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Abstract—When dealing with decentralized estimation, it is
important to reduce the cost of communicating the distributed
observations—a problem receiving revived interest in the context
of wireless sensor networks. In this paper, we derive and analyze
distributed state estimators of dynamical stochastic processes,
whereby the low communication cost is effected by requiring
the transmission of a single bit per observation. Following a
Kalman filtering (KF) approach, we develop recursive algorithms
for distributed state estimation based on the sign of innovations
(SOI). Even though SOI-KF can afford minimal communication
overhead, we prove that in terms of performance and complexity
it comes very close to the clairvoyant KF which is based on the
analog-amplitude observations. Reinforcing our conclusions, we
show that the SOI-KF applied to distributed target tracking based
on distance-only observations yields accurate estimates at low
communication cost.

Index Terms—Distributed state estimation, Kalman filter (KF),
target tracking, wireless sensor networks.

I. INTRODUCTION

D
ISTRIBUTED signal processing is a well-appreciated

toolbox for decentralized tracking applications involving,

e.g., multiple radars, but has received a revived interest recently

in the context of wireless sensor networks (WSNs) [5]. Unlike

centralized signal processing, observations and the resultant

algorithms are physically distributed across sensors in the

network, dictating that intersensor communications should be

viewed as an integral part of the problem at hand, be it recon-

struction, filtering or estimation. For distributed estimation of

dynamical stochastic processes dealt with in this paper, only

quantized observations are communicated. Thus, the estimation
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problem is certainly different from state estimation based on

the original (analog-amplitude) observations.

Without explicitly considering quantization, spatial redun-

dancy across sensor observations has been exploited to reduce

communication requirements [3], [4], [9], [21], [23], [24].

Accounting for quantization, distributed estimation algorithms

were explored in early works, see, e.g., [10] and [17]; and

recently in the context of WSNs. The design of quantizers in

different scenarios was studied in [22], where the concept of in-

formation loss was defined as the relative increase in estimation

variance when using quantized observations with respect to

the equivalent estimation problem based on analog-amplitude

observations. To address the challenge of building suitable

noise models for WSNs, universal estimators that work irre-

spective of the noise distribution were introduced in [18] and

shown to have an information loss independent of the network

size. Another insight when estimating signals using very noisy

sensor data was offered by [25], [26], where it was shown that

as the noise variance becomes comparable with the parameter’s

dynamic range, quantization to a single bit per observation

leads to low complexity estimators of time-invariant deter-

ministic parameters with minimal information loss. This holds

true for a large class of problems, where the noise probability

distribution function (pdf) may be parametrically described or

even unknown [25].

Taking into account the stringent bandwidth constraints

of WSNs, this paper studies state estimation of dynamical

stochastic processes based on severely quantized observations,

whereby low-cost communications restrict sensors to transmit a

single bit per observation. The quantization rule manifests itself

in a non-linear measurement equation in a Kalman Filtering

(KF) setup. While the discontinuous non-linearity precludes

application of the extended (E) KF, it can be handled with more

powerful techniques such as the unscented (U) KF [14], or the

particle filter (PF) [7], [16]—algorithms that have also been

applied in the context of filtering [6], [29] and target tracking

with a WSN [1], [8]. However, all these approaches are signif-

icantly more complex than a KF and, besides, no insight has

been provided with regards to their performance degradation

when quantized data are used in lieu of the analog-amplitude

observations. The contribution of the present paper is precisely

to address these two issues with the goal being to construct state

estimators based on binary observations so that: i) complexity

is rendered comparable to the equivalent KF based on the

original observations; and ii) the mean squared error (MSE) of

the resultant estimate based on binary observations is close to

the MSE of the estimate based on the original observations.
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We begin by introducing our WSN setup and formulating

the problem in Section II, where we delineate the KF that

we will use to benchmark algorithms in the rest of this paper

(Section II-A). State estimation based on the sign of innovations

(SOI) is considered first for a vector state-scalar observation

model in Section III, where we discuss the minimum mean

squared error (MMSE) estimator (Section III-A). As the latter

may be prohibitive for a resource-limited WSN, we pursue

a reduced-complexity approximation in Section III-B which

leads to the SOI-KF algorithm whose complexity and perfor-

mance are surprisingly close to the clairvoyant KF, even when

intersensor communication relies on the low-cost transmission

of a single bit per sensor. These results are extended to a

general vector state-vector parameter model in Section IV. The

performance of the SOI-KF is analyzed in Section V, where

using the underlying continuous-time physical processes we

show that the MSE of the SOI-KF is closely related to the

MSE of a KF with measurement noise covariance matrix only

times the original one. We present a motivating example

in Section VI, entailing temperature monitoring with a WSN.

Finally, we apply a modified version of the SOI-KF to the

canonical problem of distributed target tracking based on bi-

nary observations in Section VI-A. Section VII concludes this

paper.

Notation: We use to denote the probability den-

sity function (pdf) of the random variable (r.v.) given the

r.v. evaluated at ; when using the same letter to denote the

r.v. and the argument of the pdf we abbreviate

. When an r.v. is normally distributed with mean

and covariance matrix , we write

, where stands for transposition. In the partic-

ular case of a scalar r.v., we write and

define the Gaussian tail function as .

We will use to denote the Dirac delta function defined by

, and ; and to denote

the Kronecker delta function defined as and

. For any function the notation will

imply that . Throughout this paper, will de-

note the identity matrix, and lower (upper) case boldface letters

will stand for column vectors (matrices).

II. PROBLEM STATEMENT AND PRELIMINARIES

We are primarily concerned with so called ad-hoc WSNs in

which the network itself is responsible for collecting and pro-

cessing information; see Fig. 1. Let us consider an ad-hoc WSN

with distributed sensors deployed with the objec-

tive of tracking a real random vector (state) .

The state evolution in continuous-time is described by

(1)

where , and the driving input

is a zero-mean white Gaussian process with autocorrelation

. The sensors ob-

serve the state through a linear transformation. Letting

denote the observation at sensor , we have

(2)

Fig. 1. Ad-hoc WSN: the network itself is in charge of tracking the state x(n).

where and the observation noise

is also a zero-mean Gaussian process with

,

i.e., the noise is uncorrelated across time and sensors.

To track , we consider uniform sampling with period

and define the discrete-time state and observations as

and , respectively. Using the

continuous-time model described by (1) and (2) we can obtain

an equivalent discrete-time model [20, Sec. 4.9]. Upon defining

, we can solve the differential

equation in (1) between and with initial condition

to obtain

(3)

For simplicity, define the matrix

and the white Gaussian driving noise input

. With these definitions, the re-

sultant discrete-time equivalent model is given by the vector

time-varying autoregressive (AR) process

(4)

where and the observation noise is

white Gaussian with pdf .

Since sampling (2) requires passing through a low-

or band-pass filter of bandwidth , the sampled covari-

ance matrix satisfies

[20, Sec. 4.9]. Finally, note that ’s

definition implies that

with covariance matrix

.

Supposing that , , and are

available , the goal of the WSN is for each sensor to

form an estimate of to be used in e.g., a habitat monitoring

application [19], or, as a first step in e.g., a distributed control

setup [13]. In any event, estimating necessitates each

sensor to communicate to the remaining sensors

. This communication takes place over the shared

wireless channel that we will assume can afford transmission
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of a single packet per time slot , leading to a one-to-one cor-

respondence between time and sensor index and allowing

us to drop the sensor argument in (4). The decision of which

sensor is active at time , and consequently which

observation gets transmitted, depends on the

underlying scheduling algorithm—see, e.g., [11], [21]. and the

references therein—but is assumed given for the purpose of

this paper. Digital transmission of also implies some form

of quantization to map the analog observations into

binary data

with (5)

where is an -component bi-

nary message. Implicit to (5) is the fact that we are restricting the

sensors to transmit one bit per scalar observation which effects

low-cost communications among sensors. Indeed, the quantiza-

tion function partitions in regions, implying that on

the average each component of is quantized to 1 bit. We

further suppose that the messages are correctly received

by all sensors, which assumes deployment of sufficiently pow-

erful error-control codes.

The objective of this paper is to derive and analyze the per-

formance of MMSE estimators of based on the messages

that are available to each and

every sensor. It is well known that the MMSE estimator is given

by the conditional expectation [15, Ch. 12]; consequently, if we

let denote the MMSE estimator of given , we

have

(6)

Instrumental to the ensuing derivations are the so called pre-

dictors that estimate (predict) the state and observation vectors

based on past observations

(7)

For each of the state estimators in (6) and (7), we define the

error covariance matrices (ECM)

, and

for the filtered and the predicted es-

timate, respectively. The mean square errors (MSEs) of

and are given by and

with these traces being minimum among all possible estimators

and of . The ECM of the state predictor

can be obtained from the ECM of the state estimator through the

recursion

(8)

which we will use in later derivations. Note that the relations

between and and and

in (7) and between and

in (8) follow from the linearity of the expected value operator

and are independent of the quantization rule in (5).

Fig. 2. WSN with a fusion center: The sensors act as data gathering devices.

Remark 1: When a fusion center (FC) is present, the WSN

is termed hierarchical in the sense that sensors act as informa-

tion gathering devices for the FC that is in charge of processing

this information; see Fig. 2. Results in this paper also apply to

networks of this type provided that the FC feeds back to the sen-

sors packets . As we will discuss in Sections III-B

and IV, the sole condition for applying the proposed method is

to have the predicted observation available at ,

a condition that can be met in the hierarchical WSN with feed-

back .

A. The Kalman Filter Benchmark

Before considering estimation based on binary observations,

let us highlight some properties of the clairvoyant KF that will

come handy in subsequent derivations. Consider for simplicity

a vector state-scalar observation model described by

(9)

The model in (9) is a particular case of the general model (4) in

which ; the observations , noise

and noise covariance are scalar; and

is a row vector.

If we had infinite bandwidth available, we could commu-

nicate the observations error-free. This is rightfully a

clairvoyant benchmark for our bandwidth-constrained estima-

tors and corresponds to the problem setup of Section II with

messages . In this case, we have a well known

linear Gaussian vector AR estimation problem whose MMSE

can be recursively obtained by the KF [15, Ch. 13]. Assuming

that the estimate and the ECM

are known at step , we compute the predicted estimate

and the corresponding ECM using

(7) and (8), respectively. Next, the filtered estimate is

obtained by solving the integral in (6) with the posterior pdf

computed by means of Bayes’ rule

(10)

The key observation is that because of the linear Gaussian model

(9), the posterior is

normal, leading to the so called correction step
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(11)

where we defined the innovation sequence

. Recursive application of (7), (8) and (11) yields the

MMSE estimate of given .

III. STATE ESTIMATION USING THE SIGN OF INNOVATIONS

The corrector in (11) depends on the innovation sequence

corresponding to the differ-

ence between the current observation and the prediction based

on past observations. This suggests that a convenient form for

the quantization function is . We start

by considering the vector state-scalar observation model in (9)

and define the message as the SOI

if

if
(12)

Notice that the SOI is not a standard quantizer of the data

. It can be thought as one that judiciously sets the quanti-

zation threshold at the data prediction . The focus of

the present section is to study MMSE estimation of based

on .

A. Exact MMSE Estimator

To find the MMSE in (6) based on the SOI in (12) we can, in

principle, proceed as we described in Section II-A for the KF.

However, while we can update the estimate and

its ECM using (7) and (8) to obtain the pre-

dictor and its corresponding ECM , the

analogy with the KF cannot be pursued any further. The reason

is that due to the non-linearity in the definition of in (12)

the distribution is no longer normal; and, thus,

its description requires additional information besides its mean

and variance. This characteristic problem of nonlinear filtering

motivates the need for a means of propagating the posterior pdf

so that the integral in (6) can be evaluated. Such a

rule is described in the following proposition.

Proposition 1: Consider the vector state-scalar observation

model defined by (9), and the SOI messages defined as in (12).

Then, the posterior pdf of given the binary observations

can be obtained using the recursions

(13)

(14)

where is a normalizing constant ensuring that

.

Proof: The prior pdf in (13) follows from

the theorem of total probability

(15)

Note, however, that since is given in

, conditioning on

is irrelevant and

yielding (13). The posterior pdf in (14) can be obtained from

Bayes’ rule

(16)

But the term

can be easily expressed in terms of the

Gaussian tail function

(17)

where the first equality follows from the definition of the SOI

in (12) and the fact that since is given we can ignore

the conditioning on ; the second equality is obtained by

substituting for the observation model expression in (9);

and the last equality is a consequence of the observations’ noise

distribution, .

Substituting (17) into (16) yields (14) after setting

.

Two recursive algorithms for computing the MMSE

can be derived from Proposition 1. Algorithm 1-A is run at

the sensors when the scheduling algorithm dictates that is their

turn to transmit the SOI. At this time slot, the sensor com-

putes the distribution using (13) from where

it predicts the state value by numerically evaluating

. Based on this prediction,

the sensor evaluates as in (7) in

order to obtain and transmit the SOI as defined in (12). Al-

gorithm 1-B is run by all sensors during the life of the network to

keep track of the state via the filtered estimate (corrector)

. To this end, all sensors compute the pdf

using (13), and subsequently apply (14) to find .

The estimate of interest is obtained by numerical inte-

gration of the expression in (6).

Albeit optimal, the process described by Algorithms 1-A

and 1-B requires numerical integration at three different times.

We first have to evaluate the integral necessary to obtain

as stated in (13) for step 1 of Algorithm 1-A

and step 2 of Algorithm 2-B. A second numerical integration in

step 2 of Algorithm 1-A is required to compute and

another one in step 5 of Algorithm 1-B to compute the desired

estimate, . As these can be prohibitively expensive
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for a resource limited WSN, we are motivated to pursue a

reduced-complexity approximation that we introduce next.

B. Approximate MMSE Estimator

A customary simplification in non-linear filtering is to assume

that the pdf

is Gaussian; see, e.g., [16]. In general, the normal approx-

imation of is introduced to reduce the problem

of tracking the evolution of a pdf to that of tracking its mean

and covariance . For the problem at

hand though, it also leads to a very simple algorithm as asserted

by the following proposition.

Proposition 2: Consider the vector state-scalar observation

model in (9) and binary observations defined as in (12). If

, then the

MMSE estimator can be obtained from the recursions

(18)

(19)

(20)

(21)

Proof: The predictor recursions (18) and (19) are identical

to (7) and (8), respectively, and are included here for complete-

ness. To establish (20), recall that the conditional mean can be

obtained by averaging over the posterior pdf :

(22)

Using Bayes’ rule, we can find the posterior

as

(23)

We now examine the three terms on the right-hand side of

(23). The first one is

, which after repeating the steps used to

establish (17) in the proof of Proposition 1 can be expressed in

terms of the Gaussian tail function

(24)

To obtain an expression for the term

, we use the normal assumption on the

distribution of to obtain

(25)

where the first equality follows from the definition of in

(12). To obtain the second equality note that Gaussianity of

implies that of since is a

linear transformation of ; and also that the probability of

a normal variable to be greater or smaller than its mean equals

1/2.

Substituting (24) and (25) into (23) and using the (assumed)

normal distribution

, we obtain an expression for the posterior

distribution that we substitute in (22) to arrive at

(26)

In the Appendix, we prove that the integral in (26) can be re-

duced to (20).

To obtain (21), we write

with the explicit value of as deduced from (20), so that we

can write the ECM as

(27)

where the first equality follows by definition and, in the second

equality, we used that

. The last term in (27) can be further

simplified after recalling that ,

and using the theorem of total probability to obtain

(28)
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Substituting (28) into (27) and noting that , we

obtain

(29)

which after using the expression for leads to (21).

As we commented earlier, the simplification

yields the low-complexity SOI-KF that implements distributed

state estimation based on single-bit observations using the

recursions (18)–(21). To estimate , we only require a few

basic algebraic operations per iteration. Moreover, the SOI-KF

recursion is strikingly reminiscent of the KF recursions (7), (8),

and (11). The ECM updates in particular are identical except

for the factor in (21).

The algorithmic description of the SOI-KF is summarized

in Algorithm 2-A which is run by the sensors as dictated by

the scheduling algorithm; and Algorithm 2-B which is continu-

ously run by all sensors to track . These algorithms are to

be contrasted with their exact MMSE counterparts (Algorithms

1-A and 1-B) to note that the numerical integrations have been

replaced by simple algebraic expressions. Indeed, the SOI-KF

observation and transmission Algorithm 2-A computes the pre-

diction by successive application of (18) and (7) to

compute and transmit the SOI in (12). The reception and esti-

mation Algorithm 2-B is identical to a KF algorithm except for

the (minor) differences in the update equations.

A few remarks are now in order.

Remark 2: It is possible to express the SOI-KF corrector in

(20) in a form that exemplifies its link with the KF corrector in

(11). Indeed, if we define the SOI-KF innovation as

(30)

we can re-write the SOI-KF corrector as

(31)

Note that (31) is identical to (11) if we replace with

the innovation . Moreover, note

that the units of and are the same, and

that . Even more interesting

[cf. (11) and (32)]

(32)

which explains the relationship between the ECM corrections

for the KF in (11) and for the SOI-KF in (21). The difference

between (11) and (31) is that in the SOI-KF the magnitude of

the correction at each step is determined by the magnitude of

and it is the same regardless of how large or

small the actual innovation is.

Remark 3: As , the Gaussian tail function

converges uniformly

to 1/2 and, consequently, converges uni-

formly to a normal distribution. Thus, the assumption

holds

asymptotically as . For this reason, the SOI-KF yields

an accurate approximation of the MMSE estimator at low

signal to noise ratios (SNRs). The accuracy of the approxima-

tion decreases as the SNR increases.

Remark 4: When matrices in the state–space model (4) are

time-invariant, it is well known that the KF converges to the

Wiener filter (WF) as , which, as is also known, can be

approximately implemented by the least-mean-squares (LMS)

algorithm. Consequently, one may wonder whether there is a re-

lation between the SOI-KF of this paper and the sign-LMS [28,

Sec. 5.7]. Apart from offering low complexity versions of the

KF and WF, respectively, the two schemes are fundamentally

different. In the sign-LMS algorithm, the SOI sequence is used

to recursively update the coefficients of the WF which has as

input the analog-amplitude observations. In the SOI-KF, how-

ever, the gain coefficients are computed from the KF correlation

matrices and the SOI sequence is used as the filter input.

IV. VECTOR STATE-VECTOR OBSERVATION CASE

The general vector state-vector observation case defined by

(4) can be reduced to the vector state-scalar observation problem

considered in Section III-B. If the noise vectors are white,

i.e., then Proposition 2 can be applied verbatim,

for is not more than a collec-

tion of independent scalar observations . If

is not white, the idea is to whiten the observations so that

we can rewrite the problem as a sequence of vector state-scalar

observation problems. To this end, we define the observation

to obtain [c.f. (4)]

(33)

where . For future reference,

we write ,

and

that allows us to write (33)

componentwise as



RIBEIRO et al.: SOI-KF: DISTRIBUTED KALMAN FILTERING WITH LOW-COST COMMUNICATIONS 7

(34)

where the observation noise variance is

.

Equation (34) has the same form as (9) in the sense that

the state is a vector but the observation is

scalar. Mimicking the treatment in Section III, we define

and introduce the

MMSE estimator

(35)

which is the MMSE estimator based on past messages and the

first components of the current message. We adopt the con-

vention , and note that

with as defined in (7) and

as defined in (6). From (35), we obtain the MMSE predictor of

as [c.f. (34) and (35)]

(36)

From (36), we define the SOI observations for the vector state-

vector observation problem as

(37)

Setting aside the necessary differences in notation, the problem

of finding the MMSE estimator in (35) based on the observation

model (34) when the binary observations are given by (37) is

equivalent to a sequence of MMSE estimation problems for

the vector state-scalar observation model in (9) with binary ob-

servations as in (12). An approximate MMSE for this problem

was summarized in Proposition 2 that, with proper notational

modifications, can now be generalized as follows.

Proposition 3: Consider the vector state-vector obser-

vation model defined by (4), binary observations defined

as in (37) and let

be defined as [c.f. (33)]. If

, then the MMSE estimate can

be obtained from the recursions

(38)

(39)

(40)

(41)

(42)

where for each time index , steps (40) to (42) are repeated

for . We adopt the conventions

and , and note that the

MMSE estimate and the ECM are given by

and .

Proof: As pointed out earlier, Proposition 3 follows from

repeated application of Proposition 2. Indeed, if we define the

vector the state equation for

can be written as

(43)

On the other hand, the whitened observations can be written as

[c.f. (34) with ]

(44)

Define now the MMSE estimators

and

with corresponding ECM

and . Applying

Proposition 2, we obtain the prediction recursions for

[c.f. (18), (19), and (43)]

(45)

and for [c.f. (18), (19), and (43)]

(46)

From Proposition 2, we also obtain the correction recursions.

Upon defining the gain

(47)

the filtered estimate and ECM can be written as [c.f. (20), (21),

(44), and (47)]

(48)

Note however, that since for , we

have that and

; and likewise for the ECMs:

and

. To obtain (38) and (39), it suffices

to substitute the latter into (45). To obtain (40)–(42), we simply

make these same substitutions in (48) after plugging (46) into

(48).

The algorithmic description of the SOI-KF is summarized in

Algorithms 3-A and 3-B. Algorithm 3-A is run at the sensors

when the scheduling algorithm dictates that it is their turn to

transmit an observation. When this happens, the sensor runs the

predictor using (38) and (39) (step 1) and whitens the observa-

tion (step 2). Subsequently, it recursively computes par-

tial MMSE estimators via (36) and (40)–(42) in order to obtain

the binary observations by means of (37). When this

process is complete, the message is transmitted. Interest-

ingly enough, when the observations are scalar, Algorithm 3-A
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amounts to sequential application of steps 1, 2, 4, 5, and 8; which

is, of course, equivalent to Algorithm 2-A.

Algorithm 3-B is continuously ran by the sensors to estimate

the state . At each time slot we compute the predictors

along with and move on to process the received mes-

sage . Processing of entails recursive application of

(40)–(42) for the entries of . After this process is com-

plete, we obtain the MMSE estimate .

V. PERFORMANCE ANALYSIS

By definition, any MMSE estimator minimizes the trace of

the corresponding ECM. Thus, to the extent that the approxi-

mation

is accurate enough, the SOI-KF in Proposition 2 is optimum in

the sense of minimizing and . How-

ever, this optimality does not provide any insight with respect to

the performance of the SOI-KF relative to the MMSE based on

the original observations which are used by the clairvoyant KF

in (7), (8), and (11). In this section, we compare

and for the SOI-KF with and

reserved to denote the corresponding quan-

tities for the KF.

To simplify notation, define . Inter-

estingly, is independent of the observations , and

regardless of the data we can find by solving the dis-

crete-time Ricatti equation that is obtained by substituting the

expression for in (21) into the ECM update for

in (19)

(49)

Likewise, upon defining , we obtain

the discrete-time Ricatti equation for the clairvoyant KF [c.f. (8)

and (11)]

(50)

Notice that (49) and (50) differ only by the factor in the

numerator of the ratio in (49). A possible performance com-

parison could be to solve the difference (49) and (50) for spe-

cific models and compare with . However,

better insight can be gained by recalling the underlying contin-

uous-time model, for which we start with the following defini-

tion.

Definition 1: Consider the continuous-time model (1), (2)

and a family of corresponding discrete-time models (4) parame-

terized by . Let and be the ECM

of the filtered and predicted estimates of the SOI-KF in Propo-

sition 2 when sampling period is used in (4). Then, the con-

tinuous-time ECM is defined as

(51)

An equivalent definition can be written for the clairvoyant KF

whose continuous-time ECM will be denoted [20]. In

general, the continuous-time MSE is easier to analyze but at the

same time more general since, being independent of the sam-

pling time, it provides insights about the fundamental properties

of the problem. Moreover, it is well known that [20]

(52)

Equation (52) reveals that the continuous-time MSE, ,

serves as an upper (lower) bound for

. The continuous-time ECM

can be obtained by solving a continuous-time Ricatti equation

as we show in the next proposition.

Proposition 4: For the SOI-KF introduced in Proposition 2,

consider the continuous-time ECM given by Definition

1. Then, can be obtained as the solution of the differential

equation

(53)

Proof: Consider a neighborhood around . To es-

tablish (53), it suffices to subtract from both sides of (49),

divide by and let . Indeed, the limit of the left-hand

side of (49) is

(54)
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where the first equality follows from the definition of

in (51) and in the second equality, we used the definition of

derivative and set . On the right-hand side, we start

with the limit shown in

(55)

where in the second equality we used the definitions of

and in (51). How-

ever, since , we

find

(56)

Consider now the variance of the driving input whose limit is

(57)

where in obtaining the first equality we used the definition of

. To obtain the last equality we applied the mean value

theorem and wrote

.

For the remaining term on the right-hand side of (49), we

define the limit

(58)

where in the second step the key substitution is

; and we also used the fact that

, and the

definition of in (51).

Finally, note that according to (49) and the definitions of ,

we have that . Combining this with the limit

expressions in (54), (56), (57) and (58), we obtain (53) after

rearranging terms.

Either repeating Proposition 4 for the KF, or using standard

references for the continuous-time KF, we know that can

be obtained as the solution of the Ricatti equation [20]

(59)

which is identical to (53) with the substitution

. Thus, the continuous-time MSE of the SOI-KF

coincides with the continuous-time MSE of a KF with

times larger measurement noise variance.

To state an analogous result for the vector state-vector obser-

vation SOI-KF of Proposition 3, we will need the definition of

the -equivalent system that we introduce next.

Definition 2: Consider a state-observation model

as in (1), (2), where the noise autocorrelation is

.

We say that a model with otherwise identical parame-

ters but noise autocorrelation

, is -equivalent.

For a given sampling period , the KF for this latter model

will be henceforth called the -KF. We will denote

its filtered and predicted ECM as and

and the continuous-time ECM as

.

Using Definition 2, we can establish the relationship between

the MSEs of the SOI-KF and the KF as follows.

Corollary 1: For the state-observation model in (1), (2), and

its corresponding -equivalent system, it holds that

(60)

Proof: Define the time index and

apply Proposition 4 to the state-observation model defined by

(4) and (34). Observe next that if holds

for a model based on the observations , it also holds

for a model based on because im-

plies that the MMSE estimates are equal; i.e.,

.

Corollary 1 establishes that the MSE of the SOI-KF is

closely related to the MSE of the -KF, since as

the MSEs of these two filters are equal. For a particular ex-

ample, Fig. 3 depicts and

for different values of illustrating how the gap between these

two MSEs narrows as decreases, eventually converging to

. Fig. 4 compares the KF, the SOI-KF and the

-KF for two representative sampling periods . Note

that for large , and

are not equal (bottom); but as decreases, these two quan-

tities eventually coincide (top). It is is also worth noting that

is a valid upper bound for

. We finally stress that the gap between the KF

and the SOI-KF is small even for moderate values of .

VI. SIMULATIONS

The SOI-KF can be applied in a number of situations. Con-

sider for instance measuring, e.g., room temperature with a

WSN. A common state propagation model is the zero-acceler-

ation model [2, p. 262]

(61)

where is the room’s temperature, and and de-

note first and second derivatives. Consistent with having
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Fig. 3. MSEs tr[M(T ;njn)] of the estimator and tr[M(T ;njn�1)] of the
predictor converge to the continuous-time MSE tr[M (nT )] as T decreases
(A (t) = I, h (t) = [1; 2] ,C (t) = I, and � (t) = 1).

Fig. 4. MSE tr[M(T ;njn)] of the SOI-KF and the MSE
tr[M (T ;njn)] of the (�=2)-KF (SOI-eq.) are indistinguish-
able for small T ; as T increases there is a noticeable but still small difference.
The penalty with respect to tr[M (T ;njn)] is small for moderate T
(A (t) = I, h (t) = [1; 2] ,C (t) = I, and � (t) = 1).

variance , the driving input’s covariance matrix is

.

Sensor measures the temperature, but due to thermal in-

ertia the observations are given by

(62)

with a sensor dependent constant and denoting

the measurement noise variance. For simplicity, we further as-

sume that there are only two sensors that alternate in transmit-

ting their observations.

Simulations for this problem are depicted in Figs. 5 and 6,

where we can see that the theoretical MSE curves found as the

solution of the corresponding Ricatti equations closely match

the empirical results. In Fig. 5, we compare the SOI-KF with

the -KF for different sampling periods . While for small

these two filters yield indeed indistinguishable performance

(top), as increases there is a noticeable gap between them

Fig. 5. SOI-KF compared with the (�=2)-KF. The filtered MSEs of the two
filters are indistinguishable for smallT , but asT becomes large, the (�=2)-KF
is not a good predictor of the SOI-KF’s performance (� = 0:1, � = 0:2,
� = 1 and � = 1).

Fig. 6. SOI-KF compared with KF: even for moderate values of T , the per-
formance penalty is small (� = 0:1, � = 0:2, � = 1 and � = 1).

(bottom). On the other hand, by inspecting the comparison be-

tween SOI-KF and KF in Fig. 6, we deduce that even for rela-

tively large sampling intervals, the MSE penalty paid for quan-

tizing to a single bit per sensor is small.

We finally consider the variation of the predicted and fil-

tered MSEs ( and respec-

tively) with respect to the sampling period . The steady state

value as of these quantities is shown in Fig. 7 for the

SOI-KF, and corresponding KF and -KF. We can see that

as , the gap between and

narrows, and eventually both reach the continuous time MSE

obtained as the solution of (53) or (59). More inter-

esting, let us note that in many applications we want suffi-

ciently small so that and

are not very different. However, for these cases the SOI-KF

incurs a negligible performance penalty since we can see that

for .

A. Target Tracking With SOI-EKF

Target tracking based on distance-only measurements is a

typical problem in bandwidth-constrained distributed estima-

tion with WSNs (see, e.g., [1] and [8]) for which a variation
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Fig. 7. Variation of estimates and predicted estimates for the SOI-KF,
KF, and (�=2)-KF. For the given parameters we want T < 0:5 so that
tr[M (T ;njn)] and tr[M (T ;njn � 1)] are not very different, but for
these T values the SOI-KF incurs a minimal variance penalty (� = 0:1,
� = 0:2, � = 1 and � = 1).

of the SOI-KF appears to be particularly attractive. Consider

sensors randomly and uniformly deployed in a square region of

meters and suppose that sensor positions are

known.

The WSN is deployed to track the position

of a target, whose state model accounts for

and the velocity , but not for the

acceleration that is modelled as a random quantity. Under these

assumptions, we obtain the state equation [12]

(63)

where is the sampling period and the random vector

is zero-mean white Gaussian, i.e.,

. The sensors gather information about their

distance to the target by measuring the received power of a

pilot signal following the path-loss model:

(64)

with a constant, denoting the distance

between the target and , and the observation noise with

distribution .

Mimicking an EKF approach, we linearize (64) in a neigh-

borhood of to obtain

(65)

where and is

an explicit function of , and .

The approximate model in (63)–(65) is of the form (9) and

we can apply the SOI-KF outlined in Algorithms 2-A and 2-B

to track the target’s position . This procedure amounts to

Fig. 8. Target tracking with EKF and SOI-EKF yield almost identical esti-
mates. The scheduling algorithm works in cycles of duration T slots. At the be-
ginning of the cycle, we schedule the sensor S closest to the estimate x̂(njn�
1), next the second closest and so on until we complete the cycle (T = 4 slots,
T = 1 s, L = 2 km, K = 100, � = 3:4; � = 0:2 m=s , � = 1).

Fig. 9. Standard deviation of the estimates in Fig. 8 are in the order of 10–15
m for both filters.

the implementation of an extended SOI-(E)KF which is a low

communication cost version of the EKF.

The results of simulating this setup are depicted in Figs. 8

and 9, where we see that the SOI-KF succeeds in tracking the

target with distance error for the position estimates of less than

10 m. Similar conclusions can be obtained from Fig. 10 that

depicts the error in the first coordinate com-

pared with the curves for the SOI-KF and the

KF. As expected, the SOI-KF error matches the KF error with

both of them within the corresponding curves.

While this accuracy is just a result of the specific parameters of

the experiment, the important point here is that the clairvoyant

EKF and the SOI-EKF yield almost identical performance even

when the former relies on analog-amplitude observations and

the SOI-EKF on the transmission of a single bit per sensor.

VII. CONCLUDING REMARKS

Relying on the SOI, we considered the problem of distributed

state estimation in the context of wireless sensor networks.

The binary SOI data render the problem nonlinear and lead to

prohibitively complex MMSE state estimation. This motivated

an approximation leading to the SOI-KF which constitutes an
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Fig. 10. SOI-KF error in the first component of the position estimate x (n)�
x̂ (njn) (error in x (n)) is within the�3 [M(njn)] curves (3�� curves).

approximate MMSE estimator whose complexity and perfor-

mance are very close to that of a KF even when the latter fuses

the original (analog-amplitude) observations and the SOI-KF is

based on the transmission of a single bit per observation.

Relating the discrete-time KF and SOI-KF with the under-

lying continuous-time physical process monitored by the WSN,

we established that the MSE of the SOI-KF coincides with the

MSE of a KF applied to an otherwise equivalent system model

with larger measurement noise covariance matrix. This re-

sult was derived in the limit as the sampling period becomes ar-

bitrarily small; practical simulations confirmed its validity even

for moderate-size sampling intervals.

The SOI-KF was applied to a motivating application entailing

temperature monitoring and to the canonical target tracking

problem based on distance-only measurements. In both cases,

we corroborated that at low communication cost the SOI-KF

and the SOI-EKF yield estimates that are indistinguishable

from the estimates of the clairvoyant KF and EKF for all

practical purposes.

Future research directions include SOI-based estimators in

different setups. As we pursued the SOI-EKF, one can envision

similar combinations with the (SOI-)UKF and the (SOI-)PF in

which we trade complexity for performance in highly non-linear

state estimation problems. On the other hand, a multi-bit version

of the SOI-KF can be devised in which the bit of a quantized

observation is defined as the SOI relative to the estimator based

on the previous bits. In both cases, the goal is to effect

distributed state estimation with low-cost communications.

APPENDIX

PROOF OF (20)

To simplify notation, we will drop the time argument to write

and . Due to the symmetry of the

problem, it suffices to consider the case . Start with

the change of variables , so that we

can write (26) as

(66)

Introduce a second change of variables

, and also let to obtain

(67)

where we recall that

. Define the integral

, that we can express componentwise as

(68)

where we used the definition

, introduced the

notations and

, and separated the

exponent as .

We can now observe that

and interchange the last two in-

tegrals in (68) to obtain

(69)

with the last equality following from the fundamental theorem

of calculus. We can further rearrange terms in (69) and inter-

change the integrals to arrive at

(70)
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Consider now the quadratic form in the exponent of the second

integral, and let us summarize a number of properties about this

form in the following lemma.

Lemma 1: If we define the matrix ,

it holds that:

a) the inverse of is given by ;

b) the determinant of is ;

c) the quadratic form in the exponent of the second integral

in (70) can be written as

(71)

with .

Proof: Statement a) follows from the matrix inversion

lemma, and can also be proved by verifying that . To

prove b), let be an eigenvector of ; being an eigenvector

of , must satisfy

(72)

for some constant . Note that (72) is satisfied by

with , and by any perpendicular to

such that with . Since the determinant

can be expressed as the product of the eigenvalues, we have

(73)

However, the dimension of the subspace perpendicular to

is , and thus, . Statement b) is obtained by

simply rearranging terms.

To prove c), expand the right-hand side and verify that the

equality is indeed true.

Using Lemma 1-c), we can rewrite (70) as

(74)

where the two integrals are independent. The second integral is

the integral of a -dimensional Gaussian distribution over

which regardless of is equal to ;

given that is given by the inverse of the expression in

Lemma 1-b), we obtain

(75)

The first integral in (74) is the integral of a Gaussian bell over

and is thus given by times the standard deviation

(76)

Substituting (75) and (76) into (74), we obtain

(77)

Placing the components of given by (77) into (67) yields the

expression

(78)

Recalling that , (26) follows for .

For , the opposite result follows from symmetry.
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