
REVIEW
published: 31 July 2018

doi: 10.3389/fmicb.2018.01606

Edited by:

Paula García-Fraile,

Academy of Sciences of the Czech

Republic, Czechia

Reviewed by:

Jay Prakash Verma,

Banaras Hindu University, India

Puneet Singh Chauhan,

National Botanical Research Institute

(CSIR), India

*Correspondence:

Adnane Bargaz

adnane.bargaz@ocpgroup.ma

Driss Dhiba

d.dhiba@ocpgroup.ma

Specialty section:

This article was submitted to

Microbial Symbioses,

a section of the journal

Frontiers in Microbiology

Received: 15 February 2018

Accepted: 27 June 2018

Published: 31 July 2018

Citation:

Bargaz A, Lyamlouli K, Chtouki M,

Zeroual Y and Dhiba D (2018) Soil

Microbial Resources for Improving

Fertilizers Efficiency in an Integrated

Plant Nutrient Management System.

Front. Microbiol. 9:1606.

doi: 10.3389/fmicb.2018.01606

Soil Microbial Resources for
Improving Fertilizers Efficiency in an
Integrated Plant Nutrient
Management System
Adnane Bargaz* , Karim Lyamlouli, Mohamed Chtouki, Youssef Zeroual and Driss Dhiba*

AgroBioSciences, Research and Development OCP Group, Mohammed VI Polytechnic University, Ben Guerir, Morocco

Tomorrow’s agriculture, challenged by increasing global demand for food, scarcity

of arable lands, and resources alongside multiple environment pressures, needs

to be managed smartly through sustainable and eco-efficient approaches. Modern

agriculture has to be more productive, sustainable, and environmentally friendly.

While macronutrients such as nitrogen (N), phosphorus (P), potassium (K), and

sulfur (S) supplied by mineral fertilizers are vital to crop production, agriculturally

beneficial microorganisms may also contribute directly (i.e., biological N2 fixation,

P solubilization, and phytohormone production, etc.) or indirectly (i.e., antimicrobial

compounds biosynthesis and elicitation of induced systemic resistance, etc.) to crop

improvement and fertilizers efficiency. Microbial-based bioformulations that increase

plant performance are greatly needed, and in particular bioformulations that exhibit

complementary and synergistic effects with mineral fertilization. Such an integrated

soil fertility management strategy has been demonstrated through several controlled

and non-controlled experiments, but more efforts have to be made in order to

thoroughly understand the multiple functions of beneficial microorganisms within the

soil microbial community itself and in interaction with plants and mineral resources.

In fact, the combined usage of microbial [i.e., beneficial microorganisms: N2-fixing

(NF), P-solubilizing, and P mobilizing, etc.] and mineral resources is an emerging

research area that aims to design and develop efficient microbial formulations which

are highly compatible with mineral inputs, with positive impacts on both crops and

environment. This novel approach is likely to be of a global interest, especially in most

N- and P-deficient agro-ecosystems. In this review, we report on the importance of

NF bacteria and P solubilizing/mobilizing microbes as well as their interactions with

mineral P fertilization in improving crop productivity and fertilizers efficiency. In addition,

we shed light on the interactive and synergistic effects that may occur within multi-

trophic interactions involving those two microbial groups and positive consequences

on plant mineral uptake, crop productivity, and resiliency to environmental constraints.

Improving use of mineral nutrients is a must to securing higher yield and productivity in a

sustainable manner, therefore continuously designing, developing and testing innovative

integrated plant nutrient management systems based on relevant biological resources

(crops and microorganisms) is highly required.

Keywords: fertilizers, nutrient use efficiency, phosphorus, solubilization, biological N2 fixation, mycorrhizae, soil

fertility
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INTRODUCTION

Global food demand is increasing rapidly and so more in
developing nations where crop lands and resources hardly
contribute to an efficient crop production needed to meet
such an urgent demand for food. There is a need to
intensify agricultural production in a sustainable manner
through use of efficient agro-biosystems which consider the
entire agroecosystem bio-chemical diversity and their potential
to mitigate the adverse impacts of low soil fertility, abiotic
stress, pathogens, and pests (Tilman et al., 2011; Timmusk
et al., 2017). In this context, global food security issue will
foster reliance on innovation, development, and delivery of
technologies that lead to increased food production while
ensuring sustainable intensification of agriculture. A number
of innovative and efficient technologies has been adopted such
as smart irrigation systems, smart fertilizers [i.e., controlled
release fertilizer and enhanced efficiency fertilizers (EEFs), etc.],
integrated fertilization, and diseases biocontrol strategies as
well as diverse imaging- and sensing-based technologies that
provide highly valuable information for monitoring and securing
crop productivity. Agricultural microbial biotechnology through
the integration of beneficial plant–microbe and microbiome
interactions may represent a promising sustainable solution
to improve agricultural production (Timmusk et al., 2017).
For instance, advances in genomic, post-genomic, biochemistry,
ecology, and symbiotic interactions of beneficial microbial strains
have led to the development and commercialization of efficacious
microbial products [biofertilizers, biostimulants, biopesticides,
and plant growth promoting (PGP), etc.] with proven success to
improve crops’ yield and adaptation to environmental changes,
and inputs of carbon and energy (Lindemann et al., 2016; Umesha
et al., 2018).

Today, microbial-based biofertilizers are considered to
be among key agricultural components that improve crop
productivity and contribute to sustainable agro-ecosystems. It
is a component that aggregates a variety of microbial-based
bio-products whose bioactivities are essential to stimulate and
improve biological processes of the intricate plant–microbe–soil
continuum (Singh et al., 2016). Different kind of soil
microorganisms (especially bacteria and fungi) that exhibit
PGP traits [generally identified as plant growth promoting
microbes (PGPMs)] can be used for the production of efficient
biofertilizers (Vessey, 2003; Lucy et al., 2004; Smith and
Read, 2008; Khalid et al., 2009). Generally, microbial-based
bioformulation may be classified into four types: (1) NF bacteria,
(2) P solubilizing/mobilizing microorganisms, (3) composting
microorganisms, and (4) biopesticides (Pathak and Kumar,
2016). Of note, in addition to their main function they are
selected for, those microbial groups may all exhibit other PGP
traits (i.e., phytohormones, siderophores, amino acids, and
polysaccharides, etc.) plausibly contribute to an additional crop
improvement.

Generally, beneficial rhizosphere microorganisms can
boost plant growth via multiple regulatory biochemical
pathways (categorized as direct and indirect mechanisms)
that include manipulating the plant hormonal signaling,

preventing pathogenic microbial strains and increasing the
bioavailability of soil-borne nutrients (Van der Heijden et al.,
2008; Mendes et al., 2013; Munees and Mulugeta, 2014;
Verbon and Liberman, 2016; Jacoby et al., 2017). Direct
mechanisms generally facilitate resource (i.e., N, P, K, and
essential micronutrients) acquisition, modulate plant hormone
biosynthesis, and various molecules either extra-cellularly in the
vicinity of rhizosphere (i.e., siderophores) or intra-cellularly such
as aminocyclopropane-1-carboxylate deaminase which facilitate
plant growth and development by decreasing ethylene levels,
and alleviating osmotic (salinity and drought) stress in plants
(Nadeem et al., 2007; Zahir et al., 2008). Indirect mechanisms by
which rhizosphere microorganisms could promote plant growth
are mainly involved in decreasing the inhibitory effects of various
phytopathogens through acting as biocontrol agents (Glick,
2012; Munees and Mulugeta, 2014) via antimicrobial metabolites
biosynthesis (i.e., hydrogen cyanate, phenazines, pyrrolnitrin,
2,4-diacetylphloroglucinol, pyoluteorin, viscosinamide, and
tensin, etc.), competition to nutrients and the elicitation of
induced systemic resistance (Lugtenberg and Kamilova, 2009;
Planchamp et al., 2015) which may occur due to a beneficial
interaction of some rhizobacteria with plant roots resulting in
plant resistance against some pathogenic microorganisms.

The positive impacts of microbial-based biofertilizers on
growth and yield of staple crops may be limited to a single
nutrient element such as N (i.e., due to N-fixing bacteria), but
also to several nutrients [i.e., due to arbuscular mycorrhizal fungi
(AMF)] (Bardi and Malusà, 2012). Moreover, the development
of microorganisms’ consortium which is a polymicrobial
mixture that contains several microbial strains belonging to
different functional groups may strongly promote plant growth,
yields, and healthy agroecosystems (Arora et al., 2011; Malusa
et al., 2012). Success in constructing effective polymicrobial
formulations with multiple modes of action depends on
how functional, complementary, and synergic the candidate
strains are (Malusa et al., 2012; Reddy and Saravanan, 2013).
For example, inoculation with mixed cultures of Penicillium
spp. and AM fungi induced positive and synergistic effects
(especially enhanced plant nutrition and growth) in cereals
and legumes (Kucey, 1983; Osorio and Habte, 2001; Babana
and Antoun, 2007). Such positive impacts on legume crops
have also been observed when co-inoculating with Rhizobium
spp. and Penicillium (Downey and van Kessel, 1990; Rice
et al., 2000), rhizobia with AMF (Farzaneh et al., 2009; Wang
et al., 2011), Rhizobium and P solubilizing-bacteria (Alagawadi
and Gaur, 1988), or even with the tripartite inoculation with
AMF-Rhizobium-P-solubilizing fungus (Meng et al., 2015; Zhu
R.F. et al., 2016). Multifunctional microbial consortia may
also involve free-living NF bacteria as well as different PGP
rhizobacteria with higher abilities to maximize plant growth,
yield and efficient N uptake (Lisette et al., 2003; Wu et al.,
2005; Malusa et al., 2007; Adesemoye et al., 2009; Vassilev et al.,
2015).

Coincident with the scrutiny that has been given to uncovering
beneficial microorganisms for optimizing their application
as sustainable agriculture components, the combined use of
biological, mineral, and organic resources is also increasingly
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gaining recognition as a promising approach. This will help
elaborate efficient integrated plant nutrient management systems
(IPNMSs) that address soil fertility issues, crop nutrient
needs and sustainable eco-intensification. Indeed, while mineral
fertilizers provide high amounts of nutrients to plants, biological
resources (i.e., microbial inoculants) are key components
of such IPNMS wherein both resources may synergistically
co-interact to improve nutrient compositions and biological
functions that plants need to grow stronger. In this regards,
a limited number of studies have focused on the positive and
complementary combinatory effect of using beneficial microbes
for increasing the efficiency in use of mineral fertilizers (Vargas
et al., 2000; Shata et al., 2007; Yasari et al., 2009; Shoghi-
Kalkhoran et al., 2013; Ahmad et al., 2017). For instance, co-
inoculation with Sinorhizobium meliloti RMP and Pseudomonas
aeruginosa GRC2 improved growth and yield of Brassica juncea
supplied with urea and diammonium phosphate (DAP) fertilizers
(Maheshwari et al., 2010). Likewise, dual mineral fertilizer
supply and inoculation with NF bacteria (i.e., A. cholococcum,
Azospirilum brasilense, Azospirilum lipoferum, Sinorhizobium
spp., Burkholderia spp., and Pseudomonas spp.) significantly
improved yield of multiple agriculturally important crops
including legumes (Gupta et al., 2002; Pandey and Maheshwari,
2007; Shata et al., 2007; Yasari et al., 2009; Shoghi-Kalkhoran
et al., 2013).

Both basic and applied research on screening, designing,
testing and validating potential microbial resources for their
beneficial impacts on agriculture have gained global interest.
Particularly, NF bacteria (both symbiotic and non-symbiotic)
and P solubilizing/mobilizing microorganisms have increasingly
been used as biofertilizers, and now account for more than
75% of globally marketed microbial-based biostimulants. These
segments are expected to grow by 20 and 13% for the
P-solubilizers and N2-fixers segments, respectively (Agro News,
2014; Micro Market Monitor, 2015; Novonous, 2016; Timmusk
et al., 2017). Given their importance for promoting sustainable
agriculture, these microbial-based biostimulants need to be more
deeply explored in combination with multiple nutrient resources
such as mineral fertilizers and relevant agricultural practices
in order to develop effective integrated strategies that sustain
crop production and soil fertility. This review aims to highlight
the importance of the latter nutrients- N- and P-supplementing
microorganisms in a context of promoting sustainable agriculture
owing to their specific metabolic functionalities to increase use
of essential nutrients (P and N) by major crops such as cereals
and legumes. Furthermore, recent knowledge on the dual use
of the microbial and mineral nutrient resources with peculiar
emphasis on P fertilizers was presented as an example of positive
IPNMS that may lead to a profitable “microbial/mineral” inputs
marriage.

MICROBIALLY-MEDIATED N AND P IN
SOILS

Microbial biotechnology through the exploitation of microbial
resources has proved in the last 30 years to be one of the

most powerful and potent tool that could provide palpable
answers to address nutrient limitations (notably N and P)
in most agricultural soils. Today, beneficial microbes are
extensively used (as inoculants, biofertilizers, or biostimulants)
to promote plant growth and to act as biological control agents.
In this paper, the importance of the beneficial microorganisms
belonging to NF and P-solubilizing/mobilizing groups is
illustrated in Figures 1, 2. The significant involvement
of those two microbial groups as key drivers of N and
P dynamics in soils as well as their use efficiency by
plants are presumably to provide clear evidence of two
inseparable microbial–rhizosphere processes as described in
Figure 2.

Nitrogen Fixing and P Solubilizing
Microorganisms: Starting Point
Prior to the discovery of agriculturally beneficial microorganisms,
especially NF bacteria, farmers used to transfer productive soils
from one field to another, given it positively affected the crop
productivity (Bashan, 1998). This is how bioinoculation was
practiced until Boussingault in 1838 presented evidence for N
fixation by legumes (e.g., clover). He showed that clover plants
could gain more N than that of manure in addition to other
benefits they may have on other non-legumes during crop
rotation. Fifty years later, Hellriegel and Wilfarth had established
the basics of the biological aspects of the legume symbiotic
NF owing to the presence of nodules on the roots of Pisum
sativum which were believed to be induced by soil bacteria
(Cocking, 2009). This was better understood in 1888 when
Beijerinck isolated the firstRhizobium leguminosarum (Evans and
Russell, 1971). Then, it took less than 10 years before beneficial
microorganisms are used as bioinoculants by Nobbe and Hiltner
(1896). They patented what may be considered the pioneer
product of all rhizobial inoculants (Patil and Solanki, 2016),
launching the commercial history of microbial biofertilizers
with a Rhizobium-based bioinoculant named “Nitrogin.” Since
then, scientists from academic and private research institutions
have been exploring the NF abilities of microorganisms such as
Azotobacter and then the cyanobacteria in promoting growth of
large number of plants. A few decades later, two mainly microbial
based products namely “azotobakterin” and “phosphobacterin”
based on Azotobacter chroococcum (NF) and Bacillus megaterium
(PSB) were used in Russia and East European countries. For
1958, it was reported that about 10 million ha in Russia were
treated with those microbial preparations (Brown, 1974; Rovira,
1991) and that some increase in yield was generated for various
crops, though efficacy was not reproduced in other parts of the
world.

With regards to P biosolubilization, evidence of the
involvement of some soil microorganisms in this phenomenon
is by no means novel, dating back to early 1903 (Kishore
et al., 2015). It is predominantly works by Gerretsen (1948)
and Pikovskaya (1984) which unfolded for the first time the
ability of some microorganisms to solubilize insoluble P.
This led afterward to the discovery of several P solubilizing
microorganisms (PSMs) beneficial bacteria and fungi, living
in close association with plants. This opened up the promise
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FIGURE 1 | Conceptual overview illustrating the role of P solubilizing microorganisms (PSMs) in enhancing P mineral fertilizers eco-efficiency. PSM increase

bioavailable P either directly by the production of low molecular weight organic acids, thus chelating through their carboxylic groups, cations attached to insoluble P,

or indirectly by synthetizing bioactive molecules (phytohormones, siderophore, antibiotics, etc.) which improve plant vitality and resilience to biotic and abiotic stress

and ultimately leads to better nutrients uptake and agronomic yield.

of powerful tools aimed at establishing sustainable agriculture
through enhancing P use efficiency. A few years later, the
microbial inoculant based on P-solubilizing B. megaterium
(i.e., Phosphobacterin) was successfully used in Russia. Further
studies however did not show the same efficiency in soils
in the United States, thus concluding that there were no
enough indications clearly demonstrating beneficial effects
on field crops (Smith et al., 1961). After Pikovsakaya’s works,
it took no less than half a century for the introduction of
efficient products aimed at enhancing P use efficiency, such
as “Jumpstart,” which consisted of a Penicillium bilaii strain
isolated by Kucey (1983). As of right now, biotechnological
applications relating to P biosolubilization and BNF have
reached the milestone of providing efficacious products.
This is come thanks to advances in both fundamental and
applied sciences which provided a better understanding of

the plant–microbes interactions, and a growing interest of the
industrial sector.

Biological Nitrogen Fixation, Importance,
and Estimates
In general, BNF refers to a microbially mediated process by
which atmospheric N2 is reduced into ammonia (NH3) in the
presence of nitrogenase. Such an enzymatic conversion is found
in a wide diversity of NF organisms called diazotrophs. Some
diazotrophs can fix N2 in the free-living state, while others
perform it in association with plants including endophytic (inside
plant tissues) and symbiotic bacteria involving structural and
physiological modifications of both microbe and plant roots in
specialized structures namely nodules (Unkovich et al., 2008).
For example, legumes have the advantage to associate with
specific soil rhizobial bacteria (i.e., Rhizobium, Bradyrhizobium,

Frontiers in Microbiology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 1606

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Bargaz et al. Soil Microbes Improve Fertilizers Efficiency

FIGURE 2 | Conceptual illustration of the relationships between mineral P fertilizers and N2-fixing bacteria. Biological nitrogen fixation (BNF) is a process for which P

is needed in relatively large amounts, especially by legumes for growth, nodulation and grain yield production. Positive interaction between P fertilizers and N2-fixing

bacteria either symbiotic or non-symbiotic (to a lesser extent) would enhance the agronomical eco-efficiency of P fertilizers. Such a positive relationship leading to

enhancing use of available P and N would also be attributed to a number of traits related to plants (i.e., above- and belowground, especially rooting) and

microorganisms (i.e., P-solubilizing, phytohormones-producing, and siderophores production, etc.).

Mesorhizobium, Sinorhizobium, and Allorhizobium) that can use
root nodules to sequester atmospheric nitrogen as ammonia,
a form of N that can then be incorporated into organic
components including proteins and nucleic acids (Unkovich
et al., 2008; Pankievicz et al., 2015). In symbiotic nitrogen
fixation (symbiotic NF), net transfer of biologically fixed
N directly from the bacteria to the host plant occurs
concurrently with significant transfer of photosynthetically fixed
plant carbon to the NF bacteria (Unkovich et al., 2008).
Symbioses between NF bacteria and eukaryotes also include
the cyanobacteria with fungi that occur in lichens, cycads
and gunnera as well as actinomycetes (i.e., Frankia) with a
variety of angiosperms like Alnus and Casuarina (Unkovich
et al., 2008). However, in this review attention is paid to
both symbiotic and non-symbiotic NF in an agronomical
perspective.

In non-legumes such as grasses, the ability to fix N2 has
been extensively studied and remarkable advances have been
achieved from the cell to the farm context. Several NF bacteria
which also exhibit PGP properties have been identified as
non-symbiotic NF bacteria of grass species, especially cereals in
which they significantly increase plant vegetative growth and
grain yield as described further in the paper (Malik et al., 2002;
Kennedy et al., 2004). Among them, Beijerinckia, Azotobacter,
Azospirillum, Herbaspirillum, Gluconacetobacter, Burkholderia.
Clostridium, Methanosarcina, and Paenibacillus are well-known.

Unlike rhizobia that lead to the formation of root nodules
with their legume hosts, non-symbiotic NF bacteria are either
rhizosphere free-living or endophytic (inside living tissues) with
the ability to proliferate owing to energy and nutrients derived
from plant roots (Unkovich et al., 2008; Pankievicz et al., 2015).
It is worth mentioning that, unlike symbiotic NF, non-symbiotic
NF (which is commonly referred to as associative N2 fixation)
does not involve a direct controlled exchange of N and C between
bacteria and plant hosts.

Accurate determination of global inputs of biologically fixed
N has always been a challenge (Peoples and Herridge, 2000;
Herridge et al., 2008). Because data on area and productivity
of NF legumes and non-legumes are almost impossible to
obtain, BNF is difficult to measure. Methodological constraints
used to estimate N2 fixation are also a major component of
this challenge (Roger and Ladha, 1992; Herridge et al., 2008;
Unkovich and Baldock, 2010; Ladha et al., 2016). In legume
crops, published estimates by Peoples et al. (1995) reported
BNF to be in the range of 100–300 kg N ha−1. Other studies
(i.e., Herridge et al., 2008) pointed out the rhizobia–legume
symbiotic associations to be the most important NF biosystems,
contributing with average N2 fixation estimates of 227 kg N ha−1

annually. As per crop biomass, Peoples et al. (2009) estimated the
legume rhizobial symbiosis to fix the equivalent of 30–40 kg N
per ton of shoot dry matter and that the most efficient NF
crops like soybeans can accumulate up to 200 kg N ha−1
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annually. Similarly, faba bean, which is a commonly grown
grain legume used as a valuable protein source and energy for
food and feed, has high reliance on N2 fixation estimated at
up to 100–200 kg N ha−1 (Jensen et al., 2010). On the other
hand, large-scale data on non-symbiotic NF estimates are scarce
except for staple cereal crops such as maize, rice, and wheat.
Recently, a 50 year assessment study reported non-symbiotic
NF estimates for maize, rice, and wheat production systems to
contribute to an average of 15.5 kg ha−1 (Ladha et al., 2016).
On a per hectare basis, estimates indicated that non-symbiotic
NF contributed 13, 22, and 13 kg to the N harvest of maize, rice,
and wheat, respectively, in which the efficiency of N contribution
to the crop was assumed to be 80% (Ladha et al., 2016). In
rice cropping system, Ladha et al. (2016) found comparable
fixation rates with the value reported by Bouwman et al. (2013),
however much lower than those estimated by both Ladha
et al. (2000) and Bei et al. (2013). Likewise, fixation rates up
to about 20 kg N ha−1 were estimated through a long-term
study with wheat; rates that were at least twofold higher than
estimates (5–10 kg N ha−1) from some studies (Herridge et al.,
2008).

Microbial Solubilization and Mobilization
of Phosphorus
Phosphorus is a fundamental mineral nutrient for agricultural
and crop development and essential in vital physiological
processes (Krishnaraj and Dahale, 2014). As a matter of fact,
that agricultural production has almost tripled since 1950 is
widely attributed to the introduction of mineral fertilizers
including P fertilizers into agroecosystems (Ekardt, 2016). P is
known to promote root development, rapid plant maturity, seed
production, improve BNF, water use efficiency, and resistance
to diseases (Murrell and Munson, 1999). It is also fundamental
in vital physiological processes including, energy transfer
and storage, photosynthesis, cell division and seed formation
which are all energy dependent biological process controlled
by two intracellular P-containing molecules; ADP (adenosine
diphosphate) and ATP (adenosine triphosphate; Krishnaraj and
Dahale, 2014).

As per plant and soil content, P represents ∼0.2% of total
plant dry weight and 0.05% (w/w) of soil content of which
only a small fraction is bioavailable for plants (Alori et al.,
2017). In soil solution, the bioavailable form of P rarely exceeds
10 µM and plants must possess specialized transporters and
complex efflux system providing efficient distribution of this
nutrient between all plant compartments (Schachtman et al.,
1998). Such a lower P concentration in soil solution makes
this nutrient very limiting for plant growth giving that crop
production requirement for P is relatively sizable (Bhat et al.,
2017). Further, P availability is a pH-dependent process and
fixation and precipitation phenomena may occur and thus
reduce P availability and consequently efficiency of P fertilizers.
For example, in calcareous soils, P fertilizer use efficiency is
severely hampered due to precipitation and adsorption (Sanders
et al., 2012). Therefore, one of the key challenges faced by
today’s agriculture entails developing solutions for optimizing
or enhancing the bioavailability of P knowing that productivity

needs to increase by several fold to meet increasing demand of
growing population. Soil microorganisms exhibiting beneficial
traits responsible for bio-solubilization of insoluble forms of
P are presumably needed in most agricultural soils where P
use efficiency by plants has to be enhanced. In this context,
a large number of greenhouse- and field-based studies (i.e.,
Rodrı ìguez and Fraga, 1999; Khan et al., 2010; Wu et al.,
2012; Sawers et al., 2017) have demonstrated that application
of PSM and AMF is associated with higher plant P uptake
and increased yield of many vegetable and cereal crops. In
addition to underlining the role of these microorganisms
in enhancing P bioavailability, this review provides evidence
to showcase the advantage that could be gained from the
combinatory use of both P mineral fertilizers, PSM and
AMF.

Phosphate Solubilizing Microorganisms
(PSM)
A number of genera among bacteria (i.e., Pseudomonas, Bacillus,
Azotobacter, and Bradyrhizobium), fungi (i.e., Penicillium
and Aspergillus), actinomycetes (i.e., Streptomyces), and algae
are all capable of solubilizing P-metal complex to release
bioavailable P in the form of orthophosphate through specific
mechanisms implying mainly organic acids, siderophore
production, and phosphatase enzymes playing a key role in
hydrolyzing organic P forms. Overall, PSM could contribute
in promoting plant growth through enhancing P use efficiency
directly through exudation of organic acids and P-hydrolyzing
phosphatase enzymes and thus enhancing the bioavailable P
pool, or indirectly through the production of phytohormones,
antifungal compounds, toxin-resistance compounds, and other
high value bioactive molecules which could help building
robust shoot/rooting system, specially under biotic and abiotic
constraints (Figure 1).

Despite the variety ofmechanisms involved in P solubilization,
organic acids are the main contributors (Khan et al., 2007;
Chen et al., 2015; Wei et al., 2018). Secretion, quantitatively
and qualitatively, of organic acids by beneficial microorganisms
is mainly gene-dependent but could also be influenced by the
ecosystem environmental properties (Zhen et al., 2016). For
example, N and C soil content may have a direct impact
on the nature of the organic acids produced, the nature
of C source could affect the bio-solubilization process, and
high C/P ratio seems to increase the production of organic
acids while both C/N and N/P may affect microorganism’s
development (Zhen et al., 2016). It is also important to note
that P solubilization efficiency depends more on quality rather
than quantity of organic acids and P sources (Scervino et al.,
2010). The latter authors, when comparing P solubilizing
properties of tow fungal strains (Talaromyces flavus and
Penicillium purpurogenum), found that both strains exhibit
equal solubilization potential, although T. flavus produced
four times less organic acids than P. purpurogenum. This
finding, which is in line with a study by Zhen et al.
(2016), indicated a clear relationship between organic acids
profile and the source of P regarding the bio-solubilization
process.
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It is worth mentioning that PSM can produce a number of
organic acids (i.e., acetic acid, gluconic acid, glucuronic acid,
butyric acid, fumaric acid, citric acid, lactic acid, propionic acid,
succinic acid, oxalic acid, and valeric acid) with 2-ketogluconic
acid and gluconic acid are the most common ones in gram
negative bacteria (Krishnaraj and Dahale, 2014). Organic acid
implication in P solubilization is often attributed to lowering
the pH and cations chelating properties (Zeroual et al., 2012;
Behera et al., 2017). The acidification of microbial cells perimeter
leads to the release of P anion by substitution of H+ and Ca2+

(Trivedi and Sa, 2008; Behera et al., 2017). Nevertheless, other
studies reported no correlation between P solubilization and pH
value implying that other mechanisms might be involved in this
phenomenon. This includes mechanisms such as the release of
protons after ammonium assimilation by microbial cells, the
production of inorganic acids (i.e., sulfuric and nitric acids) and
the production of specific enzymes acting on amphiphilic fatty
substances (Alori et al., 2017).

In addition to microbial solubilization of mineral P, organic P
mineralization through the action of microorganisms plays also a
vital role in P cycling, giving that organic P content in soil (mostly
in the form of inositol polyphosphates) can represent between
30 and 50% of the total P (Shen et al., 2011). The mineralization
process is widely governed by specialized P-hydrolyzing enzymes
produced by microbes such as phytases and phosphatases which
are a non-specific exo-enzymes principally produced by fungi and
bacteria (Sato et al., 2015). P mineralization is largely attributed
to acid phosphatases which dephosphorylate phosphor-ester
compounds and phosphoanydrid bonds of organic compounds
(Alori et al., 2017). In addition to their positive contribution
in enhancing P bioavailability, soil microorganisms mediating
P availability possess other substantial attributes of agronomic
interests including production of phytohormones, enhancing the
resilience to biotic and abiotic stress through the production of
specific compounds (antifungal compounds), and the regulation
of key metabolic pathways (Khan et al., 2007; Popavath et al.,
2008; Sharma et al., 2013).

Arbuscular Mycorrhizal Fungi (AMF)
Additionally to PSM, AMF are also key microbial component
of agro-systems giving they are the most widespread symbiosis
on earth (concerns more than 80% of terrestrial vascular
plants) which is defined by a symbiotic relationship involving a
bidirectional exchange of nutrients between the two organisms
(Wang et al., 2017). Their contribution to P mobilization and
uptake could be substantial and may represent in some case
(depending on soil nature and P treatment) up to 80% of
total P uptake (Li et al., 2006). A study by Schnepf and Roose
(2006), based on a mathematical model to quantitatively evaluate
the contribution of AMF hyphae to P acquisition by plants,
demonstrated that plants may depend exclusively on mycorrhizal
pathway for P nutrition. Morphologically, AMF act through their
mycelium network as an extension of the rooting system enabling
the plants to scavenge nutrients far beyond the rhizosphere
boundaries and this mechanism presumably prevails in the
specific case of P deficiency (Wang et al., 2017). In this regard,
AMF provide an additional P uptake pathway (AMF pathway)

with arbuscules being in most cases the symbiosis interface,
thus sidestepping the direct uptake by root epidermis which
is often quickly obstructed with the formation of a downsized
depletion zone resulting from brisk absorption of P from soil
solution (Shen et al., 2011). AMF hyphae have a high affinity
for inorganic P and due to their reduced diameter compared
to roots they can explore inaccessible soil pores and enhance
translocation of inorganic P (Bago, 2000). Indeed, P is absorbed
in the form of polyphosphates by AM hyphae, then transported
to intra-radical hyphae through the vacuole where it is cleaved
(Konvalinková et al., 2017). Additionally, it seems that through
the evolution, plants have acquired specific P transporters that
have been identified for various species, including rice, tomato,
potato, barely, and clover (Paszkowski et al., 2002; Konvalinková
et al., 2017; Wang et al., 2017).

However, until now, and even if the ability of fungal hyphae
to exudate acid phosphatase enzymes and organic acids has been
confirmed (Sato et al., 2015), the magnitude in which AMF can
directly contribute in enhancing P availability in comparison
to PSM and roots is still not well-defined. That being said the
general consensus is that AMF are involved in P solubilization
through a synergic relationship with PGPM. Indeed, recent
studies (Taktek et al., 2017) have shown that the PGP bacteria
associated to the AMF hyphae known as hyphobacteria could
play a vital role in mycorrhizal symbiosis which strongly suggest
that there is an AMF/bacteria specificity. In fact, rhizobacteria
could benefit from fungal exudates as a source of nutrients
while hyphobacteria provide growth factors that stimulate both
mycorrhizal symbiosis and plant development (Taktek et al.,
2015). Additionally, hyphobacteria can abundantly generate
biofilm-like structures which enhance nutrients biodynamic (Iffis
et al., 2014). Furthermore, Cruz and Ishii (2012) hypothesized
that the entophytes closely associated with AMF could be
involved in nutrient bioavailability. Indeed, those authors
successfully isolated three endobacetria (Bacillus sp., Bacillus
thuringiensis, and Paenibacillus rhizospherae) from Gigaspora
margarita spores that exhibited multiple PGP properties
including P solubilization, ethylene production, nitrogenase
activity, and antagonism toward soil-borne pathogens. Dual
positive effects of AMF and their associative endobacteria with
regards to facilitation of P uptake under P-limiting conditions
were evidenced by Battini et al. (2017). This study highlighted
the contribution of 10 bacteria isolated from AMF spores in
enhancing P availability and improved hyphae elongation which
were both attributed to phytohormones production.

Moreover, it was reported that some AMF spores belonging to
theGigasporaceae are habitats of several endophtytic bacteria. For
example, the endophtytic bacteria Glomeribacter gigasporarum
which was previously assigned to the Burkholderia genus
according to 16S rRNA sequencing, lives inside the mycorrhizal
spores and cannot complete their life cycle otherwise (Artursson
et al., 2006). This is clear evidence demonstrating that what
we thought as a bipartite symbiosis is in some specific cases
a complex tripartite symbiosis. According to Ghignone et al.
(2012), G. gigasporarum have very limited sugar metabolism and
depends exclusively on its AMF host for carbon and P supply,
whereas the endophytic bacteria produces vitamin, antibiotics,
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and specific molecules with toxin resistance properties that
enhance the host resistance toward indigenous microbes. The
specific role of AMF-associated bacteria is, however, still
not well-known and future research should focus more on
microbial dynamic around and within the mycorrhizal symbiosis
components. In addition, AMF have other beneficial impacts
on the whole plant/soil system (Berruti et al., 2016; e.g.,
resilience to abiotic and biotic stress, improvement of soil
texture, enhancing microbial activity such as BNF as detailed
further in the paper), which make them key components of
productive and substantial agroecosystems that should be taking
into consideration when implementing nutrients management
programs.

Phosphorus Availability Enhances
Biological Nitrogen Fixation
Both symbiotic and non-symbiotic BNF constitute a major
input of N in agroecosystems and may provide an ecologically
acceptable complement or substitute for mineral N fertilizers
(Peoples et al., 1995, 2009; Herridge et al., 2008; Lazali and
Bargaz, 2017). However, BNF is often limited under low soil
nutrient availability, notably P that is required at sufficient rates
during the BNF process (Schulze andDrevon, 2005; Alkama et al.,
2012). More particularly, high P requirements were found to be
more critical in N2-fixing (NF) legumes than in non-symbiotic
plants whose growth rely on mineral N sources (Serraj and Adu-
Gyamfi, 2004; Schulze and Drevon, 2005; Sulieman and Tran,
2015). Generally, in soils containing only a small fraction of P
that is readily available, plant growth and associated-metabolic
pathways would be greatly impaired, which makes necessary the
application of mineral P fertilizers to replenish the soil as to
immediately satisfy plant requirements for better growth and
yield (Richardson et al., 2009).

Much information is available about the important
role of mineral P fertilization in plant growth processes,
including nutrient uptake (Ca, Mg, Zn, Cu, Mn, and Fe,
etc.), photosynthesis, root development, root hair formation,
nodulation, BNF, and particularly as an energy source for the
latter biological process (Israel, 1987; Drevon and Hartwig,
1997; Gordon et al., 1997; Nielsen et al., 2001; Hogh-Jensen
et al., 2002; Nziguheba et al., 2016). Plant N nutrition, with
emphasis on legume crops (i.e., lentils, faba bean, common bean,
and cowpea, etc.) may be affected positively in response to an
adequate P nutrition that has positive consequences on robust
root systems, vigorous seedlings, ammonium assimilation into
amino acids, and ureides, as well as synthesis of mitochondrial
and symbiosome membranes for functional NF nodules (Fageria
et al., 1995; Schachtman et al., 1998; Nyoki and Ndakidemi,
2014a; Tairo and Ndakidemi, 2014; Sulieman and Tran, 2015).
This is of particular importance for NF legumes whose nodule
formation, nodule functioning, and the energy costs related to
NF greatly depend on the P status in plant and nodule tissues
(Vardien et al., 2016). Moreover, the fact that root-nodules are
strong P sinks, with nodule P concentrations often exceeding
those of roots and shoots also indicates the important role of P
in the legume symbiosis processes (Schulze and Drevon, 2005;
Bargaz et al., 2012; Nyoki and Ndakidemi, 2014a).

Other traits related to extensive rooting system and their
spatial distribution, hyper-nodulation, root exudates, rhizosphere
acidification, and heterogeneity are among the most important
plant-related belowground traits that contribute to higher
nutrient use efficiency (Figure 2). Regarding P, these traits
may substantially contribute in alleviating the sensitivity of NF
plants to low P availability through ensuring large amount of
P-dependent carbon and energy turnover required during the NF
process (Schulze, 2004; Serraj and Adu-Gyamfi, 2004; Schulze
and Drevon, 2005). Moreover, exploiting beneficial microbial
traits involved in higher P solubilization would positively
influence P uptake in addition to multiple advantages attributed
to the production of plant growth-promoting substances which
could indirectly influence the efficiency of BNF (Kucey et al.,
1989; Afzal et al., 2010). For example, dual inoculation of
soybean plants with both a P-solubilizing (Bacillus) and NF
(Bradyrhizobium) strains improved symbiotic traits related to
growth of nodules and roots, aboveground biomass, total N and
grain yield (Ming et al., 2003; Afzal et al., 2010). However, despite
positive responses on improved growth, nutrient use efficiency (N
and P), and stable yield, all were demonstrated due to microbial
application and mineral supply, co-application of multipurpose
microbial strains, host plant species, and nutrients sources may
generates a highly intricate plant–soil–microbe interactions that
need to be profoundly deciphered in order to optimize the
agronomical functions they were designed for.

SYNERGISTIC USE OF MINERAL P AND
N2 – FIXING BACTERIA TO YIELD
BETTER AND SUSTAINABLY

As mentioned above, the reliance of legume-based cropping
systems on biological NF is challenged by the fact that many
legumes are sensitive to a broad spectrum of environmental
constraints (notably P with 40% of the land is limited by low
P availability) and this leads to great variation in terms of
growth, nodulation, and thus N2 fixation rates in legume crops
(Vance, 2001; Carlsson and Huss-Danell, 2003; Deng et al.,
2005; Hauggaard-Nielsen et al., 2010). Under stressful conditions,
legume and non-legumeNF cropsmay lose the distinct advantage
of an unlimited source of biological N (Vance, 2001; Shenoy
and Kalagudi, 2005), and that the potential of such highly
valuable cropping systems to efficiently use nutrients needs to be
preserved.

In Legume Crops
Enhanced P and N uptake by legume crops using beneficial NF
and P-solubilizing microorganisms has been adopted worldwide.
However, such a biological approach needs to be further
optimized for better use of mineral resources such as P,
better crop productivity and resiliency to abiotic and biotic
constraints. In this context, and given that BNF greatly relies
on P availability in soils, efficient root uptake and use of P
would stimulate the functioning of the legume symbiosis in
terms of N nutrition such as in the lentil-R. leguminosarum
association whose N requirement might be secured up to 80%

Frontiers in Microbiology | www.frontiersin.org 8 July 2018 | Volume 9 | Article 1606

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Bargaz et al. Soil Microbes Improve Fertilizers Efficiency

through symbiotic NF according to The Saskatchewan Pulses
Growers (Pulses Crop Development Board). Coincident with the
efficient use of adequate amounts of P fertilizers required for
optimal plant productivity, aboveground N requirement may
then be promoted by using effective NF strains and relevant
crop–microbe biosystems that are efficient in contributing to
sustainable intensification of agriculture. Although not fully
exploited, some inoculants can substantially improve plant
uptake of essential nutrients and thereby increase use efficiency
of applied mineral and organic fertilizers (Adesemoye and
Kloepper, 2009). In this context, microbial inoculants such as
rhizobia have been widely used to promote BNF in intensive
farming systems that require adequate amounts of fertilizers (i.e.,
P and K) to realize high yield and socioeconomic benefits to
farmers (Sanchez et al., 1997; Gruhn et al., 2000).

Several reports revealed that rhizobial inoculation of many
legume crops (such as cowpea, chickpea, soybean, common
bean, etc.) supplemented with P fertilizer improved the uptake
of N, P, K, Mg, Ca, and Na (Messele and Pant, 2012;
Makoi et al., 2013; Nyoki and Ndakidemi, 2014b). Likewise,
Verma and Singh (2008) previously reported improved plant
symbiotic performance (biomass, number, and nitrogenase
activity of nodules) and yield in mung bean inoculated with
Rhizobium and supplied with P (45 kg P2O5 ha−1). However,
and despites P has been demonstrated to be essential for
the rhizobial symbiosis establishment and functioning, there
are so far fewer reports on the effects of combined use
of P fertilizers and rhizobial inoculation that could produce
additional benefits to the symbiosis performance and host
feedback responses. Recently, a study by Kyei-Boahen et al.
(2017) found that dual application of rhizobia inoculants together
with mineral P fertilizer improved cowpea-Bradyrhizobium
symbiosis agronomic efficiency compared to either inoculant
or P applied alone. In addition to a positive influence that
P may have on the rhizobia efficiency (higher N content in
shoots and seeds) and yield component (grain yield and plant
biomass), application of this nutrient was also been demonstrated
to boost the effectiveness and efficiency of the indigenous
rhizobia population (Kyei-Boahen et al., 2017). Those measured
improvements in growth and productivity were achieved under
medium P fertilization level (up to 40 kg P ha−1), which is
in line with previous studies that succeeded to physiologically
explain advantageous mutualistic benefits in response to P supply
and rhizobia inoculants (Bambara and Ndakidemi, 2010; Makoi
et al., 2013; Tairo and Ndakidemi, 2013; Nyoki and Ndakidemi,
2014a). Moreover, the impacts of a slow release plant fertilizer
(containing NPK “19–6–12”) on symbiotic and plant phenotypic
traits were investigated through multiple controlled-condition
experiments (Simonsen et al., 2015). These authors found that
rhizobial isolates (Ensifer meliloti and Ensifer medicae) from a
fertilized-field soil conferred higher mutualistic benefits with
Medicago lupulina. The combined-micronutrients plant fertilizer
was generally beneficial for rhizobia growth compared to isolates
from unfertilized field soil. Simonsen et al.’s (2015) finding
concords with several previous studies on rhizobia growth
and effectiveness that promoted legume symbiosis functioning
owing to increased availability of multiple mineral nutrients,

notably P (Gates and Wilson, 1974; Asimi et al., 1980; Israel,
1987).

With regards to P application and BNF, Reed et al. (2011)
through a long term agroforestry-based study demonstrated that
the efficiency of N-fixing community was found to be tightly
linked to P supply which indicates a tight coupling of N and P
demands. Moreover, based on an intercropping cereal–legume
study, Tang et al. (2016) also concluded that P fertilization is
presumably driving soil microbial communities since it resulted
in a higher abundance of bacterial and fungal communities.
Conversely, long-term N addition was reported to suppress the
mutualistic benefits of the legume–rhizobia associations (Carroll
and Gresshoff, 1983; Imsande, 1986; Streeter and Wong, 1988;
Weese et al., 2015). This response, according to Kiers et al.
(2007) and Coelho et al. (2009), could directly be attributed
to decreased rhizobia abundance in soils and reduced selective
pressure from legumes to maintain beneficial partners. Generally,
it was reported that long-term N rather than P fertilization
may decrease significantly the abundance of functional bacterial
groups, such as NF bacteria, ammonia oxidizing bacteria,
and AMF (Avio et al., 2013; Berthrong et al., 2014). For
example, a field-based study on 8-year-old alfalfa monocultures
demonstrated that long-term P fertilization influenced soil
fungal and bacterial diversity rather than the P-mobilizing AMF
community (Beauregard et al., 2010). Coherently, Zheng et al.
(2017) demonstrated that a long-term inorganic P fertilization
had no effect on P-solubilizing bacterial communities, in contrast
to a long-term N fertilization that decreased their abundance.
This decrease was attributed mainly to soil acidification, total
N and P release thus explaining a lower demand for functional
Pi-solubilizing bacteria populations.

Moreover, combinatory use of the rhizobial symbiosis and
P fertilization has been shown to help ensure yield stability
under stressful conditions such as salinity owing, among other
factors, to stimulating plant–defense mechanisms coupled with
adequate nodulation, plant biomass, protein content, grain yield,
and other growth variables (Ankomah et al., 1995; Onduru
et al., 2008; Dekhane et al., 2011; Musa et al., 2011; Nyoki
and Ndakidemi, 2013; Bargaz et al., 2016; Kyei-Boahen et al.,
2017). In this context, studies by Abd El-Hamed et al. (2012)
and Khan et al. (2013) highlighted that mineral P fertilization
may mitigate salinity stress effects, and that was demonstrated
by the improved wheat growth concurrently with increasing N,
P, K, and Zn uptake. Improved salt tolerance was also reported
in common bean (Bargaz et al., 2016) and chickpea (Sadji-Ait
Kaci et al., 2017) under P fertilization whose adequate application
could be considered a promising strategy to alleviate deleterious
salinity effects and to stabilize productivity of such both NF
and protein-rich grain legumes. Other studies also reported
pronounced salt stress alleviation in plants in response to a
combined application of P with K, indole acetic acid (Kaya et al.,
2013), organic P (Abd El-Hamed et al., 2012), and humic acid
(Çimrin et al., 2010). In those studies, application of P fertilizer
was coupled with improved plant growth performances owing
to a number of physiological changes (stimulation of proline,
glycine, soluble sugars, and antioxidants, etc.) that contributed
to osmotic adjustment under salinity stress conditions (Bekheta
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et al., 2009; Shahriaripour et al., 2011; Abdelhamid et al., 2013;
An and Liang, 2013). In response to other abiotic constraints such
as elevated carbon dioxide (as a consequence of climate change),
Sumit et al. (2017) recently found that a combined application
of P and a NF bacterium (cyanobacterial inoculant) enhanced
rooting and symbiotic traits related to nodulation, N2 fixation,
and uptake in cowpea crop.

In Non-legume Crops
Unlike legumes, members of the Poaceae family do not naturally
form symbiotic NF associations, but they can derive a substantial
part of their N through non-symbiotic associations with free,
associative and endophytic NF bacteria. In non-leguminous crops
like cereals, the optimization of NF ability has long been a major
goal of plant scientists not only to make cereals self-sufficient
in N nutrition (Galal et al., 2000; Viviene and Dakora, 2004),
but also to achieve better efficiency in use of major soil and
fertilizer nutrients such as P. Several studies have demonstrated
improved yield of numerous cereal staple crops in response to
a mineral fertilization (NPK) and inoculation with a number
of non-symbiotic NF bacteria that exhibit multiple PGPR traits
(A. chroococcum, A. brasilense, A. lipoferum and some species
of Burkholderia, Pseudomonas, Sinorhizobium; (Gupta et al.,
2002; Pandey and Maheshwari, 2007; Shata et al., 2007; Yasari
et al., 2009; Shoghi-Kalkhoran et al., 2013). Inoculation with
non-symbiotic NF bacteria that simultaneously function as PGPR
is likely a worldwide dream of developing sustainable nutrient
sources (Adesemoye and Kloepper, 2009), notably N and P.

Dual P-based mineral fertilization and inoculation with
non-symbiotic NF bacteria still yet not well-documented, and
particularly under multiple abiotic- and biotic-related factors
that have to be controlled. As for bacterial component and
besides it may have higher abilities to efficiently use atmosphere
N, stimulate P availability, root P uptake, produce growth
stimulating phytohormones, bacteria resiliency to environmental
conditions, adaptation to mineral fertilizer physico-chemical
properties are presumably highly needed key microbial traits
that are required to secure synergistic interactions with plant
hosts. Beneficial rhizobacteria may involve specific mechanisms
to tolerate stressful conditions such as saline soils in which
Azotobacter species, for example, may proliferate up to
106 cells per gram soil (Whipps, 2001) and are able to
mitigate high temperature and acidity levels (Chennappa et al.,
2016). Large number of bacteria belonging to numerous
rhizobacteria genera including Pseudomonas, Flavobacterium,
Bacillus, Arthrobacter, Rhizobium, Azospirillum, Halomonas,
Chromohalobacter, Salinivibrio were characterized for their
abiotic stress tolerance (Tripathi et al., 2002; Ahmad et al., 2005).
However, little information is available on evaluating NF bacteria
with adaptive traits to chemical fertilizer and whether they may
potentially be used for implementing novel integrated plant
nutrition approach and commercial benefits.

Maheshwari et al. (2010) used two adaptive bacterial strains
(Sinorhizobium RMP1 and Pseudomonas GRC2) whose impacts
on growth and yield of B. juncea were positive when co-applied
with DAP and urea fertilizers. Co-inoculation with the latter NF
and P-solubilizing strains were found to be effective on Brassica

crop in terms of growth performances under half dose of N
and P fertilizers (Maheshwari et al., 2010). Those findings are
in line with earlier results by Pandey and Maheshwari (2007)
that co-inoculation with Sinorhizobium and Burkholderia sp.
enhanced growth of pigeon pea. This is in accordance with a
study byMohiuddin et al. (2000) on the profitability of integrated
use of microbial-based biofertilizers and NPK fertilizers to
obtain high grain yields in wheat. Another study based on
pot experiments demonstrated that bacterially impregnating
DAP and urea granules with the PGPB Bacillus sp. strain
(KAP6) (slurry of strain and compost) enhanced growth, yield,
photosynthetic rate, and nutrient use efficiency of wheat supplied
with N-containing fertilizers such as urea andDAP (Ahmad et al.,
2017). Nevertheless, at a large scale, there is no evidence of such
interesting strategy of impregnating mineral fertilizers with plant
growth-promoting bacteria, and particularly for NF bacteria and
PSM that have been attracting worldwide attention.

Giving that most cereal-grown soils are N-deficient and that
production of cereal crops such as wheat, barely, maize and
rice greatly relies on N and P applications, integrated use
of non-symbiotic NF bacteria and rational mineral nutrition
would positively impact cereal yield components. As for
microbially mediated N, it is now evident that using effective
non-symbiotic NF soil bacteria (i.e., Azotobacter, Azospirillum,
and Glucanacetobacter, etc.) that have the potency to supplement
significant amounts of N would be a wiser alternative (Bashan
and de-Bashan, 2010; Wani et al., 2013; Sahoo et al.,
2014). Meanwhile, plant genotype is presumably a key factor
that also control benefits derived from the non-symbiotic
NF such as in wheat, oat and maize according to Lana
et al. (2014). Other field experiments attributed the observed
increase in productivity of rice inoculated with Azotobacter
and Azospirillum spp. and supplied with recommended or
reduced N to be genotype-driven (Kanungo et al., 1997;
Choudhury and Kennedy, 2004; Singh, 2006; Pedraza et al.,
2009; Zaki et al., 2009). In addition, carbon allocation
(quantitatively and qualitatively) to roots and rhizodeposition are
presumably important plant-related factors that may plausibly
control above- and below-ground plant biomass. Those factors
may modify rhizosphere traits and shape the rhizosphere
microbial community (Hernández et al., 2015) that may include
non-symbiotic NF bacteria, particularly via the development
of robust rooting system and associated rhizosphere-induced
changes including plant–microbe mutualism efficiency, BNF
(Schulze and Drevon, 2005; Latati et al., 2014, 2016; Bargaz et al.,
2017), soil respiration (Ibrahim et al., 2013; Latati et al., 2014),
rhizosphere acidification, and P availability (Betencourt et al.,
2012; Latati et al., 2016).

All these rhizosphere-induced changes could tightly be
linked to leaf photosynthetic activity such as in wheat, pea,
maize, and tomato wherein an estimate of up to 60% of the
photosynthesis-fixed C is belowground-translocated and that
root-associated microorganisms can metabolize or use it for the
benefit of plant growth and the rhizospheremicrobiome (Morgan
et al., 2005; Hernández et al., 2015). Coherently, stimulated
photosynthesis activity was observed in barely plants inoculated
with a free NF bacterium (Pseudomonas sp.), supplied with
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sufficient amount of P [triple superphosphate (TSP)] fertilizer
and deficient amount of N (Figure 3). An increased plant
biomass and chlorophyll content (especially with the strain Az1,
Figure 3) may be attributed to an effective absorption of nutrients
(mainly N as attested by higher protein content), but also by the
capacity of this strain to synthesize indole acetic acid that could
positively impact secondary roots proliferation (Spaepen et al.,
2008; Baset Mia et al., 2010). Coherently, findings by Zhang et al.
(1997), Han and Lee (2005), Shoghi-Kalkhoran et al. (2013), and
Boisvert (2014) reported stimulation of photosynthetic activity
in response to inoculation with non-symbiotic NF rhizobacteria
that provide biologically fixedN and beneficial growth promoting
substances like indole acetic acid, gibberellin acid, kinetin,
riboflavin, and thiamine.

Overall, it is evidenced that non-symbiotic NF bacteria
improve growth, and especially functional root traits with
positive consequences on uptake of water and mineral nutrients
as exemplified with A. brasilense that promote uptake of the
three essential nutrients (NO−

3 , K
+, and H2PO

−

4 ) into major
crops like corn, sorghum, and wheat (Okon and Kapulnik,
1986; Murty and Ladha, 1988; Okon and Hzigsohn, 1995;
Saubidet et al., 2000; Riggs et al., 2001; Viviene and Dakora,
2004). In a maize inoculated with Herbaspirillum seropedicae
and supplied with mineral fertilization (NPK) enhanced use
of nutrients [especially P (30%) compared to N (11%) and K
(17%)], biomass and leaf parameters compared to plants supplied
with NPK fertilizer alone (Baldotto et al., 2012). Similar results
were reported in Figure 3 that showed an increased shoot

P accumulation (indicating higher P fertilizer use efficiency)
in barely plants inoculated with a NF and P-solubilizing
Pseudomonas bacterium (strain Az1) compared to other tested
strains. This important P uptake would have relied upon
plant-induced changes, especially root growth whose nutrient
absorptive capacity could be augmented owing to associated
non-symbiotic NF bacteria (such as Pseudomonas, Azospirillum,
Azotobacter, Sinorhizobium, Bacillus, and Glucanobacter, etc.)
with multifunctional abilities other than only improving both
N and P nutrition (Panwar and Singh, 2000; Kumar and Singh,
2001; López-Ortega et al., 2013; Delaporte-Quintana et al.,
2017). Furthermore, the observed root P uptake improvement
(Az1, Figure 3) correlated with a specific plant P translocation
pattern (higher intracellular P in shoots as compared to that
in roots) and the higher ability of the latter strain to solubilize
tri-calcium P. Organic acids, among other factors, may enable
roots to access readily available P owing to intense acidification
at the root vicinity such as in wheat and tomato seedlings
supplied with insoluble calcium phosphate and inoculated with
a NF bacterium (Gluconacetobacter diazotrophicus; Sevilla and
Kennedy, 2000; Crespo et al., 2011; Delaporte-Quintana et al.,
2017). Moreover, Species belonging to several bacterial genera
such as Azosporillum, Azotobacter, Rhizobium, and Klebsiella
were reported to exhibit a higher ability to solubilize tri-calcium
P (López-Ortega et al., 2013).

Not only crops may benefit from inoculation with
P-solubilizing and NF microorganisms, but also organic
fertilizers such as composts that could also be improved.

FIGURE 3 | Percentage difference of four barley plant agro-physiological parameters (shoot dry weight, protein content, chlorophyll index, and shoot P) with respect

to control. Gray bars: barley plants supplied with recommended P and N (60 and 80 kg/ha) rates. Bars that are Black, gray, and blackhatched: barley plants

inoculated with three different non-symbiotic NF strains (Az1, Az2, and Az3) supplied with P (60 kg/ha) and deficient in N (10 kg/ha). Asterisks denote significant

difference (p < 0.05) with regard to control.
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Nutritional and microbiological qualities of composts can
be improved by bacterial inoculation with NF bacteria
(i.e., A. chroococcum and A. lipoferum; Kumar and Singh,
2001). Furthermore, compost N status improved due to the
addition of a P-solubilizing bacterium (Pseudomonas striata)
along with adequate P nutrition (Kumar and Singh, 2001). This
is in accordance with field studies on fenugreek and soybean
plants whose biomass, yield, and nutrient content increased in
response to an integrated organo-mineral fertilization based
on phospho-compost and farmyard manure inoculated with a
microbial consortium that include Rhizobium sp., Azotobacter
(as biological source of N) and numerous P solubilizing bacteria
(Singh et al., 2010; Biswas and Anusuya, 2014). This is in
agreement with a study by Shoghi-Kalkhoran et al. (2013) that
evaluated the combined effect of biological fertilizers (farmyard
manure), urea and inoculation with various PGPR (including
Azotobacter and Azospirillium species) on grain yield, protein,
fatty acids, and oil contents of sunflower crop. This integrated
fertilization system improved sunflower productivity and seed
oil quality and corroborates with other studies on root N
absorption from chemical fertilizers that could be increased
under application of both biological and manures fertilizers
(Shata et al., 2007; Shoghi-Kalkhoran et al., 2013).

SYNERGISTIC USE OF PHOSPHORUS
AND P-SOLUBILIZING/MOBILIZING
MICROORGANISMS

Combinatory use of PSM and P has been practiced and a
number of studies evidenced improved agronomic efficiency
of rock phosphate and P fertilizers such as, DAP, NPK, and
TSP (Duarah et al., 2011; Kaur and Reddy, 2014; Adnan
et al., 2017). For instance, Duarah et al. (2011) reported that
application of both NPK fertilizer and a consortium of seven PSB
strains selected for their high P solubilization properties (e.g.,
Staphylococcus epidermidis, P. aeruginosa, Bacillus subtilis, and
Erwinia tasmaniensis) improved plants biomass and enhanced
germination index in rice and cowpea bean owing to stimulation
of specific enzyme biosynthesis such as amylase in seeds.
Moreover, a recent study by Noor et al. (2017) evaluated the
maize growth in response to impregnated DAP fertilizer with
Pseudomonas putida (prepared by coating DAP (20 g/kg) with
a mixture of organic material containing compost, molasses,
and the P. putida bacterial strain). This study demonstrated
the benefit of the combined DAP and PSB co-application as it
improved maize dry matter (12%) yield and P uptake (33%) in
addition to significant agronomic efficiency in terms of produced
biomass that increased by 62% compared to unfertilized soil. Such
a P fertilizer-bacteria alliance approach is peculiarly interesting in
soil where P management is demanding.

Other findings illustrated in Figures 4–6 reported an
improvement of maize growth under combined treatments
consisting of mineral P supplies (TSP and rock P) and inoculation
with either a Moroccan native AMF (Figure 4) or an efficient
PSB strain (Figures 5, 6). Those integrated treatments enhanced
used of phosphate and TSP fertilization and improved maize

FIGURE 4 | Effect of inoculation with a Moroccan native AMF species

[Rhizophagus intraradices (RI) and Funneliformis mosseae (FM)] on root

mycorrhiza colonization percentage, shoot dry weight (g) and P uptake

(mg/pot) of maize with and without fertilization with triple superphosphate

(TSP) (60 kg P/ha). Columns denoted by a different letter, differ significantly at

p < 0.05.

plant agro-physiological performance including shoot P content,
chlorophyll content, biomass of root and shoot. This is in
agreement with findings by Kaur and Reddy (2015) who reported
that fertilization with rock phosphate (59 kg P2O5/ha) and
inoculation with two PSB strains induced high growth and
yield performances (grains yield, shoot and root biomass, and
P uptake) in wheat and maize. In addition, a recent study
by Adnan et al. (2017) reported that P availability could
significantly be improved under soil alkalinity conditions with
the application of a multi-genera PSB inoculum (Pseudomonas,
Pantoea, Mycobacterium, Bacillus, Burkholderia, Arthrobacter,
and Enterobacter) supplied with mineral (single super phosphate
and rock phosphate) and organic (poultry and farm yard
manures) P fertilizers.

The positive impact of combining both AMF and P fertilizers
on plant growth, development and P uptake has been studied. For
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FIGURE 5 | Effect of a Moroccan native P solubilizing bacteria on total plant dry weight, root dry weight, chlorophyll content and shoot P uptake, of maize (cv.

SUPERMONARK) fertilized with TSP at 100 kg P2O5 ha-1 in calcareous soil (pH 8.2). Asterisks denote significant difference (p < 0.05) with regard to control.

FIGURE 6 | Effect of a Moroccan native P solubilizing bacteria (PSB1) on total

plant dry weight, root dry weight, P uptake, and shoot chlorophyll content of

maize (cv. SUPERMONARK) fertilized with rock phosphate (PR) at

250 kg ha-1 in calcareous soil (pH 8.2). Asterisks denote significant difference

(p < 0.05) with regard to control.

instance, Cely et al. (2016) measured a significant agronomical
response of cotton and soybean to a combined application
of Rhizophagus clarus and NPK mineral fertilizer (200 and
100 kg/ha). The co-application “AMF/fertilizer” increased P
uptake by 24% compared to the mineral fertilizer alone and that
the mycorrhizal colonization remained unchanged in response
to NPK application. This is in agreement with findings in
Figure 4 showing the impact of tow Moroccan native AMF
strains (Funneliformis mosseae and Rhizophagus intraradices) on
maize yield and symbiotic performance under mineral P (TSP,
130 kg/ha) fertilization. Increased P uptake and dry weight
of shoots and roots was obtained in response to combined
use of TSP and both AMF, and in particular with F. mosseae
that exhibited higher arbuscular mycorrhizal colonization in

the presence of TSP (Figure 4). Singh and Reddy (2011)
also demonstrated the positive effect of Penicillium oxalicum
and rock phosphate co-application on wheat and maize under
alkaline conditions where plant P content and yield (70%)
of maize were higher over the control. These results are
consistent with findings by Yin et al. (2015) that application of
two P-solubilizing fungal strains (P. oxalicum and Aspergillus
niger) isolated from calcareous soil, enhanced P availability and
effectively colonized maize roots which positively influenced
aboveground biomass. Those responses were associated with
higher biosynthesis of organic acids (i.e., acetic, citric, formic,
lactic, malic, and succinic acids) when rock phosphate was added.
More evidences through field and greenhouse experiments
on the beneficial effects attributed to combinatory use of
both PSM and P-based mineral fertilizers are highlighted in
Table 1.

All these positive and synergistic effects are in fact governed
by complex mutli-factorial aspects, including soil nutrients
status, overall pedoclimatic conditions, nature of the applied
mineral P fertilizer, in addition to crop phenology and
microorganisms/plant affinity. For instance in the specific case of
AMF, numerous studies have shown P to be the most important
element in mycorrhizal symbiosis regulation (Isobe et al., 2008;
Schmidt et al., 2010; Smith et al., 2011). Moreover, recent use of
next generation sequencing such as the 454-sequencing of the
AMF SSU rRNA revealed AMF to be more diverse in P-based
fertilization systems than previously described (Van Geel et al.,
2015), which was solely based on morphological properties of the
fungal spores. Other studies revealed that P is not the sole limiting
factor in AMF development and that the remaining nutrients
pathways are also as impactful. This was exemplified by Nouri
et al. (2014) who reported promoting effect of N impairment
prevails over the P effect, and suggested that AMF regulation
depends on the complexes interactions of nutrients pathways.
Moreover, crop phenology and soil depth, rather than P mineral
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fertilization, were found to be key factors in AMF effectiveness
as demonstrated through a 3-year field study by Lui et al. (2016).
This study highlighted AMF richness and distribution to occur
at deeper soil layers and that optimal P application surprisingly
increased AMF colonization of deeper maize roots.

MULTI-TROPHIC P- SOLUBILIZING/
MOBILIZING AND N2-FIXING
MICROORGANISMS ENHANCE P USE
EFFICIENCY

It is a given that the objective of enhancing mineral fertilizer
efficiency by exploiting microbial strategies, cannot be achieved
unless we design, test and develop microbial formulations that
prove its efficiency in a constant manner. One of the greatest
challenges of the microbial inoculant field is to thrive in
making use of efficient microbial consortium which is based on
various microbial strain exhibiting various PGP properties and
synergistically operating along with mineral resources as well as
co-existence in interaction with plant hosts (Figure 7). Giving all
knowledge provided above regarding the positive impacts that
single inoculation may have on plant growth, productivity and
nutrient use, it is also evidenced that adopting polymicrobial
approach (Figure 7) could produce additional improvements as
well as much more resiliency to contrasting conditions (Reddy
and Saravanan, 2013; Meng et al., 2015; Hashem et al., 2016;
Zhang et al., 2016). Following up on the importance of NF
and P solubilizing/mobilizing microorganisms and the need to
explore them together as a single polymicrobial component, this
chapter deals with the positive interactions that may occur when
combining use of the latter microorganisms concurrently with an
efficient use of nutrients, notably P.

In this context, co-application of various PGPM including
PSM, NF bacteria, AMF, and KSM, has been reported to yield
better as compared to single inoculation (Rojas et al., 2001;
Shen et al., 2016). Increased P and N uptake concurrently with
improved yield of wheat plants were reported in response to
positive interactive effects that occur when co-applying multiple
rhizosphere microorganisms as a consortia-inoculant based on
PSB (P. striata), NF bacteria (A. chroococcum), and AMF (Glomus
fasciculatum) (Khan and Zaidi, 2007). Moreover, the specific
interaction between PSB and NF bacteria is especially tangible
in the case of legumes knowing that P availability is one of the
most limiting factor during the N2 fixation process (Figure 2).
In legumes, during formation and functioning of nodules, PSB
may enhance P availability through the production of organic
acids which provides evidence on synergism with the rhizobial
symbiosis and so more when P mineral fertilizers are applied
(Afzal et al., 2010). Similarly, when studying the associative effect
of Rhizobium and PSB on chickpea yield, Alagawadi and Gaur
(1988) reported an increased bioavailable P fraction, N uptake,
and yield as a response to co-application of both strains under
superphosphate fertilization, thus suggesting that co-applying
nutrient-supplying microbes could halve chemical N input. On
another hand, some plant species like Piptadenia gonoacantha

cannot nodulate in the absence of mycorrhizal colonization and
when P is a limiting factor and that AMF are likely to be involved
in the BNF process as recently demonstrated by Júnior et al.
(2017).

Besides dual inoculation with AMF and NF bacteria
increased use of P, it was suggested that stimulation of other
important physiological functions (such as nitrogenase activity,
leghaemoglobin content, and micronutrients uptake such as Fe,
etc.), are likely attributed to AMF involvement in mobilizing
resources and alleviation of the adverse effects induced by alkaline
stress (Abd-Alla et al., 2014). Noteworthy, aforementioned biotic
association has proven advantageous in intercropping systems as
demonstrated by Meng et al. (2015) that both AMF (F. mosseae)
and Rhizobium (SH212) control N transfer in the soybean/maize
intercropping system. Findings of the latter study provided
evidences for a beneficial effect owing to a dual inoculation (AMF
and Rhizobium) on enhanced nodule number, N uptake and
transfer from soybean to maize, and improved maize biomass.
Multiple positive responses were attributed to the role of AMF
in N uptake, rhizosphere-induced changes (acidification by
legume exudates) and enhanced competition toward deleterious
microbes (Eckhard et al., 1995; Miransari, 2011; Song et al.,
2015). Obviously, developing microbial consortia needs to
take into consideration not only the functional aspect of the
microbial strains and plant species, but also nutritional status
and biochemical heterogeneity of soils. Nutrients limitations
stimulate plant competition and complementary to niches and
so for beneficial microbes whose physiological functions are to
be impaired or promoted (Kuzyakov and Xu, 2013; Zhu Q. et al.,
2016). For example, Zhang et al. (2016) concluded that AMF-PSB
cooperation in terms of resources exchange (C and P) only
occurred when additional P was supplied leading to enhanced
hyphae elongation and shoot P content. On the opposite, under
limiting P conditions, AMF development was severely hindered
which was attributed to competition factors.

In addition to its contribution in nutrient availability, uptake
and yield improvement, microbial cooperation could truly shine
under adverse biotic and abiotic conditions, and in particular
where nutrient use efficiency is impaired due to altered plants
physiological and metabolic process. For example, beneficial
traits provided by the AMF/Rhizobia association which is the
most studied tripartite symbiotic association were reported in
several studies (i.e., Biró et al., 2000; Mirdhe and Lakshman,
2009; Awasthi et al., 2011; Reddy et al., 2016; Zhu R.F.
et al., 2016). Inoculation of faba bean with microbial consortia
comprising both R. leguminosarum and a mixture of AMF strains
(Acaulospora laevis, Glomus geosporum, Glomus mosseae, and
Scutellospora armeniaca) under four level of alkalinity (pH: 7.5,
8, 8.5, and 9) resulted in improved nodulation (higher number
and biomass) compared to single-inoculated plants that were
substantially inhibited by the alkaline conditions. The concept of
microbial consortia could also prove beneficial with regards to
other constraints such as salinity, one of the major issue faced
by today’s agriculture knowing that virtually 20% of irrigated
croplands are concerned (Negrao et al., 2017). In this context,
fertilizers efficacy cannot be optimal since all the plant vital
process (i.e., photosynthesis, energy, protein synthesis, and lipid
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FIGURE 7 | Simplified illustration of the microbial consortia concept highlighting beneficial rhizosphere PGPM and their direct (i.e., nutrients uptake via fixing N2,

solubilizing P, producing plant growth promoting (PGP) substances like indole acetic acid, gibberellin, and cytokinin, etc.) and indirect effects (i.e., alleviation and/or

protection against biotic and abiotic constraints) on root growth, symbiotic (rhizobial and mycorrhizal, etc.) and aboveground (plant growth, productivity, etc.) plant

performance. Heterogeneity of the rhizosphere and root beneficial microbiome influences root growth and plasticity of root architecture that lead to effective

exploration of soil and thus efficient nutrient uptake with positive consequences on growth and yield of the plant host.

metabolism, etc.) are heavily debilitated (Parida et al., 2005). In
this regards, Hashem et al. (2016) demonstrated that interaction
between AMF (F. mosseae, R. intraradices, and C. etunicatum)
and a salt-tolerant (B. subtilis) significantly promoted plant
growth when subjected to salinity constraint. This salt-tolerant
tripartite symbiosis enhanced nodulation, dry biomass, P content,
leghemoglobine, and protein content of A. gerrardii compared
to untreated and mono-inoculated plants. Hashem et al. (2016)
explained resilience to salinity to be attributed to B. subtilis
which indirectly promoted nutrient acquisition via a better
AMF colonization. Similarly, inoculation of two salt-treated
maize varieties with two PGPR (Rhizobium sp. and Pseudomonas
sp.) led to a higher proline production and a lower osmotic
potential concurrently with enhancing P uptake and dulling
detrimental effects induced by salinity (Bano and Fatima, 2009).
Also, positive effects on osmotic adjustment under salinity and
drought constraints have been associated with ectomycorrhizal
colonization (Li et al., 2012). Under low P availability, naturally
formed mycorrhizal symbioses or through genetically modified
crops may thrive by inducing organic acids exudation which was
shown to be a particularly valuable trait if accompanied by the
ability to release compounds that prevent any further microbial
breakdown of organic acids in the rhizosphere (Tomasi et al.,
2008; Smith and Smith, 2011). Another example is that enhanced
P availability may also improve tolerance to toxic elements, as

indicated by Yao et al. (2014) findings that cadmium-treated
roots of Trifolium sp. produced polyphosphate which chelated
cadmium in the mycorrhizal hyphae of Rhizophagus irregularis
concurrently with improved fitness for both plant and fungal
partners. Overall, highly valuable mycorrhizae biotechnological
applications are well-known, especially for tree improvement.
However, significant progress is still lacking regarding the use of
such a multifunctional mycorrhizae fungi for improving yield of
major crops such as protein-rich grain legumes that hold valuable
promises for the agriculture of tomorrow.

FUTURE PERSPECTIVE AND
CHALLENGES OF MICROBIAL-BASED
AGRO-INPUTS

As global warming is becoming a reality endangering nutritional
demand, there is a need for innovative agro-inputs that enable
agriculture to adapt to worsening environmental situations and
exploiting microbial resources is one of the most promising
solution to achieve such aim. Indeed, it is clear today
that microbial inoculants, a sub category of the so-called
biostimulants, have become one of the attractive agro-inputs
for sustainable intensification of agriculture, especially for
smallholders (Du Jardin, 2015). Biostimulants have gained
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substantial ground market wise, owing to the impressive
know-how acquired during the last two decades, and most
importantly to the involvement of low-cost technologies in their
production process. However, despites all the aforementioned
conveniences and numerous scientific and field evidences of their
agronomic effectiveness, efforts are still required to make them
full-fledged commodities that are used as standard by farmers.

There is a growing body of evidences about the large number
of microbes that have been found to be highly beneficial for
soil fertility and plant productivity in many major cropping
systems. At the same time, many reports have demonstrated
inconsistent and poorly repeatable results via controlled and field
trials (Bhattacharjee et al., 2008; Martinez-Viveros et al., 2010),
which may indicate uncertainty in the efficacy of the microbial
inoculants that should be aligned with intricate biotic and abiotic
factors including plant species, native microbial communities,
environmental conditions, soil type and soil-related management
practices such as fertilization, cropping systems, irrigation, and
biocontrol strategies (Pereg andMcMillan, 2015). Progress in this
area would ultimately depend on a clear understanding of the
latter factors in order to guarantee a successful manipulation of
agriculture microbes, their commercialization, and widespread
use. This is in agreement with the saying “big potential in small
packages” by Matt Kleinhenz (Third world congress on the use
of biostimulants in agriculture 2017, Miami) who portrayed
the current state of the microbial-based biostimulants whose
development presumably rely on coping with several issues
relatively to both technical and economic aspects. Another
concern is arguably related to misconceptions and lacking
objectives in terms of research programs development as
most research works are driven by “substitution approaches”
where microbial inoculants are labeled as direct competitors
to well-established agro-inputs with proven efficacy such as
fertilizers.

Next generation agriculture should henceforth make use
of all available resources and designing novel agro-models
that focus on how to achieve perfect alliance between
biologicals, chemicals, and biocomputing technologies. In that
regard, adopting multidisciplinary approaches in developing
microbial-based solutions concurrently with mineral fertilizer
resources is paramount as it could lead to creating market’s
opportunities and new agricultural paradigms based on new
concept of sustainability, which is in tune with contemporary’s
conceptions of today’s individuals. In this regards, scientists and
manufactures interested in microbial-based biostimulants should
focus on delivering stable formulations capable of withstanding
harsh storage conditions and guaranteeing extended shelf life
of active ingredients through limiting viability loss. Most
importantly, microbial formulations must be compatible with
conventional agro-equipment and other agro-inputs, especially
mineral fertilizers, so their supply chains could be aligned. As
a matter of fact, formulation is one of the most critical step
in microbial inoculants manufacturing and several carriers have
been used with contrasted results depending on the microbial
species and pretreatment methods. Those carriers mostly include
organic materials (i.e., peat, lignite, and composts, etc.) and
polymeric compounds (i.e., alginate, agar, pectin, and chitosan,

etc.; Bashan et al., 2014).Multi- and inter-disciplinary approaches
are worth considering when designing innovative microbial
formulations. This will open up new insights into an unexploited
research area such as combining new-generation coating and
microbial technologies that likely should arouse particular
interests to innovative smart fertilizers. For instance, microbial
biotechnologies would benefit from other emerging technologies
such as those related to EEF and controlled release fertilizers,
tough not largely used for staple crops and costly to be applied
for an intensive agriculture (Shaviv, 2000; Trenkel, 2010; Linquist
et al., 2013). For example, recent advances in coating technology
that have led to the development of new-generation fertilizers
particularly aiming at improving N use efficiency (reducing
leaching, volatilization, and denitrification) may be exploited to
enhance P fertilizers efficiency and uptake. This would contribute
overcoming common issues related to low P availability which
is pH-dependent, readily bounded with divalent cations and
belowground leached, thus precise release rate and efficient plant
root P uptake may be achieved. That being said, to our knowledge
little has been done regarding production of customized carriers
able to respond to all required quality criteria. For instance
combining new-generation coating and microbial technologies is
an unexploited research area that should arouse more interests.
Breakthrough in that department could be a true game changer,
thus giving rise to innovative smart fertilizers, matching the few
concepts that precision agriculture relies on (sensing technology,
farming satellite, data analysis, and controlled release fertilizers,
etc.) while providing possibilities to enhance specific microbial
biological functions related to nutrient dynamic in soils.

Given altogether, developing strategies relying on
understanding potential modes of actions that provide
possibilities to enhance specific microbial functions related to
nutrient dynamic in soils, strengthening scientific and industrial
collaborative partnerships, meeting farmers’ requirements are
considered paramount in conceiving targeted products and
answering specific consumer needs. Fostering proximity to
growers should be given a special consideration since farmers’
acceptance has to be the utmost priority that can only be achieved
through in-field demonstrations, producing reports and data
specifically tailored for growers’ specificities. In addition, needless
to say that the triumph of the next generation of agro-inputs
based on microbial inoculants is largely dependent on regulatory
clearness and adopting collaborative mindset where progress
is made through farmers, scientists from private and public
research institutes, advisers and policy makers. This will help
moving toward integrated and profitable ecosystems where all
inputs are managed following wholesome principles and aiming
at optimizing nutrient use efficiency in a context where climate
variability is persistently threatening for food productivity.

CONCLUDING REMARKS

There are two main reasons for the need of efficacious microbial
strategies concurrently with efficient mineral P fertilization. The
first reason, providing they are unavoidable to crop productivity,
is that use of mineral fertilizers with higher eco-efficiency
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would definitely increase as to meet future needs of the
growing world population. The second is to ensure sustainable
agricultural productivity while providing valuable ecosystem
services through optimized microbial rhizosphere activities such
as BNF, P solubilization, and overall nutrients dynamic by staple
crops including legumes and cereals. Currently, multidisciplinary
approaches have been adopted worldwide taking advantage
from all available data and overwhelming progress in plant
and microbial biotechnologies, and in particular to make use
of nutrient resources efficient and sustainable. As per current
knowledge on the evident roles of beneficial microbes (i.e.,
NF, P-solubilizing, and -mobilizing, etc.) in plant nutrition, soil
fertility and stress tolerance, new routes and perspectives based
on multi-disciplinary approaches should be considered in order
to advance testing efficacious microbiological resources within
profitable integrated plant nutrient agro-systems.

Indeed, continuous designing, developing and testing
microbial-based formulations to be used as a component in
efficient IPNMS has gained worldwide interest in recent decades
and so more under the ever-increasing global demand for
food production. Diverse microbial groups, with focus on NF
and P-supplying microbes detailed in this review paper, are
agriculturally beneficial and their contribution in agriculture
does not aim only to improve specific biological functions
(either directly or indirectly), but most importantly to increase
availability and plant uptake efficiency of major soil pool
nutrients and ultimately increase the eco-efficiency in use of
mineral fertilizers. One of the most promising mean is to
strengthening research on innovative IPNMS which include
a variety of multi-functionally biotic and abiotic resources,
particularly highly efficient PGPM in combination with mineral
fertilizers. The right combination of resources (mineral and
microbial), right rate of resources, right application time, right
plant host, adequacy to soil and climatic conditions, and positive
legacy effects are highly essential for decisions on relevant
nutrient formula, cropping systems as well as best management
practices that will lead to enhance crop productivity and soil
fertility.

Furthermore, in order to achieve those goals with particular
emphasis on P fertilizers as described in the paper, a
good understanding of the tripartite interaction between
microbial inoculants, mineral fertilizers, and crop species is a
prerequisite. In fact, research is making recently great progress
in that department through advances in several plant–microbe-
related research areas including genomics, metabolomics and
phenomics. In this context, high throughput technologies
would provide necessary data enabling a better understanding
of the intricate interactions within the holobiome, more
particularly to unravel behavior responses of beneficial microbes
in agroecosystems. Taking altogether, it is evident that current
advances in terms of plant-, microbe-, and soil-focused research
have led to developing crops with specific traits and fine-tuned
for higher nutrient uptake and tolerance to multiple constraints.
Likewise, these traits have also been targeted in microbes
and biotechnological progresses thrived to provide beneficial
microbes with proven efficiency. Now, securing sustainable
higher yield and productivity in the near future will rely on
exploiting all available multidisciplinary progresses in order
to design innovative crop–microorganisms biosystems with
synergistic and complementary interactions.
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