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Northern mid-latitude forests are a large terrestrial carbon
sink1±4. Ignoring nutrient limitations, large increases in carbon
sequestration from carbon dioxide (CO2) fertilization are
expected in these forests5. Yet, forests are usually relegated to
sites of moderate to poor fertility, where tree growth is often
limited by nutrient supply, in particular nitrogen6,7. Here we
present evidence that estimates of increases in carbon sequestra-
tion of forests, which is expected to partially compensate for
increasing CO2 in the atmosphere, are unduly optimistic8. In two
forest experiments on maturing pines exposed to elevated atmos-
pheric CO2, the CO2-induced biomass carbon increment without
added nutrients was undetectable at a nutritionally poor site, and
the stimulation at a nutritionally moderate site was transient,
stabilizing at a marginal gain after three years. However, a large
synergistic gain from higher CO2 and nutrients was detected with
nutrients added. This gain was even larger at the poor site
(threefold higher than the expected additive effect) than at the
moderate site (twofold higher). Thus, fertility can restrain the
response of wood carbon sequestration to increased atmospheric
CO2. Assessment of future carbon sequestration should consider
the limitations imposed by soil fertility, as well as interactions
with nitrogen deposition.

By burning fossil fuel and forests, and converting land to
intensive agriculture use, humans have elevated the atmospheric
concentration of CO2 (ref. 3) and the deposition of atmospheric
nitrogen (N)9,10. Growth of many tree species is enhanced with
provisions of both CO2 and N in the suboptimal range11, making it
dif®cult to assess the effect of increased availability of either one
when the supply of both increases concurrently10. Experiments
indicate decreased nutrient availability12, owing to increased
carbon (C)/N ratios in elevated CO2-grown foliage and litter13,
but increased nutrient uptake with elevated CO2-induced growth
enhancement of ®ne roots14. Because most forests occur on low-
nutrient soils, the uncertain effects of elevated CO2 on nutrient
supply hinders our ability to estimate forest C sequestration for
future global C budgets.

If tree nutrient uptake does not increase in proportion to the
growth response to elevated CO2, then maturing pine trees should
show less elevated CO2-induced growth enhancements on low-
fertility sites than on moderate sites, and thus should respond
more to elevated CO2 under improved nutrition. To evaluate these
predictions, we used two ®eld experiments with related loblolly pine
(Pinus taeda L.) genotypes: the longest running forest-based free-air
CO2 enrichment (FACE) experiment conducted on a moderately
fertile site; and a whole-tree chamber CO2 enrichment experiment
on an infertile site. The large difference in fertility of the two sites is
indicated by a much greater increase in growth at the infertile site
(130%) than at the moderate site (15%) when added nutrients
augmented the sites to the same optimal fertility7. Additional site
and soil characteristics that re¯ect fertility are provided in Methods.

The FACE prototype (FACEP) was built in 1993 in a 10-year-old,
8.5-m tall loblolly pine plantation in the lower Piedmont plateau,
growing on moderately low fertility, acidic clay-loam, at the Duke
Forest of Duke University, North Carolina (358 589 N, 798 089 W;
elevation 130 m). Currently the pines are about 15-m tall, and
comprise 98% of the basal area15. FACEP has enriched (550 p.p.m.v.
CO2) a 30-m diameter circular patch in the forest since 1994, during
daylight hours of the growing season16. Before CO2 enrichment in
FACEP commenced, growth (that is, the amount of C sequestered in
woody biomass increment) was similar in FACEP and an adjacent,
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Figure 1 A comparison of annual carbon increment under elevated atmospheric CO2

concentration (initiated in 1994) and ambient concentration without nutrient addition.

a, Plot-level comparison between the free-air CO2 enrichment prototype (FACEP) and a

nearby untreated, ambient CO2 plot (in the past 2 yr, the number of untreated plots was

increased to ®ve). b, Individual tree comparison between trees in FACEP and trees

selected at random from the entire stand. Data for 1993 are shown as means for the ®rst

10 yr of the stand's life.
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untreated plot (Fig. 1a), as were foliar N concentration and
physiological capacity16.

Averaged over the ®rst 3 yr, the elevated CO2 plot had a 34%
increase in growth relative to the ambient CO2 plot, reaching a
maximum of 40%, but only a 6% increase over the next 4 yr. After
four growing seasons of enrichment, we cored all pine trees in
FACEP (n = 78) and trees selected at random from the entire stand
(n = 56; none in the untreated plot), and calculated annual
individual tree growth for every year since 1993. The temporal
pattern in individual tree growth was fundamentally the same as
that of the stand with lower growth of FACEP trees before the
commencement of CO2 enrichment, a large initial relative response
to elevated CO2, and a subsequent decrease in the response (Fig. 1b).

The CO2-induced growth enhancement over the ®rst 2 yr
in the adjacent replicated FACE study (n = 3)15, which began
operation in 1996, averaged about 24%, and ranged from 7 to
57% (1 s.d. = 15%). The initial growth enhancement in the FACEP

plot was not different from that at replicated FACE plots, after
matching annual growth for the same year since enrichment
commenced in both studies (2 yr, t-test, P . 0.1; see Methods for
statistical approach). Thus, the early growth responses to elevated
CO2 were consistent in both experiments, but these responses are
transient (Fig. 1).

The decrease in response to elevated CO2 (Fig. 1) might be caused
by nutrient limitation that can develop fairly rapidly in this
moderate-fertility site with a limited rooting depth ( , 0.3 m)17.
The January foliar N concentration was similarly low in FACEP

and in the surrounding stand growing under ambient CO2

(0.97 6 0.04% by weight; mean 6 s.e., n = 16). Plant±soil models
predicted responses to an experimental stepwise increase in elevated
CO2 in nutrient-limited forests18, similar to that shown in Fig. 1. To
test whether nutrient limitations reduced the tree response to
elevated CO2, we partitioned FACEP and its unenriched counterpart
in 1998, and added a balanced fertilizer to half the area (. 265 m2)

at the end of the growing season, aiming to attain optimal
nutrition (1.4% N)7,19. We also established four plot pairs, randomly
positioned in the stand, with one member of each fertilized
similarly, thus producing ®ve plot pairs under ambient CO2. After
1 yr, fertilization increased foliar N concentration under ambient
CO2 to 1.18 6 0.08% (mean 6 s.e.), but foliar N remained low
under elevated CO2 (1.02%), similar to unfertilized plots under
both ambient and elevated CO2 (1.05 6 0.07%).

Averaged over 1999 and 2000, about 378 6 16.0 g C m-2 yr-1

(mean 6 s.e.) was incorporated into woody tissue under ambient
CO2 and without fertilization (Fig. 2a). Annual woody growth
under elevated CO2 without nutrient addition sequestered only
7% more C (P . 0.05), and improved nutrient supply in ambient
CO2 atmosphere increased growth by 15% (P = 0.024). However,
the combination of improved nutrition and elevated CO2

increased growth by 47% (,175 g C m-2 yr-1; P = 0.007)Ðmore
than twice the sum of the separate responses to each factor (total
,80 g C m-2 yr-1). This clearly indicates a synergistic effect of CO2

and nutrient supply that raised the relative CO2-induced growth
response to the maximum previously seen in FACEP (,40%).

We assessed whether this synergism increases with decreasing site
fertility by evaluating the response of trees (n = 3, whole-tree open-
top chambers) in another North Carolina loblolly pine plantation of
a similar age and genetic stock growing on an infertile sandy soil
(USDA Forest Service Southeast Tree Research and Education Site,
SETRES; 348 489 N, 798 129 W). At this infertile site, foliar N was
1.02 6 0.04% (mean 6 s.e.) in both CO2 environments, increased
with fertilization to 1.29 6 0.05%, and decreased to 1.15 6 0.04%
when fertilized trees were subjected to elevated CO2 for two growing
seasons (550 p.p.m.v.). Without added nutrients, annual growth did
not respond to elevated CO2 in the 2-yr period (P . 0.05; Fig. 2b).
Under optimal nutrition19 and ambient CO2, the growth of these
trees increased by 21% (P , 0.05). However, the synergistic
enhancement from improved nutrition and higher atmospheric
CO2 was 74% (P = 0.008)Ðmore than three times the sum of the
separate responses. This suggests that CO2 responses of growth in
pine forests will be highly variable and depend greatly on site
fertility, perhaps to the point of not responding at all on the
nutritionally poorest sites.

In addition to nutrient limitations, water de®cits could also limit
forest response to elevated CO2. The early part of the 1999 growing
season was unusually dry along the eastern seaboard of the USA,
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Figure 2 Effect of atmospheric CO2 concentration and nutrient supply on annual carbon

increment in woody tissue of genotypically similar loblolly pine. a, A moderate-fertility

Duke Forest site (averaged for 1999 and 2000); b, an infertile SETRES site (1997 and

1998). P values represent test results between ambient and elevated CO2 in each fertility

level. In both sites, elevating only CO2 had no signi®cant effect (in a, data without nutrient

addition are the mean of the past 2 yr shown in Fig. 1a); fertilizing in ambient CO2 had a

signi®cant effect; and fertilizing under elevated CO2 had signi®cantly higher effects than

the sum of the single CO2 and N effects.
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Figure 3 Cumulative carbon increment in woody tissue under ambient and elevated

atmospheric CO2 concentration with and without the addition of nutrients. The carbon

increment under elevated CO2 without nutrient addition was never signi®cantly greater

than under ambient CO2 (P . 0.05). Arrows depict the earliest time in each growing

season in which the carbon increment under elevated CO2 with nutrient addition was

signi®cantly higher than the indicated treatment (P , 0.05). The period of CO2 enrichment

in each year is indicated as a horizontal bar at the bottom. In 1999, drought-breaking rains

(indicated) raised soil moisture in the root zone from 0.14 to 0.32 m3 m-3. Error bars

represent s.e.
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with the May±July rainfall 84% below the 30-yr site average. In
contrast, rain was ample and evenly distributed during the 2000
growing season. Weekly measurements of stem diameter at the
Duke Forest site permitted us to quantify drought-induced inter-
action effects with the CO2 and nutrition treatments on the seasonal
dynamics of C investment in woody tissue. A fraction of the stem
increment that occurred after each rainfall event (such as that in
1999; Fig. 3) was due to actual wood growth and a fraction was due
to stem swelling with hydration; we estimated the latter, reversible
`increment' as # 17.4 g C m-2 after a given event. Without drought
in 2000, growth enhancement in fertilized elevated CO2 conditions
became signi®cant earlier (Fig. 3), and sequestered 45 g C m-2 yr-1

(27%) more than with early season drought in 1999. Hence, the
synergistic effect of CO2 and nutrients is especially strong when
seasonal water limitations are alleviated.

Treatments imposed in a stepwise manner may invoke different
responses than gradual changes8. Where site fertility is very low,
responses to stepwise CO2 enrichment experiments may be muted
(Fig. 2b). Where fertility is moderate, responses may be transient
and decrease when soil nutrients are depleted by the initial increase
in growth rate19 (Fig. 1). Thus, the short-term dynamics of the
elevated CO2 response15 may not portray the longer-term, multi-
year responses shown in this study, particularly where dynamic
changes in nutrient cycles are involved12. There are many reasons to
expect the long- and short-term responses to be different18,20, and
this study highlights the need for caution in broadly extrapolating
from short-term results.

Along a gradient of decreasing native-site fertility, nutrient
amendments will become increasingly necessary if forest ecosystems
(planted or natural) are intended to both take advantage of elevated
atmospheric CO2 and aid in reducing the rate at which atmospheric
CO2 concentrations increase. Under current atmospheric CO2,
nitrogen deposition has been estimated to contribute little to
enhanced C sequestration in temperate forests10,21,22, and N deposi-
tion may ultimately cause a growth reduction by causing nutritional
disharmony23. Nevertheless, a model comparison has concluded
that interaction between CO2 and N deposition may be involved in
the response of terrestrial ecosystems to future levels of atmospheric
CO2 (ref. 24).

Our amendment of ,11 g N m-2 yr-1 is more than 10 times the
current deposition rates of ,0.65 g N m-2 yr-1 at both sites. At the
moderate-fertility site, C sequestration was enhanced by ,14.1 and
,17.3 g C g-1 N addition under elevated atmospheric CO2 in the dry
and wet year, respectively (that is, an average of 15.7 g C g-1 N). At
the nutritionally poor site, the enhancement under elevated CO2

was 19.1 g C g-1 N addition. This provides a ®rst estimate of the
effect of N supply on CO2-induced C sequestration in woody
biomass increment at the scale of forest stands. We note, however,
that industrial N fertilizer production and use already has an impact
on the global N cycle25, and any plan to enhance C sequestration that
relies on a signi®cant increase in N fertilization must be carefully
evaluated for both local and global effects. M

Methods
Setting

The FACE and SETRES sites are mid-rotation plantations without density-related
mortality. The summers are warm and humid, and winters are moderate. Annual
precipitation (1,100±1,200 mm) is evenly distributed throughout the year, but occasional
de®cits in growing-season water occur. The sites are considered moderate (FACE) and low
(SETRES) fertility, as re¯ected in the heights of dominant P. taeda of 15.7 and 10.4 m at age
25 yr, respectively. Soil incubations for net N mineralization at these sites yielded roughly
2.7 (upper 7.5 cm) and 1.3 (15 cm) g N m-2 yr-1, respectively, and cation exchange capacity
was about 12 (upper 15 cm) and 2 (20 cm) cmol (+) g-1. Seasonal CO2 enrichment in
FACEP, typically from late April to late October, was achieved in 1994±2000 by the free-air
CO2 enrichment technique26.

Annual growth of trees at the FACEP and its paired untreated plot was measured from
1993 onwards, at the end of each growing season. In 1998, an impermeable barrier to 1-m
depth, about three times the depth of ®ne roots in this forest17, partitioned both plots into
two sections containing roughly the same mass of above-ground biomass per unit ground.
Concurrently, four pairs of 10 m ´ 10 m plots were established nearby with a minimum

distance of 20 m between plots. One randomly selected section (FACEP and its counter-
part) and one randomly chosen plot of each newly established plot pair were fertilized to
meet optimal values7,19. An application rate of 11.2 g N m-2 yr-1 in the form of urea began
in July 1998.

The SETRES stand was planted in 1985 in the Sandhills of North Carolina19, a site with
sandy, siliceous, well-drained soil. Annual nutrient additions to meet optimal values
commenced in March 1992, with annual applications averaging 11.2 g N m-2 yr-1 over the
7 yr (ref. 18). Six fertilized trees and six unfertilized trees of a similar diameter range and
mean height of 8.6 6 1 m were enclosed in open-top chambers27 in 1996. CO2 enrichment
to ,550 p.p.m.v. in three chambers per treatment commenced in August 1996, and lasted
for two complete growing seasons.

Carbon sequestration

Woody biomass (that is, in branches, bole and roots down to 5 mm in diameter) was
estimated at both sites from diameter and allometric equations for ambient CO2

conditions19,28. At Duke Forest, estimates included trees with diameters . 50 mm at 1.4 m
above ground, representing 99% of the biomass, less than 5% of which is in hardwood
species. At SETRES, equations were available for trees with and without fertilization19.
From SETRES, the density of wood decreased from 0.51 to 0.47 g cm-3 with fertilization.
From cores taken at FACEP, the density of wood decreased from 0.52 to 0.48 g cm-3 with
elevated CO2. Thus, when growth estimated from diameter was increased by either
treatment, the values were adjusted to re¯ect these reductions. Woody biomass above
ground was converted to C content by multiplying by 0.48, and below ground by 0.44, as
determined from combustion (CHN Analyzer; Perkin Elmer). In SETRES, biomass was
converted to a ground-area value on the basis of 1,260 trees ha-1. At Duke Forest, diameter
was measured weekly during the growing season (Fig. 3) with stainless steel dendrometer
bands15 installed 1.4 m above ground on all trees. Edge conditions created when a 3-m wide
strip was cleared around FACEP did not affect growth: there was no pattern in relative
growth rate with distance from the edge, nor was there a difference between the population
of trees positioned less than one-third of the radius from the periphery and that composed
of the rest of the trees (P . 0.5).

Statistical considerations

We analysed the SETRES data by paired t-test after pairing trees on the basis of initial
biomass. Data from FACEP and its counterpart were not compared statistically (Fig. 1a);
however, data from FACEP and its unenriched counterpart were compared with data from
the nearby replicated FACE (n = 3), and the 1999 and 2000 data from FACEP were
compared with data from all nearby unenriched plots (n = 5) by a t-test between a single
observation and a population mean29. This approach permits testing whether the response
of FACEP is different from that of the replicated unenriched plots, but without replications
it is not possible to estimate the mean response to elevated supplies of both CO2 and N.
Furthermore, we note that the statistical scope of inference of most controlled experi-
ments, including the replicated FACE and SETRES, is limited30.
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Like the Burgess Shales of Canada, the Chengjiang LagerstaÈtte
from the Lower Cambrian of China is renowned for the detailed
preservation as fossils of delicate, soft-bodied creatures1±9, pro-
viding an insight into the Cambrian explosion. The fossils of
possible hemichordate chordates5±7 and vertebrates9 have
attracted particular attention. Tunicates, or urochordates, com-
prise the most basal chordate clade10, and details of their evolution
could be important in understanding the sequence of character
acquisition that led to the emergence of chordates and verte-
brates11±18. However, de®nitive fossils of tunicates from the Cam-
brian are scarce or debatable4,9,19±24. Here we report a probable
tunicate Cheungkongella ancestralis from the Chengjiang fauna. It
resembles the extant ascidian tunicate genus Styela whose mor-
phology could be useful in understanding the origin of the
vertebrates.

Phylum Chordata
Subphylum Urochordata

Class Ascidiacea
Cheungkongella ancestralis gen. et sp. nov.

Type species. Cheungkongella ancestralis.
Etymology. Genetic name is a metaphor of China and is also in
honour of the Cheungkong Scholars Programme that supports this
work; the speci®c name is a reference to its possible primitive
position.
Holotype. Early Life Institute (ELI), Northwest University, Xi'an:
ELI-0000195.
Stratigraphy and locality. Qiongzhusi Formation, Yu'anshan
Member (Eoredlichia Zone); Lower Cambrian. The specimen was
collected by L.C. and J.H. from the same locality and horizon as the

animal Xidazoon8 and agnathan vertebrate Myllokunmingia9.
Diagnosis. The body is club-shaped, reminiscent of extant ascidian
Styela, with two-fold division: an upper main body and a lower
thick supporting stem attached to hard substratum (Fig. 1). The
body is wholly enclosed within a structure interpreted as a secreted
tunic. The stem tapers downward, and the main body is bucket-
shaped in outline, bearing a large oral siphon with short tentacles on
its top and a small cloacal one on the lower dorsal side. A pharynx
occupies over two-thirds of the body volume.
Description. Cheungkongella ancestralis, new genus and species, is
known from a single specimen, with a total length of about 25 mm.
The whole body consists of two regions: a stout stem, which in life
supported a sub-spherical main body. The stem (about 15 mm
long) tapers distally, and is attached to the exterior surface of the
left, free cheek of a trilobite Eoredlichia intermedia, an index fossil
for the Lower Cambrian. The stem bears some transverse creases,
consistent with an enclosing tunic, and prominent longitudinal
`ribs'. The distal section has a conspicuously coarse texture, and has
several patches of agglutinated sediment including quartz grains.

The main body (roughly 10 mm long) was probably sub-spherical
in life. Wrinkling of the compressed body on the ventral side
(opposite to cloacal siphon) is consistent with folding of a tough
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Figure 1 The Lower Cambrian urochordate Cheungkongella ancestralis gen. et sp. nov.

from Haikou, Kunming, Yunnan. Specimen ELI-0000195, viewed from the left. Scale bar,

1 mm. Bt, buccal tentacles; Cs, cloacal siphon; Dt?, degenerating tail; Os, oral siphon;

En?, presumed endostyle; Es?, possible esophagus; Ph, pharynx; S?, presumed stomach;

St, stem; T, tunic; Tf, tentacle-like fringe; Tfc, trilobite free cheek.
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