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 20 

Abstract. Global ecosystem models may require microbial components to accurately 21 

predict feedbacks between climate warming and soil decomposition, but it is unclear what 22 

parameters and levels of complexity are ideal for scaling up to the globe.  Here we conducted a 23 

model comparison using a conventional model with first-order decay and three microbial models 24 

of increasing complexity that simulate short- to long-term soil carbon dynamics. We focused on 25 

soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios 26 

were implemented in all models at a common reference temperature (20°C): constant CUE (held 27 

at 0.31), varied CUE (-0.016°C-1), and 50% acclimated CUE (-0.008°C-1).  Whereas the 28 

conventional model always showed soil carbon losses with increasing temperature, the microbial 29 

models each predicted a temperature threshold above which warming led to soil carbon gain.  30 

The location of this threshold depended on CUE scenario, with higher temperature thresholds 31 

under the acclimated and constant scenarios.  This result suggests that the temperature sensitivity 32 

of CUE and the structure of the soil carbon model together regulate the long-term soil carbon 33 

response to warming.  Equilibrium soil carbon stocks predicted by the microbial models were 34 

much less sensitive to changing inputs compared to the conventional model.  Although many soil 35 

carbon dynamics were similar across microbial models, the most complex model showed less 36 

pronounced oscillations.  Thus adding model complexity (i.e. including enzyme pools) could 37 

improve the mechanistic representation of soil carbon dynamics during the transient phase in 38 

certain ecosystems.  This study suggests that model structure and CUE parameterization should 39 

be carefully evaluated when scaling up microbial models to ecosystems and the globe.   40 

Key words:  Warming, soil organic matter decomposition, first-order decay model, 41 

microbial-enzyme model, carbon use efficiency, temperature threshold, microbial acclimation, 42 

model complexity43 



 44 

1. Introduction 45 

 Soil carbon (C) is the largest organic C pool in terrestrial biosphere (Jobbagy and Jackson 46 

2000).  Microbial communities are the primary drivers of soil organic matter (SOM) 47 

decomposition, and climate change effects on microbial physiology can affect the rates of C 48 

cycling processes (Bradford et al. 2008, Malcolm et al. 2008).  Therefore, accounting for the 49 

response of microbial communities to environmental parameters in Earth system models may be 50 

needed to adequately predict feedbacks between global change and the decomposition of soil 51 

organic C (Friedlingstein et al. 2006, Thornton et al. 2009).  Recently, model simulations of 52 

global soil C stocks were substantially improved by integrating microbial processes (Wieder et 53 

al. 2013).  Such microbial models hold promise for improving predictions of climate effects on 54 

soil decomposition, yet the regulatory mechanisms governing microbial processes remain a 55 

major gap in understanding (Ågren and Wetterstedt 2007). 56 

Extracellular enzymes produced by microbes are responsible for the degradation of 57 

complex organic C that is ultimately taken up by microbial biomass and released to the 58 

atmosphere as CO2 (Sinsabaugh et al. 1991, Schimel and Weintraub 2003).  In contrast to the 59 

assumptions of conventional first-order decomposition models (Parton et al. 1988), SOM 60 

decomposition rates depend on not only the size of the soil C pool but also on the size and 61 

composition of the decomposer microbe pool (Schimel and Weintraub 2003).  As climate 62 

changes, soil carbon stocks will likely depend on sequestration and loss pathways regulated by 63 

microbial physiology (Schimel 2013), and first-order models may have difficulty simulating 64 

climate responses over short time scales (Manzoni and Porporato 2007, Lawrence et al. 2009).  65 

Yet even with recent advances in microbial models, nearly 50% of the spatial variation in global 66 



soil C stocks is still unexplained (Wieder et al. 2013).  Therefore, identifying accurate and simple 67 

models at microbial to ecosystem scales is essential for improving global soil models. 68 

Microbial growth depends on carbon use efficiency (CUE), defined as the fraction of C 69 

uptake allocated to growth (del Giorgio and Cole 1998).  In general, CUE decreases as 70 

temperature increases, but terrestrial decomposers show variable CUE responses to temperature 71 

(Manzoni et al. 2012).  CUE also varies with decomposer group and substrate chemistry (Six et 72 

al. 2006, Frey et al. 2013). This variation implies that CUE responses may change across 73 

environmental gradients.  For example, CUE acclimation under warming can explain declines in 74 

soil respiration, microbial biomass, and enzyme activity following an ephemeral increase in soil 75 

respiration (Allison et al. 2010, Zhou et al. 2012).  In the longer term, adaptive mechanisms that 76 

make a microbial community more efficient at decaying stable SOM could enhance the positive 77 

feedback between soil and climate (Frey et al. 2013).  However, conventional models that 78 

assume first-order decay during SOM decomposition do not include these mechanisms (Todd-79 

Brown et al. 2012). As a key variable in microbial function, parameterizing CUE and its 80 

response to temperature is essential for predicting soil responses to climate change (Luo et al. 81 

2001, Bradford et al. 2008). 82 

Recently, several microbial models have been developed to simulate warming effects on 83 

SOM decomposition (Allison et al. 2010, German et al. 2012, Wang et al. 2013a). These models 84 

are similar in basic structure and key biogeochemical processes but differ in model complexity 85 

and reference temperature.  Although such models are now being used at the global scale 86 

(Wieder et al. 2013), there have been few efforts to compare model structures and behaviors 87 

relevant to this scaling process.  Specifically, we asked how microbial model predictions change 88 

with increasing model complexity, and whether these predictions differ fundamentally from 89 



models with a conventional structure.  As much as possible, we standardized parameters across 90 

four focal models and compared their predictions for soil C in response to temperature variation 91 

under three CUE scenarios.  We hypothesized that model predictions would vary widely based 92 

on CUE and its temperature response. We also expected that the magnitude of soil C response 93 

would be damped in models with more C pools.  This type of model comparison can help 94 

identify the fundamental microbial mechanisms regulating soil responses to warming and the 95 

appropriate level of mathematical complexity for future microbial models (Todd-Brown et al. 96 

2012). 97 

 98 

2. Model structures 99 

We compared microbial models from German et al. (2012), Allison et al. (2010), and 100 

Wang et al. (2013), referred to here as GER, AWB, and MEND, respectively.  We also analyzed 101 

the conventional model described in Allison et al. (2010) and referred to here as CON (Fig. 1).  102 

The CON model includes two soil C pools and a microbial C pool that produce CO2 through 103 

first-order decay, similar to structures used in current Earth system models (Todd-Brown et al. 104 

2012).  The differential equations underlying all four models are given in Appendix A. 105 

The microbial models share a similar structure characterized by dependence of soil C 106 

fluxes on microbial biomass pools (Fig. 1).  GER is the simplest microbial model with a single 107 

soil organic C (SOC) pool whose decomposition rate depends on microbial biomass C (MBC).  108 

AWB has two additional pools: extracellular enzyme C (ENZC) and dissolved organic C (DOC).  109 

DOC is produced from SOC as a function of ENZC, and MBC takes up DOC and produces 110 

ENZC.  MEND is the most complex model with SOC divided into particulate (POC) and mineral 111 

organic C (MOC), and ENZC divided into particulate (EP) and mineral enzymes (EM).  MEND 112 



also includes a mineral-adsorbed phase of DOC (i.e., QOC) regulated by temperature-dependent 113 

(Arrhenius) adsorption-desorption kinetics. 114 

In all microbial models, C inputs enter the SOC and/or DOC pools at a constant rate. 115 

SOC decomposition and DOC uptake follow the Michaelis-Menten equation (Eq. 1), and the 116 

maximum reaction rate and half saturation constant follow Arrhenius temperature dependence, 117 

which we express here in the form of Eq. 2, 118 
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where Y(T) is the C flux for SOC decomposition or DOC uptake; V(T), EB, C, and K(T) denote 119 

the maximum reaction rate, enzyme or microbial biomass, substrate concentration, and half 120 

saturation constant, respectively; V(Tref), Ea, R, and T denote the maximum reaction rate at 121 

reference temperature (Tref), energy of activation (kJ mol−1), gas constant (8.314 J mol−1 K−1) and 122 

simulation temperature (Kelvin), respectively.  The half saturation constants also follow an 123 

Arrhenius relationship with temperature (Eq. 2).  The original version of AWB used a linear 124 

relationship, but we used the Arrhenius relationship here to make the models more comparable. 125 

In all three microbial models, C is lost through growth respiration dependent on CUE 126 

following uptake of organic C.  MEND also includes a separate term for maintenance respiration 127 

with Arrhenius temperature dependence (Wang and Post 2012).  All models assume that carbon 128 

use efficiency (CUE, EC) varies with temperature based on a linear relationship (Devevre and 129 

Horwath 2000): 130 



 (3) 

where , , and m denote the CUE at simulation temperature T, the reference 131 

temperature ( ), and the temperature response coefficient (°C −1), respectively.  132 

Aside from their structure, the models in our analysis also differ in parameters (Table 133 

A1).  If the same parameter was included in multiple models, we used the parameter values from 134 

Wang et al. (2013) to make model predictions more comparable.  For unique parameters, we 135 

generally used parameter values given with the published version of the model.  Because we 136 

hypothesized that the models would be particularly sensitive to changes in CUE, we ran the 137 

models under three CUE scenarios.  In the “constant CUE” scenario, m = 0, such that CUE was 138 

constant at 0.31 under different temperatures.  This CUE is close to the value of 0.30 recently 139 

suggested for terrestrial ecosystems (Sinsabaugh et al. 2013).  In the “varied CUE” scenario, m = 140 

–0.016ºC–1, as in Allison et al. (2010).  Finally, the “acclimated CUE” scenario mimics 50% 141 

thermal acclimation of microbial physiology with m = –0.008ºC–1.  All scenarios used Tref = 142 

20°C and  = 0.31.  CON does not include an explicit CUE, but the coefficients that specify 143 

partitioning of fluxes into CO2 versus C pools are analogous. Therefore we applied the CUE 144 

scenarios to CON by setting these partition coefficients equal to the CUE values from each 145 

scenario. 146 

To test model sensitivities to temperature and CUE scenario, we analyzed C pools and 147 

CO2 efflux at equilibrium and during the transient phase following temperature increase.  148 

Equilibrium pool sizes and efflux were determined analytically by solving the differential 149 

equations for each model at steady state (Appendix A).  Transient dynamics were simulated 150 

following perturbation of the equilibrium model state at 20°C under constant, varied and 151 



acclimated CUE scenarios.  Simulations were run for 100 years at 25°C, representing 5°C 152 

warming.  By definition, CO2 efflux must always return to the equilibrium value (equal to inputs) 153 

because respiration is the only output flux in these models.  We report relative changes (%) in C 154 

pool sizes and CO2 efflux compared to equilibrium values at the reference temperature under 155 

different CUE scenarios and between models. 156 

Because we are ultimately interested in how model predictions will differ under climate 157 

change, we conducted a detailed temperature sensitivity analysis.  Warming can induce two 158 

opposite effects on SOC decomposition in microbial models.  First, temperature increase 159 

enhances maximum reaction rates for SOC decomposition and DOC uptake by microbes (Eqs. 1 160 

and 2). Second, warming decreases CUE which then reduces microbial biomass and enzyme 161 

production.  Because MBC or ENZC is a controlling variable in Eq. 1, the decrease in CUE due 162 

to warming could act as negative feedback on SOC decomposition and DOC uptake.  That is, 163 

there must exist a threshold temperature at which the decline in microbial biomass exactly offsets 164 

the positive effect of warming on C decomposition and uptake. We determined this threshold 165 

temperature in both models at steady state across a range of m values. 166 

 167 

3. Results 168 

3.1 Soil decomposition dynamics at steady state 169 

Under the reference temperature (i.e. 20°C) and parameterization, steady state C pool 170 

sizes differed somewhat between models (Table 1).  CON and AWB had similar SOC (33.3 vs. 171 

37.8 mg C g-1 soil) with more SOC in MEND and less in GER.  MBC was similar in all three 172 

microbial models (0.25-0.26 mg C g-1 soil), but substantially lower in CON.  DOC was similar in 173 

AWB and CON (0.03-0.04 mg C g-1 soil) but nearly five-fold greater in MEND.  ENZC was 174 



only 0.0014 mg C g-1 soil and almost identical in AWB and MEND.  MOC and POC pools in 175 

MEND were about 85% and 13% of SOC, respectively, with the remaining pools accounting for 176 

< 2% of SOC; QOC was 5.4 times DOC at steady-state. 177 

The CON model showed consistent declines in SOC, DOC, and MBC pools with 178 

increasing temperature across all CUE scenarios, which contrasts with the range of responses 179 

predicted by the microbial models (Fig. 2).  Most steady-state pools in the microbial models 180 

changed with temperature, with the direction of change depending on the CUE scenario and 181 

model (Fig. 2). However, DOC and QOC temperature responses in MEND were similar across 182 

all CUE scenarios (Fig. S1). Subsequently, we present the changes in each specific C pool with 183 

temperature under each CUE scenario and across the four models.  The results below are 184 

presented in Fig. 2 and Fig. S1 unless otherwise noted. 185 

SOC: Under constant CUE, SOC declined with increasing temperature in all models but 186 

with greater relative changes in AWB and MEND than in CON and GER at lower temperatures 187 

(Fig. 2).  Under varied and acclimated CUE scenarios, SOC response to temperature differed 188 

between CON and the microbial models (Fig. 2).  In CON, SOC always monotonically decreased 189 

with increasing temperature.  In the microbial models, equilibrium SOC declined with increasing 190 

temperature to a point but then increased again.  This point, or temperature threshold, was higher 191 

in GER than in the other microbial models and increased with greater acclimation of CUE (Fig. 192 

3).  Under varied CUE, minimum SOC in AWB and MEND occurred at 1.45°C and 0.90°C, 193 

corresponding to CUEs of 0.61 and 0.62, respectively. The temperature threshold for GER under 194 

the varied CUE scenario was 7.95°C (corresponding CUE = 0.50).  Under acclimated CUE, SOC 195 

declined with temperature in AWB and MEND up until thresholds of 19.15°C and 18.65°C 196 

(CUE = 0.317 and 0.321, respectively), whereas the threshold in GER under this scenario was 197 



21.80°C (CUE = 0.236). Thus as CUE became less sensitive to temperature (greater 198 

acclimation), the temperature threshold for minimum equilibrium SOC shifted to warmer values 199 

(Fig. 3).  If there is no CUE temperature sensitivity (constant CUE scenario), the microbial 200 

models converge on the CON prediction of monotonic decline in SOC storage with increasing 201 

temperature (Fig. 3). 202 

In MEND, equilibrium MOC responses were nearly identical to SOC in all CUE 203 

scenarios (Fig. S1). In contrast, equilibrium POC increased at a slower rate than SOC and MOC 204 

as temperature declined (Fig. S1).   205 

DOC: In CON, equilibrium DOC monotonically decreased with increasing temperature 206 

under all CUE scenarios (Fig. 2).  In AWB, DOC followed SOC under each CUE scenario.  In 207 

contrast, DOC always increased with increasing temperature in MEND, and the magnitude of 208 

increase was identical across CUE scenarios (Fig. 2).  QOC always declined with increasing 209 

temperature in MEND, and the decline was also identical across CUE scenarios (Fig. S1). 210 

ENZC: The ENZC response to temperature was identical between AWB and MEND with 211 

no change under constant CUE and greater declines with increasing temperature from acclimated 212 

to varied CUE scenarios (Fig. 2).  In MEND, EM and EP responses to temperature both tracked 213 

ENZC in all CUE scenarios with the greatest declines with increasing temperature under the 214 

varied CUE scenario (Fig. S1). 215 

MBC: Equilibrium MBC generally declined with increasing temperature except in GER 216 

and AWB under constant CUE where there was no change (Fig. 2).  The MBC response to 217 

temperature was identical to ENZC in AWB.  The magnitude of MBC changes with temperature 218 

depended on CUE scenario, with the greatest declines in the varied CUE scenario and the 219 

smallest changes in the constant CUE scenario for the three microbial models.  The magnitudes 220 



of MBC change predicted by all models followed the order: CON > MEND > AWB = GER 221 

below the reference temperature (i.e. 20°C). 222 

3.2 Soil decomposition dynamics during transient phase 223 

Most C pools and CO2 efflux reached steady state after 50-100 years in all models, except 224 

those in GER, which required 100 years or more to reach steady state (Fig. 4).  Transient 225 

responses to 5ºC warming differed between CON and the microbial models.  With CON, all pool 226 

sizes declined monotonically to equilibrium whereas the microbial models showed oscillations 227 

during the transient phase.  These oscillations had the greatest magnitude in GER and the highest 228 

frequency in MEND.  Oscillations tended to be weakest in the acclimated CUE scenario and 229 

strongest in the varied CUE scenario, which also showed the largest absolute change in SOC at 230 

equilibrium. The amplitude of the oscillations was largest for CO2 efflux, with the range 231 

exceeding 100% relative change for GER and AWB in the early years of the constant and varied 232 

CUE scenarios.  The dynamics for MBC and ENZC were similar to CO2 but with slightly lower 233 

magnitudes of oscillation. In MEND, MOC dynamics were similar to total SOC but with weaker 234 

oscillations.  Most of the oscillation in MEND SOC was driven by strong oscillations in POC, 235 

especially during the first 40 years and in the varied CUE scenario (Fig. S2). 236 

Equilibrium responses to a step increase of 5ºC from the numerical simulations were 237 

consistent with analytical solutions as a function of temperature.  Warming reduced equilibrium 238 

SOC in all models under constant CUE but increased SOC in the microbial models under varied 239 

and acclimated CUE scenarios (Fig. 4). Equilibrium DOC showed little response to warming in 240 

MEND, but declined under constant CUE and increased under varied CUE in AWB.  Across all 241 

models, equilibrium MBC declined more with warming as the temperature sensitivity of CUE 242 

increased.  The magnitude of decline followed the order CON > MEND > AWB = GER 243 



regardless of CUE scenario.  In AWB and MEND, the warming response of equilibrium ENZC 244 

was similar to MBC, although the equilibrium ENZC was identical in the two models, unlike 245 

with MBC.  EP and EM in MEND showed warming responses very similar to total ENZC (Fig. 246 

S2).  Equilibrium CO2 efflux always converged on 0% relative change in all models and 247 

scenarios, consistent with inputs = outputs at steady state (Fig. 4). 248 

 249 

4. Discussion 250 

4.1 Model comparison 251 

 Based on the model analytical solutions, CON showed fundamentally different responses 252 

to temperature and CUE change relative to the microbial models (Fig. 3). The microbial models, 253 

while differing in the number of pools and some parameter values, generally showed similar 254 

responses to temperature and CUE change. For example, the steady-state SOC pool in CON was 255 

proportional to SOC inputs and inversely proportional to the SOC decay constant, which 256 

increased exponentially with temperature (Eq. A10).  Thus the main effect of temperature 257 

increase in CON was to increase the decay constant and reduce the equilibrium SOC pool.  In 258 

contrast, SOC in the microbial models depended primarily on microbial parameters.  In GER for 259 

example, equilibrium SOC was proportional to microbial turnover and enzyme Km but inversely 260 

proportional to CUE and enzyme Vmax (Eq. A17).  As temperature increases in the microbial 261 

models, the direction of SOC change depends on the balance between increases in Km and 262 

declines in CUE, both of which tend to increase SOC, and increases in Vmax, which tend to 263 

reduce SOC. 264 

4.2 CUE and model complexity influence soil C response to warming 265 



 We found that the microbial models, but not CON, predicted a threshold temperature 266 

corresponding to minimum soil C storage (Fig. 3).  This threshold is important because it 267 

determines whether warming causes an increase or decrease in soil C storage in a given 268 

ecosystem.  Cooler ecosystems with mean temperatures below the threshold should lose soil C 269 

with warming, whereas ecosystems with mean temperatures above the threshold should gain soil 270 

C with warming. Below the temperature threshold, the positive effect of warming on enzyme 271 

kinetics exceeds the negative effect of warming on CUE, microbial biomass, and enzyme 272 

production. Above the threshold, an increment of warming has a greater relative impact on CUE 273 

(which declines linearly toward zero with increasing temperature) than on enzyme kinetics. 274 

 Our analysis shows that temperature thresholds depend on CUE scenario and model 275 

complexity.  For the microbial models, the greater the temperature sensitivity of CUE, the lower 276 

the temperature threshold for minimum SOC (Fig. 3).  Under varied CUE, the temperature 277 

thresholds fell well below the reference temperature, so warming increased SOC and/or DOC 278 

and decreased MBC, ENZC, and CO2 efflux.  Under constant CUE, temperature thresholds were 279 

not observed, so warming decreased SOC and DOC and generally increased MBC, ENZC, and 280 

CO2 efflux. Which of these scenarios will prevail in the coming century is unclear; soil CUE 281 

usually decreases with warming (Manzoni et al. 2012), but the response can vary with ecosystem 282 

and substrate chemistry (Frey et al. 2013).  It is also possible that microbial CUE will adapt or 283 

acclimate to warming temperatures (Allison et al. 2010).   284 

We found that the two microbial models with more C pools (i.e. AWB and MEND) 285 

predicted different temperature thresholds than the simpler GER model for a given CUE scenario 286 

(Fig. 3).  For instance, under varied CUE, the threshold temperatures were 0.90, 1.45, and 287 

7.95°C for MEND, AWB, and GER, respectively.  When the CUE sensitivity to temperature was 288 



intermediate (i.e. acclimated CUE), the threshold temperature was closer among models but still 289 

followed the ranking MEND < AWB < GER.  We attribute these differences in threshold 290 

temperature to differences in model complexity, given that temperature and CUE were equal 291 

across the models. Complexity includes both the difference in model structure—i.e. more pools 292 

(MBC and ENZC) in AWB and MEND than GER—and the parameters associated with those 293 

additional pools.  Both factors likely contribute to the inter-model differences in threshold 294 

temperature.  However, the increased complexity of MEND relative to AWB led to a relatively 295 

minor difference (<0.6 ºC) in the temperature threshold between these models.  Thus subdivision 296 

of major C pools into sub-components (i.e. MOC, POC, EM, and EP) had relatively little effect 297 

on model predictions, at least under the CUE scenarios and parameters we examined. 298 

4.3 Differences in decomposition dynamics between models 299 

The three microbial models showed warming responses distinct from the conventional 300 

model.  This difference is mainly attributed to microbial control over decomposition through 301 

enzyme-mediated processes (Schimel and Weintraub 2003) which are absent from first-order 302 

decay models (Parton et al. 1987).  Including microbial-enzyme processes couples the dynamics 303 

of SOC and MBC pools, which has two main consequences in our analysis.  First, reductions in 304 

microbial biomass that occur due to warming effects on CUE tend to increase SOC pool sizes.  305 

Thus the microbial models lose SOC under constant CUE and gain SOC under varied CUE 306 

whereas CON always loses SOC with warming.  Second, the coupling of the soil C and MBC 307 

pools results in damped oscillations reminiscent of predator-prey dynamics. The amplitude and 308 

period of oscillation depend on model parameters, specifically CUE, Vmax, and Km (Wang et al. 309 

2013b). Though some first-order systems could also show damped oscillations (Bolker et al. 310 



1998), CON did not, suggesting that its pools are not sufficiently coupled to produce oscillatory 311 

responses to temperature change under these parameters. 312 

Among the microbial models, oscillations were generally weaker in MEND and in the 313 

acclimated CUE scenario.  Greater complexity in MEND’s structure likely contributed to 314 

weakened oscillations, especially in relation to MOC, the largest SOC pool in MEND.  The 315 

MOC pool receives inputs from POC decomposition and loses C through MOC decomposition 316 

(Eq. A45), whereas the SOC pools in the other microbial models receive constant external 317 

inputs.  The structure of MEND means that changes in microbial biomass and associated enzyme 318 

production have counterbalancing effects on MOC inputs and losses, thereby weakening MOC 319 

oscillations.  For example, warming under varied CUE reduced MOC decomposition by EM but 320 

also reduced MOC inputs from POC decomposition by EP (Fig. S2).  Weaker oscillations 321 

occurred under acclimated CUE in all microbial models because initial pool sizes were closer to 322 

equilibrium pool sizes in this scenario.  There was almost no net change in SOC with warming 323 

because the temperature threshold for minimum SOC was near 20ºC for all three models under 324 

acclimated CUE (Fig. 3). 325 

Although the microbial models tended to show similar behaviors, we did find contrasting 326 

DOC dynamics between AWB and MEND during the transient phase.  In both models, DOC 327 

pools are primarily controlled by inputs from SOC decomposition, but MEND has multiple SOC 328 

pools that contribute to DOC flux.  In AWB, increased decomposition of a single SOC pool 329 

results in greater DOC production pool under constant CUE, whereas reduced SOC 330 

decomposition reduces DOC under varied CUE.  In MEND, the dynamics are more complex 331 

because DOC dynamics are also influenced by decomposition of the POC pool. Under constant 332 

CUE in MEND, the POC pool decomposes rapidly at first and supplies increased DOC.  After a 333 



few years, POC decomposition slows and POC pool size starts to recover, leading to lower DOC 334 

production and oscillations in DOC pools.  Similar controls act in the varied and acclimated CUE 335 

scenarios, but the POC pool increases or changes little initially (due to reduced MBC), resulting 336 

in reduced DOC production.  In MEND, the QOC pool equilibrates with DOC through sorption-337 

desorption, and therefore the two pools show very similar dynamics. 338 

4.5 Implications for global soil C projections  339 

Our analyses show that both conventional and microbial models predict soil C losses in 340 

the decade immediately following warming.  Thus all of these models are consistent with short-341 

term observations from field and laboratory warming experiments (McGuire et al. 1995, Rustad 342 

et al. 2001, Melillo et al. 2002, Hartley et al. 2007, Bradford et al. 2008, Hartley et al. 2008, 343 

Melillo et al. 2011).  However, our conventional model could not replicate the relatively rapid 344 

attenuation of soil respiration that is often observed following the initial increase (Luo et al. 345 

2001, Knorr et al. 2005, Hartley et al. 2007, Bradford et al. 2008, Hartley et al. 2008, Zhou et al. 346 

2012, Tucker et al. 2013).  Ultimately, depletion of SOC and DOC substrates reduces CO2 efflux 347 

to pre-warming levels even in CON, but this attenuation requires nearly 5 decades.  In contrast, 348 

attenuation has the potential to be much more rapid in the microbial models, albeit followed by 349 

damped oscillations (Fig. 4).  Other studies also show that microbial mechanisms are required to 350 

explain soil respiration responses.  For example, including enzyme and microbial controls on 351 

decomposition improved the ability to simulate rewetting dynamics (Lawrence et al. 2009).   352 

Our analysis reveals model properties that are relevant for scaling up microbial processes 353 

to the globe.  In the microbial models, equilibrium SOC responses to warming depend on the 354 

initial soil temperature (Fig. 3).  At initial temperatures below 8ºC in GER or 1ºC in AWB and 355 

MEND, SOC declines in response to warming under the varied CUE scenario, and the 356 



temperature threshold increases as the temperature sensitivity of CUE declines.  Thus the models 357 

would predict SOC losses with warming in cold biomes, such as arctic tundra (Fig. 3).  The 358 

losses increase with lower temperature sensitivity of CUE.  Warmer regions such as the tropics 359 

could experience minimal SOC losses or even gains with warming, especially if CUE is highly 360 

sensitive to temperature.  This finding is consistent with observations that the temperature 361 

sensitivity of SOC decomposition is regulated by native soil temperature (Ågren and Bosatta 362 

2002). 363 

Another key feature of the microbial models is a decoupling between equilibrium SOC 364 

and inputs.  Whereas SOC pool sizes are directly proportional to inputs in conventional models, 365 

inputs have different effects on equilibrium SOC in the microbial models (Wang et al. 2013b)  In 366 

GER, equilibrium SOC has no mathematical dependence on inputs (Eq. A17), and in AWB and 367 

MEND, equilibrium SOC depends on the ratio of SOC to DOC inputs but not the total amount 368 

(Eqs. A29 and 52-53).  This result explains why Allison et al. (2010) did not observe significant 369 

changes in soil C when SOC and DOC inputs were both either increased or decreased.  Likewise, 370 

Wieder et al. (2013) observed little change in predicted global soil C following a simulated 20% 371 

increase in global litter inputs.  In these microbial models, MBC is directly proportional to inputs 372 

such that increased inputs stimulate microbial growth and SOC turnover.  This prediction, while 373 

at odds with conventional models, is consistent with an analysis showing that NPP explains 374 

under 10% of the global spatial variation in SOC stocks (Todd-Brown et al. 2013).  However, 375 

additional empirical analyses are needed to confirm whether spatial variation in SOC stocks is 376 

better explained by microbial parameters. 377 

  378 

5. Conclusion 379 



Recent papers have called for integration of microbial-scale models into broad-scale land 380 

models (Todd-Brown et al. 2012, Treseder et al. 2012). Such efforts could help resolve the 381 

uncertainty in predictions from these broad-scale models (Todd-Brown et al. 2013, Wieder et al. 382 

2013).  Our model comparison indicates that both model complexity and the extent of CUE 383 

acclimation regulate decomposition dynamics with warming over decadal to centennial time 384 

scales.  Furthermore, different model structures and parameterization resulted in different 385 

predictions for C pool responses to warming.  Temperature thresholds that affect the magnitude 386 

and direction of SOC response to warming appear to be a common feature of microbial models.  387 

In addition, the most complex microbial model predicted less pronounced oscillations in soil C 388 

pools and fluxes. Together, these findings suggest that relatively simple microbial models could 389 

represent long-term SOC responses to climate, especially given the rapidly increasing 390 

availability of observations at short-term to long-term time scales. 391 

Although the microbial models we analyzed made largely similar predictions at 392 

equilibrium, more complex models could improve the mechanistic representation of SOC 393 

dynamics on decadal time scales.  Continuous change in climate over time may prevent soils 394 

from reaching equilibrium and require models that accurately predict transient dynamics.  395 

Whether these dynamics will take the form of strong oscillations is unclear, since global 396 

warming will occur gradually over decades to centuries, rather than as a step change in 397 

temperature.  In addition, we cannot rule out the need for more complex models to describe short 398 

term processes in soil C dynamics (Zelenev et al. 2005) or other mechanisms that were not 399 

explored here, such as physiochemical changes, priming, and nitrogen interactions (Thornley and 400 

Cannell 2001, Fontaine et al. 2003, Thornton et al. 2009, Kuzyakov 2010, Li et al. 2013).  Still, 401 



our approach should be useful for optimizing microbial model complexity before integration into 402 

larger-scale models. 403 
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Appendix A 415 
 416 
Conventional model (CON) 417 
The conventional model is representative of first-order models of soil organic carbon (SOC) 418 
dynamics. This model includes SOC, dissolved organic C (DOC), and microbial biomass C 419 
(MBC) pools with the decomposition rate of each pool represented as a first-order process. The 420 

decay constant  increases exponentially with temperature according to the Arrhenius 421 

relationship: 422 

    
(A1) 

where  is the decay constant at the reference temperature Tref (Kelvin), and  is the 423 

activation energy with i = D, S, or C representing DOC, SOC, and MBC pools, respectively. R is 424 
the ideal gas constant, 8.314 J mol-1 K-1. Decomposition of each pool is represented as: 425 

 (A2) 

 (A3) 

 (A4) 

The change in the SOC pool is proportional to external inputs (IS), transfers from the other pools, 426 
and losses due to first-order decomposition: 427 

 
(A5) 

where  is the transfer coefficient from the DOC to the SOC pool,  is the transfer 428 

coefficient from the MBC to the DOC and SOC pools, and  is the partition coefficient for 429 

dead microbial biomass between the SOC and DOC pools. Transfer coefficients can range from 430 
0.0 to 1.0, with lower values indicating a larger fraction of C respired as CO2. The change in the 431 
DOC pool is represented similarly, but includes a transfer from SOC to DOC in proportion to 432 

 and a loss due to microbial uptake, : 433 

 
(A6) 

The change in the microbial biomass pool is the difference between uptake and turnover, where u 434 
represents the fraction h-1 of the DOC pool taken up by microbial biomass: 435 

 
(A7) 

The CO2 respiration rate is the sum of the proportion of fluxes that do not enter soil pools: 436 



 (A8) 

 437 
Steady state analytical solution 438 

The steady-state analytical solutions for the DOC, SOC, and MBC pools in CON are:  439 

 
(A9) 

 
(A10) 

 
(A11) 

 440 
GER 441 
The GER microbial model represents SOC change as a function of input rate IS, microbial 442 
turnover rB, MBC, and extracellular enzyme Vmax and Km: 443 

 (A12) 

C inputs and dead biomass enter the SOC pool, and SOC is lost through decomposition, which is 444 
assumed to be a Michaelis-Menten process represented by the last term in Eq. A12. MBC change 445 
is a function of microbial turnover and assimilation of decomposed soil organic C, which occurs 446 
with C use efficiency EC: 447 

 (A13) 

where EC is a linear function of temperature with slope m: 448 

 (A14) 

The CO2 respiration rate (CR) is then the fraction of decomposition not assimilated by microbial 449 
biomass: 450 

 (A15) 



Vmax and Km have an Arrhenius dependence on temperature, similar to Eq. A1 in the conventional 451 
model: 452 

 
(A16) 

Steady state analytical solution 453 
The steady-state analytical solutions for the SOC and MBC pools in GER are:  454 

 
(A17) 

 
(A18) 

 where EC must be larger than rB/V, otherwise microbes cannot assimilate enough C to 455 
compensate for microbial turnover; if EC = 1, then microbes respire no C, all C is assimilated, 456 
and biomass grows indefinitely. 457 
 458 

 459 
AWB 460 
AWB is a more complex version of GER that includes explicit DOC and ENZC pools. Microbial 461 
biomass increases with DOC uptake (FU) times C use efficiency and declines with death (FB) and 462 
enzyme production (FE): 463 

 
(A19) 

where assimilation is a Michaelis-Menten function scaled to the size of the microbial biomass 464 
pool: 465 

 

  
(A20) 

Microbial biomass death is modeled as a first-order process with a rate constant : 466 

 (A21) 

Enzyme production is modeled as a constant fraction ( ) of microbial biomass: 467 

 (A22) 

Temperature sensitivities for V, VU, K, and KU follow the Arrhenius relationship as in Eq. A1. 468 
Note that this relationship differs from the published version of AWB that used a linear 469 
relationship for K and KU temperature sensitivity. We used the Arrhenius relationship here to 470 



facilitate comparison with the other models and used the parameter values from the linear 471 
relationship at 20ºC as the reference values in Eq. A1. CO2 respiration is the fraction of DOC 472 
that is not assimilated into MBC: 473 

 (A23) 

The enzyme pool increases with enzyme production and decreases with enzyme turnover: 474 

 
(A24) 

where enzyme turnover is modeled as a first-order process with a rate constant : 475 

 (A25) 

The SOC pool increases with external inputs and a fraction of dead microbial biomass ( ) and 476 

decreases due to decomposition losses: 477 

 
(A26) 

where decomposition of SOC is catalyzed according to Michaelis-Menten kinetics by the 478 
enzyme pool: 479 

 
(A27) 

The DOC pool receives external inputs, the remaining fraction of dead microbial biomass, the 480 
decomposition flux, and dead enzymes, while assimilation of DOC by microbial biomass is 481 
subtracted: 482 

 
(A28) 

 483 
Steady state analytical solution 484 
 The steady-state analytical solutions for SOC, DOC, MBC, and ENZC in AWB are: 485 

 

(A29) 

which simplifies to the following if ID = IS: 486 

 
(A30) 



 
(A31) 

 
(A32) 

 
(A33) 

 487 
MEND  488 
Five C pools are considered in MEND: (i) particulate organic carbon (POC, represented by the 489 
variable P in model equations), (ii) mineral-associated organic carbon (MOC, M), (iii) active 490 
layer of MOC (Q) interacting with dissolved organic carbon through adsorption and desorption, 491 
(iv) dissolved organic carbon (DOC, D), (v) microbial biomass carbon (MBC, B), and (vi) 492 
extracellular enzymes (EP and EM). The component fluxes are DOC uptake by microbes 493 
(denoted by the flux F1), POC decomposition (F2), MOC decomposition (F3), microbial growth 494 
respiration (F4) and maintenance respiration (F5), adsorption (F6) and desorption (F7), microbial 495 
mortality (F8), enzyme production (F9), and enzyme turnover (F10). Model equations for each 496 
component are listed as follows: 497 

 
(A34) 

 
(A35) 

 
(A36) 

 
(A37) 

 
(A38) 

 
(A39) 



 
(A40) 

 (A41) 

;  (A42) 

;  (A43) 

where Vi and Ki represent the Vmax and Km for enzymatic degradation of pool i, mR is the 498 
maintenance respiration rate, Qmax is the maximum DOC sorption capacity, Kdes and Kads are the 499 
specific adsorption and desorption rates, pi is the fraction of mR associated with production of 500 
enzyme i, and ri is the turnover rate of enzyme pool i. Vi, Ki, mR, Kdes, and Kads follow Arrhenius 501 
temperature sensitivity similar to Eq. A1, and EC is linearly dependent on temperature as in Eq. 502 
A14. The differential equations are as follows for the pools: 503 

 
(A44) 

 
(A45) 

 
(A46) 

 
(A47) 

 
(A48) 

 
(A49) 

 
(A50) 

and the CO2 respiration rate is calculated as: 504 



 (A51) 

MEND represents microbial respiration as a fraction of assimilation (Eqs. A37 and A38) whereas 505 
GER and AWB represent respiration as a fraction of microbial uptake (Eqs. A15 and A23); note 506 
that these representations are algebraically identical with respect to CUE. 507 
 508 
Steady state analytical solution 509 
 The steady state analytical solutions to the MEND differential equations are as follows: 510 

 

(A52) 

 

(A53) 

where 511 

 
(A54) 

Eqs. A52-A53 simplify to the following if ID << IP: 512 

 

(A55) 

 

(A56) 

 
(A57) 

 

(A58) 

 
(A59) 



 
(A60) 

 

(A61) 

 513 
514 



Table A1. Parameters used in model comparison. 515 
 516 
Model Parameter Description Value Units 

All 
 

Reference temperature 20 ºC 

 
 

CUE at reference temperature 0.31 mg C mg-1 C 

 
 

CUE change with temperature [0,-0.016] ºC-1 

     

CON  SOC input rate 0.00015 mg C g-1 soil h-1 

  DOC input rate 0.00001 mg C g-1 soil h-1 

 
 

SOC decay rate 5 10-6 mg C mg-1 C h-1 

 
 

DOC decay rate 0.001 mg C mg-1 C h-1 

 
 

MBC turnover rate  0.00028 mg C mg-1 C h-1 

  SOC activation energy 47 kJ mol-1 K-1 

  DOC activation energy 47 kJ mol-1 K-1 

  MBC activation energy  20 kJ mol-1 K-1 

  DOC to SOC transfer coefficient EC(T)  

  SOC to DOC transfer coefficient EC(T)  

  MBC to soil C transfer coefficient EC(T)  

  Fraction of dead MBC transferred to SOC 0.5  

  DOC uptake rate 0.0005 mg C g-1 DOC h-1 

     

GER  SOC input rate 0.00016 mg C g-1 soil h-1 

 
 

SOC reference Vmax 0.01 mg C mg-1 MBC h-1 

 
 

SOC reference Km 250 mg C g-1 soil 

  SOC Vmax activation energy 47 kJ mol-1 K-1 

  SOC Km activation energy 30 kJ mol-1 K-1 



  MBC turnover rate (same as kB,ref in CON) 0.00028 mg C mg-1 C h-1 

     

AWB  SOC input rate 0.00015 mg C g-1 soil h-1 

  DOC input rate 0.00001 mg C g-1 soil h-1 

 
 

SOC reference Vmax 1 mg C mg-1 C h-1 

 
 

DOC uptake reference Vmax (similar to Vref 
in GER) 

0.01 mg C mg-1 MBC h-1 

 
 

SOC reference Km 250 mg C g-1 soil 

 
 

DOC uptake reference Km 0.26 mg C g-1 soil 

  SOC Vmax activation energy 47 kJ mol-1 K-1 

  Uptake Vmax activation energy 47 kJ mol-1 K-1 

  SOC Km activation energy 30 kJ mol-1 K-1 

  Uptake Km activation energy 30 kJ mol-1 K-1 

  MBC turnover rate (same as kB,ref in CON) 0.00028 mg C mg-1 C h-1 

  Enzyme production rate (same as rEP+rEM 
in MEND) 

5.6 10-6 mg C mg-1 MBC h-1 

  Enzyme loss rate 0.001 mg C mg-1 C h-1 

  Fraction of dead MBC transferred to SOC 0.5  

     

MEND  POC input rate 0.00015 mg C g-1 soil h-1 

  DOC input rate 0.00001 mg C g-1 soil h-1 

 
 

DOC reference Vmax (same as u in CON) 0.0005 mg C mg-1 C h-1 

 
 

POC reference Vmax 2.5 mg C mg-1 C h-1 

 
 

MOC reference Vmax 1 mg C mg-1 C h-1 

 
 

DOC reference Km (same as KU,ref in AWB) 0.26 mg C g-1 soil 

 
 

POC reference Km 50 mg C g-1 soil 



 
 

MOC reference Km 250 mg C g-1 soil 

 
 

Reference specific adsorption rate 0.006 mg C mg-1 C h-1 

 
 

Reference specific desorption rate 0.001 mg C mg-1 C h-1 

 
 

Reference specific maintenance factor 
(same as rB in AWB) 

0.00028 mg C mg-1 C h-1 

  DOC Vmax activation energy 47 kJ mol-1 K-1 

  POC Vmax activation energy 45 kJ mol-1 K-1 

  MOC Vmax activation energy 47 kJ mol-1 K-1 

  DOC Km activation energy 30 kJ mol-1 K-1 

  POC Km activation energy 30 kJ mol-1 K-1 

  MOC Km activation energy 30 kJ mol-1 K-1 

  Adsorption activation energy 5 kJ mol-1 K-1 

  Desorption activation energy 20 kJ mol-1 K-1 

  Maintenance activation energy (analogous 
to EaB in CON) 

20 kJ mol-1 K-1 

  Maximum DOC sorption capacity 1.7 mg C g-1 soil 

  Fraction of mR allocated to POC enzyme 
production 

0.01  

  Fraction of mR allocated to MOC enzyme 
production 

0.01  

  POC enzyme loss rate 0.001 mg C mg-1 C h-1 

  MOC enzyme loss rate 0.001 mg C mg-1 C h-1 

  Fraction of dead MBC transferred to SOC 
(same as aBS in AWB) 

0.5  

  Fraction of decomposed POC allocated to 
DOC 

0.5  

 517 

 518 
 519 

520 
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 639 

Table 1. Steady state C pool sizes (mg C g-1 soil) at the reference temperature (i.e. 20°C) for four 640 

models.  CON denotes a conventional model described in Allison et al. (2010); GER, AWB, and 641 

MEND are three microbial models described in German et al. (2012), Allison et al. (2010), and 642 

Wang et al. (2013), respectively.  SOC: soil organic carbon; POC: particulate organic carbon; 643 

MOC: mineral-associated organic carbon; DOC: dissolved organic carbon; QOC: mineral-644 

associated DOC; MBC: microbial biomass carbon; ENZC: extracellular enzyme; EP: POC 645 

associated extracellular enzyme; EM: MOC associated enzyme. 646 

Model SOC POC MOC DOC QOC MBC ENZC EP EM

CON 33.36 - - 0.04 - 0.08 - - -

GER 24.82 - - - - 0.26 - - -

AWB 37.82 - - 0.03 - 0.25 0.0014 - -

MEND 43.51 5.75 36.97 0.15 0.79 0.26 0.0014 0.0007 0.0007  647 
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Figure 1. Model structures of (a) CON, (b) GER, (c) AWB and (d) MEND as modified from 654 

Allison et al. (2010) (CON, AWB), German et al. (2012) (GER) and Wang et al. (2013) 655 

(MEND). Abbreviations are given in Table 1.   656 

657 
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 661 
Figure 2. Modeled relative changes (%) in steady state SOC, DOC, MBC, and ENZC as a 662 

function of temperature predicted by CON, GER, AWB, and MEND under constant, acclimated, 663 

and varied carbon use efficiency (CUE) scenarios.  There are four models for SOC and MBC, 664 

three models for DOC, and two models for ENZC.    665 

666 
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Figure 3: Modeled relative changes (%) in steady state SOC as a function of temperature (-5 to 669 

35°C) predicted by CON, GER, AWB, and MEND under varying carbon use efficiency (CUE) 670 

scenarios.  Each line corresponds to a different CUE temperature response coefficient (m). Filled 671 

circles denote the threshold temperatures associated with minimum SOC pool sizes under varied 672 

(m = -0.016) and acclimated (m = -0.008) CUE scenarios, respectively.  See Methods for details 673 

on the model descriptions and CUE scenarios. 674 
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 677 
Figure 4: Modeled relative changes (%) in SOC, DOC, MBC, ENZC, and CO2 efflux with 5°C 678 

warming under constant, acclimated, and varied CUE scenarios.  See Methods for details on the 679 

model descriptions and CUE scenarios. 680 
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