4.8.2 Design Limitations    
Time-based STM uses notion of time to synchronize the concurrent transactions. The real-time 
clocks have significant benefit over the simple global counters. The real time clocks avoid the 
contention suffered by simple global counters, which is a bottle-neck for short transactions or 
when the system is very large, running numerous transactions [54]. The LSA algorithm uses 
different time-bases. However, there would be a trade-off in using it for different systems. A 
simple shared commit time counter may be sufficient for the small systems. While in large 
systems, hardware-based external clocks may be more efficient.   
 
4.9 Hybrid Transactional Memory 
Kumar et al. proposed object-based Hybrid Transactional memory in 2006 [40]. Kumar’s hybrid 
TM initially uses hardware TM and when the transactions exceed the limits of hardware resources 
these are gracefully shifted to STM. The system utilizes the performance benefits of hardware 
approach with the flexibility of software approach. Similar approaches have been proposed by 
Moir et al. HyTM [19], discussed in section 4.10 and NZTM, by Faud et al. discussed in chapter 
4.11 [63]. The basic design details of Kumar’s Hybrid TM are shown in table 4.9.1. 
 

Table 4.9. The Basic Design features of Hybrid TM. 
Hybrid TM 

Synchronization Non-blocking  (Obstruction-freedom ) 
Concurrency Control Optimistic and Pessimistic 
Conflict Detection level (Granularity)   Object and Cache Line 
Update Strategy Deferred and Direct Update 
Conflict Detection Strategy Late and Early 
Conflict Management Conflict Manager 
Nested Transaction  Supports 

 
4.9.1 Design Details 
The execution mode can be chosen independently by a transaction. However, the software TM 
approach is totally different than the hardware TM approach. The basic difference between the 
two approaches is that the STM approach detects the data conflicts at an object level while the 
hardware transactional memory (HTM) approach has granularity at the cache level [40]. Kumar’s 
hardware TM is based on the Herlihy original proposal [34] but the chip design is slightly more 
complex and large in area. The Instruction Set Architecture (ISA) has been used for more 
flexibility. The ISA is the part of a processor that is visible to the programmer or compiler and 
serves as boundary between the software and the hardware. The cache coherence protocol is used 
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to detect the conflicts between software and hardware transactions [40]. Kumar’s Software 
Approach in Hybrid TM is also based on Herlihy’s DSTM model, discussed in detail in the 
chapter 4.3. However, Kumar et al. modified Herlihy’s model and made changes to the DSTM 
Locator data structure. The major change Kumar et al. introduced is that the Locator tracks reader 
and writers instead of just maintaining the references to old data and new data object and its state 
as shown in the figure 4.9.1. The change helps in detecting the read and write conflicts at an early 
stage which may increase the transaction commit rate. In Kumar et al. Hybrid TM, a transaction 
that is going to write, directly aborts all the readers and does not look for verification of the 
version of the data [40]. In contrast, DSTM requires verification of the data objects that were 
open for reading. In order to support this change Hybrid TM Locator has new field valid that 
indicates that whether this data object is currently open for read or write. In contrast to DSTM 
one variable for state, Hybrid TM has separate fields for States i.e., read and write. In Hybrid TM, 
there can be multiple readers at the same time with maximum one writer [40]. The valid field 
indicates which of the two State fields is valid at the moment.  
 

TMObject 

Start 

 
In the beginning of each transaction, the hybrid scheme chooses between the software or 
hardware mode of the execution. As the data buffer is within the hardware, so it is a more 
optimistic approach to choose hardware TM. HTM performs faster than STM as it has less 
overhead. The Hybrid TM currently follows a simple policy in this case, that is, a transaction first 
attempts in hardware mode three times and if it does not succeed in three attempts then it 
switches to software mode and retries until it succeed [40]. The Hybrid TM uses the Polite 
manager for contention management in software mode. However in hardware mode a transaction 
will automatically abort the conflicting transaction. The hardware mode uses aggressive 
contention management policy in contrast to the Polite manager in software mode.  
 
4.9.2 Design Limitations 
A number of improvements can be suggested in Hybrid TM of Kumar et al. One improvement 
can be a classification among the failing transactions. Some transactions abort due to conflicts 
with other transactions while other transactions abort due to resource limitation of hardware TM. 
The former transactions may be retried in hardware mode for efficient execution. However, this 
functionality requires implementation of exception handler in hardware mode which indicates 

Figure 4.9.1. The Hybrid TMObject [60]. 
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that what kind of transaction has failed [40]. Moreover, extremely long transactions create a 
problem for Kumar et al.’s Hybrid TM.  A transaction that has longer time slice will never be able 
to complete successfully in the current system. In order to accommodate such transactions a third 
mode is required where current hardware may not be used at all. Moreover, all the current threads 
may be aborted and let this transaction complete execution. Such transactions rarely come across. 
However, this approach will ensure completeness without disturbing the overall performance 
[60].   
 
4.10 Hybrid Transactional Memory (HyTM) 
Moir et al. presented Hybrid Transactional Memory (HyTM) in 2006 [19]. Software transactional 
memory uses the best-effort hardware to enhance performance in HyTM but does not depend 
upon the Hardware Transactional Memory, HTM. The HyTM prototype is based on a compiler 
and a library. HyTM is word based and uses an explicit contention manager for resolving the 
conflicts [19]. The basic design details of the HyTM are shown in table 4.10.1.  

 
Table 4.10. The Basic Design features of HyTM. 

HyTM 
Synchronization Non-blocking  (Obstruction-freedom ) 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Word 
Update Strategy Deferred Update 
Conflict Detection Strategy Late 
Conflict Management Contention Manager 
Nested Transaction  Supports 

 
4.10.1 Design Details 
The synchronization between STM and HTM based transactions, is achieved by imposing the 
condition that a HTM based transaction does not commit when it detects a conflict with an STM 
based transaction. However, when an STM based transaction have a conflict with an HTM based 
transaction, then the HTM transaction is aborted and retries either in STM or HTM [19].  In 
HyTM, it is presumed that most of the transactions are executed in HTM as HTM is faster than 
STM. When a HTM transaction fails then a call is made to the HyTM library. The HyTM library 
decides whether the transaction may be retried in HTM or in STM. The HyTM library also 
employs different contention management policies, such as back-off and spinning before retrying 
a transaction. Some time a transaction is retried in HTM again, after a short delay in less 
contention. However, when a HTM transaction fails repeatedly, then it is moved on to the STM 
where hardware limitations are ruled out and transaction can be executed in a more flexible 
contention management environment [19]. HyTM contention manager uses the Polka contention 
manager which is a combination of Polite and Karma contention managers, explained in Chapter 
3.4.7. The Polka manager uses the Polite manager’s spinning and back strategy with the Karma 
manager’s priority scheme. The priority scheme is based on the amount of work done by a 
particular transaction. The number of data-objects opened by a transaction is used as unit for 
amount of the data processed. The Polka manager gives priority to those transactions which 
processed more data and let them complete their processing [19]. 
 
HyTM uses two main data structures, transaction descriptor and OwnerShipRecord.  The 
transaction descriptor further contains transaction header, read-set and write-set. The read-set 
and the write-set further have references to the corresponding orec instances for each transaction. 
The OwnerShipRecord, abbreviated as orec, is used for keeping the ownership records of the 
transactions which are reading or writing the data in a memory location. Before write or read 
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operation, a transaction acquires the ownership of the memory location. After every read 
operation, a transaction validates its read-set. The validation includes checking all the values 
which a transaction read and finding out that these values did not change since the transaction 
read it last time. After performing the validation a transaction commits and changes it status from 
Active to Committed. HyTM supports nested transactions and an outer transaction encompasses 
inner transaction. In other words, an inner transaction commits only when outer most transaction 
successfully commits [19]. 
 
4.10.2 Design Limitations 
The basic theme of the HyTM was to increase the scalability of STM with HTM support. 
However, ideally HyTM should perform well in low contention and without HTM support. The 
trade-offs for HyTM includes validation cost. Each transaction requires checking the orec in order 
to find out possible conflicts. However, if software transactions are frequent or in other words, 
there is no HTM support. Then such reads to orec will slow down the scalability [19]. A different 
approach for HTM transaction may solve this problem. One way may be that a HTM transaction 
uses invisible reads or in other words, keep a snapshot of the orec for later validation. However, 
keeping separate orec will cause memory overhead but the solution lies in making the right 
choice.  
 
4.11 Non-blocking Zero-Indirection Transactional Memory 

(NZTM) 
Faud et al. presented a Non-blocking Zero-Indirection transactional memory in 2007/2009 
[63][64]. NZTM is an object based Hybrid software transactional memory. It uses an explicit 
contention manager for resolving the conflicts. Kumar et al. also presented a similar hybrid 
transactional memory. Moreover, NZTM has much similar to Herlihy et al. object based, 
Dynamic Software Transactional Memory (DSTM) [36]. Basic design details of NZTM are 
shown in table 4.11.1. 
   

Table 4.11. The Basic Design features of NZTM. 
NZTM 

Synchronization Non-blocking  (Obstruction-freedom ) 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Object 
Update Strategy Deferred Update 
Conflict Detection Strategy Late 
Conflict Management Contention Manager 
Nested Transaction Type NA 

 
4.11.1 Design Details 
In contrast to former non-blocking STM systems where a conflicting transaction was aborted, 
NZTM transaction aborts itself and takes a short time to complete roll-back. After that other 
transaction can access the data object without any uncertainty. This mechanism helps in avoiding 
the overhead introduced by different levels of the indirection except the case when a transaction 
is not responsive [63]. By achieving zero level indirection, NZTM, eliminate the performance gap 
introduced by previous blocking and non-blocking STM systems. The data structure and 
programming model used by NZTM is similar to DSTM [36].  
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Aborted TXN Status: Active 

 
 
Moreover, transaction structure is also similar to DSTM except that NZTM transaction introduces 
a flag AbortNowPlease. This flag is used to request that transaction abort itself as shown in figure 
4.11.1. The flag is stored with Status field and both are atomically accessed [63]. Similar to 
DSTM, a transaction starts with status set to Active. The transaction opens different data objects 
for reading and writing. When a transaction completes its execution, it sets its status from Active 
to Committed. When a transaction detects a conflict with another transaction, it waits. If it is not 
successful after few attempts then request to abort itself, after consultation with contention 
manager [63]. In contrast to DSTM and other STM systems, a NZTM transaction does not abort 
conflicting transaction but request to abort itself.  This request is initiated by setting the 
AbortNowPlease flag to true. When a transaction notices that AbortNowPlease is set to true, it 
updates its status to Aborted [63]. As NZTM is Hybrid transactional memory, therefore system 
uses Non-blocking Zero Indirection Software Transactional Memory (NZSTM) for software 
transactions. The transactions attempts repeatedly using Hardware NZTM and if not successful 
then retries using NZSTM [63].  
 
Faud et al. [64] performed further comparative performance testing of NZTM with several other 
Transactional Memory systems, e.g., LogTM-SE, BZTM, DSTM2-SF, SCSS. The performance 
testing revealed that LogTM-Signature Edition outperformed NZTM. NZTM has additional 
hardware mechanism to detect the conflicts with software transactions while pure hardware based 
transactional memory such as LogTM does not require such mechanism.  
 
4.11.2 Design Limitations 
NZSTM is non-blocking STM avoids the overheads of the indirection levels. NZSTM can be 
used with current systems without any additional hardware support. The theme of NZTM was 
inspired by the work of Marathe and Moir but their HTM is word based, in contrast, to object-
based NZTM. However, NZTM use complex metadata to achieve obstruction-freedom [60].  
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4.12 Phased Transactional Memory (PhTM) 
Phased Transactional Memory, PhTM was presented by Mark Moir et al. in 2007 [42]. The 
PhTM switches between different phases, each implemented by a different Transactional 
Memory. In other words, PhTM uses different transactional memory implementations, in 
different phases, which suits according to the circumstances prevailing. The PhTM is a Hybrid 
TM model. Therefore, it has two executions path, i.e., Hardware and the Software. Some time it 
shifts to software transactional memory and some time to hardware transactional memory. A 
Hardware Transactional Memory (HTM) significantly outperforms the Hybrid Transactional 
Memory, because HTM does not take care of conflicts with concurrent software transactions. 
This is the reason that Mark Moir Hybrid TM is outperformed by TL2 [42].  

 
4.12.1 Design Details 
The PhTM support different modes for various situations based on the workload and system 
support. The key challenges faced in developing PhTM include identifying the suitable and 
efficient mode for a particular situation. Moreover, it includes managing the transition from one 
mode to another mode without losing data or transactions and deciding when to switch to another 
mode [42]. The PhTM is integrated to C/C++ complier. Following are the different modes of 
execution for different situations [42];  
 
1. HTM support is available and effective for the current workload. In this situation all the 

transactions are executed in HTM, as HTM is not suppose to take care of the conflicts 
with software transactions. 

2. HTM support is not available or may not be effective for the current workload. In this 
case there are is no point in executing the transactions with HTM support. Therefore, 
software mode is suitable in this scenario. All the transactions are executed in software 
mode and there is no need to interoperate with hardware. The state of the art STM can be 
used in this case to execute the transactions. 

3. HTM support is available but not effective all the time. In this scenario the combination 
of both software and hardware mode of execution, i.e., Hybrid TM would be suitable e.g. 
HyTM Moir et al. [19]. However, software and hardware transactions would have to 
check each other for conflicts. 

4. There are few transactions or workload is single-threaded. This mode is called 
SEQUNETIAL and executes one transaction at a time. In this case there is no need of 
conflict detection at all as only one transaction executes at a time. Hence a significant 
overhead is eliminated. 

5. Workload is single-thread or few transactions are executed at a time. Some transactions 
are not supposed to be aborted explicitly. In this case SEQENTIAL-NOABORT mode is 
used. In this mode transactions can execute without any conflicts detection. As 
transaction will not be aborted so it eliminates the need for logging. This mode is similar 
to SEQUENTIAL mode. However, SEQUENTIAL-NONABORT like other modes 
supports functionality for executing I/O operations or system calls which other modes 
also supports.  

 
Many practical scenarios fall in to the category 1 and 2. Moreover, supporting multiple dynamic 
modes for different scenarios helps in load balancing that result in efficient execution of 
transactions.  One of the main challenged faced in implementing the PhTM is transition from one 
mode to another when required. One solution is to abort all the transactions executing in the 
current mode are aborted or completed before shifting to the new mode. This solution can be 
implemented by using the read-only variable modeIndicator. By checking this variable each 
transaction can decide that it should abort or continue. The transactions will execute if mode has 
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not changed. And when the modes changes the transactions will abort. The transactions will read 
modeIndicator variable once and keep it with themselves for later validation. In other words, one 
copy of modeIndicator would be a part of a transaction and one would be global. And comparing 
both each other will indicate whether mode has changed or not. Another approach can be this that 
all the current transactions should complete their execution while the new transaction may 
execute in the next mode. Another major challenge in PhTM is to decide when to switch to 
another mode [42]. One simple solution in this case can be that we run the transactions in phases 
in each execution mode and monitor the performance. When we notice that the transactions are 
executing efficiently in a particular mode of execution then PhTM may allot more time to that 
mode to run the transactions. Moreover contention manager can be used to monitor the 
performance of particular execution mode and help in deciding shifting to another execution 
mode.  
 
4.12.3 Design Limitations 
The PhTM supports to employ the benefits of several Transactional Memory systems. Moreover, 
several modes of execution help in load balancing. However shifting from one mode to another 
causes delay which can slow down the over all performance of the system. Moreover, employing 
different STM and HTM system at the same time would require more memory.   
 
4.13 Signature Accelerated Transactional Memory (SigTM) 
Cao Minh et al. [48] presented Signature Accelerated Transactional Memory, SigTM in 2007. 
The SigTM is a Hybrid Transactional Memory system. The SigTM uses hardware signatures to 
keep track of read-set and write-set and help in conflict detection. The signatures are basically 
data structures that can store the data access information of the transactions. A SigTM signature is 
shown in table 4.13.2. However, data versioning information is stored in software part of the 
system. The signature data-structure in SigTM does not require any modification to the hardware 
caches which reduce the hardware cost. The SigTM supports nested transactions and strong 
isolation [48]. It utilizes the strong isolation and performance characteristics of HTM with low 
cost and flexibility of the STM. The basic design details of SigTM are shown in table 4.13.1. 
 

Table 4.13.1. The Basic Design features of SigTM. 
SigTM 

Synchronization Non-blocking 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Cache line/ Word 
Update Strategy Deferred Update 
Conflict Detection Strategy Late 
Conflict Management Aborting 
Nested Transaction Type Supported 
Isolation  Strong 

 
4.13.1 Design Details 
The SigTM uses hardware signatures for conflict detection and strong isolation by looking up 
coherence requests. While other functionality, i.e., transactional versioning, commit and rollback 
are dealt in software part. In contrast to the SigTM, other Hybrid TM systems, e.g., Hybrid TM of 
Kumar et al [40] discussed in section 4.9, HyTM of Moir et al. [19] discussed in section 4.10, 
make changes to the hardware cache. The SigTM uses TL2 as STM part of Hybrid TM system, 
discussed in section 4.4 [16]. The TL2 is locked based STM using optimistic concurrency control 
with granularity at word level and works fine for range of contention scenarios. The TL2 uses 
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global version clock to generate time stamps for the data versioning. The STM transactions are 
slower than the HTM transactions due to the versioning and conflict detection overhead. 
Moreover, the maintenance and validation of read-set is another bottleneck. Every word read, 
must be re-validated for its time stamp while committing a transaction. Secondary, overhead 
includes searching the write-set for the latest values. The STM overheads can be eliminated 
through compiler support and other manual optimization techniques [48].   
 
However, the SigTM eliminates the global version clock and locking mechanism in the base 
STM. Moreover, it eliminates the need for software read-set. However software write-set is still 
required to store the transactional updates, until the transaction commits [48]. In contrast to other 
Hybrid TM systems [40, 41, 43, 44], the SigTM does not require to switch between STM and 
HTM. The Hardware Transactional Memory system implements the conflict detection and 
version-management by modifying the cache and cache coherence protocol. The HTM system 
uses cache to buffer the write-set until a transaction commits. Moreover, it has cache line 
granularity. The HTM, have one cache line for read bit (R) and one write bit (W), which indicates 
the ownership of a transaction in the read or write set.  

 
Table 4.13.2. The Signature in SigTM. 

Instruction Instruction Description 
rsSigReset 
wsSigReset 

Reset all bits in read-set or write-set signature 

rsSigInsert r1 
wsSigInsert r1 

Insert the address in register r1 in the read-set or write-set signature 

rsSigMember r1,r2 
wsSigMember 
r1,r2 

Set register r2 to 1 if the address in register r1 hits in the read-set or write-set signature 

rsSigSave r1 
wsSigSave r1 

Save a portion of the read-set or write-set signature into register r1 

rsSigRestore r1 
wsSigRestore r1 

Restore a portion of the read-set or write-set signature from register r1 

fetchEx r1 Pre-fetch address in register r1 in exclusive state; if address in cache, upgrade to exclusive state 
if needed 

 
The contention management in SigTM is analogous to the base STM, i.e., TL2. A conflicting 
transaction is backed-off and retried after a delay. And when a transaction is repeatedly backed-
off then it is eventually aborted. The SigTM implements lazy data versioning and transactional 
updates are buffered until the transaction commit. Moreover, the operating system may also 
suspend a SigTM transaction.  
 
4.13.2 Design Limitations 
The SigTM used hardware signatures to track the read-set and write-set while reducing the 
overhead of Software transactions. Moreover, signature data structure makes the implementation 
of nested transactions easy. One of the major performance challenges faced by SigTM is the in-
exact nature of the signatures. Therefore, it is hard to find that what operations are taking place in 
read-sets and write-sets. This in-exact nature of signatures, lead to false conflict detection. 
Eventually false conflict detection deteriorates the over-all performance [48]. Abadi et al. [1] 
presented off-the-shelf memory protection hardware to detect conflicts in transactional and non-
transactional data access. Using, such off-the-shelf hardware for data access tracking, in place of 
signatures can over-come the deficiencies introduced by signatures. 
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Another source of false conflict detection is the existence of two different granularity levels in the 
SigTM Hybrid Transactional Memory system.  The SigTM uses conflict detection at cache line 
level while the STM uses word level granularity. The SigTM is unable to track word addresses in 
hardware signatures. 
 
4.14 DracoSTM 
The DracoSTM was presented by Justin Gottschlich and Daniel A. Corners in 2007 [29]. The 
DracoSTM is lock-based, C++ STM library. Recent research work has shown that lock-based 
STM out perform non-blocking STM [30, 47]. The DracoSTM is the first STM which supports 
direct and deferred updating and switch between two on run-time. The basic design details of the 
DracoSTM are shown in the table 4.14.1. DracoSTM design is an effort to prove that scaling 
concerns and other problems like deadlocks, priority inversion can be avoided with specific 
contention management policies.  

 
Table 4.14. The Basic Design features of DracoSTM. 

DracoSTM 
Synchronization Lock-based 
Concurrency Control Optimistic 
Conflict Detection level (Granularity)   Object 
Update Strategy Deferred  and Direct Update 
Conflict Detection Strategy Late/Early 
Conflict Management Aborting 
Nested Transaction Type Supported 

 
4.14.1 Design Details 
The DracoSTM uses one lock per thread for transactional read and write operations. When a 
transaction is about to commit, all the transactions are temporarily blocked except the committing 
transaction. A global locking strategy is used to block all the executing transactions. This locking 
strategy provides the benefits of non-blocking system. The strategy implements the locking 
strategy in such a way that when transactions are not committing then they do not block each 
other and progress ahead. The DracoSTM supports switching between early and late conflict 
detection mechanism on run-time [29]. DracoSTM is the first STM which introduces commit 
time invalidation. The basic difference between validation and invalidation is that invalidation 
can detect priority inversion whereas validation can not. Moreover, invalidation can save many 
wasted operations by early notification about the transactions status. The DracoSTM implements 
closed nested transactions. In case of the closed nested transactions, child transactions are visible 
to parent and parent transaction is visible to child transactions but outside transactions can not see 
them in intermediate state. The DracoSTM can switch between direct and deferred update system. 
However, deferred update outperforms direct update while used with commit time invalidation. 
Though, in some systems [16] direct update is faster than deferred update, but those systems do 
not use commit-time invalidation [29]. The update strategy is closely tied with conflict detection 
strategy. The direct update strategy allows only one transaction to write to the memory location 
and hence early conflict detection is required in this case. But in case of deferred update, late 
conflict detection is performed. Implementing early conflict detection in case of deferred update 
can prevent many transactions from committing successfully. Therefore, late conflict detection is 
coupled with deferred update strategy [29].  
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4.14.2 Design Limitations 
The DracoSTM supports a novel feature with regards to update strategy. However, it has a 
limitation that a transaction cannot switch to another update strategy on run-time. First, all the 
transactions need to be suspended or may be completed and then DracoSTM should initialize new 
update strategy. Moreover, switching to another update strategy would cause delay, which would 
eventually deteriorate the overall system response time. DracoSTM uses locking and proves that 
it outperforms a non-blocking STM, i.e., RSTM. However, it uses commit time invalidation to 
achieve the benefits of non-blocking synchronization i.e. preventing priority-inversion, deadlocks 
and live-locks, which consequently becomes an overhead on the system.  
 
4.15 McRT-STM 
Saha et al. [57] developed a locked based STM, named McRT, in Intel research labs in 2006. The 
McRT is a Just-in-Time (JIT) compiler developed for C/C++ and Java transactions. This complier 
is a complete STM system based upon compiler and runtime optimizations for transactional 
memory constructs.  The McRT STM system supports word or object based granularity with 
direct update system. Moreover, it has optimistic read and pessimistic write conflict detection 
strategy. The McRT uses aborting as conflict resolution strategy and supports closed nested 
transactions. The basic design details are also shown in table 4.15.1 
 

Table 4.15. The Basic Design features of McRT-STM. 
McRT-STM 

Synchronization Lock-based 
Concurrency Control Optimistic read and pessimistic write 
Conflict Detection level (Granularity)   Object or word 
Update Strategy Direct Update 
Conflict Detection Strategy Early write and late read conflict detection 
Conflict Management Aborting 
Nested Transaction Type Closed Nested Transaction 

 
4.15.1 Design Details 
The McRT-STM directly updates the memory location instead of buffering the updates separately 
until the commit time. However, before updating a memory location a transaction records the 
original value from the memory location so that when a transaction aborts it could restore the 
original values [57]. The direct update strategy is faster than deferred update as it avoids the cost 
of buffering the original values separately and later on updating the original memory location 
with buffered results. However, the cost of aborting in case of direct update is higher than 
deferred update. In case of deferred update, a transaction acquires lock over memory location, 
hence preventing all other transactions to proceed further. Therefore, discarding the computation 
done a transaction is more costly than deferred update. Moreover, if transactions abort too much 
than it can significantly deteriorate the performance of direct update system, compare to a 
deferred update system. However, locked-based systems have less frequent aborts with direct 
update in contrast to deferred update system [57].   
 
The McRT-STM uses two phase locking as synchronization strategy. In the first phase it acquires 
all the desired locks while in the second phase after committing the transaction it releases the 
locks acquired earlier. When a transaction commits changes to the data object, it does not abort 
the transactions which previously read the data object. However, the transactions which read the 
data-object previously, detect the conflict and abort when compare the data version-number with 
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read-set, as part of their commit process.  In other words, McRT-STM uses, locking for write 
operation and data-versioning for read operation to avoid conflicts.  
 
4.15.2 Design Limitations 
In contrast to Transaction Locking, TL [17] and TL2 [16] STM’s, McRT-STM locks an object on 
the first access until it commits and uses direct update mechanism. However, it is against the 
basic notion of Dice and Shavit basic model of Transactional Memory [59], where multiple 
transactions could access a shared memory at the same time. Therefore, if McRT-STM uses 
commit-time locking instead of the current strategy of locking the data-object from first access to 
commit-time, it may enhance its performance. 
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5. SUMMARY AND DISCUSSION 
 

In this survey, different Transactional Memory systems are discussed on the basis of their design 
features as shown in table 5.1, beside their other particular strategies of implementation. Here, we 
present a summary of the design and implementation trade-offs. Moreover, at the end of this 
chapter we will discuss the contributions made by this survey.  
 
5.1  Synchronization Approaches  
There are basically two main approaches for synchronization, i.e., Blocking and Non-blocking. In 
this survey, it was observed that the most frequently used approach is Non-blocking. The non-
blocking approach has further categories like Lock-freedom, Obstruction-freedom and Wait-
freedom. However, wait-freedom and lock-freedom have not been paid much attention as both 
are practically not so promising. Wait-freedom allows each process to progress without taking 
contention into consideration. Moreover, the wait-freedom believes that there would not be any 
resource starvation, that is however practically not possible. Lock-freedom ensures deadlock 
prevention but suffers from resource starvation. The obstruction-freedom ensures that multiple 
threads run when there is no contention. However, it introduces the problem of live-lock and 
deadlock. In order to prevent live-lock and deadlock, roll back is used. Moreover, a contention 
manager is used to resolve conflicts among contending transactions. The obstruction-freedom is 
more promising than other non-blocking properties, due to its simplicity and performance.  
 
The other major synchronization strategy is the Blocking approach or Lock-based approach. 
Though locking introduce problems like deadlocks, live-locks, convoying and priority inversion 
but some practitioners still believe in locking as a performance oriented synchronization strategy. 
The DracoSTM [29] discussed in section 4.14, used locking as synchronization strategy while 
they ensured prevention from priority-inversion through implementation of commit-time 
invalidation. Moreover, they have showed that deadlocks and live-locks can be prevented through 
specific contention management policies. However, research continues in both areas of 
synchronization approaches, i.e., blocking and non-blocking. More research work is required to 
develop smart implementation of a particular approach with minimum overhead.    
 
5.2  Concurrency Control 
When two or more transaction tries to access a shared data object, a conflict arises. In order to 
solve this conflict two events take place, i.e., conflict-detection and conflict-resolution. If all three 
events conflict-occurrence, conflict-detection and conflict-resolution take place instantaneously 
one after another then it is categorized as pessimistic approach. However, if conflict-detection and 
conflict resolution take place after some time of conflict occurrence then it is classified as an 
optimistic approach.  
 
In this survey, it was noticed that most of the systems use the optimistic approach. The pessimistic 
approach seems to be more performance oriented as it resolves the conflict as soon it occurs and 
saves the unnecessary computation. However, the optimistic approach is more efficient than the 
pessimistic approach as there are situations when a conflicting transaction could have succeeded 
but does not succeed due to the early conflict-detection and resolution. Consider the situation 
where there two transactions T1 and T2 and both have a conflict with Transaction T3 over two 
different objects. Meanwhile T2 aborts as soon as it identify that it has a conflict with T3 .Similarly 
T3 aborts because it had a conflict with T1.  Now in this situation if conflicts would have been 
identified late then there was a chance that T1 and T2 could complete their processing successfully 
without aborting. Some other STM systems, like McRT-STM [57] discussed in section 4.15 have 
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introduced Pessimistic-read and Optimistic-write conflict resolution which is a bit more 
performance oriented than pure pessimistic approach. 
 
5.3  Transaction Granularity 
Transaction granularity implies to the storage space on which a TM system detects conflicts. The 
systems studied in this survey used various granularity levels, e.g., Object based, Word-based, 
Cache-line based and Method based. Other granularity levels include Block-level granularity, 
which may include a collection of memory words. However, mostly STM has a granularity at 
object-based or word-based. On the other hand, most Hardware-based TM systems have a 
granularity at cache-line level. An Ideal STM system maintains meta-data beside every data 
object so that it could track and control any possible conflicts. In case of object-based granularity 
level, meta-data can be kept easily with data object. Another approach is to maintain meta-data in 
separate data structure in case of word-based or block-level granularity. Block level granularity 
offers more precise sharing of resources than object level granularity but mapping meta-data 
from memory to a separate data-structure is another overhead besides keeping a separate data 
storage. However, object-based granularity is more understandable to the programmer than block 
level granularity as objects are more visible to programmer than memory blocks. 
 
5.4  Update Strategy  
When a transaction completes successfully it updates the original values with updated one. There 
are two approaches based on the update strategy, i.e., Direct Update and Deferred Update.  
 
In case of the direct update a transaction modifies the original value directly. However the system 
maintains the original value so that when the transaction aborts, it is able to roll back the changes 
made by the transaction. In order to keep record of the original values, an STM system maintains 
a log of the activity. The cost of aborting is high in case of direct update as every transaction 
which read the updated value will have to roll back. However recent systems like McRT-STM 
[57] discussed in section 4.15, have showed that if the system does not abort too frequently then 
direct update strategy results in higher performance.  
 
Another approach to update the values is Deferred Update. In this approach a running transaction 
maintains a separate copy of the updated values. When a transaction successfully completes its 
execution then it copies all the values from temporary copy to the original memory locations. 
However, in this approach, maintaining a separate copy of variables is another overhead besides 
copying from temporary locations to original locations. As the cost of a roll back in direct update 
is more than a successful commit, so deferred update seems more performance oriented than 
direct update.  
 
In this survey, we notice that some TM systems e.g., DracoSTM [29] discussed in section 4.14 
PhTM [42] discussed in section 4.12, use both deferred and direct update strategy. However, a 
TM system can not switch from one update strategy to another, unless it suspends all the current 
transactions and execute them in another mode. Moreover, another approach can be that the new 
transactions may not be initiated until system switch to next mode. Moreover, let the current 
transactions complete. However, switching from one mode to another mode causes time delay 
which effects the system response time and deteriorate the over all performance.  
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5.5  Contention Management Strategies   
The TM systems covered in this survey used different contention management strategies. 
The early systems used the concept of helping. The helping strategy implies that if a 
transaction can not proceed further then it should abort and help other transaction in completing 
their execution. However, the helping mechanism is very complex and may also introduce the 
problem of recursive helping. Recursive helping implies that a transaction helping another 
transaction may already be helped by another transaction. Other approaches include aborting, in 
which a conflicting transaction aborts itself. Today, most of the TM approaches use contention 
managers for resolving the conflicts. An ideal contention manger ensures forward progress. A 
dynamic contention manager may employ several contention management policies depending 
upon the situation prevailing.  
 
In this survey most of the TM system used contention managers for resolving conflicts. There are 
different contention managers available as discussed in section 3.4.7, e.g., Polite manager, 
Karma manager, Kindergarten manager, Time-stamp manager. Other contention managers 
include aggressive contention manager which aborts the victim transaction.  The Time-stamp 
manager generates time stamps and aborts the transactions on the basis of time-stamp. A 
transaction with higher time-stamp has priority over a transaction with lower-stamp. In short no 
contention manager is perfect for all situations. However, studied carried out by William Scherer 
and Michael Scott showed that Polka manager has higher performance against several 
benchmarks [58]. More research work is required in order to use multiple contention management 
policies according to different work-loads.  
  
5.6  Isolation and Nested Transactions 
Isolation is a property which makes sure that each transaction can execute in parallel 
independently and its internal execution and data should be isolated and hidden from other 
transactions and failure of one transaction may not affect the results of other transactions. 
Isolation is more categorized in to strong isolation and weak isolation [65]. Inside an STM-based 
system there can be two types of operations, i.e., transactional and non-transactional. The non-
transactional operations may have a negative effect over transactional operations which may lead 
to data races and inconsistencies.  
 
Strong Isolation implies that data access is always restricted to a transaction only. However, this 
assumption is not much practical as transactions sometime require data which is not available 
inside a transaction. The idea behind strong isolation is this that the data confliction should be 
minimized. Moreover, high performance STM systems do not support strong isolation as it 
impose read and write constraints on non-transactional data which leads to runtime overhead. 
Consequently, a STM system may produce incorrect and un-predictable results that even a simple 
parallel program can produce correctly [48].  
 
In this survey, SigTM [48] discussed in section 4.13, used strong isolation using hardware 
signatures. Strong Isolation is easy to implement in Hardware Transactional Memory and its 
performance oriented. Abidi et al. [1] presented how off-the-shelf memory protection hardware 
can be used to detect conflicts in non-transactional data access and ensured Strong Isolation. In 
this approach, changes to the non-transactional code are not made until a conflict is detected 
dynamically. Moreover, data outside the transaction is not necessarily considered as short 
transactions until a conflict is detected. Baugh et al. [6] have also used a fine grained memory 
protection hardware mechanism for achieving Strong Isolation in User Fault On (UFO), Hybrid 
TM.  
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It is not obvious to think that Strong Isolation is a desirable property for Transactional Memory or 
not, since Strong Isolation increases the complexity of the system [1].  
 
The concept of Weak Isolation believes that data is divided into transactional blocks as well as 
non-transactional. Moreover, both sorts of data can be accessed.  However, transactional data is 
atomic and consistent but not necessarily non-transactional. Therefore, in this case data outside a 
transaction can be formed in to a transaction and thus a transaction can communicate with other 
transaction through an interface hence reducing the possibility of data race and helps in conflict 
management.  
 
In this survey it was observed that most of the TM systems support nested transactions. Nested 
transactions are advantageous over single-level transaction because they distribute the task and 
runs inside another transaction using the concept of modularity and failure tolerance. In other 
words, if a nested transaction fails it does not cause the whole transaction to fail. So an ideal TM 
system supports nested transactions. However flattened nested transactions actually threaten the 
isolation property of the transaction. Isolation implies that if one transaction fails or abort it may 
not affect other transactions. Similarly, in open transactions changes made by inner transactions 
may not be visible by the outer transactions, and vice versa, as it is against the essence of 
isolation which emphasizes that inner data of transaction may not be visible to other transactions 
unless the transaction commits completely with success. 
 
5.7  Hybrid Transactional Memory Systems  
There are three sorts of transactional memory systems, i.e., Software Transactional Memory 
systems, Hardware Transactional Memory systems, and Hybrid Transactional Memory systems. 
The research work so far done with regards to TM systems shows that the Hardware 
Transactional Memory systems are faster than Software and Hybrid TM systems. Moreover, 
Hybrid TM systems are faster than pure software TM systems. The Hardware TM systems suffer 
from memory limitations and lack of flexibility to adapt different strategies. Though, a hardware 
approach like FlexTM by Scott et al. [61] has tried to achieve flexibility through decoupling. 
FlexTM has four separate modules for conflict-detection, conflict-management, version-
management and data update detection. FlexTM has inherited Alert-On-Update mechanism from 
RTM [62] to lower the data validation cost. 
   
Software TM can backup Hardware TM systems with flexibility. In other words, both hardware 
and software TM systems have weaknesses which can be complemented by the strengths of each 
other. When a Hardware TM system runs out of memory it switches to the STM. Moreover, STM 
systems can handle contention management in a better way with flexibility. The STM systems 
have a major advantage of flexibility and ability to adapt new algorithms and strategies regarding 
implementation of an efficient TM system. However, STM systems also suffer from many 
limitations. The STM systems have not yet learnt the economical way of achieve strong isolation 
mechanism. The programming languages such C and C++ does not offer facilities like garbage 
collection for safe programming. Therefore, STM systems have to do extra work to take care of 
such issues, which creates a considerable performance overhead. Moreover, STM systems 
confront difficulties in calling third party libraries, compiled outside of the STM systems. Other 
source of overheads are the additional instructions which STM system execute to track read and 
write set for roll-back and validation.  
 
The future of high performing flexible Transactional Memory system lies in the development of 
efficient Hybrid Transactional Memory systems. Some of the current Hybrid transactional 
memory systems like [40, 41, 43], have two modes of execution, which is not much efficient 
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approach.  Two modes of execution require shifting from one system to another which causes 
time delay. Moreover, two mode of execution based hybrid system may be implemented in two 
ways. Either the both modes of execution are running at the same time, which requires more 
hardware resources. Otherwise, one mode execution would be available at a time, which implies 
that when we are using software mode we can not utilize the benefits of hardware mode and vice 
versa.   However, building a compact hybrid transactional memory system is more advantageous 
and efficient like, SigTM [48] discussed in section 4.13. Such systems do not have two modes of 
execution, instead tasks and design features are divided between software and hardware. The 
software part is assigned those features which it can perform more efficiently, like contention 
management, data versioning, commit and roll back. On the other hand, conflict detection and 
strong isolation may be achieved through hardware part of the system. 

5.8  Validity of the Study  
Validity of the study is ensured by following steps  
 
5.8.1 Reliability and Trustworthiness of the research Work 
The reliability and the trustworthiness of the research work is ensured by triangulation technique, 
in which data is collected from multiple sources so that the information biasness could be 
minimized [28]. 
 
5.8.2 Validity of the research work 
The validity of the research work is ensured by supporting the arguments with multiple references 
from IEEE, ACM research papers, journals and thesis projects from world renowned universities 
and institutes. 
 
5.8.3 Rigorousness and Quality of research work 
Quality of the work is ensured by discussing the arguments and results with both positive and 
negative information which may counter the main theme of the research work, as in real life 
every phenomenon has positive a negative aspect [13].  
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6. Future Challenges 
Although a substantial amount of research has been carried-out in last one and half decade 
regarding Transactional Memory systems, there are still many overheads and problems that need 
to be further researched and investigated. This survey identifies the following areas for future 
research with regards to the implementation of Software Transactional Memory systems.  
 
6.1   Achieving Strong Isolation 
Strong isolation addresses the problems like inconsistent reads, lost updates, and simultaneous 
access by other transactions. However, strong Isolation poses constraints over the access of data 
and become an overhead on the performance of a transactional memory system. Software 
Transactional memory systems have not yet been able to find out the economical and efficient 
ways to achieve strong isolation with minimum overheads. However some researchers, like Abidi 
et al. [1] have find out an off-the-shelf memory protection hardware approach to support strong 
isolation. Baugh et al. [6] have also used a fine grained memory protection hardware mechanism 
for achieving Strong Isolation for their hybrid transactional memory system.  
 
A detailed study has been carried by Blundell [9] et al. about achieving strong isolation. In brief, 
strong isolation itself is an overhead on the performance of transactional memory and increases 
the complexity of the system. The questions like whether strong isolation is a desirable property 
or not? Does strong isolation always preserve correctness? What are the relative benefits of the 
strong and weak isolation? Such questions are still an open area of future research work.  
 
6.2   Nested Transactions 
Nested transactions are desirable property in transactional memory systems as nested transactions 
divide the task and support failure tolerance. The open-nested transactions are more performance 
oriented. However, open-nested transactions are more difficult to program to maintain the 
consistency between the nested transactions and surrounding transactions. Rich nested transaction 
with low software and hardware complexities are the challenges faced by the today’s 
transactional memory systems.  
 
6.3   Integration Overheads 
There are different software transactional memory systems. Some of them are complier based 
while others are library based. However, each approach suffers from integration overheads. The 
Software Transactional Memory systems are facing challenges in interacting with legacy code, 
third-party libraries and function calls to code, complied outside the STM. More research work is 
required to investigate smart approaches for lowering the integration overheads of the software 
transactional memory systems. 
 
6.4   Performance Comparison Studies 
The performance comparison studies of various transactional memory systems are few in number. 
In order to understand the design and performance trade offs of transactional memory systems 
more deeply, it is very important to conduct more performance comparison studies of various 
transactional memory implementations. Tabba et al. [64] performed a comparative performance 
testing of NZTM with several other Transactional Memory systems, e.g., LogTM-SE, BZTM, 
DSTM2-SF, and SCSS. However, more performance testing studies are required to investigate 
performance and design trade-offs of the growing number of transactional memory 
implementations. 
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6.5 Transactional Memory Benchmarks  
Transactional memory benchmarks play a vital role in better development of the transactional 
memory systems. Transactional memory systems are tested and analyzed using these 
benchmarks. The performance of a certain Transactional Memory system would be clearer if it is 
analyzed and tested against many TM benchmarks. Some of the existing benchmarks are TM 
Micro benchmarks [22], SPLASH-2 [66], STMBench7 [30], STAMP [49], Lee-TM [4], The 
Haskell STM Benchmark suite [51], and Worm Bench [67]. Some benchmarks focus on one data 
structure at a time e.g., Micro benchmarks [22]. However, the realistic workloads may consist of 
more complex and several data structures at the same time. STAMP is major contribution with 
regards to TM benchmarks. STAMP is complete suite of bench-marks. Recently H. Derin et al. 
[14] presented a new benchmark called RMS-TM. However, Transactional Memory benchmarks 
are few in number. There is certainly a need for more benchmarks to be developed.   
 
6.6 Transactional Memory Debugging and Testing Tools 
Developing software transactional memory applications is a difficult job. Moreover, not much 
attention has been paid regarding developing of debugging tools for Software Transactional 
Memory systems. Moir et al. [45] has discussed different problems associated with debugging the 
STM and Hybrid Transactional Memory applications. H. Derin et al. [15] presented TMUNIT, a 
testing tool for software transactional memory applications. However, there is a clear shortage of 
debugging and testing tools and applications for developing Transactional Memory applications.   
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7. CONCLUSION 
In today’s era of multicore processors, high performing and flexible parallel applications are the 
only means of utilizing the full power of multicore processors. However developing parallel 
applications is not easy and requires very smart designs to avoid overheads and bottlenecks. 
Traditional locking approaches suffer from problems like deadlocks, lives-locks and priority 
inversions. Transaction memory provides an elegant mechanism for writing parallel applications. 
In last one and half decade, considerable amount of research has been done to design software, 
hardware and Hybrid transactional memory systems. The Transactional Memory systems have 
brought a new thought for developing parallel applications. The Transactional Memory systems 
provide various design features to facilitate the efficient execution of the parallel tasks, e.g. 
concurrency, contention management, atomicity, isolation. However, so far strong research 
groups are working on transactional memory systems. There is a need to develop transactional 
memory systems more commonly. More research is required to make the Transactional Memory 
systems more scalable and performance oriented.  
 
This survey was an effort towards developing a better understanding of current state-of-the-art 
transactional memory systems. An overview of different transactional memory systems was 
presented. Moreover, their design and implementation trade-offs were discussed.  
 
This survey drawn following trends and conclusions 
 
1. The transactional memory systems discussed in this survey, reveal that most of the 
systems adopted the weak Isolation. Only two systems that were Hybrid TM systems, i.e., SigTM 
and PhTM used strong Isolation. The reason behind this trend could be this that the strong 
Isolation is easy to achieve in Hybrid approaches as Hybrid approaches use hardware based 
approaches to achieve strong Isolation. Moreover, in the Software Transactional Memory 
systems, achieving the strong Isolation is very complex and results in a overhead on the system 
performance. 
 
2. In this survey it was observed that some software transactional memory systems 
supported nested transactions while others not. This trend could be due to the reason that systems 
were not mature enough to adopt an advance feature like nested transactions and may be their 
modified versions come up with support for nested transactions. Moreover, support for nested 
transactions threaten the Isolation property of the TM system and makes the system more 
complex and this can be another reason for not supporting the nested transactions. However, in 
Hybrid Transactional memory systems, most of the systems supported nested transactions. This 
trend may be due to the fact that supporting nested transactions in hardware based approaches is 
easier than software based approaches. 
 
3. Early software transactional memory systems used the helping mechanism for conflict 
resolution. However, as we can see in the table 5.1, most of the systems later on have a trend of 
using explicit contention manager. Using explicit contention manager is a more appropriate 
approach as explicit contention manager are more flexible and can employ different dynamic 
contention management policies at the same time. 
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Table 7.1 The Comparison of Design Features of Transactional Memory Systems  
 

 

System 
Name 

Year 
Released 

Synchronization 
Strategy  

Concurrency 
Control 

Granularity Update 
Strategy 

Conflict 
Detection 

Conflict 
Resolution 

Nested 
Transaction 
Support 

Isolation 

 
STM 

 
1995 

 
Non-blocking 
(Lock-freedom) 

 
Pessimistic 

 
Word 

 
Direct 
Update 

 
Early 

 
Helping 

 
Not 
Supported 

 
Weak 

 
WSTM 

 
2003 

Non-blocking 
(Obstruction-
freedom) 

 
Optimistic 

 
Word 

 
Deferred 
Update 

 
Late 

 
Helping 

 
Flattened 

 
Weak 

OSTM 2003 Non-blocking (Lock-
Freedom) 

Optimistic Object Deferred 
Update 

Late Aborting Not 
Supported 

 
Weak 

 
DSTM 

 
2003 

Non-blocking 
(Obstruction-
freedom) 

 
Optimistic 

 
Object 

 
Deferred 
Update 
 

 
Early 

 
Contention 
Manager 

 
Flattened 

 
Weak 

 
RSTM 

 
2006 

Non-blocking 
(Obstruction-
freedom) 

 
Optimistic 

 
Object 

 
Deferred 
Update 

Early Or 
Late 
(Selectable) 

Conflict 
Manager 

 
Supports 
Flattened  

 
Weak 

Time-
Based 
STM 

 
 
2006 

 
Non-blocking 
(Obstruction-
freedom) 

 
Optimistic 

 
Object, Word 
etc 

 
Deferred 
Update 

  
Early 

 
Conflict 
Manager 

 
Not 
Supported 

 
Weak 

 
DSTM2 

 
2006 

Obstruction-freedom 
Or Locking 

 
Optimistic 

 
Method 

 
Deferred 
Update 

 
Early 

 
Conflict 
Manager 
 

 
Not 
Supported 

 
Weak 

 
McRT-
STM 

 
2006 

Locked-Based Optimistic 
Read and 
Pessimistic 
Write 

Object/ Word Direct 
Update 

Early 
Write/ late 
Read 

 
Aborting 

 
Closed 
Nested 

 
Weak 

 
TL2 

 
2006 

 
Blocking (Locked-
Based) 

 
Optimistic 

Object, Word 
or Region 

 
Deferred 
Update 
 

 
Early or 
Late 
(Selectable) 

 
Aborting 

 
Not 
Supported 

 
Weak 

 
Draco 
STM 

 
2007 

Locked-Based Optimistic Object Deferred 
and 
Direct 
Update 

Late/Early Aborting Supported Weak 

 
NZTM 

 
 
2007/ 
2009 

Non-blocking 
(Obstruction-
freedom) 

 
Optimistic 

 
Object 

 
Deferred 
Update 
 

 
Late 

 
Conflict 
Manager 

 
Not 
Supported 

 
Weak 

 
HyTM 

 
2006 

Non-blocking 
(Obstruction-
freedom) 

Optimistic Word Deferred 
Update 

Late Conflict 
Manager 

Supports Weak 

Hybrid 
TM 

 
2006 

Non-blocking 
(Obstruction-
freedom) 

Optimistic 
and 
Pessimistic 

Object and 
Cache line 

Deferred 
and 
Direct 
Update 

 
Early/Late 

 
Conflict 
Manager 

 
Supports 

 
Weak 

 
PhTM 

 
2007 

Blocking and Non-
Blocking 

Optimistic 
and 
Pessimistic 

Object, Word, 
Cache-line 

Deferred 
or Direct 
Update 

 
Late/Early 

Conflict, 
Manager, 
Aborting, 
Helping 

Some time 
Supports 

Weak 
and 
Strong 

SigTM 2007 Non-Blocking Optimistic Cache-
line/Word 

Deferred 
Update 

Late Aborting Supported Strong 
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4. Systems discussed in this survey used different approaches for conflict detection. 
However, survey reveals that early system used the Early conflict detection schemes while the 
later systems are more tend to towards Late or mix conflict detection approach, i.e., selectable 
Late/Early. However, it is discussed in more detail in chapter 3 that late conflict detection is more 
performance oriented than early conflict detection and this seems to be the reason that later 
Transactional Memory Systems discussed in this survey used, late conflict detection. 
 
5. Most of the systems in this survey used deferred update system. The deferred update 
system is more performance oriented than direct update system as cost of aborting is higher in 
direct update system than a successful commit. 
 
6. In hardware TM systems cache-line granularity is common while in the Software TM 
systems word level and object level granularity is more common. The motivation behind adopting 
word level granularity may be that it provides more precise sharing of the data compare to object 
level granularity. However, object level granularity is more understandable and visible to the 
programmer.  
 
7. In this survey it was observed that except one transactional memory system almost all the 
systems used the Optimistic concurrency control. The Optimistic concurrency control is more 
performance oriented than pessimistic concurrency control as it has been discussed in detail in 
chapter 5. 
 
8. The survey revealed that most of the transactional memory systems used Non-blocking 
Obstruction freedom synchronization approach. The reason behind this trend could be that 
obstruction-freedom is simple and performance oriented. 
  
9.  This survey also concluded that developing the compact Hybrid Transactional Memory 
systems is an efficient approach. The compact Hybrid Transactional Memory systems avoid two 
modes of execution. Moreover, hybrid systems are better because the disadvantages of software 
and hardware approaches are backed up by the advantages of each other. Therefore, combination 
of both makes a perfect solution.  
 
The Transactional Memory is an open research area and yet it is not mature enough to be 
commercially adopted. However, the future of parallel applications has a lot to do with 
developing more efficient and smart Transactional memory systems. 
 
In this survey the following contributions are made;  
 
1. An overview of parallel programming while discussing the problems faced by traditional 

approaches is presented. 
2. The significance of Software Transactional memory in parallel programming is presented 

with an overview of past research work in this regard.  
3. The Software Transactional Memory concepts are discussed e.g. transactions existence 

and importance in database programming, software transaction memory semantics and 
constructs. Moreover, designs issues like nested transactions, transaction granularity, 
update strategies, conflict detection and management schemes are presented.  

4. A thorough discussion of a number of Software and Hybrid Transactional memory 
systems are presented that were not previously covered by Larus and Rajwar [41]. 

5. The design limitations of a number of Transactional Memory systems are discussed while 
discussing their design and implementation trade-offs. 
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6. A thorough discussion is carried out about various design features of Software and 
Hybrid Transactional memory system while discussing various trends and their impact on 
the performance. 

7. A number of future challenges are identified in this survey, covering different aspects of 
Software and Hybrid Transactional memory design and development issues.  

 
Once again, to sum-up, this survey presents the state-of-the-art in Software and Hybrid 
Transactional Memory. Moreover, starting from the basic taxonomy of a transaction to complex 
design concepts of the Software Transactional Memory are discussed. In total, fifteen different 
STM and Hybrid Transactional systems are discussed with their respective limitations. Eight new 
systems are discussed that were not covered by the book written by Larus and Rajwar on 
Transactional Memory [41]. At the end, a comprehensive discussion regarding design issues of 
the Transactional Memory systems is presented with their design and implementation trade-offs. 
Finally, a number of future challenges and research areas are identified and discussed.  
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