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Abstract 6 

Despite the major advances in finite element (FE) modeling and system identification (SI) of 7 

extended infrastructures, soil compliance and damping at the soil-foundation interface are not 8 

often accurately accounted for due to the associated computational demand and the inherent 9 

uncertainty in defining the dynamic stiffness. This paper aims to scrutinize the effect of soil 10 

conditions in the SI process and to investigate the efficiency of advanced FE modeling in 11 

representing the superstructure-soil-foundation stiffness. For this purpose, use is made of the 12 

measured, computed and experimentally identified natural frequencies of a real bridge. Field 13 

measurements that were obtained during construction were reproduced both in the laboratory 14 

and by refined FE modeling. In addition, to understand the physical problem more thoroughly, 15 

three alternative soil conditions were examined, namely, rock, stabilized soil and Hostun sand. 16 

Discrepancies in the order of 3-13% were observed between the identified and the numerically 17 

predicted natural frequencies. These discrepancies highlight the importance of reliable 18 
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estimation of soil properties and compliance with the SI framework for extended bridges under 19 

ambient and low amplitude vibrations.  20 

Introduction 21 

It has long been shown through scientific research worldwide that structural engineering projects 22 

should not be designed without considering the effect of soil conditions, especially in the case 23 

of structures of major significance or those resting on soft and/or varying soil profiles (see 24 

Sextos, 2014 for a summary). The most comprehensive way of accounting for soil stiffness is 25 

to study the structure-foundation-soil system as a whole (Wolf, 1989). However, due to the high 26 

computational demand associated with FE modelling, alternative methods have been developed. 27 

These methods involve kinematic and inertial decoupling through the appropriate modeling of 28 

dynamic stiffness for different foundation shapes (circular, rectangular, arbitrary), embedment 29 

depths (surface, shallow embedded, intermediate embedded, pile) and foundation subsoils (deep 30 

uniform deposit, multi-layer deposit, shallow stratum over rock) (Veletsos and Wei, 1971; 31 

Dominguez and Roesset, 1978; Wong and Luco, 1985; Kausel, 1974; Gazetas et al., 1985).  32 

In particular, shallow embedded circular foundations and caissons (i.e., with a length-to-33 

diameter aspect ratio, D/B<2) are commonly modeled by replacing the foundation-soil system 34 

with six degrees of freedom (6 DOF) springs, the stiffness of which is typically calculated 35 

according to Elsabee and Morray (1977) and Gazetas et al. (1985). Alternatively, shallow 36 

embedded foundations are also treated as intermediate embedded foundations (with a length-to-37 

diameter aspect ratio, 2<D/B<6). Based on this approach, the subsoil may be replaced by 6-38 

DOF springs lumped at the base of the foundation (Kausel, 1974; Kausel & Ushijima, 1979), 39 

while additional 6-DOF springs are attached at the middle of the foundation height (Gerolymos 40 

and Gazetas, 2006; and improved by Varun et al., 2009).  41 

Notwithstanding the major advances made in quantifying the stiffness of the soil-bridge system, 42 

the reliable validation of the above spring coefficients remains an open issue with a significant 43 



 

 

impact for the safety of bridge engineering projects. The majority of experimental work 44 

conducted along these lines consists of laboratory testing of specific foundation-soil 45 

components, tested either on a shaking table or in a centrifuge, as well as entire scaled bridge-46 

foundation-soil systems without the superstructure (Finn, 2005). Based on the responses 47 

measured in the laboratory, various constitutive laws and numerical predictions of soil stiffness 48 

have been compared, verified and/or optimized.  49 

Alternatively, implicit on-site evidence regarding the effect of soil-structure interaction on the 50 

dynamic and seismic responses of bridges has also been provided by means of SI, for example, 51 

on real bridges (Crouse et al., 1987; Chaudhary et al., 2001; Todorovska, 2009;) on a bridge 52 

replica at a test site (Manos et al., 2014) and on buildings (Stewart et al., 1998; Taciroglou et 53 

al., 2014; Shamsabadi et al., 2016). SI is an advanced tool for the inverse prediction of the 54 

dynamic characteristics (i.e. natural frequency, damping ratio and mode shape) of structures that 55 

also accounts for the inherent properties of the supporting soil. The results of SI are usually 56 

exploited to validate the developed finite element models by comparing and ultimately matching 57 

the identified and the numerically predicted dynamic characteristics of a structure. Critical 58 

reviews, qualitative and quantitative comparisons among alternative SI methods based on 59 

benchmark structures, as well as their recent developments are expounded in the literature 60 

(Andersen et al., 1999; Peeters and De Rock, 2001; Peeters and Ventura, 2003; Antonacci et al., 61 

2012; Reynders, 2012).  62 

Based on the above, it is clear that the impact of soil-structure interaction on the dynamic 63 

response of a bridge-foundation-soil system is most commonly validated either in the laboratory, 64 

with controlled soil conditions but subject to the inevitable limitations of scaling, or on-site, that 65 

is, in real scale but without laboratory-controlled soil conditions or the potential to study the 66 

relative effects of different soil stiffnesses. These limitations hinder the appraisal of existing 67 

analytical solutions and numerical approaches for considering soil stiffness under both realistic 68 



 

 

scale and soil conditions. Along these lines, the scope of this paper is to study the implications 69 

of soil-structure interaction on the modal identification of a real bridge-soil system by making 70 

use of measurements obtained at both the macro (prototype) and the laboratory scales, and by 71 

utilizing in-situ ambient vibrations and artificially produced ambient loads, respectively. The 72 

above comparison enables (a) the validation of different, widely used modeling approaches and 73 

spring constants against measured data, and subsequently (b) the comparative assessment of the 74 

impact of alternative soil conditions on the extracted modal parameters of the soil-structure 75 

interacting system.  76 

The case studied herein is a segment of the (527 m long) Metsovo bridge in Greece. Ambient 77 

vibration measurements were obtained at the level of the deck at the construction stage (Panetsos 78 

et al., 2010) during which the partially constructed bridge was responding as a T-shaped 79 

cantilever. The apparent advantage of this particular case is that at the time of construction the 80 

(single, at this stage) M3 pier-deck segment consisted of a simple and easy-to-model-and-test 81 

structural system (Figure 1). In addition, its stiff foundation soil facilitated the construction of a 82 

dynamically equivalent system at the laboratory, because the uncertainty associated with the soil 83 

conditions was relatively minor (Figure 2). The latter equivalent system had been studied under 84 

similar (rock) conditions at the laboratory before its response was extrapolated for the case of 85 

alternative soil conditions (i.e., stabilized soil and Hostun sand). The laboratory and the on-site 86 

identification campaigns, as well as the development of alternative numerical models and the 87 

subsequent quantification of their associated model qualities are presented in the following 88 

sections. A synopsis of this work that focuses exclusively on a single type of soil can also be 89 

found elsewhere (Faraonis et al., 2014).  90 

Prototype structure 91 

Description of the structural system 92 

The Metsovo ravine bridge was constructed in 2008 in Greece along the 650 km Egnatia 93 



 

 

Highway. The bridge was constructed with the balanced cantilever construction method, which 94 

made feasible the modal identification of structurally independent T-shaped cantilever bridge 95 

segments during construction. The modal characteristics of pier M3 and the respective deck 96 

segment (Figure 1) were identified by Panetsos et al. (2010) prior to the construction of the key 97 

section, which connected the segment to the M2 pier-deck (that acted as a temporary, balanced 98 

cantilever). At the time the measurements were obtained, the total length of the deck temporarily 99 

supported by the M3 cantilever was 215 m, while the height of the pier itself was 32 m. The pier 100 

was founded with a large caisson in subsoil characterized by thickly bedded interchanges of 101 

sandstones and limestones. More specifically, the subsoil mechanical properties have been 102 

defined as follows: i) vertical and horizontal friction angle, φv=25º and φh=35º (based on shear 103 

strength laboratory tests), ii) vertical and horizontal cohesion, cv=100 kΝ/m2 and ch=100 kN/m2 104 

(also based on the same set of tests), iii) unconfined compression strength, qu=15 MPa (based 105 

on unconfined compressive strength laboratory tests) and iv) one-dimensional confined 106 

compression modulus, Eo,static=1/mv=400-1000 MPa (based on Menrad Pressuremeter field 107 

tests). Furthermore, Lugeon field tests depicted no evidence of a permanent underwater aquifer 108 

in the vicinity of the bridge. Column 1 of Table 1 summarizes the section and material properties 109 

of the prototype structure (referred to as “actual structure” hereafter for the purposes of 110 

comparison with the laboratory models).  111 

System identification of the prototype structure 112 

The modal identification of the M3 cantilever was based on ambient vibration measurements 113 

triggered by wind and operational loads. Five frequencies were successfully identified, in the 114 

range of 0.159-0.908 Hz, as shown in Table 2; column 1 of the table corresponds to one 115 

rotational, two longitudinal, one transverse and one bending mode of vibration. Detailed 116 

information regarding the measurements, the accelerometer installation configuration and the 117 

applied identification methodology can also be found in Panetsos et al. (2010).  118 



 

 

Fixed scaled structure 119 

Scaling laws & dimensional analysis 120 

The construction of a scaled structure primarily determines the scaling laws relating the material 121 

and geometry of the prototype to those of the scaled structure. These scaling laws can be 122 

determined either by dimensional analysis or the analysis of the system’s characteristic equation. 123 

Based on dimensional analysis and by neglecting the gravity distortion effects that inevitably 124 

arise during scaling, the scaling factor that relates the natural frequencies of a scaled structure 125 

with its prototype can be taken as (Bridgman, 1931):   126 

 1
f

l

 
(1) 

where: 
f
 is the prototype to the model frequency ratio, 127 

λl is the prototype to the model dimension ratio, 128 

λE is the prototype to the model Young's modulus of elasticity ratio, 129 

λρ is the prototype to the model density ratio. 130 

Based on Equation 1, it is evident that if the construction of a scaled structure that is identical 131 

to the prototype was indeed feasible at a 1:100 scale (λl=100) using the same materials is the 132 

actual structure (λE=1 and λρ=1), then the prototype to the model frequency ratio would be equal 133 

to λf=1/100. In such a case, this theoretically scaled model would have the section and material 134 

properties presented in column 2 of Table 1, and its natural frequencies would vary between 135 

15.90 and 90.80 Hz, as also shown in the same column. These (ideally, acquired) natural 136 

frequencies are therefore deemed in this study as the target dynamic properties of the fixed 137 

scaled model constructed in the laboratory.  138 

Construction of the fixed scaled structure 139 

Given the long deck of the T-shaped prototype cantilever (which was extended to 215 m as seen 140 

in Figure 1) and the limited space available in the laboratory, the scale of the equivalent structure 141 



 

 

was set to 1:100. This particular scale did not enable the construction of an exact replica of the 142 

concrete deck section, because this would have resulted in web and flange dimensions as thin 143 

as 22 mm and 3 mm, which are impossible to cast. As a result, an equivalent steel structure was 144 

designed to represent the same dynamic characteristics as the ideally scaled structure, after 145 

appropriate optimization of the dimensions were made to match those of standard sections that 146 

were available in the market. The optimization of the equivalent section dimensions was 147 

performed numerically using the FEA software ABAQUS 6.12. The model was fixed at its base 148 

in order to represent the stiff foundation soil of the actual conditions of the prototype structure. 149 

The above procedure resulted in an equivalent steel balanced cantilever, which was assembled 150 

using the following commercially available sections (Figure 2): 151 

 a 90×90×3 HSS hollow steel section of 215 cm length corresponding to a 1:100 replication 152 

of the prototype deck, 153 

 a 100×100×5 HSS hollow steel section of 6.15 cm length corresponding to a 1:100 replication 154 

prototype of the central deck-segment,  155 

 two 80×20×3 HSS hollow steel sections of 32 cm length corresponding to a 1:100 replication 156 

of the prototype, twin blade, M3 pier, and 157 

 a 100×100×5 steel plate, which was used as the base of the pier. Four holes enabled the above 158 

steel sections to be bolted and fixed to a laboratory shaking table. These holes were also used 159 

later to bolt the pier deck system to the caisson embedded into the soil.  160 

The section and material properties of the fixed scaled structure are summarized in column 3 of 161 

Table 1.  162 

Stochastic subspace identification 163 

To identify the natural frequencies, mode shapes and damping ratios of the fixed scaled 164 

structure, an output-only ambient vibration-based SI process was applied involving the 165 

covariance-driven stochastic subspace identification method available in the MACEC Matlab 166 



 

 

toolbox (Reynders & De Roeck, 2007). More information regarding this method can be found 167 

in Van Overschee and De Moor (1996) and Peeters and De Roeck (1999). A hammer was used 168 

to excite the structure at the deck level, thus resembling the broadband nature of the actual 169 

ambient vibration of the actual structure. It should be noted that this broadband type excitation 170 

is consistent with the utilized modal identification method adopted; however, it is not intended 171 

to be used for non-stationary excitations (i.e., for seismic assessment purposes).  172 

System identification of the fixed scaled structure  173 

The scaled structure was constructed in the Soil Mechanics laboratory at the Bauhaus University 174 

Weimar, in Germany, and was fixed initially on the base of the shaking table. This particular 175 

“baby” shaking table has dimensions 1×1 m2 and is capable of imposing 35 mm displacements 176 

within the frequency range of 2.5-30 Hz. Six triaxial accelerometers placed along the 177 

longitudinal, transverse and vertical directions were installed on the structure. Five of those were 178 

set up on the deck and one at the base of the pier. Three of the above six sensors, namely RS1, 179 

RS2 and RS3, were considered as the reference sensors (RS) and thus remained steady. Sensors 180 

S4-S6 were placed in three alternative configurations (C1, C2 and C3; Figure 3). All 181 

accelerometers were of the same type (Model 356A16 by PCB Piezotronics Inc): weight 7.4 g, 182 

frequency range 0.3-6000 Hz and sensitivity 10.2 mV/(m/sec2). 183 

The first five identified natural frequencies (Figure 4) of the fixed scaled structure were found 184 

to correspond to the following mode shapes (listed in order of identification): rotational around 185 

the pier axis (1st), longitudinal along the deck axis (2nd), closely spaced coupled longitudinal and 186 

transverse (3rd and 4th) and bending (5th). Based on the field measurements, these laboratory-187 

identified mode shapes matched the sequence of the first five eigenmodes identified for the 188 

actual (real scale) M3 pier cantilever, with the exception of the two coupled modes (i.e., the 3rd 189 

and the 4th mode of the actual structure, which were identified as uncoupled transverse and 190 

uncoupled longitudinal, respectively). From column 3 of Table 2, it can also be observed that 191 



 

 

the natural frequencies of the steel, fixed scaled structure ranged between 15.87 and 88.99 Hz. 192 

This matched very well to the target frequencies of the ideal (i.e., the theoretical, concrete model 193 

scaled to 1:100) structure, as they presented a mere 6.74% average deviation (see Table 2 for 194 

deviation definition). This qualitative (in terms of mode shapes and order) and quantitative (in 195 

terms of natural frequencies) agreement between the equivalent fixed scaled and the idealized 196 

scaled structures was deemed satisfactory and hence, the equivalent steel model was considered 197 

reliable enough for the envisaged comparative study.  198 

Scaled structure embedded in soil 199 

Having established a level of confidence regarding the equivalence of the scaled structure to the 200 

prototype, additional measurements were performed for two alternative soil types of decreasing 201 

stiffness, namely for stabilized soil and Hostun sand.  202 

Stabilized soil 203 

A soil can be characterized as stabilized when its stiffness has been increased by lime injection. 204 

According to the grain size distribution curve presented in Figure 5 (left), the particular soil used 205 

consisted of 75% clay, 10% sand and 15% gravel. Its liquid limit (LL) was equal to 42, and 206 

more than 50% of the grain passed the #200 sieve. Based on the above information and the 207 

ASTM D2487 (2011) guidelines, the soil was characterized as “gravelly lean clay”. The required 208 

percentage of added lime was determined to be 4% according to DIN EN 459-1 (2010) 209 

standards. Based on a standard Proctor compaction test, the optimal water content was 210 

determined to be 24% and the maximum achieved dry density of the mix was equal to 211 

ρs=1.86t/m3. 212 

The stabilized soil was placed in six layers of 5 cm height each, within a laboratory box of 95 213 

cm diameter and 40 cm height that was fixed on the shaking table (Figure 6a). For each layer, 214 

soil and water were initially mixed at the laboratory mixture machine (Figure 6b) before lime 215 

was injected (Figure 6c). Next, each layer was placed inside the laboratory box and was 216 



 

 

compacted by a laboratory compaction tool until it reached the target 5 cm height (Figure 6d). 217 

The final surface of every layer was manually coarsened with the use of a knife to enhance the 218 

cohesion with the overlying layer (Figure 6e). Eventually, the scaled structure was fixed 219 

(essentially bolted) on a 15 cm diameter circular concrete foundation of class C30/37 Eurocode 220 

8 (compressive strength, fck=30 MPa) resembling the caisson of the actual structure, which was 221 

embedded in the upper three layers of the stabilized soil (Figures 6f and 7).  222 

Four sensors were placed inside the box: two measuring the shear wave velocity (VS) and two 223 

measuring the compression wave velocity (VP) of the stabilized soil. The VS sensors had a 17 224 

cm separation distance and were placed at a 15 cm height, corresponding to the same level where 225 

the base of the concrete foundation was placed inside the box. The VP sensors were placed 5 cm 226 

below the VS sensors at 19.5 cm apart. Due to the reaction of lime with the clay, daily 227 

measurements were conducted for 28 consecutive days in order to capture the evolution of the 228 

stabilized soil stiffness with time. It is noted, however, that in a preliminary work (Faraonis et 229 

al., 2014), the measured values of VS did not fully match those predicted by the numerically-230 

based SI. Therefore, a detailed investigation was undertaken to re-assess soil properties for the 231 

28-day measurements. Mοre specifically, the VP measurements were utilized to back-assess the 232 

VS based on Equation 2, by assuming a realistic value for the Poisson's ratio of the stabilized 233 

soil (v = 0.35). Based on this investigation, the VP measurement of the 14th day (345 m/sec) was 234 

used for the numerical model as a representative value of the stabilized soil stiffness; hence, 235 

leading to a Vs value of (166 m/sec), through: 236 
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The shear modulus, G, was then determined to be 51 MPa (for VS=166 m/s and ρs= 1.86 t/m3), 237 

according to: 238 



 

 

 
 

  (3) 

Hostun sand 239 

In the last case study, the stabilized soil was removed from the laboratory box and replaced by 240 

Hostun sand (Figure 8). The Hostun sand was dry and loose with a friction angle φ=35º, 241 

cohesion c=0 kPa and relative density Dr(%) = 50. The total height of the Hostun sand in the 242 

box was 35.5cm and its dry density was measured as ρs=1.33 t/m3. The grain size distribution 243 

curve of the Hostun sand is presented in Figure 5 (right curve). The scaled structure was also 244 

fixed at the circular concrete foundation of 15 cm diameter and height, which was similarly 245 

embedded in the upper 15 cm of the sand. The G of the Hostun sand was determined to equal 246 

4.6 MPa (VP=96 m/sec, v=0.20, VS=59 m/s and ρs= 1.33t/m3) based on a procedure similar to 247 

the one described for the stabilized soil. 248 

System identification of the equivalent scaled structure embedded in the two examined soils 249 

In both soil cases studied, the structure was excited at the deck level by hammer impact loads. 250 

The dynamic characteristics of the bridge model structure were then identified based on the 251 

same method (i.e., covariance-driven stochastic subspace identification) used for the fixed 252 

scaled model. Identical accelerometer arrangements were also employed.  253 

The first five natural frequencies and mode shapes identified at the scaled structure that was 254 

founded on stabilized soil ranged between 14.88 and 85.04 Hz, and are presented in column 5 255 

of Table 2 and Figure 9a. Compared with those identified for the fixed-base structure, these 256 

identified frequencies were reduced by 4-30% depending on the way in which different modes 257 

had been affected by soil compliance. More precisely, the natural frequencies of the bending 258 

and rotational modes were reduced by 4% and 6%, respectively, while the natural frequencies 259 

of the transverse and the two longitudinal modes, which were directly affected by soil flexibility, 260 

were reduced by 15% to 30%. On the other hand, the identified damping ratios at the bridge-261 
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foundation-stabilized soil system ranged between 0.37% and 3.27%, confirming an increase 262 

compared to the damping ratios identified for the fixed bridge-foundation system (0.12-0.57%), 263 

as shown in columns 5 and 3 of Table 2, respectively. 264 

For the case of the Hostun sand, a further decrease of 19-76% was observed in the identified 265 

natural frequencies, which were found to vary between 9.60 Hz and 71.85 Hz (Table 2, column 266 

9). A corresponding increase was also observed in the identified damping ratios (1.27-8.59%) 267 

compared to the case of the stabilized soil, as seen in column 9 of Table 2. No difference was 268 

observed in the sequence of the first five identified modeshapes, illustrated in Figure 10a. 269 

The decreases in the identified natural frequencies and in the amplification of the identified 270 

damping ratios are attributed to the gradually decreasing stiffness of the bridge-foundation 271 

system (i.e., shifting from fixed to stabilized soil and then to Hostun sand). As anticipated, even 272 

for ambient vibrations, soil stiffness played a significant role in the identified dynamic 273 

characteristics of the structure, particularly for translational modes related to vibration along the 274 

longitudinal and the transverse axes of the bridge. Assuming, for illustration purposes, that the 275 

fixed boundary conditions correspond to a rock condition with a shear wave velocity of 800 m/s, 276 

Figure 11 illustrates the above experimentally-verified influence of decreasing soil stiffness on 277 

the identified natural frequencies of the scaled bridge structure. 278 

Numerical modeling 279 

In order to investigate the efficiency of existing numerical methods and analytical expressions 280 

in simulating the soil stiffness, alternative FE models were developed for the three scaled soil-281 

foundation-pier systems (namely, fixed, stabilized soil and Hostun sand).  282 

Fixed pier base 283 

Initially, a refined FE model was developed using three-dimensional (3D) solid elements to 284 

simulate the fixed scaled structure (Table 1, column 4). The FE model consisted of 285 

approximately 19,000 triangular brick elements with 88,620 DOF. The measured mass of the 286 



 

 

physical model was 20.46 kg with a density of ρ=7.46 t/m3, while the modulus of elasticity of 287 

the stainless steel was 210 GPa. 288 

The efficiency of the fixed numerical model in predicting the mode shapes of the constructed 289 

fixed scaled structure was assessed by the modal assurance criterion (MAC), which compares 290 

vectors of the identified mode shapes with those calculated by a numerical model, essentially 291 

through the squared correlation between two modal vectors (Allemang & Brown, 1982): 292 
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where, i  is the measured vector of the thi 1,...,n  mode shape and 
j
 is the calculated vector 293 

of the thj 1,...,n  mode shape. By definition, the index of the MAC ranges between 0 and 1; 294 

the closer the MAC value is to unity, the closer the fit between the measured and the 295 

numerically-predicted mode shapes.  296 

Compliant pier base  297 

For the two cases where the scaled structure was fixed on a circular concrete foundation and 298 

embedded into stabilized soil or Hostun sand layers, the pier-foundation-subsoil system was 299 

modeled using three alternative approaches.  300 

Direct method model 301 

The dynamic stiffness of the soil was first simulated in the 3D space using solid finite elements 302 

of approximately 180,000 DOF (Table 1, columns 6 and 10). The G of the stabilized soil was 303 

51 MPa (section 4.1) and the Poisson’s ratio was assumed to be v= 0.35. For the case of the 304 

Hostun sand, G was set to 4.6 MPa (section 4.2) and its Poisson’s ratio was assumed to be 305 

v=0.20. The same superstructure sections were assumed as for the fixed scaled model, with the 306 

properties of stainless steel equal to E=210 GPa and v=0.30 along with a C30/37 class concrete 307 



 

 

material with E=32 GPa and v=0.30 for caisson modeling. The mass of the foundation was 308 

measured as 7.56 kg corresponding to a density ρ=2.71 t/m3.  309 

Intermediate embedded circular foundation model 310 

A second approach to model the foundation-soil system (Table 1, columns 7 and 11) was based 311 

on the formulas proposed for intermediate embedded circular foundations (for a length-to-312 

diameter aspect ratio, 2<D/B<6). In this case, the superstructure and the foundation were 313 

simulated in the same manner as in the first direct approach but springs were employed instead 314 

of a 3D soil volume. In particular, the subsoil at the tip of the caisson was modeled as a 6-DOF 315 

spring, while the lateral stiffness of the surrounding soil was modeled by an additional 6-DOF 316 

spring assigned at the middle of the foundation height. Both 6-DOF stiffness matrices were 317 

obtained from the long established theory of surface circular foundations on a stratum over a 318 

rigid base as suggested by Kausel (1974) and Kausel and Ushijima (1979) and the solution of 319 

Varun et al. (2009) for cylindrically shaped intermediate embedded foundations, respectively 320 

(Table 3).  321 

The resulting stiffness terms were derived for the stabilized soil (G=51MPa, v=0.35) equal to 322 

{Kh,x, Kh,y, Kv, Kr,x, Kr,y, Kt} = {23297 kN/m, 23297 kN/m, 38796 kN/m, 96 kNm/rad, 96 323 

kNm/rad, 115k Nm/rad} for the tip and {37946 kN/m, 37496 kN/m, 41767 kN/m, 622 kNm/rad, 324 

622 kNm/rad, 615 kNm/rad} for the lateral resistance. For the case of the Hostun sand (G=4.6 325 

MPa, v=0.20), the stiffness terms of the tip and lateral 6-DOF matrices were {1915 kN/m, 1919 326 

kN/m, 2826 kN/m, 7 kNm/rad, 7 kNm/rad, 10 kNm/rad} and {3024 kN/m, 3024 kN/m, 3480 327 

kN/m, 49 kNm/rad, 49 kNm/rad, 55 kNm/rad }, respectively. Notably, these values are small as 328 

a result of the small dimensions of the tested model. 329 

Shallow embedded cylindrical foundation model 330 

In the third approach (Table 1, columns 8 and 12), the superstructure and the foundation were 331 



 

 

again simulated in the same manner as in the first approach, but the soil was replaced by a single 332 

set of 6-DOF Winkler type springs, which were placed in the middle of the foundation height. 333 

Their values were obtained according to the theory of shallow embedded cylindrical foundations 334 

(of a length-to-diameter aspect ratio, D/B<2) resting on a homogenous soil stratum over 335 

bedrock, as proposed by Elsabee and Morray (1977) and Gazetas et al. (1985) (Table 3).  336 

The stiffness terms for the case of the stabilized soil (G=51 MPa, v=0.35) were derived equal to 337 

{Kh,x, Kh,y, Kv, Kr,x, Kr,y, Kt} = {79503 kN/m, 79503 kN/m, 80563 kN/m, 623 kNm/rad, 623 338 

kNm/rad, 731 kNm/rad} and {6040 kN/m, 6040 kN/m, 6307 kN/m, 43 kNm/rad, 43 kNm/rad, 339 

65 kNm/rad} for the case of the Hostun sand (G=4.6 MPa and v=0.20). 340 

Comparative assessment of the identified and the numerically-predicted natural 341 

frequencies of the tested bridge pier-caisson-soil system 342 

Fixed pier base 343 

Following the identification of the natural frequencies of the fixed base and the two compliant 344 

bridge pier-caisson-soil systems, the efficiencies of the developed numerical models to capture 345 

the measured dynamic characteristics were studied carefully, starting from the simpler, fixed-346 

base support conditions. It was indeed verified that the first five natural frequencies predicted 347 

by the fixed FE model ranged between 16.02 and 89.46 Hz, thus being in very good agreement 348 

with those of the fixed structure tested in the laboratory, and which showed a minor average 349 

error of 2.12% as summarized in column 4 of Table 2. A visual comparison between the 350 

identified and the numerically-predicted mode shapes for the case of the fixed structure is also 351 

provided in Figure 4, while a more accurate comparison is illustrated through the MAC values 352 

in Figure 12. It is shown that the 1st (rotational), 2nd (1st longitudinal) and 5th (bending) modes 353 

of vibration matched very satisfactorily, with MAC values close to 1. On the other hand, the 354 

numerically-predicted 3rd (transverse) and 4th (2nd longitudinal) modes did not match as 355 

successfully (i.e., MAC values 0.68 and 0.60, respectively). This fact is mainly attributed to the 356 



 

 

low excitation of the identified 3rd and 4th modes and to the applied fixed boundary conditions 357 

that resulted in the close spacing of these modes (i.e., 65.31 and 66.74 Hz) thus hindering their 358 

distinction. As shown in Figures 9 and 10, this limitation is raised for the cases of the stabilized 359 

soil and the Hostun sand, where the identified 3rd and 4th modes were not closely spaced and 360 

thus they could easily be distinguished. 361 

Compliant pier base 362 

Next, the efficiency of the three alternative numerical methods described above was compared 363 

in order to predict the dynamic characteristics of the soil-compliant system tested in the 364 

laboratory. For the case that simulated the stabilized soil with the direct method model (3D FEs, 365 

section 5.2.1) as an intermediate embedded foundation (6+6-DOF springs, section 5.2.2), or as 366 

a shallow embedded foundation (6-DOF springs, section 5.2.3), very good matching was 367 

observed between the identified and the numerically-predicted frequencies. In particular, the 368 

average deviation was found in the order of 3-4% for all methods (Table 2, columns 6, 7 and 8). 369 

It is interesting to observe that, despite introducing the compliance of the soil, the error between 370 

the experimentally- and the numerically-predicted natural frequencies was not substantially 371 

increased compared to the negligible 2% average error that was derived for the fixed system. 372 

This observation practically implies that the developed finite element models reliably accounted 373 

for the compliance of the stabilized soil and successfully predicted the dynamic properties of 374 

the bridge-foundation-clay system. This observation also verifies the prediction made regarding 375 

the value of G (51 MPa) and v (0.35). It is noted herein that as the measurement took place 376 

during the 14th day of stabilization and the exact hydration phase could cot be precisly predicted 377 

a lower value of 0.2 was also considered, resulting to an increased error (from 3-4% to 3.2-378 

6.4%). 379 

Repeating the comparison for the case of the Hostun sand, higher deviations were naturally 380 

observed between the identified and the numerically-predicted frequencies compared to the case 381 



 

 

of the stabilized soil. Namely, the direct method model (section 5.2.1) presented a 13% average 382 

error in the identification of the system’s natural frequencies, the intermediate embedded 383 

foundation method (section 5.2.2) presented a 10% error and the shallow embedded foundation 384 

method (section 5.2.3) presented a 12% error (Table 2, columns 10, 11 and 12). These deviations 385 

were associated with the inherent limitations of the above numerical approaches that precisely 386 

simulate the soil stiffness of loose and non-cohesive soils, as well as to the complex contact 387 

issues between the particular soils and the caisson.  388 

It is also interesting to notice that for the soils examined, the identified 3rd and 4th modes of 389 

vibration were not closely spaced anymore (46.38 Hz and 56.86 Hz for stabilized soil, 15.99 Hz 390 

and 43.25 Hz for Hostun sand); hence, strong correlations (MAC values over 0.90) were 391 

observed with the numerical predictions.  392 

Conclusions 393 

This paper presents the case study of an already constructed, long bridge for which ambient 394 

measurements were made available during the construction stage. Based on modal identification 395 

at the actual scale and on the ad-hoc designed laboratory experiments at a reduced scale, an 396 

effort was made (a) to examine the influence of different soil conditions on the extracted modal 397 

parameters of a bridge-foundation-soil system and (b) to compare the efficiencies of alternative 398 

numerical approaches in predicting this effect. The conclusions drawn can be summarized as 399 

follows: 400 

 The influence of soil compliance on the dynamic characteristics of a bridge-foundation-401 

soil system was demonstrated by all investigative means (i.e., ambient vibrations, 402 

laboratory measurements and numerical results), thus highlighting the necessity of 403 

carefully considering soil compliance in the framework of design, assessment and 404 

structural health monitoring of bridges. According to the laboratory measurements of the 405 

fixed scaled structure, introduction of compliant soil deposits (i.e., stabilized soil and 406 



 

 

Hostun sand), led to a decrease of all natural frequencies (by 4-30% and 19-76%, 407 

respectively). Similarly, the damping ratios of the system were increased for the two 408 

soils (by 0.37-3.27% and 1.27-8.59%, respectively) compared to the dynamic 409 

characteristics identified for the fixed-base structure. 410 

 For stabilized soil conditions, the discrepancies between the identified and the 411 

numerically calculated natural frequencies were in the order of 3-4% on average, that is, 412 

close to the negligible 2% under fixed boundary conditions. This observation indicates 413 

that the developed numerical models predicted reasonably well the dynamic properties 414 

of the bridge-foundation-clay system.  415 

 The fact that all three herein examined numerical models captured efficiently the 416 

stiffness of the bridge-foundation-clay system irrespective of their level of modeling 417 

complexity demonstrates that simpler, Winkler-type models are adequately capable of 418 

numerically predicting soil stiffness at low computational cost compared to the fully 419 

fledged, 3D direct method model, provided that these models are prepared carefully 420 

according to the literature and are based on reliable measurements of the soil properties. 421 

On the other hand, it is noted that the above assessment is only valid for low amplitude 422 

ambient vibrations for which the comparisons were made. Notably, in the case of 423 

stronger enforced vibrations (i.e., seismic loading) both soil material and geometric 424 

nonlinearities may significantly affect the (instantaneous) natural frequencies in the time 425 

domain and as such, the reliability of the examined numerical methods needs to be re-426 

verified. 427 

 For the case of Hostun sand soil conditions, more distinct deviations of 10% to 13% 428 

were observed between the identified and the numerically calculated natural frequencies. 429 

This is primarily attributed to the more extensive nonlinear response that sand materials 430 

exhibit even at low levels of strain, and perhaps further to contact issues and ratcheting 431 



 

 

effects that essentially limit the efficiency of the examined numerical approaches. The 432 

above increased numerical error, however, is an indication of equally increased 433 

epistemic uncertainly, which should be taken into consideration in the framework of 434 

system identification, even at low levels of vibration.  435 
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Table 3. Spring coefficients formulas for the herein developed numerical models (6-DOF model & 12-DOF 15 
model.). 16 

6-DOF model for shallow embedded circular foundation 

6 base springs (Elsabee and Morray 1977 and Gazetas et al. 1985) 

, ,

8 1
1

2 2
  (5)

h x h y

GR R
K K

v H    

4
1 1.28

1
  (6)

v

GR R
K

v H    

3

, ,

8 1
1

3 1 6
  (7)

r x r y

GR R
K K

v H
 

316

3
  (8)

t
K GR

 

12-DOF model for intermediate embedded circular foundation 

6 base springs (Kausel 1979, Kausel and Ushijima 1979) 

, ,

8 1 2 5
1 1 1

2 2 3 4
  (9)

h x h y

GR R D D
K K

v H R H  

4 1 /
1 1.28 1 1 0.85 0.28

1 2 1 /
  (10)

v

GR R D D D H
K

v H R R D H  
3

, ,

8 1
1 1 2 1 0.7

3 1 6
  (11)

r x r y

GR R D D
K K

v H R H
      

316
1 2.67

3
  (12)

t

D
K GR

R  

springs middle of foundation height (Varun et al. 2009) 

0.15

, , 1.828    (13)
h x h y

D
K K ED

B  

         .(10) - .(6)   (14) 
v

K Eq Eq  

2

, , (1.06 0.227 )    (15)
r x r y

D
K K ED D

B
 

         (12) - .(8)   (16)
t

K Eq Eq  

G=shear modulus, E=Young’s modulus of Elasticity, v=Poisson’s  ratio, R=foundation radius, H=height of soil 

stratum, D=foundation height, B=foundation diameter 
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Fig. 1. Metsovo Bridge segments during the construction stage.  1 

Fig. 2. Fixed scaled structure equivalent of Metsovo Bridge M3 pier-deck tested at the laboratory.  2 

 Fig. 3. First arrangement (set up 1) of accelerometers and alternative positions of sensors S4, S5 and S6 3 

for the two alternative arrangements (set up 2 and set up 3). 4 

Fig. 4. (a) Numerical mode shapes of the full scale model (Panetsos et al 2009, identified 5 

mode shapes of the full scale model also available in Panetsos et al 2009), (b) identified mode 6 

shapes of the fixed scaled model and (c) numerically predicted mode shapes of the fixed 7 

scaled model. 8 

Fig. 5. Grain size distribution curve for the stabilized soil (left curve, before stabilization) and the 9 

Hostun sand (right curve). 10 

Fig. 6. Construction stages of stabilized soil:(a) laboratory box fixed on the shaking table before soil 11 

placement, (b) mixture of the 1st  soil layer with water at a mixture apparatus, (c) injection of lime to 12 

the  mix of soil with water, (d) placement of the 1st  layer of stabilized soil inside the laboratory box 13 

and compaction until it reached 5cm height, (e) formation of a rough surface with the use of a knife to 14 

enhance cohesion between the 1st  and the 2nd  soil layer and (f) embedment of the15cm concrete 15 

foundation in the last 3 layers of the overall 30cm high (6 layers of 5cm) stabilized soil. 16 

Fig. 7. Scaled structure on stabilized soil. 17 

Fig. 8. Scaled structure on Hostun sand. 18 

Fig. 9. (a) Identified and (b) numerically predicted mode shapes of the scaled structure on stabilized 19 

soil. 20 

Fig. 10.  (a) Identified and (b) numerically predicted mode shapes of the scaled structure on 21 

the Hostun sand. 22 

Figure Captions List



 

 

Fig. 11. Influence of Hostun sand (Vs=59m/s), stabilized soil (Vs=166m/s) and rock (Vs=800m/s) on 23 

the identified modes of the equivalent superstructure of the Metsovo M3 cantilever.  24 

Fig. 12. Calculated values of the Modal Assurance Criterion (MAC) between the identified (MACEC) 25 

and numerically predicted (ABAQUS) mode shapes, for the case of fixed boundary conditions. 26 
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