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Abstract: A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images

for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is

proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized

Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters

are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm.

A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology

is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015.

The performance of the proposed algorithm is evaluated using leave-one-out cross validation and

sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R2 values

between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with

the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and

model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for

improving SMC estimates and supporting hydrological studies.
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1. Introduction

The assessment of Soil Moisture Content (SMC) is indispensable for various disciplines such as

meteorology, hydrology and agriculture [1], finding applications in evapotranspiration estimation,

flood-risk prediction and assessment of irrigation requirements. The most accurate approach for SMC

estimation is that of the gravimetric method [2], nevertheless, large scale SMC ground measurements

are time and labor intensive. However, remote sensing provides a fast alternative to mapping SMC

and its temporal distribution. The advent of satellite based remote sensing has led to a considerable

amount of scientific literature on identifying the potential of such sensors to provide explicit SMC

maps from space [3]. Several theoretical approaches exist for calculating backscattering from land

surfaces with different roughness scales [4] and comparing them against in situ SMC observations.

Backscattering measurements of microwaves from SAR sensors have demonstrated their potential

for effective monitoring of soil properties. In this context, research activities have shown that sensors

operating within microwave bands from P to L are more sensitive to variations of the soil layer’s

moisture level [5,6]. While at higher frequencies, such as C band or higher, radar’s ability to monitor

soil moisture is mainly limited by vegetation cover, this problem is significantly reduced at lower

frequencies [7]. Many factors, such as alterations in topography, vegetation regime, soil types, and

water content, affect the spatial variability of SMC [8]. According to [9], soil properties and topography
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are the most significant physical parameters that jointly control the spatio-temporal evolution of soil

moisture. Especially in the case of bare soils and high radar frequency observation, backscattering is

considered to be extremely sensitive to soil surface roughness [10]. For reference, an observed surface

is considered smooth if its elevation variations are smaller than the radar’s wavelength. While SMC is

usually characterized by smooth changes in space and abrupt changes in time, soil roughness may

drastically change spatially though it remains relatively constant in time [11]. In the case of high

frequencies, backscattered signal is mostly affected by surface roughness and vegetation, rather than

SMC. Various backscattering models have been developed over the past 30 years, categorized into three

main groups: physical, empirical and semi-empirical [3]. Despite the progress achieved by refined

electromagnetic models, the parameterization of surface roughness in soil backscatter modelling has

not yet matured [12]. The accuracy of SMC estimation by inverse backscattering models is also affected

by various parameters such as surface roughness [10,13].

Nowadays, most SAR systems operate at bands C and X (RADARSAT2, COSMO SkyMed, and

TerraSAR-X), which are not considered optimal for retrieving SMC since they respond to surface

roughness and vegetation cover as well [14]. Given the high temporal sampling and the operational

configuration of the newly launched Sentinel-1 (C-band), this satellite is expected to make significant

contributions in the operational monitoring of dynamic hydrological processes [15]. Compared to

ENVISAT ASAR GM mode (stopped working in 2012), Sentinel-1 IWS mode is of improved spatial,

temporal, and radiometric resolution while working at nearly the same center frequency (5.4 versus

5.5 GHz) [16]. Furthermore, according to [14], multi-temporal approaches for extracting SMC from

C-band can successfully account for surface roughness effects and low vegetation cover. This limitation

has been overcome with the Sentinel-1 mission, where sufficiently frequent SAR acquisitions are

available to ensure the stability of roughness and vegetation regime among them.

Different approaches have been followed in the past to calculate SMC, such as multi-temporal

change detection [17–19] and forward model inversion models (ANN, Bayes theorem) with extremely

promising results. Concerning ANNs, their effectiveness in solving inverse remote sensing problems

such as those required by SMC monitoring has diachronically been proved [20]. [21] have implemented

the SMOSAR algorithm for retrieving SMC from Sentinel-1 multi-temporal data. A wide range of

theoretical and empirical models for retrieving SMC from active and passive remote sensing data have

been also utilized [22,23]. Among them, one of the most commonly adopted theoretical models is

the Integral Equations Method (IEM) Model [24] and its evolution, the Advanced Integral Equation

Model (AIEM) [25,26]. This model allows the simulation of the radar measurements in the presence

of a specific soil condition, usually represented in terms of dielectric permittivity and roughness [27].

Concerning semi-empirical models, the most popular are those of Oh [28,29], providing analytical

relationships between the backscattered radar signal and various physical soil parameters.

In water resources management, SMC is an essential variable playing a crucial role in most

of the hydrological processes [30]. Hydrological models typically contain a substantial number of

conceptual parameters that are difficult to measure directly. These parameters need to be calibrated to

the best-fitting local values so that some agreement between the calculated and observed variables can

be obtained. The idea of feeding hydrological models with input derived from satellite data may assist

in overcoming such limitations and uncertainties of hydrological modeling [31]. [32] demonstrated

that the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) SMC product was essential for

the calibration of the soil hydraulic properties in the Noah land surface model (LSM). [31,33,34] also

showed that the calibration of a hydrological model with Scatterometer on European Remote Sensing

Satellite (SCAT) improved soil moisture simulations at basin scale [35].

This study investigates the potential of the synergetic use of the newly-launched Sentinel-1

IW mode and Landsat-8 Operational Land Images (OLI) images for estimating the top 5 cm

SMC. According to [11], the combined use of active and passive remote sensing data can provide

complementary information in terms of soil water content. Vertical (VV) multi-temporal C-band

ASAR backscatter measurements are used. Ground SMC measurements were collected during 2015
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in a study area in Western Crete. The free, full, and open data policy of Sentinel-1 images adopted

for the ESA Copernicus program opens new horizons to the extensive use of radar satellite remote

sensing data. A non-linear Artificial Neural Network (ANN) approach is assessed for its potential

to translate satellite remote sensing input to SMC. The estimated SMC values are used as input to

the HEC-HMS [36] hydrological model to simulate a flow event that took place on April 2015 in the

Keramianos sub-basin located in Chania, Crete, Greece. Model sensitivity to SMC spatial aggregation

is also investigated.

2. Case Study and Data

The study site is located in the broader Chania region in the western part of the island of Crete,

Greece. The climate of the study area is sub-humid Mediterranean with humid winters and warm

summers [37]. The municipality of Chania covers a total area of approximately 2.343 km2. The Koiliaris

watershed is located at the north of the municipality (Figure 1a), covers 130 km2 and has been

characterized as a Mediterranean Critical Zone Observatory (CZO) due to its special geomorphologic

and hydrogeological characteristics [38,39]. The Keramianos ephemeral tributary that drains the

homonymous sub-catchment of 32 km2 includes a rain and stage gauge. Overgrazing in the Keramianos

sub-catchment (Figure 1b) leaves the top soil vulnerable to surface runoff [40]. As a result of poor

vegetation cover and steep slopes, the Keramianos tributary is often responsible for Koiliaris River

flash flooding, which in the past has caused several damages in the downstream area of the Koiliaris

watershed [41]. Here we have chosen to model a flow event of April 2015 in order to capture the

importance of SMC even in low flow estimation.

 

(a) (b)

Figure 1. The broader study area, its topography and location of SMC and rain gauge stations (a).

The Keramianos sub-basin used for the hydrological application, along with discharge and rain gauge

locations (b).

2.1. Earth Observation Data

For the needs of the study, 38 images of both radar (Sentinel-1) and optical/ thermal (Landsat 8)

satellite sensors were collected (Table 1). Specifically, an integrated time series of satellite data covering

the period from January 2015 to December 2015 was processed (Figure 2). Concerning Sentinel-1

images, the Interferometric Wave (IW) mode images were incorporated in the final model. In order to

meet the demanding image quality and swath width requirements, the IW mode is used as a Scan SAR

mode. This requires a fast antenna beam steering in elevation for Scan SAR operation [42]. Sentinel-1

incidence angles for western Crete mainly range between 38◦ and 41◦. Although low incidence angles

are considered to be optimal for SMC estimation, [43] argue that high incidence angles (>45◦) are

suitable for the discrimination between smooth and rough areas. Therefore, incidence angles were
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considered sufficient for this study. Furthermore, 11 cloud-free Landsat 8 images from the same

period were acquired and analyzed to extract vegetation coverage and temperature regime at the four

experimental fields.

Table 1. Satellite data used in the study.

# Sensor Date of Acquisition # Sensor Date of Acquisition

1 Landsat 8 9 February 2015 20 Sentinel-1 23 April 2015
2 Landsat 8 13 April 2015 21 Sentinel-1 4 March 2015
3 Landsat 8 29 April 2015 22 Sentinel-1 5 March 2015
4 Landsat 8 15 March 2015 23 Sentinel-1 16 March 2015
5 Landsat 8 31 March 2015 24 Sentinel-1 17 March 2015
6 Landsat 8 16 June 2015 25 Sentinel-1 28 March 2015
7 Landsat 8 18 July 2015 26 Sentinel-1 29 March 2015
8 Landsat 8 19 August 2015 27 Sentinel-1 9 June 2015
9 Landsat 8 20 September 2015 28 Sentinel-1 21 June 2015

10 Landsat 8 23 November 2015 29 Sentinel-1 22 June 2015
11 Landsat 8 25 December 2015 30 Sentinel-1 3 July 2015
12 Sentinel-1 16 January 2015 31 Sentinel-1 4 July 2015
13 Sentinel-1 17 January 2015 32 Sentinel-1 27 July 2015
14 Sentinel-1 9 February 2015 33 Sentinel-1 28 July 2015
15 Sentinel-1 29 March 2015 34 Sentinel-1 8 August 2015
16 Sentinel-1 30 March 2015 35 Sentinel-1 25 September 2015
17 Sentinel-1 10 April 2015 36 Sentinel-1 7 October 2015
18 Sentinel-1 11 April 2015 37 Sentinel-1 24 November 2015
19 Sentinel-1 22 April 2015 38 Sentinel-1 18 December 2015

 

Figure 2. Sentinel-1 False Color Composite (RGB: 123; band 1: 21 February 2015, band 2: 12 April 2015,

band 3: 21 July 2015).
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Initially, geometric corrections are carried out using an adequate number of Ground Control Points

(GCPs). The SRTM 3Sec is used to eliminate topography related phase changes. Due to topographical

variations of a scene, distances are usually distorted in the SAR images. Range Doppler Terrain

Correction is therefore applied to all SAR images to implement orthorectification. The SAR images are

then first multi-looked to reduce speckle and radiometrically calibrated to derive the backscattering

coefficients σ
0 in dB. In terms of roughness and vegetation correction, the semi-empirical Dubois

model [29] is implemented. The model is initially formulated using scatterometer data collected at

six frequencies between 2.5 GHz and 11 GHz and has been used in many studies with generally

satisfactory results [44]. The validity of the model is restricted to normalized surface roughness

and incidence angles greater than 30◦. The Dubois model has two equations [45] that relate the

backscatter to sensor and soil surface parameters, one applicable to HH polarized data (horizontal

transmit and horizontal receive) and the other for VV polarized data (vertical transmit and vertical

receive). Concerning Sentinel-1, only VV polarized data are available. The VV equation is sufficiently

assuming vegetation at early growth stages and low density. The parameter RMS height s is replaced

by roughness mode. All the study areas are covered by weeds with mean height of 3 cm as measured

in the field. For this purpose, a Vernier caliper was utilized. Significant variations were observed

between different field campaigns mainly due to rain effect and cultivation practices.

The final model is modified to be used along with Topp’s model [46] (Equation (1)) which does

not require any prior knowledge about soil other than ε to derive SMC, θν:

θν = − 5.3 × 10−2 + 2.92 × 10−2
ε − 5.5 × 10−4

ε
2 + 4.3 × 10−6

ε
3 (1)

Landsat 8 images are radiometrically corrected to account for illumination’s changes and changes

in viewing geometry among different image acquisitions. Thus, the Digital Number (DN) values

of satellite images are converted to reflectance values [37]. Eventually, images are corrected for

atmospheric distortions using the Darkest Pixel (DP) atmospheric correction approach [47] and dams

and lakes as non-variant Darkest Pixel targets. The method can practically eliminate atmospheric

distortions of otherwise unknown distributions and intensities by accounting for dark and non-variant

targets located in the image or by conducting in situ measurements.

The Normalized Difference Vegetation (NDVI) is used to estimate the degree of vegetation

coverage in terms of vegetation height and density. Tall or dense vegetation absorbs most incident

visible light and reflects a large portion of the near-infrared (NIR) light, resulting in high NDVI

values [48]. NDVI is widely accepted as a sensitive indicator that can be used to monitor phenological

variations and biomass changes of vegetation in time-series analyses [49].

The canopy temperature can indirectly describe the soil moisture regime [50]. The Thermal

Infrared Sensor (TIRS) onboard the LandSat-8 mission measures land surface temperature in two

thermal bands by applying quantum physics principles. Atmospheric conditions and their effects on

Thermal Infrared (TIR) spectral band data are different from day to day, so images that are acquired

on different dates often have different ranges in TIR values. Thus, a relevant index is developed to

remove or reduce the absolute differences by normalizing the values to a range of 0 to 1 [51]. For this

purpose, the thermal band (band 10) of Landsat 8 is used. The TIRn was estimated for all the available

Landsat 8 images and was incorporated as a parameter in the overall model.

2.2. Ground Data

Time Domain Reflectometry (TDR) Decagon EC-5 sensors were used to measure in situ SMC.

EC-5 consists of two parallel-pronged plastic rods of 50 mm length and 9.8 mm width, and a spacing

of 12.1 mm with a reported measurement volume of 0.24 L. The sensor reads mV and a compatible

data logger converts mV readings into digital signal [52]. It operates at a frequency of 70 MHz

with a measurement range between 0 and 0.57 m3·m−3 at a resolution of 0.1 m3·m−3. Sensors were

installed in four experimental fields, serving as replicates, at the Eastern part of the Municipality of
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Chania: Marathi, Neo Horio, Alikampos, and at the campus of the Technical University of Crete (TUC)

(Table 2, Figure 1a). All four experimental fields are areas of generally bare soil surface or very sparse

vegetation (approximately 3 cm height). Sensors were installed approximately 5 cm below ground

and measurements were collected every 15 min. Figure 3 shows daily averages for the period of the

study from the Neo Horio TDR sensors. SMC measurements corresponding to the exact time of earth

observation from Sentinel-1 were eventually extracted from the dataset. According to the overall

number of available satellite images, 160 ground SMC measurements were incorporated in the overall

analysis together with corresponding satellite data. In order to spatially reference SMC measurements

against satellite images, their geographical locations were determined using a pair of differential GPS

(DGPS) Leica GS20 Professional Data Mappers. DGPS measurements were corrected offline using the

L1 pseudo-range in conjunction with station TUC2 from the Reference Frame Sub-Commission for

Europe (EUREF) Permanent Network (EPN), located within the TUC campus. The same method was

used to collect GCPs within the study area in order to geometrically correct the satellite images.

Table 2. Spatial characteristics of Soil Moisture Content gauge stations.

Experimental Field Distance from Sea (m) Elevation (m)

Marathi 450 52
Neo Horio 3000 36
Alikampos 6000 398

TUC Campus 1500 120

 

 

Figure 3. Temporal distribution of SMC measurements at Neo Horio gauge station.

3. Methodology

The overall methodology is based on the synergistic use of Sentinel-1 images and auxiliary Landsat

8 products to estimate SMC. Specifically, a SMC gauge network established in the Municipality of

Chania in Western Crete is used as ground truth. Following, Sentinel-1 and Landsat 8 images are

statistically analyzed using a non-linear Artificial Neural Network (ANN) approach. Four different

parameters were selected as inputs in the ANN approach, namely, corrected radar backscattering σ
0
dB,

NDVI, incidence angle ϑ, and thermal infrared temperature TIRn. Besides the first three variables

that have been extensively used as input in previous studies, temperature has been incorporated in

relevant models only either as Temperature-Vegetation-Drought-Index (TVDI) [53] or as a parameter

that depends on dielectric properties and therefore on soil moisture [54]. Following, the estimated

SMC is used as input in the HEC-HMS model to conduct hydrologic simulations. Figure 4 outlines the

methodological steps presented in the following paragraphs.



Sensors 2017, 17, 1455 7 of 16

 

 

Figure 4. Flowchart of the overall methodology.

3.1. ANN Approach

ANNs provide an alternative to conventional numerical modeling techniques, which sometimes

are limited by rigid normality and linearity [55–57]. An ANN consists of a number of hidden neurons or

nodes that work in parallel to convert data from an input to output layer. Here, the VV backscattering,

NDVI, TIRn and Incidence Angle parameters were used as input and ground SMC measurements

(experimental data) as output in MATLAB® environment. Besides backscattering data, NDVI was

incorporated in the model for accounting vegetation and roughness, incidence angle for topography

and thermal infrared temperature for water content. A feed-forward Multilayer Perceptron (MLP)

modelis used. In MLPs, successive layers of neurons are interconnected, with connection weights that

control the strength of the connection. The feasibility of ANNs in solving remote sensing problems has

been highlighted in various studies since ANN can easily merge data coming from different sources

into a unique integrated algorithm [58]. Specifically, the effectiveness of the ANN in estimating SMC

has been investigated in other relevant studies [14,58] where the need for auxiliary information derived

from passive remote sensing imagery such as the NDVI was pointed out. The optimal architecture of

an ANN is defined by varying the number of neurons in the hidden layer and successively training and

testing against variable sets previous unknown to the network. The main aim of the training process is

to minimize the error between the ANN output and the input data by adjusting the correlation weights

between them [59].
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Trial and error (hidden layers and neurons added or removed from the model) determined the

optimal MLP architecture to a three-layer network consisting of an input layer (four neurons: V

backscattering, NDVI, TIRn, Incidence Angle), one hidden layer (10 neurons) and one output layer

(in situ SMC). The specific architecture guaranteed an optimum model performance (minimum error

and maximum convergence), avoiding any possible overfitting. The model was trained with the

use of both experimental and simulated data in order to minimize the RMSE. Thus, 160 sets from

each individual parameter (160 × 4 = 640 in total) were incorporated as input (experimental data)

in the ANN model with 160 corresponding ground SMC values as output. The available data were

divided in 80%-10%-10% for training, testing and validation phases, respectively. For the needs of

training, 1000 iterations were set as a threshold to cease the procedure. Training was based on the

Levenberg-Marquardt method which is an alternative of the Newton algorithm for finding an optimum

solution to a minimization problem. The specific algorithm is often characterized as more stable and

efficient [60]. ANN training was repeated 50 times and the RMSE of the mean value of the final results

was estimated.

3.2. Hydrological Model

Continuous flow and precipitation time series data for the studied extreme event were available

from the “Entrance” and “Psychro Pigadi” gauge stations, respectively (Figure 1b). The model was

initially calibrated using past events from the period 2013–2014 and subsequently implemented for the

flow event on April 2015. The total observed rainfall recorded in the gauge station “Psychro Pigadi”

for the studied period was 67.8 mm. The maximum observed flow was 2.67 m3 s−1 and the observed

water volume equivalent for the sub-catchment was 1.197 mm. Furthermore, SMC was converted to

saturation degree S using soil porosity value ε = 0.5094, for the specific sub-catchment as obtained

from [61].

For the need of the study the Hydrologic Modeling System (HEC-HMS) was used. HEC-HMS

has been developed by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers

to simulate the hydrologic processes of dendritic watershed systems [36]. Since moisture conditions

are a crucial factor for flood modeling in the Mediterranean region [62] but uncertainties are high,

the loss method adopted here is the simple but robust Soil Moisture Account (SMA) [36]. SMA uses

one vegetation (canopy interception storage) and three ground (soil, upper groundwater, and lower

groundwater storage) reservoirs to represent the vertical dynamics of soil moisture. Here, emphasis is

given to the soil profile storage, which represents water stored in the top layer of the soil. Its principal

input parameter is the initial condition of the soil, which is determined as the degree of saturation S

(%) at the beginning of the simulation. Here, we consider that S can be estimated directly from the

SMC derived from the satellite data and the soil porosity ε (dimensionless) using:

S =
θν

ε
× 100 (2)

When infiltration capacity is reached, excess precipitation is generated. The Snyder (1938)

synthetic unit hydrograph (UH) method which relates the watershed’s physical characteristics to

the basic parameters of the UH is used for transforming excess precipitation to runoff. Subsurface

calculations are performed using the recession base flow method, which is intended for event

simulation. Finally, the Muskingum routing method performs the calculations in the reach using

a simple conservation of mass approach to route flow through the stream reach, whereas interactions

with the subsurface are performed by the constant loss/gain method contained within the reach.

Three criteria are mainly used to assess the effectiveness of each network and its ability to make

precise predictions: RMSE indicates the discrepancy between the observed and calculated values, and

R2 representing the percentage of the initial uncertainty explained by the model. The performance
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of the hydrological model is assessed using Nash-Sutcliffe efficient (NSE) coefficient [63] which is

a measure of the model quality with respect to the representation of the variance of the data:

NSE = 1 −
∑(yi − ŷi)

2

∑
n
i=1(yi − y)2

(3)

where y is the mean value of the n observations. The perfect fit between observed and calculated

values would have RMSE = 0, R2 = 1 and NSE = 1. Finally, absolute percentage error (APE) given by

APE = |(yi − ŷi)/yi| is also used to assess hydrological model performance.

4. Results and Discussion

The ANN MLP simulation results (Figure 5) produced good agreement with the ground truth

data in terms of R2 and RMSE (Table 3).

 

 
   (a) (b) 

 
   (c) (d) 

Figure 5. Example of ANN statistics (R in terms of (a) training, (b) validation, (c) testing and

(d) overall performance).

Table 3. Statistics of R2 and RMSE concerning the performance of MPL ANN algorithm in the different

SMC gauge stations.

# Study Area R2 RMSE

1 Marathi 0.867 0.022
2 Neo Horio 0.842 0.041
3 Alikampos 0.914 0.031
4 TUC 0.810 0.047
5 Overall (All the study sites) 0.500 0.042
6 Study Areas: Neo Horio, Marathi, Alikampos 0.829 0.040
7 Study Areas: Neo Horio, TUC, Alikampos 0.819 0.048
8 Study Areas: Alikampos, Marathi, TUC 0.657 0.033
9 Study Areas: TUC, Marathi, Alikampos 0.400 0.058
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In order to assess the model’s performance, the leave-one-out cross validation method is applied.

Specifically, each time the ground SMC measurements of a SMC gauge station is treated as prediction

points and compared to the output of the ANN model. Results show that the elimination of the TUC

field from the overall model improved its performance. Most importantly, the fact that a single network

can yield acceptable results for all fields underlines the ability of ANNs to spatially extrapolate SMC

estimates. In addition, the comparison of observed and calculated SMC measurements highlighted

the fact that the optimal performance of the ANN network is observed during summer and spring

rather than winter and autumn period. Finally, a sensitivity analysis is performed to define the relative

importance of each individual parameter in the SMC detection methodology (Table 4). Results denote

that among the different input parameters, NDVI is the most important for the smooth performance of

the ANN. However, the final results highlight the need of the synergistic use of the four individual

parameters for the optimum performance of the model.

The flow event on April 2015 was investigated in order to apply the saturation degree values

obtained from the satellite SMC measured on 10 April 2015. For this purpose, the already trained

ANN model was implemented over Keramianos watershed (ungauged in terms of SMC) grid cells

using the same parametrization and producing a spatially distributed SMC estimation. The final

developed map (30 m pixel resolution) was spatially masked due to the partial cloud and snow cover

of Landsat 8 image within Keramianos watershed during flow event (Figure 6).

 

−

−

Figure 6. Soil Moisture Content map in Keramianos basin and broader area. The snow and cloud cover

area is indicated with grey colour.

Since the SMA method implementation of HEC-HMS accepts a single value to describe the

SMC of the lamped watershed, the average value of the estimated SMC grid cells (masked area) is

used. Average SMC before the rain event is estimated at 0.3334 m3 m−3 (S = 65.5%) and for this

value the simulation results yield a satisfactory performance when compared against observations

(NSE = 0.712, R2 = 0.726; Table 5). For the average S the equivalent water volume is simulated at

1.05 mm, underestimating the observed volume by 12.5% (Table 5). In Table 5, model efficiency criteria

are also shown for ±10% and ±20% variations to the average SMC value used as input in HEC-HMS.

The simulated equivalent water volume is strongly affected by the satellite-derived SMC values,
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ranging from 0.57 mm (10% decrease of SMC average value) to 1.54 mm (10% increase of SMC average

value), or −53% and +28% from the observed value, respectively.

Based on the results of Table 5, Figure 7a shows the modelled instantaneous flow for the average

SMC value and the ±10% variation as a function of the observed flow time series (±20% not shown for

simplicity). Figure 7b translates these values (including the ±20% variation) for cumulative flow values.

The percentages in the Figure 7b demonstrate the increase or decrease of the respective simulated

equivalent water volume versus the observed equivalent water volume value, also shown in Table 5.

The simulated flow time series, using the initial average satellite SMC estimate, fits adequately with

the flow observations (R2 = 0.726), whereas the percentage variation of the specific value denotes

that model results are very sensitive to variations of the saturation degree. Besides this sensitivity,

satellite-based SMC estimates are adequate to result into a good fit.

 

(a) (b) 

− −

− − − −

− − −

 
− −

 

−

,

−
−

Α

Figure 7. Instant (a) and cumulative (b) flow results from the HEC-HMS simulation. Right panel

includes modelled estimates for ±10% and ±20% difference in SMC and the respective present

difference in final cumulative flow. For clarity, left panel only includes estimates for ±10% difference

in SMC.

Table 4. Sensitivity analysis results of the input factors. Bold values inside brackets indicate the

percent difference between the leave-one-out results and the results including all the parameters

(according to Table 3).

Subtracted
Parameter

Marathi Neo Horio Alikampos TUC All Fields

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

σ
0
db

0.724
0.057

0.846
0.055

0.867
0.036 0.811 0.044

0.745
0.044

(−17%) (+0.4) (−6%) (+50%)

NDVI
0.338

0.052
0.569

0.059
0.506

0.072
0.552

0.082
0.349

0.069
(−62%) (−35%) (−35%) (−32%) (31%)

TIRn
0.774

0.039
0.895

0.028
0.664

0.066
0.781

0.053
0.509

0.062
(−10%) (+6%) (−28%) (−4%) (+1.8%)

ϑ
0.788

0.034
0.87

0.032
0.857

0.035
0.843

0.041
0.746

0.051
(−9%) (+3%) (−7%) (+4%) (+50%)

Table 5. Model results according to the degree of saturation S parameter change.

SMC
Scenario

Satellite SMC
(m3 m−3)

Degree of Saturation,
S (%)

NSE R2 Simulated Equivalent
Volume, Q (mm)

APE (%)

−20% 0.2667 52.4 0.016 0.356 0.05 95.8
−10% 0.3001 58.9 0.494 0.555 0.57 52.5

Average
SMC

0.3334 65.5 0.712 0.726 1.05 12.5

+10% 0.3667 72.0 0.556 0.599 1.54 28.3
+20% 0.4001 78.5 0.253 0.525 2.12 76.7
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A more thorough sensitivity analysis is conducted by applying the entire range of the spatial

variability of satellite-predicted SMC in the watershed to HEC-HMS. The behavior of the estimated

NSE and APE of the resulting flow depending on the percentile of SMC used are shown in Figure 8.

Values of SMC between percentiles 50–60% indeed yield acceptable values of model error. Beyond

the range of percentiles 50–60% the model results deteriorate fast, which effectively shows the model

sensitivity to the parameter of the degree of soil saturation. Moreover, the model generates no flow for

S under 40% (which coincides with the 30% percentile of values in the watershed) thus providing a feel

for the ability of the watershed to absorb runoff. This sensitivity of the hydrological model to small

fluctuations of SMC underlines the importance in the contribution of high quality remote sensing data

in reliable model output.

 

(a) (b) 

Figure 8. Sensitivity analysis of NSE and APE for the quantiles of the degree of saturation S as estimated

from the spatially distributed satellite-derived SMC (a). Modelled versus observed values including

modelled estimates for ±10% difference in SMC (b).

5. Conclusions

This paper investigates the estimation of surface Soil Moisture Content (SMC) using multisource

and multi-temporal remote sensing data (Sentinel-1, Landsat 8) for use in hydrological applications.

Specifically, it aims to highlight the potential of the newly launched Sentinel 1 sensor in estimating SMC.

In addition, the proposed model incorporates four different input parameters in order to feed efficiently

an ANN model for estimating SMC. Finally, the manuscript aims to highlight the potential of satellite

remote sensing in providing essential input data to hydrological modeling. SMC is an indispensable

input data for hydrology. Due to the fact that the collection of in situ SMC data in remote areas is often

impractical or impossible, the development of alternative data collection methods is necessary.

The correction of SAR images in terms of vegetation effects and roughness was carried out by

coupling Dubois and Topp model. Lack of HH polarization information from the Sentinel-1 possibly

renders it applicable only for areas of low vegetation growth and density, which is nevertheless the

very case for many flood prone watersheds. Statistical analysis of remote sensing variables versus

ground SMC measurements showed that a non-linear approach can explain as much as 89.5% (Table 4)

of data uncertainty for the specific case study. ANNs are certainly a good option for the problem

at hand, being essentially non-parametric and requiring little understanding of the inner workings

between model variables input and output.

Concerning environmental parameters, the results in our case study denoted the fact that incidence

Angle ϑ is the least sensitive parameter, while NDVI is the most sensitive for the accurate estimation

of SMC. In addition, the thermal infrared temperature parameter seems to be important for the

overall performance of the model. Results demonstrate that the retrieval of SMC is possible at C-band

(VV polarization) by using an inversion algorithm that includes a compensation for the effects of

vegetation. Furthermore, it is possible that even the little vegetation present in the experimental fields is
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enough to induce attenuation in the measured backscattering. Hence, the complementary information

from optical/thermal infrared sensors was proved substantial for the optimum performance of the

model. Therefore, NDVI may be the most important parameter but all parameters are important for

the optimum results.

Soil moisture is a crucial factor when evaluating the initial conditions for flood prediction, through

an event-based rainfall–runoff model. The estimated SMC values for sub-basin ungauged for soil

moisture were used for the hydrologic simulation of a flow event. In this study, the hydrological

simulation parameterization has been improved through the use of satellite data permitting accurate

prediction of flood characteristics. Simulations have shown that a calibrated model can be very sensitive

to SMC, producing over 50% uncertain results even for low flows. Therefore, a precise estimation is

indispensable in order to yield meaningful results. In conclusion, the sensitivity of the hydrological

model results regarding the SMC values changes is evident, showing the importance of an accurate

initial soil moisture condition determination through the use of multisource and multi-temporal remote

sensing data (Sentinel-1, Landsat 8).

The presented methodology forms a sufficient method for the determination of initial soil moisture

conditions during the hydrologic analysis. It can be also used as an alternative to the data intensive

physical models. Furthermore, it highlights the potential of the ANN inversion model for the estimation

of Soil Moisture Content from SAR observations. Future research will focus on further data collection

for a more accurate validation of the results at a wider range of stream flows and vegetation cover.
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