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Carbon (C) sequestration in soils through the increase of the soil organic carbon (SOC) pool has generated broad interest tomitigate
the e	ects of climate change. Biosolids soil applicationmay represent a persistent increase in the SOC pool.While a vast literature is
available on the value of biosolids as a soil conditioner or nutrient source in agricultural systems, there is still limited knowledge on
soil sequestrationmechanisms of biosolids-borne C or themain factors in
uencing this capacity.�e emerging challenges posed by
global environmental changes and the stringent needs to enhance C storage call for more research on the potential of soil biosolids
incorporation as a sustainable C storage practice. �is review addresses the potential of C sequestration of agricultural soils and
opencast mines amended with biosolids and its biological regulation.

1. Introduction

Increasing concern about global climate change has led to
growing interest in developing feasiblemethods to reduce the
atmospheric levels of greenhouse gases (GHGs) [1]. Among
GHGs, atmospheric carbon dioxide (CO2) accounts for 60%
of the global warming [2]. �e atmospheric concentration
of CO2 increased from 280 parts per million (ppm) in the
preindustrial era to the present 395 ppm [3]. �is increase is
attributed to combustion of carbon based fuels, cement man-
ufacturing, deforestation, burning of biomass, and land-use
conversion, including soil tillage and animal husbandry. Soil
C capture and storage is gaining global attention because of its
role as a long-termC reservoir, low cost, and environmentally
friendly means to minimize climate change.

Soil C pool is the largest terrestrial C pool, constituting
approximately two-thirds of the total C in ecosystems [4].
It is estimated at 2500 Pg to 1-m depth, with the biotic
pool estimated at 560 Pg and characterized by fast turnover
rates as compared to other natural compartments. �e
oceanic and geological pools are estimated at 39000 Pg and
5000–10000 Pg, respectively, whereas the atmospheric pool is
estimated at 780 Pg [5].�erefore, total soil C pool is about 4,
1 times the biotic pool and 3 times the atmospheric pool.

Soil organic carbon (SOC) includes plant, animal, and
microbial residues in all stages of decomposition. SOC
represents a balance between inputs, mostly via primary
productivity or organic amendments, and outputs via decom-
position [6]. Land application of organic amendments is
a management practice that enhances SOC in the short
term [7, 8]. In the last decades, the production of organic
urban wastes such as biosolids has worldwide increased,
and its accumulation, storage, and disposal pose grow-
ing environmental and socioeconomical problems. �e safe
disposal of biosolids has been a challenge for municipal
wastewater treatment companies [9, 10]. In most countries,
land�lling and land application have been the main disposal
practices since they are the most economic outlet [11, 12].
However, sludge is a biodegradable material and releases
CO2, CH4, and other gases when disposed in land�lls [13].
Biosolids are a valuable source of organic matter and plant
nutrients, especially nitrogen (N) and phosphorus (P) [14].
Recycling biosolids to agricultural land completes natural
nutrient cycles. Besides, repeated land application of biosolids
provides long-term bene�ts by increasing soil organic matter
which, in turn, improves soil chemical and biological fertility
[15–17]. Land application of biosolids may also result in
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a decrease in bulk density, increase in pore size, soil aeration,
root penetrability, soil water holding capacity, and biological
activity, all of which may be re
ected in an increase in
crop yields [18]. One of the main disadvantages of land
application of biosolids is the fact that it may contain human
pathogens and trace elements, including arsenic, cadmium,
zinc, copper, chromium, lead, mercury, nickel, and selenium
[19–21].�e concentration of these compounds and concerns
about nitrate leaching or losses to the atmosphere may limit
biosolids land application [22, 23].

Soil C sequestration is de�ned as any persistent increase
in SOC originated from removing CO2 from the atmosphere.
Increases in soil carbon storage may be accomplished by
the production of more biomass. In this way, there is
a net transfer of atmospheric CO2 into the soil C pool
through the humi�cation of crop residues, resulting in net
carbon sequestration [24]. Powlson et al. [25] postulated
that whether SOC increases produced by applying organic
residues constitute C sequestration entirely depend on the
alternative fate of this material. For example, biosolids soil
application represents additional carbon retention in soil if
the alternative disposal method is land�lling. On the con-
trary, if organic wastes are regularly land applied, increases in
SOC resulting from biosolids application cannot be regarded
as a waste management practice to mitigate climate change.
Although many studies have examined the potential value of
biosolids to increase soil productivity, relatively limited work
has examined its e	ect on soil C sequestration [8, 26, 27].

2. Biosolids-Borne C Sequestration
Capacity of Soils

2.1. Agricultural Soils. Soil C sequestration capacity re
ects
soil aptitude to retain and stabilize C. In the light of global
change scenario, soil humi�cationmechanisms have acquired
renewed interest. Traditionally, the stability of organic com-
pounds has been regarded as the main process control-
ling SOC retention, but recent analytical and experimental
advances have demonstrated that molecular structure alone
does not explain SOM stability [28]. �e amount of SOC
accumulated does not only depend on the quantity and
quality of the organic inputs, but on the physicochemical
and biological in
uence of the environment as well [28,
29]. Various mechanisms of SOM stabilization have been
proposed [27]. Physical protection by incorporation into soil
aggregates or by occlusion in micropores inaccessible to soil
microorganisms or chemical protection through interaction
with mineral surfaces is considered important mechanisms
to reduce the bioavailability and accessibility of SOM for soil
microorganisms or hydrolytic soil enzymes [30]. Another
mechanismof SOC stabilization is assumed to be biochemical
protection. Biotic organic C is biologically transformed by
the action of microbial populations (i.e., bacteria, fungi) and
invertebrates, resulting in acquired chemical stability [31].
�erefore, the residence time of organic compounds in soils is
directly related to intrinsic or developed resistance to further
microbiological degradation.

Biosolids are typicallymade up of 40–70%organicmatter,
with organic C content ranging from 20–50%, total nitrogen
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Figure 1: Storage capacity of biosolids-borne C of typical soils of
the Pampas region, Argentina, 360 days a�er biosolids application
(application rate of 150 dry t/ha). Di	erent letters for the same soil
indicate signi�cant di	erences at the 0.05 probability level (� = 4).
(Adapted from Torri et al. [34]).

(N) ranging from 2–5%, and a C/N ratio of about 10–20
[32, 33]. Biosolids’ organic matter has usually undergone
some degree of stabilization through anaerobic or aerobic
digestion before being land applied. Long- and short- term
observations have demonstrated that biosolids amended soils
accumulate a signi�cantly higher amount of organic C com-
pared to mineral fertilized soils. Over a 34-year reclamation
experiment, Tian et al. [8] reported that soil C sequestration
capacity in agricultural soils under conventional tillage was
signi�cantly correlated with biosolids application rate. In the
short term, Torri et al. [34] reported soil C accumulation
in three pristine representative soils of the Pampas region,
Argentina, amended with high biosolids rate. �ese soils had
di	erent particle size distribution, although the clay fraction
had the same origin and mineralogical composition. During
the 30 days following biosolids incorporation, decomposition
mechanisms associated with an intense biological activity
originated a rapid CO2-C release [35]. A�er 150 days,
the three pristine amended soils appeared to reach a new
equilibrium, with C contents being signi�cantly higher than
the respective controls. Total C content did not change
signi�cantly between days 150 and 360 in the three studied
soils, showing the potential of these soils to store biosolids-
borne C (Figure 1).

Many mathematical models have been proposed to
describe the decomposition process of land applied organic
materials, ranging from one to multicompartment models
[29, 36, 37]. In the studymade by Torri et al. [34], a �rst-order
exponential model provided the best �t to C mineralization
data for the three soils (1):

%CB [�] = CRB + CLBe
−��, (1)

where %CB is the percent residual C from biosolids in soil;
%CLB the initial percent of biosolids borne-C in the labile
pool; %CRB the percent of biosolids borne-C in the resistant
pool; � is the �rst order rate constant (day−1); � is the time
a�er biosolids application (days).

According to this model, organic C added through
biosolids consisted of two fractions of di	erent degree of
biodegradability: a labile fraction (53–71%) that was quickly



Applied and Environmental Soil Science 3

(a)

C

O

Na
Fe

Mg P
S

K
Ca

Ti

Cr

Fe

Ni

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

Al
Si

(b)

Figure 2: Scanning electron microscopy with X-ray microanalysis (SEM-EDS) image of biosolids (a) and X-ray di	raction (XRD) patterns
of biosolids (b).

mineralized at a constant rate (�) and a recalcitrant fraction
(28.5–45.4%), not available or resistant to soil microorgan-
isms that remained in the soils one year a�er biosolids appli-
cation [34]. Organic compounds of the recalcitrant fraction
are mainly stable cholestane-based sterols [38] which may
have a turnover rate in the order of hundreds of years [39].
�e labile organic fraction has o�en been found to be largely
dependent on the degree of biosolids stabilization [40].

In general, Cmineralization rates of freshly added organic
sources have been found to be more rapid in soils with low
than with high clay content [41]. An explanation to this
could be that residual substrate and decomposition products
become stabilized by sorption onto mineral clay particles,
by incorporation into pores that are too small for bacteria
or fungi to penetrate. Consequently, they are physically
inaccessible to microbial turnover [42, 43]. Furthermore,
organic matter may be protected against decomposition as a
result of being inside large aggregates that become partially
anaerobic because of slow O2di	usion through the small
intra-aggregate pores [44].

Despite the protection provided by clay particles, many
studies reported that mineralization rates of biosolids-borne
C were not related to soil texture [34]. Strong et al. [45]
indicated that clay protects the organic matter which had
time to become entangled in the soil matrix, although this
may not happen if a great volume of fresh material is added.
Moreover, the turnover of organic matter in soils of di	erent
texture was better explained by other soil parameters, such
as temperature, moisture, pH, redox condition, and nutrient
availability [46–50]. In the study of Torri et al. [34], the water
content of the three studied soils was periodically adjusted
according to water holding capacity and did not limit micro-
bial activity. In this case, soil pH was the dominant variable
on soil decomposition of biosolids.Most studies reported that
acidic pH delayed the decomposition of soil organic matter
because of its profound in
uence on biomass, activity, and
composition of the soil microbial community [51, 52]. �e
higher pH of the Natraquoll stimulated microbial activity,
increasing carbon mineralization of incorporated biosolids,
whereas slightly acidic soils retained more biosolids-borne C
(Figure 1).

In turn, the e	ects of microbes on composition and
recalcitrance of SOC have been shown to be as important
as climatic and edaphic characteristics [53]. Soil aggregates
are held together by mucilages and by fungal hyphae, roots,
and polysaccharides. Increased amounts of any of these
agents would promote the formation of macroaggregates,
which, a�er further decomposition, form the stable andmore
resistant core of microaggregates [54, 55].

X-ray 
uorescence analysis of dried sludge indicated that
oxides of Si, Al, and Fe were the three main inorganic
constituents of biosolids [7, 56]. X-ray di	raction analysis
of biosolids performed by a number of researchers also
indicated the presence of quartz, feldspars, kaolinite, mica,
and expandable clays [57, 58]. In Figure 2(a), the scanning
electron microscopy with X-ray microanalysis (SEM-EDS)
image of a biosolids sample showed the presence of both
organic and inorganic phases [7]. �e inorganic phase
included silica, Fe, Al, and calcium compounds (Figure 2(b)).
Taking into account that soil organic matter carries negative
charges, whereas Fe oxides have positive ones, under cer-
tain conditions both of them may be intimately associated
[59]. Biosolids-borne amorphous iron and aluminum oxides
would promote SOM stabilization a�er biosolids application
[60, 61]. Amorphous Fe and Al oxides are very reactive due to
their small size and high surface area. �ese reactive surfaces
are o�en presumed to account for sorption and stabilization
ofOM [62].More recent research has suggested that stabiliza-
tion mechanisms include ternary C - Fe oxide - clay associa-
tions [63] and the formation of unidenti�ed chemical bonds
[64]. Lines of evidences that the association of organic matter
with secondary hydrous Fe and Al phases would prevent
SOC degradation have been published [65, 66]. Taking into
account that biosolids are rich in amorphous Fe/Al oxides
[60, 67], long-term biosolids application could increase soil
amorphous Fe/Al, leading to increased SOM stability.

Some authors indicated that “the capacity of terrestrial
ecosystems to store carbon is �nite and the current seques-
tration potential primarily re
ects depletion due to past
land use” [68]. However, recalcitrant organic carbon and
amorphous Fe/Al oxides are land applied through biosolids
amendments. �e presence of Fe/Al oxides has been shown
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to stabilize soil organic matter and, likely, biosolids borne
organic matter [66]. Moreover, Kögel-Knabner et al. [69]
suggested that one possible reason for soil C immobilization
in these soil amendments could be its adsorption or com-
plexation by Fe and Al cations. �ese results may indicate
that, with time, biosolids amended soils would be able to
store more carbon than the one depleted due to past land use.
Nevertheless, this hypothesis requires further investigation.

2.2. Opencast Mine Sites. In recent years, there has been
growing evidence that biosolids may be used to restore mine
spoils or tailings. Rehabilitation of rockymaterials exposed by
mining typically involves physical amelioration and organic
matter incorporation.�e use of biosolids in such operations
represents an opportunity to couple biosolids application
with soil C sequestration. In several cases, this practice has
led to high soil C accumulation, edaphic improvement, and
an e	ective vegetation cover establishment [70, 71]. Further-
more, organic matter inputs and revegetation lead to humus
accumulation and pedogenesis, including soil pro�le devel-
opment [70, 72–74]. As the system evolved, grasses progres-
sively dominated and represented the most important source
of SOC in biosolids amended soils [72]. A�er a decade of
biosolids incorporation, SOC reached concentrations com-
parable to those found in hydromorphic soils and about twice
those of undisturbedmineral soils under primary forests [70].

Mined spoils in tropical regions present factors that can
accelerate C 
ow, such as high temperatures, acidity, and
low charges surfaces, and factors that may retard it, like clay
texture, overburden materials, and anaerobic conditions due
to waterlogging. Carbon accumulation in revegetatedmining
spoils suggests that retarding factors have prevailed under
stripped soil situation. Common inorganic components
present in mining spoils include aluminosilicates (allophone
and imogolite) and Fe-(oxy) hydroxides (like ferrihydrite).
Both of them have been reported to stabilize soil C [75,
76]. Since vegetation coverage is usually established on low-
permeable rocky material in mining sites, roots are usually
subjected towaterlogging, leading to SOCaccumulation [77].
Several hypotheses about deleterious e	ects on soil microbial
activity by compounds formed under anaerobiosis, such as
volatile fatty acids, H2S, and toxic concentrations of NH3, Al,
Fe, and other elements, have been postulated [78].

Although mining spoils are not a suitable environment
for plant development, the incorporation of biosolids has
promoted plant colonization and unprecedented organic-C
accumulation was reported in temperate and tropical regions
[70, 79]. Depending on site management, Shrestha and Lal
[80] estimated that C sequestration rates for reclaimed mine
soils could be in the order of 0.1–3.1 and 0.7–4Mg ha−1 y−1.
Scaling up such �gures, mining site restoration could account
for ≈16 Tg CO2 per year [80].

3. Biological Regulation of C Storage in
Biosolids Amended Soils

Soil organic C dynamic depends on microbial activity, com-
munity composition, and soil enzyme activity [81]. While
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Figure 3: Typical respiration trends of soils amended with sewage
sludge enriched or not with trace elements (Cd 12mg kg−1, Zn
300mg kg−1). A lag phase can be observed before the onset of the
C 
ush for metal spiked sludge.

incorporation rates and quality are relevant factors con-
trolling soil organic C inputs, land application of biosolids
may change the activity and diversity of soil microbial
communities [82, 83]. Consequently, the use of biosolids as a
soil amendment may have variable e	ects on soil C retention.

3.1. Microbial Activity. Most of the existing information
on soil microbial responses due to biosolids incorporation
is related to the use of sewage sludge [84–86]. Contrast-
ing responses—from stimulation to inhibition—have been
reported. �ese results re
ect the large variability of sludge
chemical composition and the level of resolution of the
biological studies (i.e., biochemical or biomolecular) [87–89].

In most soils, microbial activity and proliferation is
typically C-limited whereas N limitation hardly occurs [90].
Biosolids application modi�es soil main regulating parame-
ters, particularly the nutrient stoichiometry. Sludge incorpo-
ration into soils provides labile C that produces a large initial
C-CO2 
ushdue to rapid labile organicmatter decomposition
and microbial growth. �is respiratory response is known
as the “C dominated phase” (Figure 3) and is invariably
bell-shaped. �e shape of the curve is generally related to
N availability, the quality of biosolids’ organic matter, and
the release of trace elements or organic pollutants through
biosolids decomposition [87]. On the contrary, soil appli-
cation of composted or thermally dried sludge may reduce
soil microorganisms decomposition rates due to the higher
proportion of recalcitrant C added [89].

Before the onset of CO2 release, an increase in the lag time
may be observed in sludge amended soils [91]. �e lag phase
allows the adaptation required for bacterial cells to begin
to exploit new environmental conditions [92] and has been
suggested to be a sensitive microbial indicator of soil metal
pollution [93]. Sludges with high content of trace elements
may result in a longer “lag phase,” as depicted in Figure 3.
However, thismay not be a universalmicrobial response [94].

�ere is still considerable controversy about the e	ects
of biosolids applications on the native SOC pool [95]. Some
authors reported that the strong microbial activity induced
by the application of biosolids with high contents of labile
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organic substances would mineralize native SOC [96]. �is
e	ect wasmainly noticedwhen biosolids were applied to soils
containing high initial levels of SOC, a phenomenon known
as priming e�ect [97]. Conversely, the application of the same
amount and type of biosolids in soils with low levels of initial
SOC contributed, in general, to an increase in the short-
term SOC pool. An explanation to this was the low density
of microbial communities in soils with low organic matter
content. Although positive and negative priming e	ects have
been reported, the latter does not always result in reduced soil
C storage capacity. In general, the amount of added organic
amendment entirely compensates the priming-induced C
loss [97]. Soil microorganisms can be triggered into activity
by the availability of water and nutrients such as those
present in the root exudates [98], and therefore these factors
are important covariates to be accounted for assessing the
biological control of biosolids soil C storage. �eoretically, C
storage is achievable when the metabolic energy required to
decompose biosolids-borne organic substrates is larger than
the energy obtained by catabolism within microbial cells.

Soil management practices may in
uence soil C storage
a�er biosolids amendment. It has been widely reported
that intensity of mineralization processes is much higher
in soil surface layers than in deepest soil horizons [99].
However, root exudates or decomposition of root litter in
subsurface horizons may induce priming e	ects that may, in
turn, enhance the decomposition of biosolids-borne organic
C. Low molecular weight organic compounds present in
root exudates support large microbial biomass in the rhizo-
sphere and induce SOM mineralization [99, 100]. �erefore,
the current information on the priming e	ects on native SOM

cannot be extended to biosolid amended soils. �e reason
for this is that the overall e	ects will not only depend on
soil’s characteristics and basal microbial activity, but on the
nature of nutrient inputs as well. �erefore, the biosolid-
borne C storage capacity of soils will depend on the site
speci�c equilibrium between C inputs and outputs, regulated
by mineralization processes. Nevertheless, it is undisputable
that, on the long term, biosolids amended soils retain more C
than soils under conventional agricultural regime in di	erent
tillage, fertilization, and rotational schemes [101]. �e same
applies for marginal and degraded soils [102].

3.2. Soil Enzyme Activity. Soil enzyme activity is respon-
sible for most of the soil functionality, as it promotes the
decomposition of organic matter and release nutrients in
forms available to plants and microorganisms. Soil enzymes
are actively released by proliferating soil microorganisms,
plant roots, and soil fauna or passively released by dead
microorganisms and root cell sloughing. A large fraction
of the enzymes released in the extra- or pericellular space
are stabilized by stable soil organic and inorganic phases
[103], which protect them from soil proteolytic activity [104].
Biosolids amendments play a dual role on soil enzyme activ-
ity: biosolids may increase the stabilization of extracellular
enzymes through their solid phase surface properties or they
may provide substrates (i.e., proteins and peptides) for soils
enzymes, leading to microbial proliferation and the increase
of enzymatic activity. �is aspect is important for the long
term of biosolids-borne C storage in soils because the pres-
ence of active enzymes reduces energy barrier to the decom-
position of complex organic substrates thus facilitating the
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biosolids matrix mineralization without new and metaboli-
cally expensive synthesis of extracellular enzymes [105]. �is
may produce a long-term positive feedback e	ect on soil
microbial activity a�er amendment (Figure 4).

In any case, the presence of soil stabilized “enzymatic
background” makes soil’s decomposition capacity only par-
tially related to the actual levels of microbial activity in
biosolids amended soils. As it is currently impossible to esti-
mate the ratio between intra- and extracellular enzyme activ-
ity, it is not possible to precisely determine the actual contri-
bution of active microorganisms to biosolids degradation.

4. Conclusions

In the light of global change scenario, increasing soil organic
matter stocks has been identi�ed as a feasible way for soil C
sequestration. Many experiments indicated that application
of biosolids to land or opencast mines resulted in an increase
in carbon reserves of soils from di	erent regions and under
di	erent management practices. Biosolids are typically made
up of 40–70% organic matter, consisting of two fractions
of di	erent degree of biodegradability: a labile fraction
that is quickly mineralized by soil microorganisms and a
recalcitrant fraction, not available or resistant to soilmicroor-
ganisms, responsible for soil organic carbon accumulation.
�e amount and proportion of recalcitrant C in biosolids
are important attributes to predict the biological control
of C storage in soils. It seems to be a direct relationship
between C recalcitrance and mineralization: the higher the
C recalcitrance in biosolids amended soils, the higher the
metabolic energy needed for biosolids mineralization by soil
microorganims. Monitoring microbial communities and soil
enzyme activity may be used as ecological indicators of
biosolids C stabilization in soil.

Many studies reported that mineralization rates of
biosolids-borne C may not depend on soil texture and that
slightly acid soils retained more biosolids-borne carbon than
soils with a higher pH. Furthermore, amorphous iron and
aluminum oxides usually found in biosolids would play an
important role in soil organic C accumulation.�erefore, the
capacity of soils to sequester biosolids borne C may not be
�nite. It is important to remark that the bene�ts associated
with the use of biosolids for soil carbon sequestration are
in addition to other bene�ts, like the improvement of soil
quality in terms of physical, chemical and biological fertility,
although the presence of contaminants may impact soil
microbial communities on the long term.
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