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Introduction
Forest ecosystems worldwide are currently

acting as carbon (C) sinks (Pan et al. 2011).
Several factors may, however, influence the
magnitude and direction of the net C balan-
ce,  including  recovery from historical  land
use (e.g., abandoned agricultural land rever-
ting  to  forested  land),  increases  in  atmo-
spheric CO2 concentration and nitrogen (N)
deposition,  and climate change (Schimel et
al. 2001,  Thomas et al. 2010). Nonetheless,
while much research has been done to under-
stand  the  controls  on  net  ecosystem C ba-
lance  (Valentini  et  al.  2000,  Rustad  et  al.
2001, Reichstein et al. 2007a), we know lit-
tle about the controls on C sink partitioning
between plant biomass and soil organic mat-
ter (SOM) pools. Soils may store C for long

periods of time (Lal 2005), accumulating on
average three times the C in terrestrial vege-
tation (Post et al. 1982). On the other hand,
more N is required per unit  of C stored in
soil as compared to plant biomass (Yang &
Luo  2011).  Hence,  while  an  allocation  to
SOM  may increase  C  sequestration  in  the
long term, a preferential  allocation to plant
biomass is a more nutrient-efficient C seque-
stration process in the shorter term.

Studying ecosystem C sink partitioning is
challenging due to the difficulties associated
with quantifying the different ecosystem flu-
xes. Especially complex is the assessment of
rapid and small changes in SOM which are
linked to the balance between microbial res-
piration  and  plant  inputs,  including  both
litter  and  root-derived  C  (Schrumpf  et  al.

2011). Thus, belowground C allocation and
subsequent C dynamics are still far from be-
ing  accurately  quantified  and  understood
(Phillips et al. 2011, Vicca et al. 2012). Root
C inputs have been shown to influence soil
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The release of organic compounds from roots is a key process influencing soil
carbon  (C)  dynamics  and  nutrient  availability  in  terrestrial  ecosystems.
Through this process, plants stimulate microbial activity and soil organic mat-
ter (SOM) mineralization thus releasing nitrogen (N) that sustains gross and net
primary production (GPP and NPP, respectively). Root inputs also contribute to
SOM formation. In this study, we quantified the annual net root-derived C in-
put to soil (Net-Croot) across six high fertility forests using an in-growth core iso-
tope technique. On the basis of Net-Croot, wood and coarse root biomass chan-
ges, and eddy covariance data, we quantified net belowground C sequestra-
tion. Belowground C accumulation and GPP were inversely related to soil C:N,
but not to climate or stand age. Soil C content and C:N were also related to soil
texture. At these high fertility sites, biomass growth did not change with soil
C:N;  however,  biomass  growth-to-GPP ratio  significantly  increased  with  in-
creasing soil C:N. This was true for both our six forest sites and for another 23
high fertility sites selected at a global scale. We suggest that, at high fertility
sites, plant N demand interacts with soil C:N stoichiometry and microbial acti-
vity, resulting in higher allocation of C to above ground tree biomass with in-
creasing soil C:N ratio. When C:N is high, microbes have a low C use efficiency,
respire more of the fresh C inputs by roots and prime SOM decomposition,
thereby increasing N availability for tree uptake. Soil C sequestration would
therefore decrease, whereas the extra N released during SOM decomposition
can  promote  tree  growth  and  ecosystem C  sink  allocation  in  aboveground
biomass. Conversely, C is sequestered in soil when low soil C:N promotes mi-
crobial C use efficiency and new SOM formation and stabilization on clay parti-
cles.

Keywords: Net Root-derived Carbon, Ingrowth Cores, Soil C:N, Carbon Seques-
tration, Carbon Partitioning, Isotopes
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C sequestration, but both the magnitude and
direction of this root effect are variable (Kar-
len & Cambardella 1996, Parton et al. 1996,
Cardon et al. 2001,  Rasse et al. 2005,  Dijk-
stra & Cheng 2007).

A robust  definition of net ecosystem pro-
duction  (NEP)  should  be  based  on  a  full
ecosystem  mass  balance  (Randerson  et  al.
2002),  which  accounts  for  both  plant  and
soil sinks. When it is flux-based, NEP is de-
fined  as the difference between ecosystem-
level gross photosynthetic  gain of C (gross
primary  production,  GPP)  and  ecosystem
respiratory losses (Reco).  Alternatively,  NEP
(g C m-2 y-1) can be expressed as (Campbell
et al. 2004 - eqn. 1):

In deciduous forest ecosystems,  ΔCbiomass is
the annual  change in plant  biomass (wood,
branches, coarse roots), and  ΔCsoil is the an-
nual  net  change  in  soil  organic  C  (SOC)
stock. In this equation, litterfall and fine root
turnover are considered as soil C input and
therefore contributing to the  ΔCsoil (see eqn.
2).

Net ecosystem productivity can be directly
determined  using  eddy  covariance  techni-
ques  starting  from net  ecosystem exchange
(NEE = ‒NEP - Baldocchi 2003, Aubinet et
al. 2012). Plant biomass changes are usually
estimated  via a combination of repeated in-
ventories and allometric relationships (Clark
et al. 2001). On the other hand, direct SOC
determination methods are generally unable
to quantify ΔCsoil in the short term (Schrumpf
et al. 2011), and, at annual timescales, alter-
native methods are required to estimate soil
C changes.

Considering  that  the  dissolved  organic  C
(DOC)  is  typically  negligible,  representing
around 1% of forest  NPP (Luyssaert  et  al.
2010), ΔCsoil can also be written as (eqn. 2):

where  Inputlitter is the above-ground litterfall
(i.e.,  leaves, branches, wood, etc.),  Inputroots

is  the  root-derived  C  input  (i.e.,  exudates,
root slashing and turnover),  RC-rhizosphere is the
rhizosphere  respiration  of  root-derived  C,
and Rh is the heterotrophic respiration. Litter
input  is  conventionally  measured  by  litter
traps,  while  wood input  is  measured  using
repeated sampling (Harmon & Sexton 1996),
and  rhizosphere  and  heterotrophic  respira-
tion can be estimated by a variety of methods
(e.g., trenching, girdling, isotopes), as revie-
wed by  Subke et  al.  (2006) and  Kuzyakov
(2006).  The  largest  challenge  is  estimating
gross root inputs. However, methods exist to
estimate  net  annual  root-derived  C  input
(Net-Croot),  which  is the difference between
Inputroots and RC-rhizosphere (eqn. 3):

Different tracer methods have been used to
date to estimate Net-Croot, such as pulse labe-
ling,  continuous  labeling,  and  13C  natural
abundance  (Kuzyakov  & Domanski  2000).
The latter uses the difference in the stable C
isotope composition of native SOM and new
plant-derived organic matter to quantify Net-
Croot..  When  natural  isotope  abundances  do
not allow the use of this approach, distinct C
isotope  signatures  in  the  soil  organic  C
(SOC) pool and plant-derived organic matter
can  be  obtained  in  manipulation  experi-
ments, by growing C3  plants (δ13C of appro-
ximately -27‰) in soil  with organic matter
derived from C4 plants (δ13C of approxima-
tely -12‰) or vice versa. This approach has
been successfully applied in  pot  (Ineson  et
al. 1995, Vicca et al. 2010) and field studies
(Hoosbeek et al. 2004,  Cotrufo et al. 2011)
and was used in this investigation.

Net-Croot,  combined  with  aboveground  in-
puts to the soil (litter and dead wood), also
provides interesting information about soil C
dynamics. For soils at steady-state (ΔCsoil=0),
the sum of Net-Croot  and aboveground inputs
is the amount of C that replaces SOC decom-
position, thus becoming a measure for SOC
turnover.  For  soils  which  are  net  C  sinks
(ΔCsoil>0), this sum exceeds SOC mineraliza-
tion  and  a  fraction  of it  enlarges the SOC
pool, thus leading to soil C sequestration. In
this context, for soils which are net C sinks,
the ratio between  ΔCsoil and  Net-Croot  + abo-
veground inputs  indicates the fate of C in-
put: the higher the ratio, the larger the con-
tribution of fresh C to soil C sequestration.
The opposite is true for soils that are net C
sources (ΔCsoil<0).

Root  C input  rates  vary considerably de-
pending on tree species, mychorrhizal asso-
ciations and environmental factors (Lynch &
Whipps 1990), with values of up to 40% of
net assimilated C being reported (Van Veen
et al. 1991). According to the microbial effi-
ciency-mineral stabilization (MEMS) frame-
work  (Cotrufo  et  al.  2013),  the fraction  of
Net-Croot inputs  sequestered  in  the  soil  de-
pends  on  the  efficiency of  decomposers  to
convert C into bio-products as compared to
tha amount of C lost as CO2 (Six et al. 2006)
and on soil matrix interactions (Sollins et al.
1996,  Kleber et al. 2007). Soil organic mat-
ter mineralization is driven by both substrate
stoichiometry and microbial demand for re-
sources  (Melillo  et  al.  1982,  Hessen  et  al.
2004): when N is limiting, microbes use la-
bile substrate to mineralize recalcitrant SOM
(Moorhead & Sinsabaugh 2006, Craine et al.
2007). Root  exudates can thus prime SOM
decomposition  (Lohnis  1926,  Bingeman  et
al. 1953, Fontaine et al. 2004). Clearly, root-
derived soil C inputs can either stimulate soil
C sequestration  or,  conversely,  induce  pri-

ming  with  consequent  losses  of  stabilized
SOM but  likely enhancements in N availa-
bility,  which  in  turn  can  stimulate  plant
growth. The key factors determining the di-
rection  (and  magnitude)  of  this  effect  are,
however,  not  yet  clear.  Understanding  the
fate of root-derived C, and its effects on N
dynamics and ecosystem C sequestration, is
relevant from an ecological perspective and
is also an urgent challenge to address, parti-
cularly in the context of global changes such
as atmospheric CO2 increase and N deposi-
tion.

The aims of the present study were: (1) to
obtain an estimate of Net-Croot in six different
forest ecosystems; (2) to partition NEP into
aboveground  tree  biomass  production  and
soil C sinks; and (3) to investigate the con-
trols of this partitioning. Specifically, we tes-
ted the hypothesis that soil C:N stoichiome-
try controls ecosystem C uptake (GPP) and
sink  partitioning  (ANPP vs. soil  C)  across
forest ecosystems. To verify if our hypothe-
sis could be generalized to other forests, we
tested  it  on  several  world  forest  sites  for
which  ANPP,  GPP and soil C:N data were
available in the literature.

Materials and methods

Study sites
Six forests were considered in the present

study. Three sites were in central Italy, two
sites  in  northern  Italy,  and  one  in  Croatia.
All sites were equipped with an eddy cova-
riance tower for mass, momentum and ener-
gy  ecosystem exchange  measurements  and
can be  classified as  high  fertility sites,  ac-
cording to key soil  properties (Vicca et  al.
2012 - see also  Appendix 1). Site characte-
ristics and flux data are reported in  Tab. 1,
while a brief description for each site is gi-
ven below.

Roccarespampani  (42° 24′ N, 11° 55′  E -
Claus & George 2005, Tedeschi et al. 2006)
is a Turkey oak (Quercus cerris L.) coppice
forest at about 235 m a.s.l. in central Italy.
Mean annual temperature is 14 °C and mean
annual rainfall is 755 mm. Soil is sandy clay
Luvisol (which is typically nutrient rich), de-
rived from sedimentary material of volcanic
origin and marine deposits,  and is modera-
tely acid (pH=5.7), with a total depth > 100
cm (Rey et al. 2002). Cation exchange capa-
city (CEC) is high, ranging between 19 and
42  meq  100g-1 in  the  different  soil  layers
(Tedeschi et al.  2006). The forest has been
managed as a “coppice with standards” over
the last 200 years, with a rotation cycle vary-
ing  between  15  and  20  years.  Two  stands
were  selected:  a  6-year-old  coppice  (RO1)
and a 15-year-old coppice (RO2).

Lecceto (LE - 43° 18′  N, 11° 16′  E) is a
Holm oak (Quercus ilex L.) coppice with a
rotation period of 18-20 years at about 300
m a.s.l. in central Italy. Holm oak represents
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81% of the total tree canopy; others species
include  Arbutus  unedo L.,  Juniperus  com-
munis L.,  Quercus pubescens L.,  Phillyrea
latifolia L.,  Fraxinus ornus L. Mean annual
temperature  is  13.5  °C and  annual  average
rainfall is 780 mm.

Jastrebarsko  (JA - 45°  37′ N,  15° 41′ E;
Marjanovic et al. 2010,  2011) is a 35-year-
old forest in Croatia dominated by peduncu-
late  oak  (Quercus  robur  L.)  with  19%  of
black alder (Alnus glutinosa Haernt.),  14%
hornbeam (Carpinus betulus L.) and 9% of
narrow-leafed  ash  (Fraxinus  angustifolia
L.).  Mean  annual  temperature  is  10.4  °C

with mean monthly temperatures of -0.2 °C
and  20.7  °C  in  January  and  July,  respec-
tively.  Average  annual  precipitation  is  900
mm year-1,  of  which  around  500  mm falls
during  the  active  vegetation  period  (April-
September). Soil is a Luvic Stagnosol with a
depth > 100 cm and an acidic pH (4.9) in the
upper mineral layer (0-20 cm) that linearly
increases to neutral pH at depths > 100 cm.
At the beginning of the growing season, the
soil drains and water content soon drops be-
low water holding capacity (46% v/v) allow-
ing enough oxygen supply for  root  growth
and substantially increasing nutrient  availa-

bility in these soils, where nutrient availabi-
lity can be constrained by high water levels.

La Mandria (LM - 45° 09′ N, 7° 34′ E) is
an  80-year-old  pedunculate  oak-hornbeam
forest (Quercus robur L. and Carpinus betu-
lus L.) in northern Italy.  Mean annual tem-
perature at the site is 11.6 °C and annual pre-
cipitation is 1030 mm. Soil is Typic Fragiu-
dalf with adequate moisture content through-
out the year, neutral pH and good CEC (ran-
ging from 17 to 11 meq 100 g-1 at soil sur-
face and Bh horizons, respectively).

Collelongo  (CO -  41°  52′  N,  13°  38′  E;
Valentini et al. 1996,  Scartazza et al. 2004)
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Tab. 1 - General characteristics for the six forest sites used in this study. (ΔCwood): change in aboveground wood biomass; (ΔCroots): change in
coarse root biomass; (NEP): net ecosystem production; (NEE): net ecosystem exchange; (GPP): gross primary production; (Reco): ecosystem
respiration; (RO1): Roccarespampani site 1; (RO2): Roccarespampani site 2; (LE): Lecceto; (JA): Jastrebarsko; (LM): La Mandria; (CO): =
Collelongo. (a): N wet deposition in 1990 were derived for all sites using published gridded maps with 0.5° × 0.5° resolution derived from
interpolated (krieged) ground data (available at http://www.daac.ornl.gov). Total wet depositions (kg N ha-1 y-1) were then computed as the
sum of aqueous NO3- and NH4+ fields, which were available. (b): For Collelongo, the reported number refers to direct measurements avail -
able for the period 2002-2009 (Flechard et al. 2011).

Group Parameters RO1 RO2 LE JA LM CO
Vegetation 
characteri-
stics

Main species Turkey oak Turkey oak Holm oak Pedunculate oak Pedunculate oak
- Hornbeam

Beech

Management coppice with
standards

coppice with
standards

coppice with
standards

high forest high forest coppice con-
verted to high

forest since 1950
Mean stand age in 
2006-2007 (years)

6 (approx. 70
standards ha-1 
of 20-40 years-

old present)

15 (approx. 70
standards ha-1 
of 20-40 years-

old present)

15 35 80 110

Aboveground 
biomass (kg C m-2)

1.9 4.5 5.0 6.3 7.8 13.7

Wet N deposition1 
(kg N ha-1 y-1) a

10.0 10.0 8.6 11.2 9.4 10.8 b

Soil charac-
teristics

Soil type Volcanic 
Luvisol

Volcanic
Luvisol

Xerocrept Luvic
Stagnosol

Typic
Fragiudalf

Humic
Alisols

Bulk density
(0-15 cm, g cm-3)

1.29 1.29 1.20 0.77 1.09 0.58

Bulk density
(15-30 cm, g cm-3)

1.25 1.25 1.20 1.11 1.27 0.66

Soil C stock 0-30 cm 
(kg C m-2)

8.6 7.4 27.4 7.7 7.4 14.7

Soil N stock 0-30 cm 
(kg N m-2)

0.8 0.5 1.3 0.7 0.3 0.9

C:N 10 14 22 11 24 16
Sand (%) 52 52 40 18 6 6
Silt (%) 12 12 35 28 80 50
Clay (%) 35 35 25 54 14 44

Carbon 
fluxes

GPP (g C m-2 yr-1) 1577 1356 901 1633 754 1258
Reco (g C m-2 yr-1) 1060 810 368 1049 183 722
ΔCwood (g C m-2 yr-1) 161 315 334 325 360 363
Root:shoot ratio 0.30

(Mokany et al.
2006)

0.30
(Mokany et al.

2006)

0.30
(Mokany et al.

2006)

0.30
(Mokany et al.

2006)

0.30
(Mokany et al.

2006)

0.28
(assessed at the

site)
ΔCroots (g C m-2 yr-1) 48 95 100 98 108 102
ΔCbiomass = ΔCwood +
ΔCroots (g C m-2 yr-1)

209 410 435 423 468 464

Litterfall (g C m-2 yr-1) 47 123 107 203 223 245
NEP (= ‒NEE) 
(g C m-2 yr-1)

517 545 533 584 571 535

http://www.daac.ornl.gov/
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is an 110-years-old pure beech (Fagus sylva-
tica L.) forest in northern Italy that has been
part of the network of Long Term Ecological
Research  sites  (LTER  Italy)  since  2006.
Mean annual temperature at the site is 7.1 °C
and mean annual  rainfall  is 1188 mm. The
soil is a Humic Alisol with volcanic ash also
present. Both CEC and N content are high in
the different soil layers, ranging from 14.8 to
23.3 meq 100g-1 and from 4 to 7.3 mg N g-1,
respectively (Persson et al. 2000). Wet N de-
position rates in the period 2002-2009 ave-
raged  10.8  kg  N  ha-1 yr-1 (Flechard  et  al.
2011)

Net root-derived C input to soil
Net-Croot was quantified using the in-growth

core isotope technique, following Cotrufo et
al.  (2011).  A soil  depleted  in  13C (δ13C =
-17.22‰)  was  collected  from  the  USDA-
ARS Central Plains Experimental Range lo-
cated in NE Colorado, USA (40° 49′ N, 104°
46′  W).  The soil  is classified as a Zigweid
soil  series (Fine-loamy,  mixed,  superactive,
mesic Ustic Haplocambid), with a pH of 7.4,
N content of 1.37 g kg-1, and P content of 0.5
g kg-1 (Cotrufo et al. 2011). At this site, plant
cover is approximately 75% C4 grasses, and
for brevity we call henceforth this soil as “C4

soil”. Soil was air-dried prior to being sealed
and boxed for shipment to Italy. Upon arri-
val, the C4 soil was ground and sieved to 2
mm and well mixed to make a homogeneous
soil pool, before using it for in-growth cores
and chemical (C% and δ13C) analyses as de-
scribed below.

At each forest site, six cores, made of a 2
mm mesh net (thus allowing the penetration
of fine roots) with a diameter of 4 cm and a
height of 30 cm, were placed randomly with-
in the eddy covariance tower footprint in Oc-
tober 2006 (2008 for Jastrebarsko) and filled
with the C4 soil to a bulk density similar to
the average bulk density for the site. At the
top of each core the net was closed to avoid
above-ground litter input.  Cores were sam-
pled a year later, and the soil from each core
was separated  into  0-15  cm and  15-30  cm
depth layers, except for Jastrebarsko, where
the entire 0-30 cm core was considered.

All soil samples were sieved to 2 mm, and
root samples carefully removed and washed
with  deionized  water.  Root  samples  were
pooled by site and depth, and each samples
analyzed  in  triplicates.  Both  soil  and  root
samples were oven-dried at 70 °C, pulveri-
zed and analyzed for %C and δ13C by an ele-
mental analyzer (Flash EA 1112 NC, CE In-
strument, Wingan, UK) connected to an Iso-
tope Ratio Mass Spectrometer (IRMS, Delta
Plus, Thermo-Finnigan, Bremen, Germany).
Prior to C analyses, soil samples were trea-
ted with HCl to eliminate carbonates (Harris
et al. 2001). The measured δ13C values were
used  to  calculate  the  proportion  of  new C
(fnew,  i.e., the  Net-Croot), by using a mass ba-

lance equation (Del Galdo et al.  2003,  Co-
trufo et al. 2011 - eqn. 4):

where δsoil is δ13C of the organic matter of the
C4 soil  collected  from each  core  after  one
year of field incubation, δold is the δ13C of the
organic matter of the C4 soil measured before
incubation,  and  δveg is the δ13C of the roots
averaged by site and depth. The average δveg

value across all our sites was -28.11±0.29‰,
while variation (standard deviation) within a
site  was  between 0.15  and  0.57‰ at  RO1
and RO2, respectively. Knowing the f values
for the new C, the soil organic C concentra-
tions (%C), soil depth (D, m), and soil bulk
density (σ, kg m-3), Net-Croot amounts (g m-2)
were computed  for  all  soil  samples  as  fol-
lows (eqn. 5):

Estimates  of  Net-Croot using  this  method
(Cotrufo et al. 2011) rely on the assumptions
that: (1) root inputs are the same inside and
outside the in-growth bags and are indepen-
dent  of the C4 soil  properties;  and (2)  that
there is no isotopic fractionation during the
decomposition of the native SOM or forma-
tion of the new SOM from the root tissues.
New  studies  applying  this  method  should
test those assumptions, since some fractiona-
tion could occur (Hobbie et al. 2004).

Ecosystem fluxes and primary 
production

Eddy covariance flux data from all five Ita-
lian sites were analyzed for the years 2006-
2007  (Tab.  1).  Data  of  net  ecosystem ex-
change  (NEE),  gross  primary  production
(GPP)  and  ecosystem  respiration  (Reco)  at
monthly time  steps  were downloaded  from
the central Fluxnet database (http://gaia.agra
ria.unitus.it/database/). Specifically, we used
the NEE gap-filled data using the Artificial
Neural  Network  method  (NEE_ANN  from
level 4 dataset - Papale et al. 2006). Reco was
computed according to the short-term tempe-
rature response of night-time fluxes (Reich-
stein et al. 2005) and  GPP values were de-
rived  as  sum  of  the  absolute  values  of
NEE_ANN and Reco. At sites where data for
the  years  2006  or  2007  were  incomplete
even  after  gap-filling  because  of  missing
weather data, data for 2008 were also inclu-
ded in the analysis for the calculation of an-
nual  means.  As  for  the  Jastrebarsko  site,
2009 eddy flux data were derived from Ma-
rjanovic et al. (2010).

Mean  annual  temperature  (MAT),  mean
annual  precipitation  (MAP),  and  soil  C
stocks (0-30 cm), as well as changes in wood
biomass (stem and branches -  ΔCwood), were
derived from ancillary data files available at

the central  database,  updated to 2006-2007
when  necessary,  or  using  specific  yield  ta-
bles available at the site (e.g., Jastrebarsko).
All data were checked, if necessary updated
and  completed  by  site  Principal  Investiga-
tors, who are co-authors of the present study.
Changes in root biomass (ΔCroots) were deri-
ved  from  ΔCwood using  root-to-shoot  ratios
reported  by  Mokany et  al.  (2006) or  using
site-specific  relationships  as  in  the  case  of
Collelongo and do not include fine root pro-
ductivity.

ANPP was calculated as the sum between
ΔCbiomass and  NPPleaves (foliar  net  primary
production). The latter corresponds to litter-
fall  in  the case of broadleaved  forests,  and
was directly measured at the site (i.e., Rocca,
Jastrebarsko,  Collelongo)  or  assessed  from
NPPwood using biomass expansion factors de-
rived  at  nearby  sites  with  similar  species
composition and structure (i.e., La Mandria).
In the case of Lecceto, where the dominant
species  is  evergreen  (Holm oak),  we  assu-
med that the system was at steady state and
thus  litterfall  =  NPPleaves.  Then  the  ANPP:
GPP ratio was calculated.

World forest sites data
In order to test if the relationship between

ANPP:GPP and  soil  C:N,  observed  across
our study sites, was generalizable across fo-
rest ecosystems, we searched published data-
sets (Litton et al. 2007, Luyssaert et al. 2007,
Vicca et al.  2012) for forest sites that pro-
vided  the  data  suitable  to  our  analyses.
Twenty-three additional sites were found in-
cluding ANPP and GPP data, as well as soil
C:N (determined for  a depth up to  45 cm)
were found (Tab.  2).  Fertility classification
followed  Vicca et  al.  (2012).  More  details
are given in Appendix 1.

Data analysis
At each site the annual change in net soil C

(ΔCsoil - g C m-2 y-1) was calculated starting
from eddy covariance NEE data and measu-
red changes in  aboveground wood biomass
(ΔCwood)  and coarse  roots  (ΔCroots)  by re-ar-
ranging eqn. 1 (eqn. 6):

Statistical  analyses  were  performed  using
the  package  SIGMA PLOT® 11.0  (Systat®
Software,  San  José,  CA,  USA).  Data  were
tested  for  normal  distributions,  using  the
Shapiro-Wilk’s test, and homogeneity of va-
riance, and log transformed when necessary.
To assess differences in  Net-Croot among si-
tes, a one way analysis of variance (one-way
ANOVA)  was  used.  Significant  treatment
(site) effects (P<0.05) were further explored
via a treatment (site) comparison  using the
Least-Squares  means test  with  Tukey’s  ad-
justment for multiple comparisons. For sites
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f new=
δ soil−δold

δ veg−δold

C= f⋅%C⋅σ⋅D

ΔC soil=−NEE−ΔCwood−ΔC roots

=NEP−ΔC biomass

http://gaia.agraria.unitus.it/database/
http://gaia.agraria.unitus.it/database/
http://gaia.agra/
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where  data  for  0-15  and  15-30  cm depths
were available, a two-way ANOVA with site
and depth as fixed factors was also perfor-
med.

A correlation analysis between all available
variables  was  performed  using  the  Spear-
man’s  rank  method  through  a  correlation
matrix  in  STATA10® (StataCorp®,  College
Station,  TX, USA). For variables that were
correlated with p<0.10,  linear models were
fitted to measured data.

Results

Net root-derived C input to soil
Total  Net-Croot in the top 30 cm soil layer

ranged between 420 g C m-2 year-1 at Colle-
longo and 818 g C m-2 year-1 at Jastrebarko
(Fig.  1).  Mean annual  Net-Croot across sites
was 606 ± 164 g C m-2 year-1  (mean ± stan-

dard  deviation).  A significant  difference in
total Net-Croot (0-30 cm) was detected among
sites  (ANOVA,  p  =  0.007).  In  particular,
post-hoc Tukey’s tests showed a significant
difference  between  Jastrebarsko  and  Colle-
longo  (p  = 0.013)  and  Lecceto  and  Colle-
longo (p = 0.041 -  Fig. 1). For sites where
data  for  0-15  and  15-30  cm  depths  were
available (i.e., all sites except Jastrebarsko),
the two-way ANOVA applied showed signi-
ficant  differences among sites  (p = 0.004),
between  depths  (p  = 0.024)  and for  site  ×
depth interaction (p = 0.035). No differences
among sites were detected at 0-15 cm depth
(Tukey’s  test:  p  > 0.05),  while  Net-Croot at
15-30 cm in Lecceto was significantly diffe-
rent from Rocca1 (p = 0.002), Collelongo (p
= 0.003)  and  Rocca2  (p = 0.021).  Climate
(i.e., MAT, MAP, soil water content) did not
explain  significant  variability  in  Net-Croot

among the different sites (see Tab. S1 in Ap-
pendix 1). Moreover, total  Net-Croot  was not
significantly correlated to soil C:N.

Ecoystem C sink partitioning
All six sites were net C sinks with similar

NEP values (average NEP was 547 ± 25 g C
m-2  year-1) but with large differences in an-
nual  GPP (Tab.  1).  They actively  seques-
tered C both  aboveground  and  in  the  soil:
ΔCwood represented between 10 and 48% of
annual  GPP (RO1  and  LM,  respectively),
ANPP (=ΔCwood  + litterfall) was between 13
and  77% (RO1 and  LM,  respectively)  and
ΔCsoil was positive for all sites representing
between 6 and 20% of annual GPP (CO and
RO1, respectively).

In  accordance  with  our  hypothesis,  GPP
and  ΔCsoil were correlated to  soil  C:N (p =
0.0048 and p = 0.07, respectively - Tab. S1
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Tab. 2 - Studies used to validate the relationship between ANPP:GPP and soil C:N across gradients of forest stands and environmental con-
ditions. Nutrient availability was assessed according to Vicca et al. (2012), when possible. (n.a.): not available. (1): Ryan et al. (2004), Bink-
ley et al. (2004); (2) Gholz et al. (1986),  Gholz & Fisher (1982), Gholz et al. (1985); (3) Gower et al. (1997),  Ryan et al. (1997), Online
BOREAS dataset. Site: “NSA-OJP-9OJP1”; (4): Malhi et al. (1999), Marland et al. (2004); (5) Malhi et al. (1999), Luizao et al. (2004); (6):
Chambers et al. (2004), Luizao et al. (2004); (7) Harris et al. (1975), Marland et al. (2004); (8):  Kinerson et al. (1977); (9):  Woodwell &
Botkin (1970); ANPP = NPP/1.3;  Marland et al. (2004); (10):  Kutsch et al. (2001); (11)  Dilly et al. (2000); (12):  Sun et al. (2004); (13):
Malhi et al. (2009); (14): Kelliher et al. (2004); (15) Kelliher et al. (2004); (16): Malhi et al. (2009); (17): Present study; ANPP = ΔCwood +
litterfall.

Forest type and location
Management or 
treatment

Nutrient 
availability

ANPP GPP
ANPP : 
GPP

Depth
(cm)

Soil
C:N

Eucalyptus saligna plantation, 
Pepeekeo, HI1

2 yr, 1x1 m high 1427 5057 0.28 0-45 16
6 yr, 1x1 m high 480 2369 0.20 0-45 15
2 yr, 3x3 m high 1456 4413 0.33 0-45 16
6 yr, 3x3 m high 828 2930 0.28 0-45 15

Pinus radiata plantation, Canberra, 
Australia1

20 yr C medium 599 2415 0.25 0-30 19

Pinus elliotii plantation, Bradford, 
FL2

7-9 yr low 199 1407 0.14 0-15 12

Picea mariana, N-BOREAS3 150 yr low 132 563 0.23 n.a. 13
Pinus banksiana, N-BOREAS3 63 yr low 115 677 0.17 n.a. 15
Oak-Hickory, Oak Ridge, TN4 55 yr low 510 1329 0.38 0-20 16
Tropical forest, Manaus Brazil5 Old growth low 870 2620 0.33 0-10 14
Tropical forest, Manaus Brazil6 Old growth terra firme low 650 2860 0.23 0-10 12
Liriodendron, Oak Ridge, TN7 50 yr n.a. 352 2162 0.16 0-20 14
Pinus taeda, Oak Ridge, TN8 16 yr n.a. 1490 4124 0.36 0-20 15
Pinus-Quercus, Oak Ridge, TN9 43 yr n.a. 462 1280 0.36 0-20 14
Bornhoved Alder10 Temperate Humid-Broadleaved low 589 2420 0.24 0-30 18
Bornhoved Beech11 Temperate Humid-Broadleaved medium 601 1324 0.45 0-5 15
Cascade Head (1)12 Temperate Humid-Needle-leaved high 569 1400 0.41 0-30 21
Cascade Head (1A)12 Temperate Humid-Broadleaved high 640 1558 0.41 0-30 20
Caxiuana13 Tropical Humid-Broadleaved low 869 3630 0.24 0-30 13
Jacaranda/K3413 Tropical Humid-Broadleaved low 796 3040 0.26 0-30 17
Metolius14 Temperate Semi-arid-Needle-

leaved
medium 183 1143 0.16 0-30 20

Metolius young15 Temperate Semi-arid-Needle-
leaved

medium 104 724 0.14 0-30 21

Tapajos 6716 Tropical Humid-Broadleaved low 1400 3141 0.45 0-30 15
Rocca 117 Meditteranian Turkey oak high 208 1577 0.13 0-30 10
Rocca 217 Meditteranian Turkey oak high 438 1356 0.32 0-30 14
Lecceto17 Meditteranian Holm oak high 441 901 0.49 0-30 22
Jastrebarsko17 Meditteranian Pedunculate oak high 528 1633 0.32 0-30 11
La Mandria17 Meditteranian Pedunculate oak - 

Hornbeam
high 583 754 0.77 0-30 24

Collelongo17 Meditteranian mountain beech high 608 1258 0.48 0-30 16
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in Appendix 1) and decreased linearly as soil
C:N increased (Fig. 2). Moreover,  GPP was
linearly  and  inversely  related  to  soil  clay
content (p = 0.05) but, similarly to  ΔCsoil, it
was not correlated with either MAT, MAP or
stand  age.  ΔCwood was  weakly related  with
soil C:N (p = 0.07), while ΔCwood-to-GPP ra-
tio (Fig. 3.a) and  ANPP-to-GPP ratio signi-
ficantly increased with soil C:N (p < 0.0001
and p = 0.005, respectively - Tab. S1 in Ap-

pendix 1).  In  contrast  to  GPP,  Spearman’s
correlation analysis revealed a significant re-
lationship  between  ΔCwood and  both  MAT
and MAP (p = 0.05 and p =0.008, respecti-
vely  -  Tab.  S1  in  Appendix  1).  Similarly,
ANPP was  significantly  correlated  with
MAT and MAP (p = 0.001 and p = 0.0003,
respectively). Finally, the fate of root C in-
put appeared to depend on soil C:N stoichio-
metry, with proportionally more Net-Croot be-

ing allocated to C sequestration with decrea-
sing soil  C:N (ΔCsoil vs. Net-Croot p = 0.07)
and soil C:N was able to explain 40% of the
variation in the ratio of  ΔCsoil  to  Net-Croot +
litterfall (Fig. 3.b).

World forest sites
The positive  relationship  between  ANPP-

to-GPP ratio and soil C:N found across our
six study sites was confirmed also when in-
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Fig. 1 - Net annual root-derived carbon input (Net-Croot) to 
soils (0-15 and 15-30 cm) quantified using isotope-labelled 
(e.g., C4) soil in-growth cores at the six study sites. Vertical 
bars indicate standard deviation. Different letters indicate 
significant difference in total Net-Croot at p < 0.05. For site la-
bels, see Tab. 1. As for the Jastrebarsko site (JA), only total 
net derived carbon is reported (grey bar).

Fig. 2 - Relationships between soil 
C:N stoichiometry and gross primary 
productivity (GPP - panel A) or net 
soil C sequestration (panel B) as re-
lated to soil C:N ratio. Dashed lines 
represent 95% confidence interval; 
the reported R2 is the adjusted R2.

Fig. 3 - Relationships between soil 
C:N stoichiometry and ΔCwood-to-
GPP ratio (panel A), or ΔCsoil : (Net-
Croot + litterfall) ratio (panel B). 
Dashed lines represent 95% confi-
dence interval; the reported R2 is the 
adjusted R2.
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cluding additional fertile forests from diffe-
rent regions (Tab. 2). In particular, a positive
relationship was found between  ANPP:GPP
and soil C:N for high fertility (sensu Vicca et
al. 2012) sites (adjusted-R2 = 0.64; p = 0.03;
Fig.  4). Conversely,  no significant  relation-
ship was detected for low and medium ferti-
lity sites.

Discussion and conclusions
To our knowledge, this study is the first to

quantify Net-Croot in a range of forest ecosys-
tems. The measurement of Net-Croot in situ is
difficult,  thus  measured  values  are  lacking
and modeled estimates cannot be validated.
However, the in-growth core isotope techni-
que has already been shown to allow detec-
tion of changes in  Net-Croot in CO2 and cli-
mate  manipulation  experiments  (Hoosbeek
et al. 2004, Cotrufo et al. 2011), even though
it does suffer from several caveats related to
the use of an exogenous soil and high spatial
variability. Steingrobe et al. (2000) reviewed
the  in-growth  core  method  for  measuring
gross root growth: a first shortcoming asso-
ciated with this method is achieving the soil
conditions inside the bag similar to the bulk
soil.  Moreover,  soil  texture  has  also  been
shown to significantly influence rhizodeposi-
tion rates (Scandellari et al. 2010), although
it is difficult to determine whether soil tex-
ture influenced rhizodeposition rates in our
study.

Our  estimates  of  Net-Croot using  the  in-
growth core isotope technique were on ave-
rage 606 g C m-2 y-1, which is higher than va-
lues reported by  Cotrufo et al. (2011) for a
Arbutus  unedo L.  coppice  in  dry Mediter-
ranean conditions, but lower than values re-
ported by Hoosbeek et al. (2004) for an irri-
gated and fertilized poplar plantation in cen-
tral Italy. A possible overestimation of  Net-
Croot can be also related to the fact that a cer-
tain  amount  of  fine  root  fragments  could
have passed through the 2 mm sieve. Such
an amount is a function of root integrity as
affected by plant age and sample processing.
Being aware of this possible overestimation
and of the above-mentioned limitations asso-
ciated with the in-growth core isotope tech-
nique,  in  this  study we  used  Net-Croot esti-
mates solely as an indicator of differences in
the effect of root-derived C on SOC seques-
tration  through  the  calculation  of  the  ratio
ΔCsoil : (Net root-derived C + litterfall C).

Many factors have been suggested to affect
soil C sequestration, including the characte-
ristics of input material, soil texture and mi-
neralogy,  climatic  factors,  and soil  nutrient
status (Galantini et al. 1992, Andrén & Kät-
terer 1997,  Janssens et al. 2010). We found
that the proportion of root C input resulting
in C sequestration at these high fertility sites
was related to soil C:N ratio, and soil C se-
questration was greater at low C:N (Fig. 2b)
therefore confirming our hypothesis. Recen-

tly,  Manzoni et al. (2012) suggested a C-to-
nutrient stoichiometric control on microbial
C use efficiency (CUE), which would increa-
se with increasing nutrient availability.  The
importance of CUE as a determinant of the
fate of plant inputs to soils has also been re-
cognized by other recent studies (Schimel &
Schaeffer  2012,  Cotrufo  et  al.  2013)  and
some models have suggested that low nutri-
ent  availability,  particularly N,  might  limit
soil  C storage through mechanisms that are
still not completely understood (Rastetter et
al.  1997,  Hungate  et  al.  2003).  Recently,
Kirkby et  al.  (2013) hypothesized  that  the
sequestration of C-rich crop residue material
into SOM could be improved only by adding
supplementary nutrients,  as the more stable
SOM fraction has more N, P and S per unit
of C than the plant material input due to mi-
crobial  reprocessing.  Thus,  the  increase  in
soil C sequestration at lower soil C:N values
observed in this study may be explained by a
higher microbial CUE of root C inputs.

Soil C:N exerted a strong control on  GPP
across  our  six  forests  and  GPP increased
with decreasing soil C:N (Fig. 2a). This rela-
tionship is based on six forest sites and we
cannot exclude the possibility that other fac-
tors influenced this relation.  At the ecosys-
tem scale, variation in global plant produc-
tivity across ecosystems has often been re-
lated  to  environmental  factors  (Field  et  al.
1995,  Reichstein  et  al.  2007b),  but  also to
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Fig.  4 -  Relationships  between  soil  C:N  stoichiometry  and  the
ANPP:GPP ratio at forest sites with different fertility levels. For the
complete list of sites see Tab. 2. Dashed lines represent 95% confi-
dence intervals. The six sites considered in the present study are la-
beled as reported in Tab. 1. Eucalyptus saligna plantations (Tab. 2)
have been averaged by stand age and vertical bars indicate standard
deviation. The reported R2 is the adjusted R2.

Fig. 5 - Schematic representation of the proposed dynamics of gross
(GPP)  and  aboveground  net  primary  production  (ANPP)  with
changes in nutrient  availability.  At high fertility sites (such as the
sites considered in the present paper),  GPP,  ANPP and soil C se-
questration (ΔC) changes are controlled by soil C:N stoichiometry.
At low soil C:N ratio, C sink allocation shifts from NPP to soil C se-
questration.
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nutrient  availability (Vicca et  al.  2012).  In
this  context,  Zha  et  al.  (2013) reported  a
strong positive relationship between GPP or
NPP and  total  soil  N.  Across  our  sites,
ΔCwood and ANPP increased slightly, but not
significantly with  increasing  soil  C:N,  and
showed  significant  relations  with  MAT,
MAP  and  stand  age,  thus  confirming  pre-
vious studies (Curtis et al. 2002,  Hsu et al.
2012, Robinson et al. 2012, He et al. 2012).
How such different  behavior  between  GPP
and ΔCwood or ANPP with respect to soil C:N
could be explained? We suggest that this re-
sult  is  due  to  the  lower  demand  for  N by
woody tissues  (which  comprise  the  largest
fraction of the tree and are characterized by
very high C:N) as compared to green leaves
(which control  GPP,  and have much lower
C:N than woody tissues). As a result of these
variations in both GPP and ANPP, the ratio
between ANPP and GPP varied substantially
among our six forest sites.

Following  the  distinct  patterns  of  ANPP
and GPP versus soil C:N, the ANPP-to-GPP
ratio significantly increased with increasing
soil C:N (Fig. 2a). At first sight, this seems
to contradict  the current understanding that
partitioning  of  photosynthates  into  above-
ground  biomass  increases  with  increasing
nutrient  availability across a wide range of
forests (Vicca et al. 2012). However, all six
forest sites had high nutrient availability but,
at  those sites where soil  N presumably ex-
ceeded tree demand for wood growth  (i.e.,
sites  with  low  C:N),  root  C  inputs  were
probably responsible for the higher net soil
C sequestration.  We speculate that the link
between soil  C:N stoichiometry and micro-
bial activity controls C sequestration below-
ground, as well as for the increase in ANPP-
to-GPP ratio with increasing soil C:N across
the  high  fertility  forests  in  our  dataset.  At
soil  C:N below 15,  CUE is expected to  be
high, and more of the fresh C input is used
for  microbial  products,  resulting in  the net
formation  of new SOM.  Conversely,  when
C:N is high, microbes have a low C use effi-
ciency and therefore they respire more of the
fresh C inputs and prime SOM decomposi-
tion (Fontaine et al. 2004), which increases
N availability and supports a higher alloca-
tion of fixed C (GPP) to  ANPP. Our obser-
vations  of  increasing  ANPP-to-GPP ratio,
and the tendency for a decrease in soil C se-
questration  with  increasing  soil  C:N  (Fig.
2b), support this hypothesis.

In order to further test this hypothesis, we
analyzed a larger dataset. Also in this case,
ANPP-to-GPP ratios  were  quite  variable
(average ANPP:GPP = 0.28 with SD = 0.10;
Tab. 2) and our analysis confirmed the rela-
tionship  between  ANPP-to-GPP ratio  and
soil C:N at sites with high fertility (Fig. 4).
At  sites  where  overall  nutrient  availability
was low, this relationship did not hold. Va-
riation  in  partitioning  of  GPP to  ANPP at

these sites is probably driven by the need for
plants to invest in the nutrient acquiring sys-
tem (i.e., roots and root symbionts - Vicca et
al. 2012). When nutrient availability is limi-
ted, belowground input by plants may be the
dominant  control  of  microbial  activity and
SOM  mineralization  (Hamilton  &  Frank
2001,  Wardle  et  al.  2004,  De Deyin  et  al.
2008,  De Graaff et al. 2010), thereby influ-
encing mineral nutrient availability for plant
uptake.  Our  speculation  is  also  consistent
with other recent findings. At the Duke Free
Air CO2 Enrichment (FACE) experiment, the
increase in the belowground C flux stimula-
ted microbial activity, accelerated SOM de-
composition, and stimulated tree uptake of N
bound to this SOM, sustaining ANPP (Drake
et al. 2011,  2013,  Phillips et al. 2012).  Yin
et al. (2013) found that an increase in the re-
lease of root  exudates  into the soil  was an
important  physiological  mechanism to  sus-
tain  growth  responses  of  plants  to  experi-
mental warming.

At our study sites, soil C:N stoichiometry
appeared to be weakly controlled by the soil
clay content (p = 0.15 - Tab. S1 in Appendix
1), decreasing with increasing %clay in soil.
This is consistent with our knowledge of soil
primary organo-mineral particles, which de-
scribes clay-associated SOM as the fraction
with the highest microbial  contribution and
lowest C:N ratio (Christensen 1992, Grandy
& Neff 2008).

In  conclusion,  our  results  suggest  that  a
specific  site  property,  such  as  soil  texture,
could drive soil C:N stoichiometry which in
turn would control ecosystem C uptake and
partitioning  within  forests  of  high  nutrient
availability. While GPP strongly and linearly
increased  with  increasing  soil  N,  above-
ground tree biomass demand for N appeared
to  saturate,  possibly because  of  the  higher
C:N of wood  vs. green leaves, and, at high
nutrient availability, NPP became limited by
other  environmental  factors.  When this  oc-
curs, more C is sequestered by soil (Fig. 5),
where the high N availability promotes CUE
efficiency and new SOM formation.
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Box S1 - Nutrient classification.
Tab. S1 - Spearman correlation matrix for 
the six Mediterranean forests considered in 
the study.
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