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1. INTRODUCTION

Many signals are naturally parametrized over the sphere S
2. Exam-

ples from computer graphics include bidirectional reflectance dis-
tribution functions (BRDFs), radiance, and visibility. Spherically
parametrized signals can also be found in many other fields, includ-
ing astronomy, physics, climate modeling, and medical imaging.
An efficient and distortion free representation of spherical signals
is therefore of importance. Of particular interest are the ability to
approximate a wide range of signals accurately with a small num-
ber of basis function coefficients, and the possibility of obtaining
computationally efficient algorithms to process a signal in its basis
representation.

A variety of representations for spherical signals has been pro-
posed in the literature. Spherical Harmonics (SH) have been popular
for the representation of low-frequency signals. The global support
of the basis functions makes the SH basis however inefficient for rep-
resenting high-frequency data, and for processing signals directly in
the basis representation. Spherical Radial Basis Functions (SRBF)
are localized in both space and frequency and thus efficiently repre-
sent all-frequency signals. Projecting a signal into an SRBF basis is,
however, prohibitively expensive, and efficiently processing a signal
is difficult due to the unstructured nature of the basis. Wavelets, in
contrast, are both localized in space and frequency and hierarchi-
cally structured leading to fast algorithms for basis projection and
processing a signal in its basis representation. Additionally, wavelet

The authors wish to acknowledge the Natural Sciences and Engineering Research Council of Canada for funding this project.
Author’s address: Dynamics Graphics Project, Department of Computer Science, University of Toronto, 40 St. George St., Toronto, ON M5S 2E4, Canada;
email: {lessig,elf}@dgp.toronto.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2008 ACM 0730-0301/2008/03-ART4 $5.00 DOI 10.1145/1330511.1330515 http://doi.acm.org/10.1145/1330511.1330515

bases represent dissimilarities in a signal, making them well suited
for the compact representation and approximation of real-world
signals.

In the past, planar wavelets have often been used to repre-
sent spherical signals. These representations suffer however from
parametrization artifacts which are unavoidable when the sphere is
mapped onto a planar domain. Spherical wavelets are free of dis-
tortion but the representations proposed in the literature are limited
in their efficiency for approximating and processing all-frequency
signals. We argue that the following three properties are important
for an efficient representation.

Orthogonality. An orthogonal basis has a variety of theoretical
and practical advantages. Most notably, the optimal approximation
in the �2 norm can be found efficiently. In many cases orthogonality
also leads to more efficient algorithms, for example for computing
product integrals, and establishing properties of a representation is
often easier for orthogonal bases.

(Very) Compact Support. The costs of basis projection and pro-
cessing a signal in its basis representation depend heavily on the sup-
port size of the basis functions. Haar-like bases have minimal sup-
port and computations in the representation are thus very efficient.
In the literature it has often been argued that Haar-like bases are well
suited only for the representation of piecewise constant functions.
However, both theoretical and practical results have shown that they
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also efficiently represent functions of bounded variation, that is, all-
frequency signals as found in many applications [Donoho 1993; Ng
et al. 2003].

Symmetry. Local symmetry of the basis functions guarantees an
orientation-free representation of features in the basis, preventing
distortion when a signal is approximated in the basis. The high
sensitivity of the human visual system to asymmetric artifacts makes
this particularly important for the visual quality of approximated
signals.

We conclude that an orthogonal and symmetric spherical Haar
wavelet basis is particularly well suited for the efficient approxima-
tion and processing of all-frequency signals defined on the sphere.
However, none of the bases proposed in the literature satisfies all
of the above properties. We therefore developed the SOHO wavelet
basis. To our knowledge this is the first spherical Haar wavelet basis
that is both orthogonal and symmetric. The key to the derivation of
the basis is a novel subdivision scheme of the sphere that defines the
partition acting as the domain of the basis functions. The derivation
of the SOHO wavelets refutes earlier claims doubting the existence
of such a basis [Bonneau 1999].

The practical relevance of the superior theoretical properties of
the SOHO wavelet basis has been validated experimentally. Results
for the representation of different spherical signals show that the
SOHO wavelet basis provides competitive or lower error rates than
other spherical Haar wavelet bases when signals are approximated in
the basis representation. The visual quality of reconstructed signals
affirms these results.

Many applications such as environment map rendering in com-
puter graphics, molecular electronics structure calculations in
physics, and data set alignment in medical imaging require the rota-
tion of signals. Efficient and accurate algorithms to rotate a signals
in its basis representation are therefore of high practical importance.
For the SOHO wavelet basis, we developed basis transformation ma-
trices to rotate signals represented in our new basis. The elements
of these matrices can be computed analytically and, in contrast to
planar representation of the sphere such as cubemaps or the octahe-
dral map used by Wang et al. [2006], the rotation is mathematically
well-defined. An analysis of the structure of the rotation matrices
shows that they are very sparse and quasi-block symmetric. This is
important for the efficient computation of rotations and reduces oth-
erwise significant matrix storage costs [Wang et al. 2006]. We ver-
ified experimentally that the rotation in a spherically parametrized
representation is significantly more efficient than in a planar repre-
sentation of the sphere. A more detailed discussion of rotation in
spherical Haar wavelet bases is beyond the scope of this paper. For
further details see Lessig [2007].1

2. RELATED WORK

Various representations for spherical signals have been proposed in
the literature. Spherical Harmonics [MacRobert 1948] have been
popular in physics and chemistry. The SH basis has also been
employed in other fields such as geoscience and medical imag-
ing [Clarke et al. 2004; Katsuyuki et al. 2001]. In computer graph-
ics, Spherical Harmonics have been used for example by Westin
et al. [1992] to represent BRDFs, and Sillion et al. [1991] employed
the basis for the representation of exitant radiance in offline radios-
ity computations. Cabral et al. [1987], and later Ramamoorthi and
Hanrahan [2002], Kautz et al. [2002] and Sloan et al. [2002] used

1An extended version of this work can be found in Lessig’s thesis, available
online at http://www.dgp.toronto.edu/people/lessig/soho

the SH basis for environment map rendering and Precomputed Radi-
ance Transfer (PRT). In the past decade, Spherical Harmonics have
been complemented by different spherical and hemispherical har-
monic bases [Makhotkin 1996; Koenderink et al. 1996; Alfeld et al.
1996a; 1996b; Gautron et al. 2004; Sloan et al. 2005]. However,
the global support of the basis functions prevents harmonic bases
from efficiently representing high-frequency signals. Wavelets, in
contrast, are localized in both space and frequency and therefore
efficient for the representation of all-frequency signals.

Spherical Radial Basis Functions have been used widely, for ex-
ample, in astronomy and geoscience [Fisher et al. 1993; Narcowich
and Ward 1996; Freeden et al. 1998; Freeden 1999]. Recently, these
bases have also been employed in computer graphics [Green et al.
2006; Tsai and Shih 2006]. SRBFs are localized in both space and
frequency and can thus efficiently represent all-frequency signals.
In contrast to wavelets, however, obtaining the basis representation
of a signal is prohibitively expensive [Green et al. 2006; Tsai and
Shih 2006]. The unstructured nature of SRBF bases makes it fur-
thermore difficult to develop efficient algorithms to process a signal
in its basis representation. Such optimizations have shown to be
efficient for wavelets [Ng et al. 2004; Sun and Mukherjee 2006].

Different wavelet representations for spherical signals have been
proposed in the literature. Lounsbery et al. [1997] defined wavelet
bases over subdivision surfaces that can represent sphere-like
shapes. Their construction can employ a wide range of subdivision
schemes but none of the resulting bases is orthogonal. To make the
bases practical it was additionally necessary to truncate the globally
supported basis functions. Truncated basis functions, however, no
longer form true wavelet bases.

Girardi and Sweldens [1997] developed orthogonal Haar wavelet
bases over general measure spaces L p . The scaling functions em-
ployed in their work are identical to those of the SOHO wavelet basis
but their wavelet construction does not yield a symmetric basis on
the sphere.

In their seminal work, Schröder and Sweldens [1995] proposed
different vertex- and face-based spherical wavelets. Based on the
work by Girardi and Sweldens [1997], the authors developed the
Bio-Haar wavelets, a semi-orthogonal and symmetric spherical
Haar wavelet basis. Lifting was used to obtain smooth, spherical
wavelet bases. Schröder and Sweldens verified experimentally that
the bases developed in their work are well suited for the representa-
tion of common spherical signals from computer graphics. An inter-
esting side result of their experiments is that Haar-like wavelets are
as efficient as smoother bases for the representation of image-like
signals. This confirmed earlier theoretical results by Donoho [1993]
that showed that Haar-like bases are close to optimal for the repre-
sentation of functions of bounded variation. Ng et al. [2003] later
provided similar results demonstrating that Haar-like wavelets effi-
ciently represent natural, all-frequency signals, and that these bases
clearly outperform Spherical Harmonics.

Based on Schröder and Sweldens [1995], Nielson et al. [1997]
and later Bonneau [1999] developed semi-orthogonal, symmetric
spherical Haar wavelet bases that are nearly orthogonal, in the sense
that they become orthogonal in the limit as the subdivision level of
the wavelet domain goes to infinity and the area of the domains
goes to zero. Recently, Roşca [2005] likewise developed a family
of nearly orthogonal spherical Haar wavelet bases. However, none
of these works provided detailed experimental results comparing
their newly developed bases to incumbent spherical Haar wavelet
bases.

Ma et al. [2006] used a Haar-like pseudo wavelet basis over
the sphere for PRT. The basis is identical to that proposed by
Bonneau [1999], but the authors assumed the subdivision of a
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partition yields child domains of equal area. This is in general
not true; indeed the pseudo Haar wavelets are not a basis of
L2(S2, dω) [Lessig 2007].

Wavelets parametrized over planar domains have also been used
to represent spherical signals [Ng et al. 2003, 2004; Zhou et al. 2005;
Wang et al. 2006; Sun and Mukherjee 2006]. These techniques are
limited in that a planar parametrization of the sphere unavoidably
leads to distortion.

The SOHO wavelets are inspired by the seminal bases devel-
oped by Schröder and Sweldens [1995] and by Bonneau [1999].
In contrast to these representations, our basis is both orthogonal
and symmetric. Unlike Bonneau, we are also able to show that our
new basis is an unconditional basis of the space L2(S2, dω) [Lessig
2007].

3. SECOND-GENERATION WAVELETS

We shall present an overview of second-generation wavelets, which
provides the necessary background for the derivation of the SOHO
wavelet basis in Section 4. A more comprehensive introduction may
be found, for example, in Sweldens [1996] or Lessig [2007].

Let L2(X ) be the space of functions with finite energy defined
over a domain X ⊆ R

n , and let 〈·, ·〉 be an inner product on X . A
multiresolution analysis of X is a sequence of nested spaces Vj ⊂
Vj+1 on different levels j whose union is dense in L2(X ). Bases of
the spaces Vj are formed by sets of scaling basis functions {ϕ j,k |
k ∈ K( j)}, where K( j) is an index set defined over all scaling basis
functions on level j . The strictly nested structure of the Vj implies
the existence of difference spaces W j such that Vj ⊕ W j = Vj+1.
The W j are spanned by sets of wavelet basis functions {ψ j,m | m ∈
M( j)} with M( j) being an index set defined over all ψ j,m on level
j . For all levels j ∈ J , Vj and W j are subspaces of Vj+1 implying
the existence of refinement relationships

ϕ j,k =
∑

l∈L( j,k)

h j,k,l ϕ j+1,l and ψ j,m =
∑

l∈L( j,m)

g j,m,l ϕ j+1,l (1)

with scaling filter coefficients h j,k,l and wavelet filter coefficients
g j,m,l . The index sets L( j, k) ⊆ K( j + 1) and L( j, m) ⊆ K( j + 1)
are defined exclusively over the nonzero filter coefficients h j,k,l and
g j,m,l , respectively. If not mentioned otherwise, in the following l is
assumed to run over L( j, k) or L( j, m).

A wavelet basis � is formed by the scaling basis function at the
topmost level and the wavelet basis functions on all levels j ∈ J

� ≡ {ψi | i ∈ I} ≡ {ϕ0,0, ψ j,m | j ∈ J , m ∈ M( j)},

with I being an index set defined over all basis functions of �. A
wavelet basis is orthogonal iff

〈ϕ j,k, ϕ j,k′ 〉 = δk,k′ 〈ψ j,m, ψ j ′,m′ 〉 = δ j, j ′δm,m′ 〈ϕ j,k, ψ j ′,m′ 〉 = 0,
(2)

where δi, j is the Kronecker delta. For a semi-orthogonal wavelet
basis the orthogonality of the wavelet basis functions in Equation (2)
is no longer satisfied, and for biorthogonal wavelets also the scaling
basis functions are not orthogonal. If not mentioned otherwise, in
the following we will mean “orthogonal wavelet” when we use
“wavelet.”

Instead of working with the basis functions it is often more conve-
nient to employ the filter coefficients. The conditions in Equation (2)

can for example be written as∑
l

h j,k,l h j,k′,l = δk,k′
∑

l

g j,m,l g j ′,m′,l = δ j, j ′δm,m′

∑
l

h j,k,l g j,m,l = 0.

With an orthogonal wavelet basis, a function f ∈ L2(X ) can be
represented as

f =
∑
i∈I

〈 f, ψi 〉 ψi =
∑
i∈I

γi ψi

where the γi are the basis function coefficients. Computing inner
products to obtain the γi would be expensive and limit the practical-
ity of wavelets. The fast wavelet transform projects a function into
its wavelet basis representation and reconstructs it in linear time.
This is accomplished by using the scaling and wavelet filter coef-
ficients instead of the basis functions. An analysis step of the fast
wavelet transform takes the form

λ j,k =
∑

l

h j,k,l λ j+1,l and γ j,m =
∑

l

g j,m,l λ j+1,l , (3)

computing the basis function coefficients at level j as a linear combi-
nation of the scaling function coefficients at level j +1. A synthesis
step takes the form

λ j+1,l =
∑

k

h j,k,l λ j,k +
∑

m

g j,m,l γ j,m, (4)

reconstructing the scaling function coefficients at level j + 1 from
the basis function coefficients at level j . Here, k and m run only
over the nonzero filter coefficients h j,k,l and g j,m,l .

A partition {Sj,n | j ∈ J , n ∈ N ( j)} formed by measurable
subsets Sj,n of X is used to construct the basis functions. For every
level j , the Sj,n form a simple cover of X . Domains on different
levels are strictly nested and partitions satisfying Sj+1,n′ ⊂ Sj,n are
called the children Sn

j+1,l of Sj,n . In the limit when j → ∞ every
Sj,n converges to a single point. The index set K( j) defined over the
scaling basis functions satisfiesK( j) ⊆ N ( j). Subdivision schemes
for embeddings X ⊂ R

3 are well-known examples for partitions.
Some of the most popular wavelet bases are Haar-like wavelets.

For these bases the scaling basis functions are defined as ϕ j,k =
η j,kχ j,k , with K( j) = N ( j), where χ j,k is the characteristic (or
inclusion) function of the partition Sj,k , and η j,k ∈ R is a scaling
factor that is usually chosen such that the basis functions are nor-
malized. It follows from the definition of the scaling basis functions
that the Haar wavelet basis functions associated with a domain Sj,k

are defined exclusively over the children Sk
j,l .

In this paper we develop a Haar-like wavelet basis that is sym-
metric in the sense that the basis function coefficients are locally
invariant with respect to the labeling of all but one child partition
of a partition Sj,n [Nielson et al. 1997]. More formally, let Sn

j+1,l be
the child partitions of Sj,n , and let P( j, n) be an index set defined
over all but one (fixed) child partition. For a Haar-like wavelet ba-
sis, P( j, n) can also be used to index the basis function coefficients
� = (γ j,1, · · · , γ j,m), with m = |P( j, n)|, of the wavelet basis func-
tions associated with Sj,n . A basis is then symmetric iff an arbitrary
permutation σ (P( j, n)) implies σ (�), that is altering the labeling
of the partitions changes the order of the basis function coefficients
accordingly, but does not affect the value of the coefficients γi . As
example consider a four-fold subdivision of a triangular domain Tj,n

where the children T n
j+1,l are obtained by subdividing the sides of the

parent triangle (cf. Figure 1). If we choose the central child, T n
j+1,0,

as the fixed domain then a basis is symmetric if we can change the
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Fig. 1. Subdivision of a spherical triangle. The labeling of the entities of
a spherical triangle Tj,k is shown in (a), the 4-fold subdivision yielding the
child triangles in (b).

labeling of the three outer child triangles without altering the basis
function coefficients associated with Tj,n .

4. SOHO WAVELETS

We now derive the SOHO wavelet basis. The basis spans the space
L2(S2) of functions with finite energy on the sphere S

2. We employ
the standard inner product

〈 f, g〉 =
∫

S2
f g dω,

on S
2. The measure dω is defined as dω ≡ dω(θ, φ) = sin θ dθ dφ.

4.1 The Partition Scheme

The partitionT , over which the basis functions of the SOHO wavelet
basis are defined, is formed by a set of spherical triangles T =
{Tj,k | j ∈ J , k ∈ K( j)}. The domains at the coarsest level T0,k are
obtained by projecting a platonic solid with triangular faces such as
the octahedron or the icosahedron onto the sphere. The domains at
finer levels are formed by recursively subdividing every spherical
triangle Tj,k into four child triangles T k

j+1,l . As shown in Figure 1(b),
these are obtained by inserting one new vertex vl

j,k on each of the
arcs forming the sides of the Tj,k . The partition T is thus a forest of
partition trees and the domains T0,k at the coarsest level are the root
nodes of these trees.

Although T is defined similarly to the partition used by Schröder
and Sweldens [1995] we do not employ the geodesic bisector to
obtain the positions of the new vertices vl

j,k . For the SOHO wavelet
basis, the vertex positions are chosen so that the areas of the three
outer child triangles T k

j+1,1, T k
j+1,2, and T k

j+1,3 are equal. This is the
key to the derivation of a basis that is both orthogonal and symmetric.
We will detail the novel subdivision scheme employed in our work
in Section 4.4.

The area of a spherical triangle Tj,k will be denoted α j,k , and we
define τ j,k ≡ τ j,k(ω) to be the characteristic function of Tj,k .

4.2 Scaling Basis Functions

For a Haar-like basis, the scaling basis functions are defined as
ϕ j,k = η j,k τ j,k . With η j,k = 1/

√
α j,k , it follows immediately from

the disjoint nature of the Tj,k for fixed j that the ϕ j,k on the same level
are orthonormal, as required in Equation (2). The scaling functions

for the SOHO wavelet basis are thus

ϕ j,k = τ j,k√
α j,k

.

Given the ϕ j,k , the filter coefficients h j,k,l must be chosen to satisfy
Equation (1). It follows from the partition that |L( j, k)| = 4 and
that the union of the child domains τ k

j+1,l is again τ j,k . The filter
coefficients are therefore

h j,k,l =
√

αk
j+1,l

√
α j,k

.

For the partition T and the filter coefficients h j,k,l in Equation (4.2),
the cascade algorithm converges to the scaling functions in Equation
(4.2) [Lessig 2007]. This is a necessary condition for the existence
of a wavelet basis [Sweldens 1996].

4.3 Wavelet Basis Functions

We use a custom two-step approach to derive the wavelet basis
functions: In the first step a semi-orthogonal basis is developed, and
in the second step orthogonality and symmetry are enforced.

For a Haar-like basis, the wavelet basis functions ψ l
j,k , with l =

0, 1, 2, associated with a partition Tj,k are exclusively defined over
the child partitions T k

j+1,l . Wavelet basis functions ψ
l1
j,k1

and ψ
l2
j,k2

defined on the same level j but over different partitions are thus
trivially orthogonal. For 〈ψ l1

j1,k1
, ψ

l2
j2,k2

〉 = 0 with j1 = j2 to be true,
we require that the wavelet basis functions have a vanishing integral.
It is easy to show that for a Haar-like basis this in fact implies that
the wavelet basis functions on different levels are orthogonal [Lessig
2007]. In the following it is therefore sufficient to consider only one
spherical triangle Tj,k , with fixed but arbitrary j and k, together
with its child triangles T k

j+1,l , for the derivation of the wavelet basis
functions [Bonneau 1999]. The areas of interest will be abbreviated
αl ≡ αk

j+1,l and αp ≡ α j,k ; analogous notation will be used for the
characteristic functions τ j,k . In some cases we will also omit the
indices j and k. It is then understood that these are the fixed j and
k of Tj,k .

Considering only one partition Tj,k , the analysis and synthesis
steps in Equations (3) and (4) can be expressed as compact matrix-
vector products. Perfect reconstruction requires that the analysis and
synthesis matrices A j,k and Sj,k , respectively, satisfy A j,k = S−1

j,k ;
for an orthonormal basis this simplifies to A j,k = ST

j,k . A synthesis
step in matrix-vector notation is of the form⎛

⎜⎜⎜⎜⎜⎝

λ j+1,0

λ j+1,1

λ j+1,2

λ j+1,3

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

h0 g0
0 g1

0 g2
0

h1 g0
1 g1

1 g2
1

h2 g0
2 g1

2 g2
2

h3 g0
3 g1

3 g2
3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

λ j

γ 0
j

γ 1
j

γ 2
j

⎞
⎟⎟⎟⎟⎟⎠

, (5)

where gi
l denotes the l th filter coefficient associated with the i th

wavelet basis function ψ i
j,k defined over Tj,k , and the hl are the filter

coefficients derived in Section 4.2.
In the following we will derive a semi-orthogonal spherical Haar

wavelet basis. For fixed Tj,k , the basis functions of such a basis have
to satisfy 〈

ψ0
j,k , ϕ j,k

〉 = 〈
ψ1

j,k , ϕ j,k

〉 = 〈
ψ2

j,k , ϕ j,k

〉 = 0. (6)

Equation (6) can be written in Dirac bra-ket notation:

[〈� j | � j 〉] = 0, (7)

where [〈X | Y 〉] denotes the matrix of inner products of the two
function sets X and Y , and � j and � j are matrices containing the
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Fig. 2. The scaling basis function and the two possible sets of wavelet basis functions defined over a partition at level 0. The top row shows the basis functions
where the positive sign has been employed in the computation of parameter a in Equation (9), the bottom row shows the basis functions where the negative sign
has been used. The basis is defined over a partition derived from an octahedron. Reddish hues indicate positive filter coefficients, bluish hues negative ones.

scaling and wavelet basis functions defined over Tj,k , respectively.
The wavelet basis functions in Equation (7) can be expanded with
the refinement relationship in Equation (1) [Stollnitz et al. 1996;
Finkelstein and Salesin 1994], yielding

[〈� j | � j+1〉]G j = 0.

The matrix � j is degenerate, containing only ϕ j,k ; � j+1 is formed
by the four scaling functions ϕk

j+1,l defined over the child domains
T k

j+1,l ; and G j contains the desired wavelet basis function filter
coefficients gi

l . The matrix G j spans the nullspace of [〈� j | � j+1〉]
and is obtained using existing techniques, giving

G j =

⎡
⎢⎢⎢⎢⎢⎣

−
√

α1√
α0

−
√

α2√
α0

−
√

α3√
α0

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦

. (8)

It is easy to show that the wavelet basis functions defined in
Equation (8) have a vanishing integral [Lessig 2007].

Given the semi-orthogonal basis derived above, we now have to
enforce symmetry and orthogonality of the wavelet basis functions,
while taking care to preserve the properties that have already been
established. Let Ŝ j,k be a synthesis matrix formed by the hl and gi

l
derived previously. We first tried to augment each of the wavelet
basis function filter coefficients gi

l in Ŝ j,k with a free parameter. The
desired properties of the basis could then be formulated as a linear
system, and the solution to the system would be the wavelet basis
functions. However, we were not able to find such a solution; indeed
a solution to the system might not exist.

To obtain a basis having the desired properties we therefore re-
quired that the area of the three outer child partitions T k

j+1,1, T k
j+1,2,

and T k
j+1,3 be equal (cf. Figure 1). In Section 4.4 it will be shown that

the partition T can be constructed so that this constraint is satisfied.
With the area-isometry of the three outer child triangles, symmetry
can be guaranteed by the following parametrization of the synthesis

matrix:

Ŝ j,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
α0√
αp

−c
√

α1√
α0

−c
√

α1√
α0

−c
√

α1√
α0

√
α1√
αp

b a a
√

α1√
αp

a b a
√

α1√
αp

a a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where a, b, and c are the remaining free parameters. Enforcing
orthogonality of the basis then yields a simple linear system whose
solution are the wavelet basis functions for the SOHO wavelet basis
(cf. Appendix A):

ψ0
j,k = �1

�0
τ0 + 1

�1
( (−2a + 1) τ1 + a τ2 + a τ3)

ψ1
j,k = �1

�0
τ0 + 1

�1
( a τ1 + (−2a + 1) τ2 + a τ3)

ψ2
j,k = �1

�0
τ0 + 1

�1
( a τ1 + a τ2 + (−2a + 1) τ3),

where

a = α0 ±
√

α2
0 + 3 α0 α1

3α0
(9)

and �l ≡
√

αk
j+1,l . The two solutions for parameter a yield two

different sets of wavelet basis functions. These are shown in Figure 2.
The area measures α0 and α1 are always positive and thus a is
guaranteed to be real for both solutions.

Given the orthogonal basis derived above, an orthonormal basis
can be obtained by normalizing the wavelet basis functions. Lessig
further establishes that the SOHO wavelets form an unconditional
basis of the space L2(S2, dω) [Lessig 2007].
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Table I.
Shape distortion for the partition proposed in this work and
the geodesic bisector subdivision employed by Schröder and
Sweldens [1995]. The minimum internal angle (in degrees)

over all partitions was used as distortion measure.
Subdivision Scheme Octahedron Icosahedron

Level 5 7 5 7
Our subdivision 43.0864 43.0417 53.5981 53.5808

Geodesic midpoint 45.0345 45.0022 54.0163 54.0010

4.4 Construction of the Partition

The previous section demonstrated that the SOHO wavelet basis can
be constructed provided the three outer child triangles T k

j+1,1, T k
j+1,2,

and T k
j+1,3 of Tj,k have equal area. The geodesic bisector subdivision

employed by Schröder and Sweldens [1995], Nielson et al. [1997],
and Bonneau [1999] does not have this property. The partition T , as
defined in Section 4.1, only imposes a topology [Nielson et al. 1997].
The vertices vl

j,k can therefore be positioned so that α1 = α2 = α3.
Let v1

j,k still be the geodesic bisector. The positions of v2
j,k and v3

j,k
can then be obtained with a system of equations:

cot

(
E

2

)
= cot(C) + cot

(
1
2 β1

)
cot

(
1
2 γ

)
sin(C)

cot

(
E

2

)
= cot(B) + cot

(
1
2 β2

)
cot

(
1
2 γ

)
sin(B)

cot

(
E

2

)
= cot(A) + cot

(
1
2 b − 1

2 β1

)
cot

(
1
2 c − 1

2 β2

)
sin(A)

,

where we employed Equation (36) from Todhunter’s book [1901]
to define the system. The variables on the right hand side of the
equations are given in Figure 1, and E denotes the spherical excess
of the three outer child domains. Solving the system for β1 and
β2 yields the desired vertex positions. The resulting formulae are
lengthy and may be found in Appendix B. Lessig [2007] establishes
that with a consistent labeling of Tj,k exactly one solution for the
area equality exists.

For the partition T it is desirable to yield spherical triangles
that are uniform. We have not yet been able to prove bounds on
the shape distortion introduced by our new subdivision. Numerical
experiments show however that it is not significantly larger than
for the geodesic bisector subdivision employed by Schröder and
Sweldens [1995]. We used the minimum internal angle over all parti-
tions to measure the shape distortion. The results are given in Table I.

5. EXPERIMENTAL EVALUATION

The performance of a basis depends on a wide range of factors and
superior theoretical properties are no guarantee of better results in
practice. We therefore performed a variety of experiments to assess
the practical efficacy of the SOHO wavelet basis. To provide insights
for a wide range of applications we focused on experiments which
are independent of specific settings.2

5.1 Methodology

In the experiments the SOHO wavelet basis was compared to six
previously proposed spherical Haar wavelet bases: the Bio-Haar

2The Matlab code used for the experiments presented in this section can be
found online under http://www.dgp.toronto.edu/people/lessig/
soho/matlab.html.

basis developed by Schröder and Sweldens [1995], the two nearly
orthogonal bases proposed by Nielson et al. [1997], the pseudo
Haar wavelets used by Ma et al. [2006], and the two nearly orthog-
onal bases developed by Bonneau [1999]. All bases have been em-
ployed to represent three signals: a unimodal function with only
low-frequency content, a piecewise constant function with only
high-frequency features, and an image-like signal with content in
the full frequency spectrum. For convenience we will refer to the
test signals as BRDF, visibility map, and texture map, respectively
(cf. Figure 3).

When a signal is represented in a wavelet basis, typically a large
proportion of the basis function coefficients is very small or zero,
and a small number of coefficients is sufficient to obtain reconstruc-
tions that closely resemble the original signal. In the experiments
we therefore investigated the connection between the error in recon-
structed signals and the number of basis function coefficients used
to obtain the reconstructions. As error measures we employed the �1

and the �2 norm. In the literature it has been argued that for images
the �1 norm better corresponds to the perceived image quality than
other numerical error measures [DeVore et al. 1992]. Our test sig-
nals can been seen as images on the sphere and we therefore wanted
to explore whether or not the �1 norm is in fact a more appropriate
error measure for the signals than the �2 norm which is the standard
norm for the space L2(S2, dω). Numerical error measures are valu-
able in many contexts, but they are limited in their ability to measure
the quality of a signal as it is perceived by humans [Pratt 1991]. In
Figure 3 we therefore provide plots of reconstructed signals for vi-
sual inspection.

The problem of finding the optimal approximation in a basis rep-
resentation, that is the set of basis function coefficients which mini-
mizes the reconstruction error for a fixed number k of coefficients, is
nontrivial [Gross 1996]. Only with the �2 norm and for an orthogonal
basis is it possible to efficiently obtain the optimal approximation:
in this case in fact the k largest basis function coefficients yield the
minimal reconstruction error. One of the motivations for the devel-
opment of nearly orthogonal spherical Haar wavelet bases was to
obtain representations which show in practice the same behavior as
orthogonal bases. Following a similar idea, Ma et al. likewise as-
sumed that the pseudo Haar wavelets provide the same benefits as
orthogonal bases. We thus employed the �2 optimal approximation
strategy for orthogonal bases not only for the SOHO wavelet basis
but also for the nearly orthogonal Haar wavelets and the pseudo
Haar basis. For the semi-orthogonal Bio-Haar basis the approxima-
tion given by the k largest basis function coefficients is far from
optimal [Lessig 2007]. We therefore employed for the Bio-Haar
basis the basis-specific �2 optimal approximation strategy, requir-
ing to compute inner products 〈ψn

j,l , ψ
n
j,l ′ 〉 between wavelet basis

functions defined over the same domain Tj,n [Lessig 2007], thereby
disregarding the fact that the computations are significantly more
expensive than for the other bases.

As shown in Figure 2, two different SOHO wavelet bases can
be obtained by either using the positive or the negative sign in the
computation of parameter a in Equation (9). In the experiments
the basis in which the negative sign had been employed performed
slightly better and in the remainder of the paper we will therefore
refer to this basis as the SOHO wavelet basis.

5.2 Evaluation of Approximation Performance

The subdivsion scheme proposed in Section 4.4 allows the SOHO
wavelet basis to be defined over a partition derived from a tetrahe-
dron, an octahedron, or an icosahedron. Although in our experiments
none of the resulting bases provided a clear advantage, we argue that
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Fig. 3. Reconstructed signals for the SOHO wavelet basis, the Bio-Haar basis, and the pseudo Haar basis (from left to right).

in general the octahedron is the best choice for the base polyhedron.
The basis induced by the octahedron never yielded the highest error
rate in any of our experiments and it can directly represent hemi-
spherical signals. Additionally, the alignment of a partition derived
from an octahedron with other parametrizations of the sphere is
useful in many applications. In the experiments discussed in the
following we always employed the octahedron as base polyhedron.

For the spherical Haar wavelet bases employed in the experi-
ments, in Figure 4 the error rates in the �1 and the �2 norm result-
ing from an approximation of the test signals with an increasing
number of nonzero basis function coefficients are shown. The ba-
sis Bonneau2 performed for all signals very similarly to the SOHO
wavelet basis and in the plots both representations are in most cases
indistinguishable. For the visibility map the basis Bonneau1 pro-
vided higher error rates than the SOHO wavelet basis; both bases
achieved however very similar results for the other two signals. The
two bases developed by Nielson et al. provided for the texture map

almost the same error rates as the SOHO wavelet basis; for the visi-
bility map however, in particular in the �1 norm, the error rates were
higher. For the BRDF, the basis Nielson2 performed slightly better
than the SOHO wavelet basis whereas the basis Nielson1 obtained
inferior results. With the exception of the BRDF where the pseudo
Haar basis achieved similar results than the SOHO wavelets, the Bio-
Haar basis and the pseudo Haar wavelets provided always higher
error rates than the other bases. Note that independent of the basis
for the visibility map about 5% of the basis function coefficients
were sufficient to provide reconstructions with virtually no error.
The full information of the signal could therefore be represented
with a small fraction of all coefficients.

In Figure 3 reconstructions of the test signals with a subset of
all basis function coefficients are shown. The plots for the SOHO
wavelet basis look in most cases very similar to those of the nearly
orthogonal bases and we therefore provide reconstructions only for
the SOHO wavelet basis, the Bio-Haar basis, and the pseudo Haar
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Fig. 4. Area-corrected error rates in the �1 and �2 norm for approximations of the test signals. The total number of basis function coefficients of the signals
was 131, 072.

ACM Transactions on Graphics, Vol. 27, No. 1, Article 4, Publication date: March 2008.



SOHO: Orthogonal and Symmetric Haar Wavelets on the Sphere • 4:9

wavelets. For the texture map we employed 8,192, or 6.25%, of
the original 131,072 basis function coefficients for reconstruction,
for the other two signals 1,024, or 0.78%, of the coefficients were
retained. Although the perceived quality is an inherently subjective
measure, we argue that the SOHO wavelet basis achieved for all sig-
nals visually more pleasing results than the other two bases shown
in the comparison. For the texture map the SOHO wavelet basis pro-
vides sharper edges and the reconstructed signal appears less noisy.
The basis also preserves more detail. This can be seen in the center
of Africa where the two lakes south of Lake Victoria are clearly vis-
ible only for the SOHO wavelets. For the BRDF, the reconstructed
signal for the SOHO wavelet basis appears significantly smoother
than the reconstructions for the Bio-Haar basis and the pseudo Haar
wavelets, and it therefore better resembles the original Lambertian
BDRF. For the visibility map, the SOHO wavelet basis provides
again sharper edges than the other two bases.

5.3 Discussion

We believe that the presented results provide valuable insights about
the strengths and weaknesses of spherical Haar wavelets and in par-
ticular of the SOHO wavelet basis. Some experiments have been
omitted as the results have already been presented elsewhere. Ng
et al. [2003], for example, showed that Haar-like bases are signifi-
cantly more efficient than Spherical Harmonics for the representa-
tion of all-frequency functions, and Schröder and Sweldens [1995]
demonstrated that spherical Haar wavelet bases are as efficient as
smoother, spherical wavelets for the representation of image-like
signals.

The results shown in Figure 4 demonstrate that the error rates in
the �1 and the �2 norm are highly correlated, resembling earlier ob-
servations by Schröder and Sweldens [1995]. A similar correlation
can be observed between both numerical error measures employed
in our experiments and the visual quality of reconstructed signals;
this would appear to contradict DeVore et al. [1992] who argued
that the �1 error norm better corresponds to the visual quality of
image-like signals than other numerical error measures. Our results
therefore suggest that it is in applications justifiable to employ the
�2 norm to accurately estimate the error in the �1 norm or the visual
quality of reconstructed signals. This is important as only for the �2

norm is it possible to efficiently find the optimal approximation; in
log-linear time for orthogonal bases and still at moderate costs for
many other practically relevant bases.

It is wellknown that Haar-like bases are well suited for the rep-
resentation of piecewise constant functions such as visibility maps.
The experiments presented in this section demonstrate, however,
that these bases are also efficient for the representation of smooth
signals. For the BRDF for example 0.78% of all basis function coef-
ficients were sufficient to provide visually pleasing reconstructions
as shown in Figure 3. The texture map has features in the full fre-
quency spectrum and thus more basis function coefficients had to
be retained. Reconstructions which closely resemble the original
signal could however still be obtained with not more than 5% of the
basis function coefficients.

Prior to the experiments, we had anticipated that the nearly
orthogonal spherical Haar wavelet bases would outperform the
Bio-Haar and the pseudo Haar wavelets. That these bases provided
results very similar to those of the SOHO wavelet basis was how-
ever surprising to us. We initially thought that this might result
from the high subdivision level on which the signals were defined
so that the bases already approached their limit properties. Addi-
tional experiments showed however that the good performance of
the nearly orthogonal spherical Haar wavelet bases is independent

of the resolution of the input signal, hinting that the design of the
basis functions rather than the near orthogonality of the bases causes
the results. It will be interesting to explore how the nearly orthog-
onal bases perform for other applications where orthogonality is of
importance.

Considering that the pseudo Haar wavelets are not a basis of
L2(S2, dω) we were surprised that the representation provided for
almost all of the experiments results competitive to those of the true
spherical Haar wavelet bases. The assumption that the geodesic
bisector subdivision yields child domains with equal area seems
therefore in practice to be reasonable. For applications the pseudo
Haar wavelets provide the advantage that the filter coefficients are
constant and do not depend on the area of the domains of the
partition.

5.4 Costs of Wavelet Transform

For spherical Haar wavelet bases it is expensive to compute the area
of the partition domains and the filter coefficients which are nec-
essary to perform wavelet transforms. For the SOHO wavelet basis
additional costs result from our novel subdivision scheme. Both the
partition and the filter coefficients can however be precomputed so
that the costs of performing wavelet transforms are independent of
the basis and similar to those of wavelets in 2D.

6. FUTURE WORK

We believe that many applications might benefit from the use of the
SOHO wavelet basis. In computer graphics, for example the solution
of the rendering equation [Kajiya 1986] is likely to be more efficient
with a representation of the factors of the product integral equation
in the SOHO wavelet basis. The light transport factors in this case
are usually not aligned and have to be rotated before a solution
can be obtained efficiently. It would be interesting to explore the
possibility of computing basis transformation matrices for these
rotations at runtime, thereby avoiding approximations and reducing
the otherwise significant storage requirements [Wang et al. 2006].

Beyond computer graphics, applications for example in medical
imaging, astrophysics, and geoscience might benefit from the use
of the SOHO wavelet basis. In medical imaging in particular the
orthonormality of the basis will be of interest; for example the abil-
ity to rigorously establish error bounds. For the very large data sets
in astrophysics and geoscience the superior approximation perfor-
mance of the SOHO wavelet basis will be beneficial.

Some theoretical questions also remain. In this work we de-
rived an orthogonal and symmetric spherical Haar wavelet basis
by requiring area-isometry of the three outer child partitions. The
question if such a basis exists without the area constraint is still
unanswered. Another open problem is if smooth, orthogonal and
symmetric wavelets on S

2 exist, and if such a basis provides practi-
cal advantages over the SOHO wavelet basis.

7. CONCLUSION

In this work we developed the SOHO wavelet basis, a novel spherical
Haar wavelet basis that is both orthogonal and symmetric, clarifying
previous work that doubted the existence of such a basis. Experi-
mental results verify that the superior theoretical properties of the
SOHO wavelet basis are also of practical relevance.

Combining the findings of this paper, we believe that the SOHO
wavelet basis is an attractive representation for the approximation
and processing of all-frequency signals on the sphere, and we an-
ticipate that the basis will enable more efficient solutions for many
problems in computer graphics and beyond.
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A. Appendix

Derivation of the wavelet basis functions for the SOHO wavelet
basis (Mathematica document):
http://www.dgp.toronto.edu/people/lessig/soho/
soho-wavelets.nb

B. Appendix

Development of a spherical subdivision scheme with area-isometry
for the three outer child triangles (Mathematica document):
http://www.dgp.toronto.edu/people/lessig/soho/
soho-area-equality.nb
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