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Abstract
Soil moisture is a critical component of the earth system and plays an integrative role among the various
subfields of physical geography. This paper highlights not just how soil moisture affects atmospheric,
geomorphic, hydrologic, and biologic processes but that it lies at the intersection of these areas of
scientific inquiry. Soil moisture impacts earth surface processes in such a way that it creates an obvious
synergistic relationship among the various subfields of physical geography. The dispersive and cohesive
properties of soil moisture also make it an important variable in regional and microclimatic analyses,
landscape denudation and change through weathering, runoff generation and partitioning, mass wasting,
and sediment transport. Thus, this paper serves as a call to use research in soil moisture as an integrative
and unifying theme in physical geography.

Keywords
biogeography, climatology, geomorphology, hydrology, soil moisture

I Introduction

Soil moisture or the available soil water content

– the water contained in the root zone of the

soil and available for plant utilization – is an
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essential component of the hydrologic cycle

(Mahmood, 1996). In the fundamental equation

that describes the hydrologic cycle:

dS=dt ¼ Pr þMð Þ � E þ Tð Þ
� Ro þ Rs þ Rg

� � ð1Þ

the time rate of change of soil moisture (dS/dt)

is balanced by the moisture input from rainfall

(Pr) and snowmelt (M) and the moisture loss

through soil evaporation (E), plant transpira-

tion (T), overland runoff (Ro) through either

saturation or Hortonian flow, lateral subsur-

face flow (Rs), and percolation to groundwater

(Rg). At the basic level, soil moisture content

describes the temporal condition of water

available to plants as well as providing an inte-

grated assessment of the relative state of water

supply versus water demand.

In addition to its obvious importance to

hydrology, soil moisture is a variable whose

importance extends to all aspects of physical

geography. It provides the reservoir of water

through which the fluxes of energy and moisture

between the land surface and the atmosphere

interact; it establishes the ground conditions

upon which water movement from saturated,

parched, or frozen soils can occur; and it sup-

plies the necessary ingredients for the existence

and development of plant life through both

transport (lateral and vertical) and solubility.

By its very nature, therefore, soil moisture serves

to integrate physical geography. Figure 1 high-

lights these linkages and discusses impacts of

various levels of soil moisture and climate, bio-

geography, and geomorphology.

Soil moisture is estimated by either in situ

measurements, remote sensing techniques, or

by atmospheric or hydrologic modeling. In the

absence of a well-integrated program of sam-

pling and scaling, the limited areal coverage

over large land surface areas makes it difficult

to use in situ measurements for studies more

extensive than field-scale (Robinson et al.,

2008; Robock et al., 2000; Verstraeten et al.,

2008; Wu and Li, 2009). By contrast, remote

sensing of soil moisture can be advantageous

owing to its continuous temporal and spatial

coverage. A combined data assimilation

approach with remotely sensed estimates and

hydrologic modeling, calibrated with in situ

measurements to quantify errors and uncertain-

ties, is the most promising approach for soil

moisture estimation involving large areas,

although it too is likely to have deficiencies.

A complete discussion of soil moisture measure-

ments is beyond the scope of this topical review,

but for a more thorough discussion of methods to

measure soil moisture, the reader is encouraged

to consult the following references. Observations

– Francesca et al. (2010); Robinson et al. (2008);

Vera et al. (2009); Vereecken et al. (2008). Mod-

els – Choi and Liang (2010); Fulakeza et al.

(2002); Steiner et al. (2005). Remote sensing –

Anderson and Croft (2009); Kerr (2007); Kidd

et al. (2009); Schmugge et al. (2002); Tang

et al. (2009); Wagner et al. (2007a, 2007b). Data

assimilation – Balsamo et al. (2007); Dorigo

et al. (2007); Ni-Meister (2008); Reichle et al.

(2004).

II Soil moisture and climate

In its most basic role, climatology (and climate

science in general) seeks to describe the spatial

and temporal fluxes of energy, moisture, and

momentum between the atmosphere and the

land surface, for which soil moisture plays an

integral part (Thornthwaite, 1961; McCumber

and Pielke, 1981; Chen and Avissar, 1994;

Mahmood, 1996; Mahmood and Hubbard,

2002; 2004; 2007; LeMone et al., 2007). Water,

in general, and soil moisture in particular are of

fundamental importance to the ‘topoclimatol-

ogy’ espoused by C.W. Thornthwaite (1953;

1961) and forms the basis of much of the sub-

field of hydroclimatology (Mather, 1991). Topo-

climatology was defined by Thornthwaite as the

study of those interactions between climate and

the earth’s surface that lead to geographical
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variability of climate. Soil moisture is an integral

component of the topoclimate.

Indeed, the concept of climatic classification

has often focused on the interplay between

moisture availability (precipitation) and moist-

ure demand (potential evapotranspiration, with

air temperature often used as a surrogate). It is

no surprise then that moisture indices derived

from climate classifications are reflective of

the temporal characteristics of the soil moisture

condition (Feddema, 2007; Mather, 1985;

Thornthwaite, 1948; Willmott and Feddema,

1992). Indeed, the temporal variability of soil

moisture in a given region is fundamental to the

definition of its climate.

Far from being simply a resultant statistic,

soil moisture itself is an active variable. It has

been suggested that local evapotranspiration

(i.e. latent heat flux) is the source of 10 to 30%
of atmospheric water vapor (Brubaker et al.,

1993). Obviously, soil moisture plays an impor-

tant role in regulating the rate of the evapotran-

spiration. Moreover, Chen and Avissar (1994)

noted that the development of clouds and

Figure 1. Schematic showing simplified interactions between soil moisture, weather and climate,
geomorphology and soils, and biogeography for high (upper left), normal (upper right), and low (lower left) soil
moisture conditions. Bold arrows imply stronger linkage. In particular, soil moisture affects climate during dry
and wet conditions (albedo change and partitioning between latent and sensible heat) while during normal
conditions, climate variability drives fluctuations in soil moisture. Soil moisture is affected by fluvial processes
during dry conditions and aeolian processes during wet conditions whereas geomorphology and soil type dictate
the water-holding properties of the soil. Soil moisture affects biogeography during both wet (root rot and
waterlogging), normal, and dry (wilting) conditions whereas the influence of biogeography on soil moisture is
strongest during normal conditions. Interactions among the three subdisciplines also are shown.
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precipitation in a dry atmosphere is critically

dependent on these local sources of moisture.

Research has shown that changes to soil moist-

ure modify the surface Bowen ratio (Rosenberg

et al., 1983; Thom, 1972), the convective avail-

able potential energy (Clark and Arritt, 1995;

Pielke, 2001), development of cloud (Ek and

Holtslag, 2004; Findell and Eltahir, 2003), preci-

pitation (Ookouchi et al., 1984; Pal and Eltahir,

2001; Pan et al., 1996; Quintanar et al., 2008;

2009), and the daytime evolution of the plane-

tary boundary layer (Zhang and Anthes, 1982),

particularly its wind field (Segal and Arritt,

1992). For example, Rabin et al. (1990) found

convective clouds formed first over mesoscale-

size areas of harvest wheat in Oklahoma with

high sensible heat flux, in comparison to adjoin-

ing areas dominated by growing vegetation.

Clouds were suppressed over relatively long

bands downwind of small lakes and heavy tree

cover represented by high latent heat flux. The

more recent empirical and modeling study of

Santanello et al. (2007) examined interactions

between planetary boundary level height, ini-

tial atmospheric stability, and soil moisture

using observed radiosonde data and a one-

dimensional model. Both positive and negative

feedbacks were identified that explained the

land surface-atmospheric interactions; for

example, a positive feedback resulted for dry

soils with entrainment on soil drying, surface

heating, and residual boundary layer growth.

Additional studies have focused specifically

on the interactions of soil moisture and patterns

of precipitation. Dong et al. (2007) noted a

positive relationship between soil moisture and

precipitation over grassland while Chang et al.

(2009) found that antecedent soil moisture

(wetter and warmer) further intensifies land-

falling monsoonal low pressures. In a detailed

regional modeling study, Koster et al. (2004)

found areas of strong coupling, or ‘hot spots’,

between soil moisture and precipitation. These

so-called ‘hot spots’ are generally located in

transition zones between wet and dry climates

such as those found in the central Great Plains

of North America, the Sahel, equatorial Africa,

and India. In these regions, potential evapotran-

spiration is consistently high while actual evapo-

transpiration is sensitive to soil moisture

availability. Koster et al. (2004) further found

that the response of the atmosphere to soil moist-

ure is non-linear and not unidirectional and,

moreover, wet soils can both increase and

decrease the possibility of convection and preci-

pitation, depending upon the initial state of the

atmosphere (cf. Findell and Eltahir, 2003).

Owing to the lack of high-density networks

over much of the globe, proper initiation of soil

moisture in numerical models is often difficult.

Studies that have reasonably prescribed soil con-

ditions in atmospheric models have noted

improvements in simulated forecasts (Dirmeyer,

2000; Douville et al., 2001; Hong and Kalnay,

2000; Huang et al., 1996; Schlosser and Milly,

2002). Dirmeyer (2000), in particular, noted a

reduction in root-mean-square error in modeled

near-surface temperature and improved rainfall

patterns with reasonable specification of root

zone soil moisture. Similarly, both Huang et al.

(1996) and Schlosser and Milly (2002) found a

strong correlation between subsurface water

storage and modeled near-surface temperature

and precipitation. Grasso (2000) has also noted

an improvement in modeled forecasts with

proper specification of both soil moisture and

overlying vegetation.

Latent and sensible heat fluxes are affected

by variations in soil moisture, both spatially

and temporally, which alter the near-surface air

temperature and humidity. This, in turn, can

alter precipitation (Clark et al., 2004; Jones and

Brunsell, 2009; Walker and Rowntree, 1977),

temperature (Brown and Wax, 2007; De Laat

and Maurellis, 2006), atmospheric circulation

(Namias, 1959; Ookouchi et al., 1984; Pinty

et al., 1989; Walker and Rowntree, 1977), and

the climate in general (Rind, 1982; Shukla and

Mintz, 1982; Yeh et al., 1984) which often

accentuates and extends anomalous conditions
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(Andreadis and Lettenmaier, 2006; DeLiberty

and Legates, 2003, 2008; Entin et al., 2000;

Koster and Suarez, 2003; Oglesby and Erickson,

1989; Rasmusson and Arkin, 1993). As a conse-

quence, weather conditions may be affected

by abnormal soil moisture conditions, provided

the anomaly is of sufficient spatial and temporal

size and intensity.

Because droughts are directly related to soil

moisture conditions, much effort has been put

into drought monitoring (e.g. Narasimhan and

Srinivasan, 2005; Quiring, 2004), drought miti-

gation (Wilhite, 1997), and insurance protection

(Abbaspour et al., 1992). However, flood events

too can be exacerbated by high antecedent soil

moisture conditions (Gamble and Meentemeyer,

1997; Hossain, 2006; Lacava et al., 2005).

Gamble and Meentemeyer (1997) showed, for

example, that high soil moisture with moderate

rains often produced unseasonable floods in the

southeastern United States. Indeed, the impact of

too little as well as too much soil moisture can

adversely affect crop yields such that accurate

forecasts are needed to monitor the situation

(e.g. Quiring and Legates, 2008). Soil moisture

can be both a symptom of drought as well as a

contributing factor. Although remote forcings

such as sea-surface temperature (SST) anoma-

lies in the Pacific and Atlantic Oceans are often

the primary cause of North American droughts

(e.g. McCabe et al., 2004, 2010; Quiring and

Goodrich, 2008), Wu and Kinter (2009) distin-

guished the timescales of droughts and found the

roles of SST forcing and local soil moisture dif-

fer significantly for long-term versus short-term

droughts. Moreover, it has recently been demon-

strated that soil moisture can play a significant

role in modifying summer precipitation during

the periods when SST anomalies are weak

(Meng and Quiring, 2010). Local precipitation

recycling can contribute to the intensity and

duration of droughts and, therefore, an under-

standing of local land-atmosphere interactions

(e.g. soil moisture) is a key to understanding and

predicting the occurrence of droughts.

III Soil moisture in
geomorphology and hydrology

The dispersive and cohesive properties of

soil moisture makes it an important variable in

landscape denudation through weathering (e.g.

Anderson, 2005; Richards and Kump, 2003;

Stockwell et al., 2006), runoff generation and

erosion (e.g. McDowell and Sharpley, 2002;

McDowell et al., 2001; Seeger et al., 2004), and

mass wasting (e.g. Acharya et al., 2009; Korup

et al., 2004; Schuerch et al., 2006). It is also

responsible for increasing soil moisture capacity

through soil development (Phillips et al., 2008)

and promoting the development of vegetation

that can limit erosion (Harden and Scruggs,

2003). Specifically, the spatial and temporal

variation in soil moisture in a drainage basin

has implications for understanding environmen-

tal processes such as runoff generation and con-

tinuity as well as the erosion and sedimentation

driven by overland flow. Overland runoff is gen-

erated through either the saturation of the soil to

the surface (i.e. saturation overland flow) or

through precipitation exceeding infiltration rates

(i.e. Hortonian overland flow). The latter is the

dominant mechanism in arid and semi-arid

environments and depends on the precipitation

rate relative to the infiltration capacity of the

soil; it is therefore dependent on how much

water is already in the soil. Infiltration capacity

is greatest at the start of a storm and decreases

rapidly until a constant infiltration rate is

reached (Horton, 1933).

1 Flow partitioning and mass wasting

In humid-temperate regions, saturation overland

flow is generated when the soil becomes

totally saturated and is unable to receive any

more water (Kirkby and Chorley, 1967). These

variable source areas are responsible for storm

runoff (e.g. Dunne and Black, 1970; Hewlett

and Hibbert, 1967; Tsukamoto, 1963) and first

develop where the water table is relatively

Legates et al. 5
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shallow. Regardless of the environment,

antecedent moisture in the soil promotes the

development of overland flow earlier in a preci-

pitation event, meaning that a significant volume

of water is contributed to the main channel

network in a short time. In this respect, Vertessy

and Elsenbeer (1999) argued that a poor under-

standing of soil moisture remains one of the

most significant weaknesses in process-based

storm flow models and the ability to predict

runoff generation and erosion, while Grayson

et al. (1992) argued that antecedent moisture is

the parameter most likely to undermine model

predictions (see also Mahanama et al., 2008).

Through its role in flow partitioning, antece-

dent soil moisture is also an important physical

control on nutrient and sediment loss by

overland flow (Casenave and Valentin, 1992;

McDowell and Sharpley, 2002; McDowell

et al., 2001) and has been demonstrated in

several studies (Ceballos and Schnabel, 1998;

Fitzjohn et al., 1998; Karnieli and Ben-Asher,

1993). The degree to which soil moisture is a

primary control on runoff generation and erosion

depends on basin size and the characteristics of

the precipitation event. Castillo et al. (2003)

have shown that the peak discharge and runoff

during high-intensity, low-frequency storms is

independent of initial soil water content, but is

important in controlling runoff during medium-

and low-intensity storms that are primarily

responsible for erosion in semi-arid environ-

ments (see also Merz and Bardossy, 1998;

Poesen and Hooke, 1997). Soil moisture is more

important where vegetation increases the spatial

variability of soil characteristics and produces a

range of runoff and infiltration sites (Castillo

et al., 2003). Similarly, Fitzjohn et al. (1998)

have shown that spatial heterogeneity of surface

moisture can reduce widespread catchment

runoff and erosion by promoting discontinuity

in hydrological pathways through the isolation

of runoff-producing areas and the reabsorption

of runoff generated upstream. By contrast, ante-

cedent moisture can reduce surface crusting

through dissolution and disturbance, which limits

runoff and interrill erosion (Le Bissonnais and

Singer, 1992). Higher soil moisture contents are

also responsible for limiting the development

of hydrophobic compounds that coat particles

and create a water-repellent layer following

forest fires (Robichaud, 2000; Robichaud and

Hungerford, 2000), similarly limiting post-fire

runoff and erosion.

Spatial and temporal variations in soil moist-

ure and other physical properties of the soil (e.g.

clay composition, buried organic matter) are

partly responsible for significant variation in the

generation of overland flow (Godsey et al.,

2004; Sharma et al., 1980; Sidle et al., 2000;

Uchida et al., 1999; Ziegler et al., 2001). Soil

moisture variation depends in part on the distribu-

tion of vegetation (Harden and Scruggs, 2003),

topography (Julien and Moglen, 1990), and sur-

face characteristics (Katra et al., 2008; Poesen

et al., 1999); variables that are themselves depen-

dent on the distribution of soil moisture. This spa-

tial variation affects the amount and source of

sediment delivered to the main channel. Seeger

et al. (2004) found that variations in suspended

sediment concentration during flood events are

associated with different levels of humidity and

rainfall, indicating different mechanisms for the

development of runoff and sediment transport.

A high level of antecedent soil moisture promotes

runoff generation and sediment supply to the

nearby channel, leading to an increase in sus-

pended sediment concentration over the course

of a storm as compared to ‘normal’ moisture lev-

els that limit runoff and the sediment source to

near the channel. The impact of antecedent soil

moisture is much greater in small catchments

(Seeger et al., 2004). More sediment is available

to overland flow from dry soils that break down

faster through slaking caused by the compression

of entrapped air, while moist soils prevent slaking

and limit the ability of the soil to be disaggregated

(McDowell and Trudgill, 2000).

Sediment delivery to channels and the long-

term shaping of a watershed can also occur
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through mass movements triggered by soil at or

close to saturation (e.g.Acharya et al., 2009;

Benda and Dunne, 1997; Korup et al., 2004;

Schuerch et al., 2006; Schwab et al., 2008). The

frequency of mass movements is correlated with

an increase in pore pressure resulting from heavy

precipitation (Johnson and Sitar, 1990) and wet-

ter climates (Brooks and Richards, 1994; Grove,

1972; Innes, 1983; Pitts, 1983). These events

exhibit a threshold dependence on soil moisture

since pore pressure, internal friction, and cohe-

sion are primarily dependent on soil moisture

content (Iverson, 2000; Pelletier et al., 1997;

Ray and Jacobs, 2007; Van Asch et al.,

1999). Numerous field studies have shown that

antecedent soil moisture and surface runoff

from upslope are important controls on the

frequency and size of mass movements (e.g.

Iverson, 2000; Larsen and Simon, 1993; Van

Asch and Sukmantalya, 1993; Van Asch et al.,

2009; Wieczoreck and Glade, 2005). The impor-

tance of soil moisture in controlling mass wast-

ing is highlighted by the strong correlation

between the location and frequency of landslides

with soil drainage and the storage properties of

soil moisture (Pelletier et al., 1997; Ray and

Jacobs, 2007).

2 Aeolian processes

In addition to flow partitioning and mass wast-

ing, soil moisture is also of particular importance

in controlling sediment mobility in wind-blown

environments; indeed, the role of moisture in

surface deflation has been the focus of several

field and laboratory studies (e.g. Azizov, 1977;

Bisal and Hsieh, 1966; Brazel et al., 1986;

Chepil, 1956; Davidson-Arnott et al., 2005;

Fecan et al., 1999; Hotta et al., 1984; Jackson

and Nordstrom, 1997; Logie, 1982; McKenna-

Neuman and Maljaars, 1997; 1998; Sarre,

1987; Smalley, 1970; Wiggs et al., 2004).

Several field studies have shown that the role

of soil moisture is especially important in con-

trolling the exchange of sediment between beach

and dune (e.g. Arens, 1996; Bauer et al., 2009;

Hotta et al., 1984; Sherman et al., 1998; Svasek

and Terwindt, 1974; Wiggs et al., 2004; Yang

and Davidson-Arnott, 2005) where spatial and

temporal variations in soil moisture can degrade

the ability of currently available models to pre-

dict sediment transport (Sherman et al., 1998).

Similarly, empirical relationships between dust

events and climate tend to be inaccurate for pre-

diction unless soil moisture is explicitly modeled

(McTainsh et al., 1998). These relationships are

complicated by the growth of vegetation in

response to surface moisture. Vegetation can

increase the threshold shear velocity by directly

covering part of the surface and absorbing part

of the wind momentum that would otherwise

go to the sediment surface (Lancaster and Baas,

1998; Wolfe and Nickling, 1993). The role of

vegetation in controlling dust emissions is most

difficult to quantify because the relationships

between soil moisture, vegetation cover, and tur-

bulent shear stresses are poorly understood.

Low soil moisture combined with a lack of

surface cover, strong winds and low humidity

is an important factor associated with dust events

(Nickling and Brazel, 1984; Lee et al., 1994;

Stout, 2001). Interannual variations in dust emis-

sions appear to be closely associated with ante-

cedent precipitation (Nickling and Brazel,

1984) with dust emissions increasing during

regionally wet El Niño events as a result of the

erosion of vegetation and the deposition of new

sediment (Reynolds et al., 2007). Nickling and

Brazel (1984) observed that the occurrence of

large-scale dust storms followed rainstorm

activity but quickly dissipated. The resealing

of clay crusts, which occurred after these rain-

storms, was limited to the surface and conse-

quently peel and curl to expose thin pieces of

crust that are easily abraded by saltating grains.

As the weaker surface crust was abraded, a

strong stable clay/silt crust was left behind

that was more difficult to abrade (Houser and

Nickling, 2001). More recently, Stout (2001)

described the annual dust cycle of the Southern
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High Plains of Texas as a reflection of seasonal

change in environmental factors, including

surface moisture. Relationships among El

Niño-Southern Oscillation (ENSO) events, dust

sources, and dust composition also have recently

been described by Okin and Reheis (2002) and

Reheis (2006).

McKenna-Neuman and Nickling (1989) have

shown that gravimetric water contents of *1%
create sufficient interparticle cohesion that

entrainment by aerodynamic forces is all but

impossible, although there is much disagree-

ment. Furthermore, Wiggs et al. (2004) have

shown that soil moisture contents of up to

1.68% do not act as a barrier to sediment flux.

Field studies have shown that soil moisture con-

tents over which transport events can occur tend

to be greater than those measured in the labora-

tory or predicted theoretically. Hotta et al.

(1984) suggests that the threshold shear velocity

increases by 7.5 cm s-1 for each 1% increase in

soil moisture up to a moisture content of 8%,

at which entrainment ceases. If saltating parti-

cles are present, then sediment entrainment is

dominated by impact forces. Saltation is not

inhibited until soil moisture content reaches

14% (Sarre and Chancey, 1990) and Jackson and

Nordstrom (1998) observed transport at surface

moistures of >7% following light rains. The rate

of transport increased following the rain event as

the surface dried but remained greater than the

transport rates measured on dry beaches. An ear-

lier field study by Jackson and Nordstrom (1997)

and a laboratory study by McKenna-Neuman

and Maljaars (1997; 1998) indicated that trans-

port rates are greater on damp surfaces due to the

creation of a relatively elastic surface compared

to dry, cohesion-less sediment. Drying of soil

moisture is promoted by wind and is an impor-

tant influence in environments where winds are

competent to entrain dry but not moist sediments

(Hotta et al., 1984; Jackson and Nordstrom,

1997; Logie, 1982; Sherman, 1990). Spatial var-

iation in soil moisture and drying can lead to

intermittent transport over short time periods

(Davidson-Arnott et al., 2005) that can vary over

an order of magnitude in the presence of a steady

wind (McKenna-Neuman and Langston, 2006).

Spatial and temporal variations in surface moist-

ure can lead to the organization of the saltation

cloud into streamers (Baas and Sherman,

2005). The short time required to dry a thin layer

of sediment during strong winds can lead to high

transport within 10–30 minutes following a

soaking rain (Gillette, 1999).

The moisture content in the top sediment

layer and the ability of the wind to dry the sur-

face is dependent (to varying degrees) on the

humidity of the near-surface boundary layer.

Low humidity and stronger winds in the after-

noon extract moisture from the surface, creating

the potential for dust emissions (Stout, 2001) –

most dust events on the Texas High Plains are

associated with humidity levels below 30%. The

humidity of the near-surface boundary layer

affects particle entrainment through changes in

both the kinematic viscosity (i.e. the absolute

viscosity of a fluid divided by its mass density)

and the density of the air (McKenna-Neuman,

2003) which, in turn, affect the critical shear

velocity required for the entrainment of sedi-

ment (Belly, 1964). An increase in density

reduces the aerodynamic drag force on the bed,

while an increase in the kinematic viscosity

increases the drag force but limits turbulence

generation at both the particle and boundary-

layer scale. Vapor pressures at or close to satura-

tion can maintain high soil moisture (and vice

versa), although there is a decrease in the matric

potential that reduces the ability of the water to

be adsorbed to the charged sediment surface

(Hillel, 1998; Jury et al., 1991). Despite the

change in matric potential, interparticle cohe-

sion in moist soils is the dominant control on

sediment entrainment for particles with dia-

meters <75 mm (Greeley and Iversen, 1985).

McKenna-Neuman (2003) has shown that the

role of surface moisture in aeolian transport is

temperature dependent. The entrainment thresh-

old tends to be lower in cold environments due to
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a reduction in both the vapor pressure and matric

potential, while in warm environments the high

vapor pressure and matric potential leads to

greater entrainment thresholds.

3 Periglacial processes

As noted by Washburn (1980), soil moisture is

the sine qua non of frost action, in both season-

ally and perennially frozen ground. The very

definition of permafrost – subsurface earth

materials remaining continuously at or below

0�C (i.e. the freezing point of water) for two or

more years – is testament to the dominant role

soil moisture plays in the geomorphic, ecologi-

cal, and pedogenic processes of cold regions.

A fundamental distinction in permafrost studies

lies between ice-rich and dry permafrost

(Bockheim and Tarnocai, 1998). Thaw of per-

mafrost with abundant excess ice has potential

for profound disturbance to ecological commu-

nities and human infrastructure at the surface

through thaw consolidation and development

of thermokarst terrain. In contrast, thaw of per-

mafrost lacking appreciable water content holds

little potential for disturbance at the surface.

Soil moisture plays a critical role in the

long-term evolution and morphology of perma-

frost landscapes. Water redistributed in the soil

column through freeze-thaw action creates

impressive suites of landforms, including large

and small frost mounds (pingos and palsas), net-

works of ice-wedge polygons that encompass

many hectares and extend far below the ground

surface, and solifluction lobes and terraces con-

veying vivid impressions of mass movement on

hillslopes.

In medium-textured soils experiencing rela-

tively slow freezing, moisture is attracted to

freezing fronts, creating lenses of segregated

ice. Locations at which the bottom of the season-

ally thawed layer (the ‘active layer’) is coinci-

dent with the top of permafrost experience

‘two-side freezing’, a process that involves

refreezing of the active layer both downward

from the ground surface and upward from the

permafrost table. Two-sided freezing draws

moisture from the central part of the active

layer to feed growing ice lenses at the upper and

lower freezing fronts. Under such conditions,

refreezing of the active layer can be very slow,

with isothermal conditions persisting for weeks

or even months, owing to latent heat effects.

This ‘zero curtain effect’ (Outcalt et al., 1990)

is characteristic of regions with ice-rich perma-

frost. Repeated annually over long periods

(decades to millennia) these processes create

thick accretions of segregated ice in the upper

permafrost, just below the base of the active

layer. The large amounts of energy required to

thaw this extremely ice-rich layer, referred to

as the ‘transient layer’ (Shur et al., 2005), impart

buffering qualities to it that resist the deep pene-

tration of thaw that might otherwise occur rap-

idly under climatic warming.

Another unusual aspect of permafrost regions

lies in the key role frozen water in the soil

column provides for the interpretation of Qua-

ternary history. The continuity, arrangement,

structure, crystallography, and chemistry of the

various forms of underground ice (Mackay,

1972) – in soil pores, as veins and wedges, in

segregated lenses, as massive bodies of injection

ice, and in other forms – has given rise to a sub-

discipline of permafrost science known as cryos-

tratigraphy (e.g. French, 1998). Under favorable

circumstances cryostratigraphic analysis can

provide detailed information about local and

regional climatic and geomorphic conditions

extending back thousands of years.

IV Soil moisture and biogeography

Because plants are almost exclusively dependent

on soil moisture to acquire needed water for

photosynthesis, soil moisture and its spatial and

temporal variability represent an indispensable

quantity for evaluating and understanding vege-

tation patterns. Soil moisture recharge and utili-

zation directly affect the distribution of
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vegetation and its overarching canopy structure.

Vegetation directly affects soil moisture inputs

at the base of plant canopies through precipita-

tion partitioning. Precipitation partitioning is the

process whereby incident rainfall and snowfall is

divided into canopy interception, throughfall, or

stemflow (Hewlett, 1982). The extent to which

the incident precipitation is intercepted,

entrained as throughfall, or routed to the subca-

nopy as stemflow is dependent on both biotic

(canopy) and abiotic (climatological) factors,

such as aboveground surface area and storm

event characteristics (Levia and Frost, 2003,

2006). Precipitation intercepted by plant cano-

pies does not contribute to soil moisture

recharge. Throughfall and stemflow inputs

directly affect the spatiotemporal variability of

soil moisture recharge (Durocher, 1990). In fact,

stemflow in temperate forests has been observed

to cause the water table beneath individual tree

boles to reach the soil surface, thereby account-

ing for drastic differences in soil moisture

beneath and between trees over space and time

(Durocher, 1990). More recent work by Liang

et al. (2009) documents the effect of stemflow

on hillslope-scale soil moisture dynamics, not-

ing the very different influence of stemflow on

vertical soil water content compared to infiltra-

tion of rainfall. In short, soil moisture controls

the establishment of plant communities which,

in turn, influence soil moisture recharge and its

usage. This eventually further affects the estab-

lishment and expansion of plant communities

as well as land-surface atmosphere interactions

and variety of geomorphic processes in general.

Soil moisture extraction by vegetation is

dependent upon phenological stage, stomatal

resistance, vegetation type, and vegetation den-

sity. It is also known that vegetation type and

fractional vegetation control transpiration rates

and thus availability and variability in soil

moisture (Avissar and Pielke, 1989; Barlage and

Zeng, 2004; Lyons, 2002; McPherson, 2007;

Mahmood and Hubbard, 2004; Narisma and

Pitman, 2003; Pielke, 2001). Soil moisture

availability, in turn, affects plant transpiration

and related physiological activities.

Soil moisture exerts a substantial influence on

vegetation, acting as a key control on stem water

dynamics, stomatal regulation, and transpiration

loss (Bréda and Granier, 1996; Kozlowski,

1958; Milburn, 1979). Recent work by David

et al. (2004) clearly demonstrates the interplay

among soil moisture, vapor pressure deficit, and

sapflow for an evergreen oak in the Portuguese

montado, sparse savannah-like ecosystems com-

posed of evergreen green oak species (although

this is a single tree, David et al. measured neigh-

boring trees to verify their numbers were realis-

tic). The sample tree in this study had access to

deeper groundwater. Thus, soil moisture was not

a limiting factor in transpiration for this particu-

lar tree (David et al., 2004). Their work demon-

strated an inverse relationship between leaf

water potential and sapflow. Sapflow reached a

maximum of approximately 0.2 mm h-1 with a

vapor pressure deficit of 2.0 kPa and remained

at the upper limit of 0.2 mm h-1 with vapor pres-

sure deficits to approximately 6.0 kPa (David

et al., 2004). The upper limit of sapflow was con-

trolled via stomatal regulation to prevent cavita-

tion (David et al., 2004). In contrast to trees in

well-watered environments, where transpiration

loss is limited via stomatal control, the mismatch

in water demand and supply (that vary as a func-

tion of soil type and texture) limit transpiration

loss for vegetation in most soils that exhibit diur-

nal and seasonal fluctuations in soil moisture

supply (Llorens et al., 2003). It also is important

to note that interannual variations in leaf area

index will have a detectable impact on transpira-

tion loss (Bréda and Granier, 1996). Both flood-

ing and cold soils have been found to reduce leaf

conductance and transpiration for some species

(Kreuzwieser et al., 2002; Teskey et al., 1984).

Research has demonstrated that transpiration

differs greatly throughout the vertical profile of

a forest canopy (Roberts, 2000). Although the

upper portions of the forest canopy have lower

proportions of leaf area compared to the mid-
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portions of the canopy, the upper canopy

contributes a disproportionately large share to

total transpiration (Roberts, 2000), despite

generally smaller leaves and closer coupling

with the atmosphere than larger leaves in the

lower canopy. The greater rates and amounts

of transpiration from leaves in the upper

canopy can be explained, in part, by the differ-

ing leaf morphology of sun versus shade leaves

(Horn, 1971).

Canopy structural characteristics, including

branching patterns and bark microrelief, also

affects the distribution of soil moisture by affect-

ing stemflow inputs to the forest floor (Levia and

Herwitz, 2005; Van Stan and Levia, 2010). As

branching patterns change with stand age, it has

been found that stemflow production can change

with stand age (Murakami, 2009). Murakami

(2009) reported a drastic decrease in stemflow

production from ages 9 to 10 in Japanese cypress

and attributed the reduction to changes in tree

architecture. Therefore, it is possible that soil

moisture heterogeneity may be partly accounted

for by change in canopy structure and corre-

sponding alterations in stemflow production.

As briefly indicated above, soil moisture

plays a critical role in determining development

and evolution of a vegetation type in a region

and subsequently impacts climate. The impor-

tance of land cover (particularly vegetation) and

atmospheric interactions and associated feed-

backs have been well documented (Adegoke

et al., 2006; Fu, 2003; Narisma and Pitman,

2003; Pielke et al., 1999, 2007; Schneider and

Eugster, 2005). Carleton et al. (2008) noted

changes in local atmospheric circulation by

vegetation boundary discontinuity which could

be determined by availability of moisture.

McPherson and Stensrud (2005) have shown

changes in vegetation cover impact meso-scale

atmospheric circulation and development of

boundary layer atmosphere. Again, establish-

ment of a particular type of vegetation is deter-

mined by soil moisture. Adegoke et al. (2003)

have also shown changes in vegetation cover

along with soil moisture affect near-surface

atmospheric moisture content and variety of

other processes.

Whereas interception generally leads to a

decrease in the input of incident precipitation

to the forest floor, fog interception leads to fog

drip and an increase in net precipitation inputs

to forest soils (Cavelier et al., 1996; Holder,

2006). In fact, the thinning of forest in areas

where fog is prevalent actually decreases fog

precipitation inputs to the forest floor and, thus,

soil moisture (Aboal et al., 2000). In the Canary

Islands, it was found that decreases in leaf area

index and basal area have led to lower inputs

of moisture via fog drip (Aboal et al., 2000).

V The integrative nature of soil
moisture

Soil moisture is not just a process that is integral

to climate, geomorphology, and biogeography –

it truly lies at the intersection of all three

branches of physical geography. A complete

understanding of soil moisture and its spatial and

temporal variability and impact draws upon

interactions among and expertise gained from all

three subdivisions. Soil moisture lies at the inter-

section of climatology, geomorphology, biogeo-

graphy, and hydrology, thereby providing true

integration of the subdisciplines rather than just

supplying a common theme. While the interac-

tion of climate, soils, vegetation, and hydrology

have long been recognized and analyzed (see,

for example, Mather, 1978), a cross-section of

some of these interactions is worth noting.

While plant growth and development is

clearly directly related to soil moisture, plant

responses also can be indirectly associated with

the effects of soil moisture. For example, Dyer

(2002) found that soil moisture, as modeled by

the climatic water balance, was an excellent pre-

dictor of the occurrence of American beech

(Fagus grandifolia). Medler et al. (2002) also

evaluated the interaction between soil moisture

and the spatial and temporal patterns of snowfall
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which, in turn, affect plant growth in the spring

and the development of summer wildfires. They

concluded that increases in severe wildfire

resulting from decreased soil moisture are only

moderately related to lowered snowfall in the

previous winter. Land surface-atmosphere inter-

actions also were found to be important in the

lower Mississippi River basin by Brown and

Wax (2007). In particular, they observed that

differences in soil types which led to spatially

variable soil moisture regimes caused significant

differences in seasonal maximum and minimum

air temperatures within the alluvial valley.

The highly varied spatial and temporal char-

acter of soil moisture easily lends itself to the

study of its impacts on other environmental vari-

ables. Walsh et al. (1998), for example, used

scale, pattern, and process with remote sensing

and geographic information systems to couple

geomorphic variables – including soil moisture

– to biogeographic and landscape ecological

processes. Bridge and Johnson (2000) found

significant relationships between geomorphic

principles and vegetation gradients, particularly

as they relate to soil moisture and water

availability. Cammeraat (2002) also focused on

scale issues in geomorphology to examine how

hydrological variables, such as soil moisture, are

influenced by biological and climatological pro-

cesses. Similarly, Western and Bloschl (1999)

and Western et al. (2002) evaluated this variabil-

ity in soil moisture and showed the importance

of its non-linear response in environmental anal-

yses. More recently, research has focused on a

more holistic treatment of ecosystems wherein

the climate, geomorphology, vegetation and

soils are integrated to provide a better assess-

ment of the overall interactions between the var-

ious components of the environment (see, for

example, Abella, 2003; Botter et al., 2007;

Hughes, 1997). The take-away message associ-

ated with these studies is that the entire physical

system as represented by the biosphere, the

atmosphere, the hydrosphere, and the litho-

sphere must be considered as a collective whole

– not a collection of unassociated parts – if the

environment is to be properly represented. Soil

moisture, since its spatial and temporal charac-

teristics are derived from the climate, land sur-

face, and vegetative characteristics, is therefore

an integrative component which summarizes

and affects all components of the environment.

VI Summary and
recommendations for future
research

As Mather (1993) suggested in his Presidential

Address to the Association of American Geogra-

phers, geographers should ‘emphasize those

aspects that bind us together rather than separate

us’. Soil moisture is truly a variable that binds

together the various branches of physical geo-

graphy. From its impact on and the influence

on it by weather and climate, geomorphology

and soils, biogeography, and hydrology, soil

moisture integrates all aspects of physical geo-

graphy. Thus, we call on physical geographers

to use soil moisture as a unifying theme in phys-

ical geography.

With that in mind, we suggest several areas of

research that illustrate the integrative nature of

soil moisture. For example, the WMO (2008)

report on ‘Future Climate Change Research and

Observations’ recommends that soil moisture

data should be assembled, quality controlled,

and harmonized because of its importance in

(1) providing an improved understanding of

land-atmosphere interactions, (2) the develop-

ment of seasonal-to-decadal climate forecasting

tools, (3) calibration, validation, and improve-

ments in the physical parameterizations in

regional and global land surface models,

(4) developing and validating algorithms for

determining estimates of soil moisture using

satellite-based techniques, and (5) monitoring

and detecting climate variability and change.

Although much of this work is already under-

way, we anticipate and hope that more research

will be focused on understanding the nature of
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land-atmosphere interactions and the role that

soil moisture and vegetation play in influencing

climate on seasonal to decadal timescales. We

also foresee continued efforts to improve the

accuracy of soil moisture models and the repre-

sentation of soil moisture in general circulation

models (GCMs) to improve the accuracy of soil

energy and water fluxes to the atmosphere. But,

most importantly, efforts will be focused on the

development of new modeling and observational

technologies, including both remotely sensed

surface soil wetness products and additional in

situ measurements of soil moisture. These data

acquisition platforms will provide new opportu-

nities for land surface model calibration and for

developing and validating satellite-derived soil

moisture algorithms.

Patch-scale temporal and spatial heterogene-

ity of soil moisture in forested and agricultural

ecosystems is also a key element that remains

inadequately understood. How do the interrela-

tionships between and among canopy structural

components, microclimates, and soil character-

istics influence the timing and spatial patterns

of soil moisture? A detailed understanding of

soil moisture dynamics in relation to vegetative

canopies will yield important insights into the

exploitation of environmental heterogeneity by

plants. Such knowledge at the patch scale could

allow evapotranspiration models to better pre-

dict water use by plants and, ultimately, improve

crop yields from precision agriculture.

From the perspective of process geomorphol-

ogy, soil moisture is an important but by no

means simple control on wind-blown sediment

entrainment and transport, flow partitioning,

mass wasting, and weathering. Contemporary

research tends to be focused on spatial and tem-

poral variations in soil moisture at a range of

scale and the feedbacks therein to improve the

ability of currently available models to predict

sediment transport in the prototype, such as the

exchange of sediment between beach and dune

critical to dune recovery following storms.

Moreover, the ability to discern, at high spatial

resolution, variations in soil moisture and the

effects of freeze and thaw over broad areas and

in three dimensions is urgently needed. Meth-

odologies for creating detailed maps of surficial

heave and subsidence are under development

and will prove instrumental for creating maps

of hazard potential at local scales.
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on Permafrost. Québec: Centre d’études nordiques,
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