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ABSTRACT

Four physically based land surface hydrology models driven by a common observation-based 3-hourly

meteorological dataset were used to simulate soil moisture over China for the period 1950–2006. Monthly

values of total column soil moisture from the simulations were converted to percentiles and an ensemble

method was applied to combine all model simulations into a multimodel ensemble from which agricultural

drought severities and durations were estimated. A cluster analysis method and severity–area–duration

(SAD) algorithm were applied to the soil moisture data to characterize drought spatial and temporal vari-

ability. For drought areas greater than 150 000 km2 and durations longer than 3months, a total of 76 droughts

were identified during the 1950–2006 period. The duration of 50 of these droughts was less than 6months. The

five most prominent droughts, in terms of spatial extent and then duration, were identified. Of these, the

drought of 1997–2003 was the most severe, accounting for the majority of the severity–area–duration enve-

lope of events with areas smaller than 5 million km2. The 1997–2003 drought was also pervasive in terms of

both severity and spatial extent. It was also found that soil moisture in north central and northeastern China

had significant downward trends, whereas most of Xinjiang, the Tibetan Plateau, and small areas of Yunnan

province had significant upward trends. Regions with downward trends were larger than those with upward

trends (37% versus 26% of the land area), implying that over the period of analysis, the country has become

slightly drier in terms of soil moisture. Trends in drought severity, duration, and frequency suggest that soil

moisture droughts have become more severe, prolonged, and frequent during the past 57 yr, especially for

northeastern and central China, suggesting an increasing susceptibility to agricultural drought.

1. Introduction

Drought is recognized as one of the costliest of natural

disasters. Severe drought can affect large regions and can

persist for decades, as in the case of the 1930s ‘‘Dust

Bowl’’ drought in theUnited States and the Sahel drought

of the 1980s, among many others. While many regions in

the world have suffered from droughts, China has expe-

rienced frequent severe droughts during the second half

of twentieth century. Studies based on climate station

data show that much of northern China has experienced

droughts since the 1950s, with the most severe and pro-

longed droughts having occurred since 1990 (Qian et al.

2003; Wang et al. 2003; Zou et al. 2005; Xin et al. 2006;

Zhai et al. 2010). For instance, Zou et al. (2005) calculated

the PalmerDrought Severity Index (PDSI) for the period

1951–2003 over China and found that almost every year

had more than 25% of the country under drought threat

with the threshold of PDSI,21.0. Zhai et al. (2010) also

found large increases in dryness over northernChina after

1990. The 2008/09 winter drought in northeastern China

was one of the worst in the past 50 years, resulting in an

estimated 16 billion Chinese yuan (2.3 billion U.S. dol-

lars) in economic losses and subjecting more than 10
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million people to water shortages. This drought is still de-

veloping (for more information, see http://news.xinhuanet.

com/english/2009-02/04/content_10759053.htm).

Drought has especially impacted the agricultural areas

of northern China. For instance, in 2000 drought dam-

aged more than 40 million hectares of crops in northern

China (Song et al. 2005). Wang et al. (2003), based on

analysis of precipitation data, showed that the area in

drought in northern China increased during 1950–2000,

and that drought variations displayedmultiple time scales

and seasonal differences. The Yellow River has experi-

enced prolonged periods of below normal flows in recent

decades, resulting in complete drying of the river in some

locations and periods. For example, a severe drought over

northernChina in 1997 resulted in 226 days of zero flow in

the Yellow River from Henan to Shandong provinces.

The total length of the river with zero flow was about

687 km (Liu and Zhang 2002; Xu 2004; Cong et al. 2009).

Droughts have also frequently occurred in the Yangtze

River basin during the past 50 years (e.g., Su et al. 2008;

Zhai et al. 2010). The occurrence of severe droughts such

as those mentioned here is usually related to a combina-

tion of precipitation and/or temperature anomalies, hy-

drological anomalies (e.g., low soilmoisture or groundwater

from previous seasons or years), terrestrial ecosystem con-

ditions, and/or humanactivities (Woodhouse andOverpeck

1998;Understandingdrought characteristics, including their

duration, areal extent, and possible causes, is critical to

understanding the nature of future droughts and eventually

for forecasting of droughts, a science that is currently in its

infancy (Svoboda et al. 2002; Sheffield et al. 2009).

Soil moisture modulates both the land surface water

and energy cycles. Changes in soil moisture directly affect

plant water availability, and in turn plant productivity and

crop yields; hence, soil moisture deficits have critical

implications for both agriculture and water supply. China

lies within the Asian monsoon regime, and the summer

and winter monsoons control precipitation variations in

space and time over most of the country. The climate

becomes wetter from north to south and from west to

east. The northwestern regions are extremely arid, with

some areas having no more than 100 mm of precipitation

annually. Retention of soil moisture is especially impor-

tant for agriculture in these dry areas. For this reason, soil

moisture anomalies are often used as an index of agri-

cultural drought.

Unfortunately, long-term measurements of soil mois-

ture are only available at a few sites globally (e.g.,Robock

et al. 2000), and the density of stations is far too sparse

and the time span of observations is too short to support

drought studies. Remote sensing provides an alternative

source of soil moisture measurements. However, satellite

sensors provide estimates of the water content only of the

upper few centimeters of soil (depending on their wave-

length). While the recent (November 2009) launch of the

European Soil Moisture and Ocean Salinity (SMOS)

mission and planned launch of the U.S. Soil Moisture

Active Passive (SMAP)missionwill provide observations

targeted directly at soil moisture, the current generation

of satellite sensors has wavelengths too short to provide

a viable source of soil moisture information over larger

areas, and short record lengthswill continue to be an issue

even in the SMOS and SMAP era.

As an alternative to in situ and remotely sensed soil

moisture, numerical model simulations have been used

as a source of soil moisture information for drought

studies (Sheffield et al. 2004, 2009; Sheffield and Wood

2007; Andreadis et al. 2005; Wang et al. 2009). Land

surface models (LSMs) coupled with atmospheric

models (e.g., Schubert et al. 2008) or driven offline by

observed meteorological forcings can reproduce land sur-

face water and energy variations. For example, Sheffield

et al. (2004) derived a hydrologically based drought index

based on simulated soil moisture and showed that it was

able to reproduce drought occurrence and severity char-

acteristics over the continental United States. Andreadis

et al. (2005) developed an approach that they termed se-

verity–area–duration (SAD) analysis, an adaptation of the

depth–area–duration approaches widely used in design

storm analysis, to characterize drought over the continental

United States for the period 1916–2003. They used total

column soil moisture simulations from the variable in-

filtration capacity (VIC) model. Wang et al. (2009) showed

that plausible results were produced when the same

methodswere applied to other LSMs. Sheffield et al. (2009)

extended the SAD approach to investigate global drought

during 1950–2000 using total column soil moisture derived

using the VIC model.

The accuracywithwhich hydrologic variables, including

soilmoisture, can be reproduced using offline applications

of LSMs is strongly dependent on the quality of the me-

teorological forcing data and the physical parameteriza-

tions in the LSM. Given the samemeteorological forcings

and land surface properties (e.g., soils, topography, vege-

tation), simulations from different models can show dis-

parities. Comparison ofmodel-simulated soilmoisturewith

in situ measurements generally shows that models poorly

simulate actual soil moisture, but the models are able to

reproduce anomalies and seasonal variability (Entin et al.

2000; Guo and Dirmeyer 2006). Because the representa-

tions of soil hydrology differ from model to model, the

variability of soil moisture is highly model dependent. On

the other hand, when appropriately normalized to have the

same range and variability, model-derived soil moisture is

generally muchmore consistent across models.Wang et al.

(2009) investigated the performance of six LSMs with
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respect to their ability to reproduce agricultural (soil

moisture) drought characteristics over the continental

United States for a simulation period of almost 100 years.

Their approach to standardizing the soil moisture output

was to express each model’s monthly soil moisture as

a percentile relative to that month’s historical simula-

tions; hence, all values were reformulated as uniformly

distributed (between 0 and 1) variables. The results

showed a general consistency in the representation of

major droughts and thus the value of using the multi-

model ensemble as a means of combining the estimates

from the individual models.

In this paper, we utilize the multimodel approach de-

veloped inWang et al. (2009) to reconstruct soil moisture

in China, with particular emphasis on droughts. The pa-

per is organized as follows: section 2 describes the models

and data used in this study; the data analysis and statistical

methods are described in section 3; section 4 investigates

drought spatial and temporal variability as estimated

from the multimodel ensemble derived soil moisture; and

section 5 provides a summary and conclusions.

2. Models and data description

The soilmoisture variables used in this paper come from

four land surfacemodels: 1) VIC (Liang et al. 1994); 2) the

Community Land Model, version 3.5 (CLM3.5; Oleson

et al. 2007, 2008); 3) Noah version 2.7 (Mitchell et al. 2001)

with an updated snow albedo scheme (Livneh et al. 2010);

and 4) a hybrid of CLM3.5 with the VIC soil hydrology

scheme (CLM-VIC; Wang et al. 2008). The details of the

structure and model physical processes are described in

the references given above. All models were forced at the

land surface with precipitation, surface air temperature,

surface wind, vapor pressure deficit, and downward solar

and longwave radiation. The models close the surface

water budget by producing as prognostic variables runoff

and evapotranspiration, with snow water equivalent and

soil moisture as state variables. They close the surface

energy budget concurrently by solving for the effective

surface temperature (and depth profile of temperature) as

a state variable, with reflected shortwave and emitted

longwave radiation as prognostic variables. The perfor-

mance of the fourmodels have been extensively studied at

both single stations and over larger areas or watersheds

(globally in some cases; e.g., Chen et al. 1997; Nijssen et al.

2001; Maurer et al. 2002; Ek et al. 2003; Dickinson et al.

2006; Oleson et al. 2007; Wang et al. 2008, 2009).

Soil column representations and the parameteriza-

tions used for soil water movement differ considerably

among the models. The total soil depth in CLM3.5 is

fixed at 3.43 m and is divided into 10 layers with in-

creasing soil layer thickness from upper to lower layers.

In VIC and CLM-VIC, the layer depths differ from grid

cell to grid cell. The total soil column in these two

models can be as deep as 3 m [values extracted from the

VIC global parameter set constructed by Nijssen et al.

(2001)]. In the Noah model, the deepest total soil col-

umn depth is fixed at 2 m, and the layer depths are fixed

at 10 cm, 30 cm, 60 cm, and 1 m, respectively. The dif-

ferent soil column depths result in disparities in the soil

water holding capacity among models and lead to large

differences in the simulated mean soil moisture amount.

All of themodels require that certain soil and vegetation

parameters that describe the land system (e.g., soil water

holding capacities, hydraulic conductivities, thermal

conductivities and capacities, vegetation types, etc.) be

specified, and these parameters differ from model to

model. We have used herein ‘‘off the shelf’’ model pa-

rameters that have been estimated or calibrated for the

model domain in previous studies. We did so to avoid

influencing uncertainties in each model’s representation

of drought by introducing potentially inappropriate

parameter values. While our general approach is similar

to that used in Wang et al. (2009), the specific data

sources vary somewhat. For CLM3.5, soil data were

derived from the International Geosphere–Biosphere

Programme (IGBP) soil dataset (Bonan et al. 2002),

with vegetation parameters derived from Moderate Res-

olution Imaging Spectroradiometer (MODIS; Lawrence

and Chase 2007) imagery. For the VIC model, soils data

were derived from the Food and Agriculture Association

(FAO)–United Nations Educational, Scientific and Cul-

tural Organization (UNESCO) digital soil map of the

world with the World Inventory of Soil Emission Poten-

tials (WISE), using methods described in Nijssen et al.

(2001). For the Noah model, parameters were taken from

multiple sources: soil data, green vegetation fraction, and

snow-free albedo were retrieved from the global dataset

of Matthews (1984, 1985) and vegetation type was taken

from the University of Maryland 1-km vegetation class

dataset (Hansenet al. 2000).BecauseCLM-VIC isCLM3.5

merged with the VIC soil hydrology scheme, the CLM-

VIC model used the same soil data as the VIC model.

The vegetation scheme in CLM-VIC is identical to that

in CLM3.5 and so the same vegetation data were used in

both models.

All models were driven by a common meteorological

dataset, which is a hybrid of data from the National

Centers for Environmental Prediction (NCEP)–National

Center for Atmospheric Research (NCAR) reanalysis

(Kalnay et al. 1996) and a suite of global observation-

based products. Details of the dataset are described in

Sheffield et al. (2006). The dataset has been used to

evaluate the global terrestrial water budget (Sheffield and

Wood 2007) and also to drive the VIC model for explo-

ration of global drought characteristics (Sheffield et al.
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2009). The dataset used in this paper was extended to

2006 using the same approach as in Sheffield et al. (2006)

to produce the original dataset, which spanned the period

1948–2000. The extension was based on updated versions

(to 2006) of the underlying observations for precipitation,

temperature (CRU 3.0; Mitchell and Jones 2005), and

radiation (SRB 3.0; Gupta et al. 2006). The horizontal

resolution of the original Sheffield et al. (2006) dataset

was 18 3 18, with a temporal resolution of 3 h. In this

study, we first interpolated the global data to 0.58 spatial

resolution using a bilinear interpolation method, and we

then extracted the forcing data within the study domain.

At 0.58 spatial resolution, the Chinese land area consisted

of 3880 grid cells.We recognize that the raw (station) data

that underlie the gridded dataset are somewhat sparser

than the 0.58 resolution we used. On the other hand, the

topographic, soil, and vegetation data have considerably

finer spatial resolution. Our choice to use 0.58 as our

model resolution represents a compromise between these

two considerations. Sheffield et al. (2006) demonstrated

that when the data were interpolated from 28 to 18 using

the same bilinear interpolation method that we applied,

some biases appeared in the foothill regions of major

mountain ranges. We therefore compared the 0.58 ele-

vation data interpolated from 18 to 0.58 dataset and found

no prominent differences except in the vicinity of the

southern foot of the Himalayas, which constitutes a small

part of the entire domain (not shown). On this basis, we

decided not to adjust the interpolated data. It is alsoworth

noting that for drought studies such as this one, modest

spatial variations in precipitation are somewhat less im-

portant than for other applications, since droughts tend to

cover relatively large areas and to reflect accumulated

precipitation deficits rather than short-term variations.

Our simulations were performed using a 1-h time step

and 0.58 spatial resolution (the hourly data were linearly

interpolated from the original 3-h time step data). To

eliminatemodel initialization effects, allmodels were first

run for 10 yr by cycling the forcing data for 1948 initial-

izedwith a specified intermediate soil wetness. Themodels

were then run from 1948 to 2006, initialized with the final

year of the spinup run. The annual precipitation for 1948

over much of China is slightly higher than the mean cli-

matology (not shown), so the initialization described above

might give a slightly wet initial condition. However, our

analysis started with 1950, which should help to dissipate

any modest initialization influences.

3. Methodology

Following Andreadis et al. (2005) and Sheffield et al.

(2009), we defined drought as occurring when soil mois-

ture values (percentiles) fall below a threshold value

continuously in time over a contiguous area. We then

used monthly soil moisture percentiles from the four

LSMs to form a multimodel ensemble dataset, as de-

scribed below. Drought events were identified from the

multimodel dataset using the same cluster analysis ap-

proach as in Andreadis et al. (2005). Their method

searches for temporally continuous and spatially con-

tiguous areas in drought. SAD analysis is then applied to

the space–time characteristics of these events. We also

analyzed droughts on a grid cell by grid cell basis in

terms of long-term trends in drought characteristics,

such as duration and severity of soil moisture deficits.

a. Multimodel ensemble scheme

As noted above, previous work (e.g., Koster et al.

2009; Wang et al. 2009) indicates the intermodel varia-

tions are considerably reduced when the simulated soil

moisture values are appropriately normalized. Our ap-

proach to doing so consisted of three steps. First, simu-

lated (total column) soil moisture was converted to

percentiles using the time series values of total column

soil moisture for each model for each month in the pe-

riod 1950–2006. Second, themedian values of themonthly

percentiles derived from the four models were computed

at each grid cell to form a unified percentile time series for

that grid cell.We found that one of themodels (CLM 3.5)

had some anomalous drift in very dry areas (caused by the

model’s very small interannual range in total column soil

moisture in very dry areas). For this reason, we used the

multimodel median, rather than the mean, notwith-

standing that an exploratory analysis showed that this

choice makes little difference to the character of the in-

ferred multimodel drought. Finally, at each grid cell and

for eachmonth, themedian (overmodels) percentile time

series was again converted to a new percentile according

to the empirical probability distribution of the median

percentiles. This third step had only a minor effect on

midrange soil moisture values; however, it corrects the

tails of the averaged percentile distribution, which oth-

erwise would deemphasize extremes. Stated otherwise,

this step assures that the multimodel variable has a uni-

form distribution—without this step, extreme low or high

values do not occur as often as in the percentile series

from the individual models. Finally, the ensemble soil

moisture percentiles were used to identify droughts as

follows. A drought was defined as any percentile below

20%, as in previous drought identificationwork (Andreadis

et al. 2005; Sheffield et al. 2009;Wang et al. 2009). It is also

a threshold used in the U.S. Drought Monitor (see http://

drought.unl.edu/dm/archive/99/classify.htm). We note that

notwithstanding this step, the multimodel ensemble is ex-

pected to be smoother in both space and time than the

space–time variations of the individual models. We view
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this as a desirable outcome of the multimodel ensemble

processing.

b. Clustering algorithm and severity–area–duration

analysis for drought identification

The clustering algorithm developed by Andreadis

et al. (2005) was used to identify drought spatial and

temporal variations. The algorithm combines both spa-

tially and temporally contiguous regions with soil mois-

ture percentiles below the specified (20th percentile)

value. For a specified minimum area, droughts are al-

lowed to break up to form subdroughts or merge to form

new larger droughts with time. The minimum area

threshold was taken as 25 000 km2 in previous work

over the continental U.S. domain (Andreadis et al. 2005;

Wang et al. 2009) and 500 000 km2 for a study of global

land areas by Sheffield et al. (2009). Sheffield et al.

(2009) found that drought clusters with smaller (e.g.,

25 000 km2) thresholds could shrink to a few grid cells

and persist many years through tenuous spatial con-

nectivity. To avoid this situation, we set a minimum

threshold of 150 000 km2. In section 4d, we examine the

sensitivity of the results to this threshold.

We used the severity–area–duration analysis approach

of Andreadis et al. (2005) as a supplementary tool to

characterize drought events. SAD is based on the widely

used depth–area–duration (DAD) technique (Grebner

and Roesch 1997) used for design storm analysis. We

applied the method as in Andreadis et al. (2005); the

only difference is that our percentile variants were the

percentiles of the multimodel medians computed as

described above, whereas in Andreadis et al. the per-

centiles were from a single model. In brief, the severity

(S) in SAD is defined as S 5 (1 2 SP/t), where in our

case P is the monthly ensemble median soil moisture

percentile and SP is their sum over a duration of t

months. The severity was calculated at each grid cell

within the drought event as identified by the cluster

analysis, implemented as in Andreadis et al. (2005), and

then averaged over the drought area. The averaged

drought severity for an event was calculated for time

intervals within the lifetime of the event (3, 6, 12, 24, and

48 months, where the specific period within the event

lifetime was picked to maximize the severity) and for

subareas within the spatial domain of the event (starting

from 150 000 km2, which is about 60 grid cells—also

selected so as to maximize the severity for the given

subarea). Within each drought cluster, SAD treats the

grid cell with the maximum severity to be the center of

the drought and then adjoining grid cells with the next

largest severity are added to form an intermediate

drought cluster. In our application, this procedure con-

tinued in area increments of 20 grid cells (or 50 000 km2)

until the maximum spatial extent of the drought event

was reached for a specified average severity over the

specified drought length. The SAD algorithm provides

a way to estimate an absolute drought magnitude with-

out being constrained to an individual basin or area

(Sheffield et al. 2009). As in Andreadis et al. (2005),

following identification of all drought events during the

study period, the maximum severities of all events at

each area increment were selected to form SAD enve-

lope curves, which represent the most severe events

during the period of record for each area and duration.

c. Trend analysis and estimation of field significance

Nonparametric trend tests have been widely used in

hydrology. The Mann–Kendall (MK) test (Mann 1945),

for instance, is extensively used for testing of monotonic

(e.g., linear) trends. In its classical form, the MK test

requires an assumption of independence, which is often

approximately met for annual (but not seasonal) data.

On the other hand, soil moisture usually has substantial

memory at monthly and finer time intervals; that is, the

monthly soil moisture is usually autocorrelated. Hamed

and Rao (1998) proposed a modified MK test for auto-

correlated data. Hirsch et al. (1982) proposed an alter-

native formulation of the MK test for use with seasonal

data. Their test has been applied both to observed cli-

mate and hydrological variables (e.g., Lettenmaier et al.

1994) and to model-derived hydrological variables (e.g.,

Andreadis and Lettenmaier 2006). We applied the

Hirsch et al. (1982) method to the monthly time series of

soil moisture, drought severity, duration, and frequency

as in Andreadis and Lettenmaier (2006).

Spatial correlation among climate variables is another

complication that reduces the degrees of freedom when

assessing regional trends. Livezey and Chen (1983)

proposed a method wherein both a local significance

(significance level of a test if applied at a single location

individually) and a field significance (which pertains to

the number of locations at which the null hypothesis has

to be rejected at the local significance level). The field

significance level is calculated based on Monte Carlo

procedures as follows. We generated 500 time series of

soil moisture by resampling the original monthly series

for each month using the same sequence for all the grid

cells. This ensured that the time series of each sample

retained the spatial correlation structure and seasonal

variations of the original datasets. The area of significant

local trends was then calculated for each resampled se-

ries and the 95th percentile calculated from the total

sample. If the area of significant trends in the original

data is greater than this percentile value then it is field

significant. Using this method with a 5% local signifi-

cance level, Andreadis andLettenmaier (2006) calculated
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that for a field significance level of 5%, the fraction of

rejections needed to exceed 20.4% for soil moisture and

14.1% for runoff over the continental United States for

the analysis period 1920–2003. We followed the same

approach in our analysis of reconstructed soil moisture

over China.

4. Results

a. Consistency of simulated soil moisture

To compare the regional disparities among different

models, we divided the domain into seven subregions as

indicated in the top panel in Fig. 1. The subregions are

referred to as NE, N, SE, ENW, SW, WNW, and Tibet.

(Note: Taiwan and Hainan both belong to SE, but we

did not perform simulations over those areas because of

inadequacies of forcing data for these relatively small

islands.) The bottom panel in Fig. 1 shows 13-month

moving averaged soil moisture percentiles for the en-

semble percentiles over the seven subregions and over

the entire domain. The shading indicates the envelope of

percentiles from the four individual models. With the

exception of WNW and part of the ENW region, the

envelopes do not exhibit large discrepancies in most

regions, implying that the models generally are consis-

tent with each other. For some regions (e.g., SE and

WNW) there seems to be large disparity between

models at the start of the time period, indicating that

FIG. 1. (top) Location of regions (‘‘China’’ refers to the entire domain); (bottom) 13-month

moving averages of soil moisture percentiles from the ensemble median (dark lines) and range

of individual models (gray shading) for the seven regions and China.
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there may be some lingering initialization effects. Figure

1 does not show frequent drought occurrence (i.e., per-

centiles below the 20th) because of the smoothing in-

herent in the temporal moving average and the large

areas over which the spatial averages were computed.

Furthermore, while an entire region may not be in

drought at a particular time, this does not preclude some

part of the region being in drought.

Figure 2 shows the time series of averaged percentiles,

averaged severity, and the percentage area in drought

averaged over the subregions and the entire domain. For

the entire domain, the averaged percentiles are about

50%, and the percentage of area in drought is typically

about 25%, which is consistent with the PDSI data of

Zou et al. (2005). The values of the average severities

are comparable to the values of the averaged percen-

tiles. Among all subregions, the temporal variation of

the three drought indicators over SE and SW shows

greater high-frequency variability than for the other

regions. The high frequency of soil moisture variations

over south China might relate to the variations of the

East Asian monsoon precipitation (Zuo and Zhang

2007). With respect to timing of droughts, the lowest

averaged percentiles are in the late 1960s in the N re-

gion, and after 2000 in the WNW region. On the other

hand, the maximum severity appears in the early 2000s

in the N region and the late 1980s for WNW.

Based on the time series shown in Fig. 2, Table 1

summarizes the top five months ranked by the averaged

severity, area extent, and a combined metric of severity

and area. The combined metric was computed as the

averaged severity over the drought area multiplied by

the total area in drought for each month. The most se-

vere drought occurred in June 2003 over the northeast

with a severity value of about 68%. For all five selected

months, the average severity was larger than 63%. For

the months ranked by spatial extent (second column in

Table 1), the top five months all occurred in the second

FIG. 2. The 13-month moving averages of soil moisture percentiles, percentage of region in

drought, and average severity of area in drought averaged over each region and China. The

percentage area in drought is the ratio of areas with soil moisture percentiles below 20% to

total land areas within the China domain (except the regions without data). The average se-

verity is the average soil moisture deficit with respect to the 20% in each month.
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half of 1997 and 2001, and the largest spatial extent

covered 40.4% of the domain. If we consider the effect

of both severity and area extent, July 2001 is the most

prominent month, and the top five ranked months are

the same as those for maximum spatial extent ranked

in different order. Furthermore, all selected months in

Table 1 actually belong to the same drought event (i.e.,

drought of 1997–2003) from the cluster analysis de-

scribed in section 3b. The characteristics of this drought

event will be further discussed in the following sections.

b. Cluster analysis and drought statistics

The ensemble soil moisture percentiles were used to

identify drought extent using the cluster algorithm de-

scribed in section 3. A total of 76 droughts with area

greater than the 150 000 km2 threshold were identified

with durations longer than 3 months. Of those, the du-

rations of 50 droughts were shorter than 6 months, and

only 9 droughts lasted longer than 24 months. Table 2

lists the top five drought events ranked by the duration,

maximum spatial extent, and averaged severity. The

month with maximum spatial extent and averaged se-

verity for each event is also given. Note that Table 2

refers to the characteristics of individual drought events

(that last for 3 months or longer) and Table 1 refers to

the characteristics of individual months. As described in

section 4a, the selected months in Table 1 are based on

the values of averaged severity and drought pixel areas

in each individual month, and the adjacentmonths in the

same drought event might be selected because they have

very similar spatial extents. For Table 2, the spatial ex-

tent refers to the largest area for a specific drought

event, and the selections are based on the cluster anal-

ysis described in section 3b. In terms of duration, the five

longest droughts in descending order were 1997–2003

(76months), 1964–70 (70months), 1974–79 (64months),

2004–06 (34 months), and 1962–64 (26 months). The 5

most spatially extensive droughts in descending order

were 1997–2003 (40.4% of total area), 1986 (37.7%),

1987 (37.5%), 1979–81 (36.2%), and 1964–70 (35.8%).

Table 2 also shows that the 5 most severe drought events

were 1997–2003 (67.8% maximum severity), 1961–64

(67.4%), 1959–61 (63.3%), 2004–06 (60.3%), and 1950–51

(59.6%). The drought of 1997–2003 stands out for being

the second longest event (76months), covering the largest

area (40%), and having the highest severity (68%).

The plots in Fig. 3 show the peak spatial extent and

severity distribution for the five major drought events.

The selected months were chosen using a combined

metric of severity and duration, calculated for each

month as the average severity across the drought mul-

tiplied by drought area (Sheffield et al. 2009). The dif-

ference between this metric and themetric used in Table

1 is that it is calculated over the entire drought event

rather than for an individual month. The peak month

was identified for each event, and then the top fivemonths

in different drought events (among the 76 droughts) were

chosen. FromFig. 3, we can see that each event broke into

several centers. For example, the 1997–2003 drought

mainly existed in the region between the Yellow and

YangtzeRivers and in northwesternGansu province. The

northeast was also affected by this drought, but the se-

verity was smaller than for the other two regions. The

1964–70 drought was mostly in southeastern China, with

a large drought center in September 1966 located over

middle–lower areas of the Yangtze river basin, with sev-

eral smaller drought centers located over Gansu and

Xinjiang Provinces. The 1979–81 drought remained over

southeast China while a smaller drought appeared over

northeastern China. The 2004–06 drought was clearly

divided into two centers, one located over innerMongolia

and another over Sichuan Province. On the basis of

drought extent and average severity, the 1997–2003

TABLE 1. Five months with the largest average drought severity,

spatial extent, and combined extent-of-severity metric. The date

format is mm/yyyy.

Average severity (%) Spatial extent (%)

Extent-of-

severity metric

06/2003 (67.8) 10/1997 (40.4) 07/2001

12/1961 (67.4) 09/2001 (39.2) 10/2001

01/1962 (67.2) 07/2001 (38.9) 09/2001

11/1961 (67.0) 10/2001 (38.8) 10/1997

02/1962 (65.7) 11/1997 (38.7) 11/1997

TABLE 2. Five most prominent drought events in terms of du-

ration, spatial extent, and average severity. In the second column,

the monthly maximum fractional area in drought and the corre-

sponding date are given in parentheses. In the third column, the

monthly maximum severity and corresponding date are given in

parentheses. The selected events in the second and third columns

are based on the maximum values of the spatial extent and severity

in each drought event. The date format is mm/yyyy.

Duration (months) Spatial extent Severity

1997–2003 (76) 1997–2003

(40.4%, 10/1997)

1997–2003

(67.8%, 06/2003)

1964–70 (70) 1986

(37.7%, 09/1986)

1961–64

(67.4%, 12/1961)

1974–79 (64) 1987

(37.5%, 03/1987)

1959–61

(63.3%, 05/1960)

2004–06 (34) 1979–81

(36.2%, 11/1979)

2004–06

(60.3%, 12/2006)

1962–64 (26) 1964–70

(35.8%, 08/1964)

1950–51

(59.6%, 10/1950)
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drought is the most prominent of record. The maximum

extent was almost 3.9 million km2 in July 2001, with an

average severity of 68%. The drought covered all of the

north and much of the central part of the country. In this

respect our results are similar to station analyses using the

PDSI (Zou et al. 2005) and a Z index (Wang et al. 2003).

c. Variation of drought occurrences by areal

threshold

For the cluster analysis, the number of droughts iden-

tified depends on the areal threshold. Table 3 summarizes

the total number of droughts for different durations and

area thresholds. When the areal threshold is reduced

from 200 000 to 25 000 km2, the total number of droughts

increases from 78 to 140. The largest differences in

number of droughts is for the shortest drought life spans

(i.e., ,6 months), which increase from 48 to 98. For the

longer durations (.12 months), the number of droughts

changes less.

To examine the temporal variations of drought oc-

currences for the different area thresholds, we also

counted the drought numbers for each month from the

cluster analysis results. It should be noted that an indi-

vidual drought might be counted repeatedly in different

months depending on the duration. Figure 4 shows the

monthly time series of the number of droughts for dif-

ferent areal thresholds. The figure shows that there are

large variations of drought occurrence with the time of

evaluation. The average number of droughts occurring

 

FIG. 3. Spatial distribution of severity of major droughts at their

peak extent and severity. The calculation of severity is described in

section 3b. The events were chosen by calculating a simple metric

of the mean severity of all grid cells in a drought multiplied by the

drought area for each month. The top five peak months were then

selected. For example, July 2001 has the largest metric among the

all events.

TABLE 3. Total number of drought events and the distribution of

their duration as a function of the minimum area threshold used in

the cluster algorithm.

Area

threshold

No. of

droughts

Duration #

6 months

Duration $

12 months

Duration $

24 months

25 000 km2 140 98 24 7

50 000 km2 126 95 18 9

100 000 km2 88 57 19 11

150 000 km2 76 50 18 9

200 000 km2 78 48 17 8
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in anymonth for areal thresholds ranging from the largest

(.200 000 km2) to the smallest (25 000 km2) were 2.2,

2.5, 3.1, 4.4, and 6.2, with standard deviations of 1.1, 1.2,

1.4, 1.8, and 2.4, respectively. Droughts were relatively

more frequent in the mid-1960s to early 1990s than in

other periods, which are consistent with the results de-

rived from PDSI and standardized precipitation index

(SPI) analyses (Zhai et al. 2010).

d. Severity–area–duration analysis

To examine the relationship of drought severity and

drought extent for individual events, we also plotted

SAD curves for each duration. Figure 5 shows the results

for durations of 3, 6, 12, 24, and 48 months for the se-

lectedmajor drought events. The selections are the same

as in Fig. 3. For the 3-month duration, the 2004–06,

FIG. 4. The 13-month moving average of the number of droughts for different minimum area

thresholds. An individual drought is defined as contiguous 0.5 cells with soil moisture per-

centiles below the 20th percentiles that last for at least one month.

FIG. 5. SAD curves for durations of 3, 6, 12, 24, 36, and 48 months. Curves are shown for fivemajor drought events.

The drought selections are the same as in Fig. 3. The events shown in the legend are ordered downward by decreasing

values of the metric. The calculation of severity is described in section 3b.
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1997–2003, 1964–70, and 1962–64 droughts had similar

severities for areas less than 1 million km2; however, for

the 24-month duration, only the 1964–70 drought had

considerably lower severity than the other three. Among

those five droughts, only the 1964–70 and 1997–2003

droughts last longer than 36 months. The duration of the

2004–06 drought was truncated by the end of the dataset;

hence statistics for its 4-yr duration are not available.

The 1979–81 drought was the least severe with relatively

small areal extent compared with the others for all du-

rations, but the slope of the curve at this areal extent is

relatively sharper than for the other events. The 1964–70

drought had the largest spatial extent of the five events

(up to about 7 million km2), even though it did not have

the highest severity in terms of averaged severity at the

relative small area extents. Note that the drought of

1964–70 had the largest spatial extent compared to the

other events only when its severity was relatively low.

For higher severity values, the 1997–2003 drought is

more spatially extensive, which is the reason that this

drought is ranked highest in Table 2 in terms of spatial

extent.

SAD envelope curves are constructed by choosing the

maximum severity from all drought events at each du-

ration and area increments. For purposes of our analysis,

the area increment was taken as 20 grid cells (approxi-

mately 50 000 km2). Figure 6 shows the envelope curves

for predefined durations with respect to the drought

spatial extents. Each point on the curve was derived

from a specific drought event associated with a specific

duration. The figure indicates that the 1997–2003 drought

was pervasive in terms of both severity and spatial extent

for areas smaller than 4million km2, whereas the 1964–70

droughtwas dominant for areas larger than 4million km2.

Other drought events appear in the envelope curves only

for relatively small areas for 12- and 6-month durations.

The 2004–06 drought dominates for areas between 1 and

1.5million km2 for 12-month durationwhereas the 1962–64

drought is themost severe event only for smaller areas. The

1950–51 drought does not appear on the SAD envelope

plot because its spatial extent was relatively small.

e. Trend analysis

Figure 7 shows results of the application of the sea-

sonal Mann–Kendall test to monthly time series of soil

moisture, drought severity, drought duration, and drought

frequency, all computed from the multimodel median.

We followed Andreadis and Lettenmaier (2006) in con-

structing time series of drought duration for each grid cell

by counting the number of consecutivemonths in drought

(soil moisture percentile below 20%) during the total 684

months in the period 1950–2006. Drought severity for

each grid cell was calculated as the cumulative departure

of soil moisture from the drought threshold (20th per-

centage), averaged over the duration of each drought

event. Drought frequency was defined as the inverse of

the drought interval—the number of months between

droughts. Then for each grid cell, the time series of drought

frequency, duration, and severity were constructed. It

should be noted that the length of these time series varies

from grid cell to grid cell.

Figure 7a shows that locally significant (5% signifi-

cance level) downward (drying) trends appear over

northeastern China from Hilongjiang to the border of

Xinjiang and Gansu provinces (1418 grid cells or about

37% of the land area), whereas upward (wetting) trends

occur over most of Xinjiang, Qinhai, part of Tibet, and

small areas over south China (1010 grid cells or 26% of

the land areas). Zhai et al. (2005) analyzed trends in

total precipitation and the frequency of daily pre-

cipitation extremes over China and found that annual

total precipitation has significantly decreased over north-

east China, north China, and over the Sichuan Basin but

increased in western China, the Yangtze River valley, and

the southeastern coast. The trend maps derived from soil

moisture are generally consistent with these precipitation

trends, with the exception of the Yangtze River valley,

where soil moisture does not show significant upward

trends. Because soil moisture trends are related to pre-

cipitation as well as to evaporative demand, which in turn

is affected by surface air temperature, downward solar

radiation, and other variables, soil moisture trends need

FIG. 6. SAD envelope curves for durations of 3, 6, 12, 24, 48

months. The envelopes were derived from the multimodel soil

moisture percentiles. Colors indicate specific drought events.
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not be consistent with trends in precipitation. Over the

entire domain, the soil moisture trend results indicate that

soil moisture decreased over much of China during the

1950 to 2006 period (i.e., 26% uptrend cells versus 37%

downtrend cells over the whole domain).

Figure 7a shows that apparent trends in soil moisture

are spatially clustered. This result, also found byAndreadis

andLettenmaier (2006) over theUnited States, is probably

attributable in part to spatial correlation in the model

forcing data (especially precipitation, but also, as noted

above, in the variables that control evaporative demand).

To address this issue, we used the method of Livezey and

Chen (1983) as described in section 3c to test field signifi-

cance of soilmoisture percentiles and examine the effect of

spatial correlation of soil moisture on the trend analysis.

Figure 8 shows the histogramof the percentageof land area

with locally significant trends as determined from the 500

resampled time series. The area fraction threshold of the

95th percentile (or 25 trials in a total of 500 trials) is 20.3%,

indicating that the 59% (i.e., 22%of cells with uptrend plus

37% of cells with downtrend) combined total cells with

significant trends are field significant. This threshold value

is close to the value calculated by Andreadis and Letten-

maier (2006) over the conterminous United States. For

drought variables (i.e., severity, duration, and frequency), it

is not possible to performa test of field significance because

the time series for different grid cells have different lengths.

Figure 7b shows that upward trends in drought dura-

tion occurred from eastern inner Mongolia to eastern-

central China (including Shanxi and Henan provinces),

the western part of Xijiang, and a few cells over Sichuan

province. The area of upward trends, however, was quite

small (2.7% or 105 grid cells). The number of downward

trends was only slightly smaller than the number of

upward trends (2.3% or 91 cells) with locations of the

downward trends very scattered, including the Tibetan

Plateau and some cells over eastern China. The com-

bined total of upward trends and downward trends in

drought duration is too small to pass a test of field sig-

nificance. Drought severity (Fig. 7c) increased in 159

cells (or 2% of the domain), with fewer downward

trends (112 cells or 2.9%). Drought frequency (Fig. 7d)

increased in 200 grid cells and decreased in 38 cells. A

recent study of trends in PDSI and SPI indicated that

FIG. 7. Annual trends in (a) soilmoisture percentile, (b) drought severity, (c) drought severity, and (d) drought frequency for

1950–2006. The trends were computed using the seasonalMann–Kendall algorithm. The construction of time series of drought

duration, severity, and frequency are described in section 4e. The different colors represent the magnitudes of the statistics.
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frequency of drying years has increased over north-

eastern China and decreased over the northwest part of

the country (Zhai et al. 2010). Our soil moisture work,

while not indicating statistically significant trends, has

the same general patterns.

5. Summary and conclusions

A common set of observation-based meteorology

data was used to force four land surface models over

China for the period 1950–2006. The soil moisture data

from the individual models were combined into a mul-

timodel estimate of soil moisture percentiles that re-

duces the uncertainty derived from the different model

parameterizations of water and energy dynamics. The

ensemble soil moisture percentiles data were then used

to quantify the occurrence, space–time characteristics,

and trends in soil moisture drought through SAD and

cluster analysis methods. Our major conclusions are as

follows:

1) A regional comparison between percentile time

series derived from the individual models and the

ensemble show that the models are generally consis-

tent with each other over most regions, with the

exception of western China, including WNW, ENW,

and Tibet. The inconsistency in western China is

likely due to the arid and semiarid climate and the

complex topography of these regions, which empha-

sizes the differences in the model soil hydrology

schemes.

2) For an area threshold larger than 150 000 km2, 76

major droughts with life span 3 months or longer

occurred in China during 1950–2006, and 50 of these

droughts were shorter than 6 months. The longest

drought event lasted 76 months from 1997 to 2003

over southwestern China. This drought is also the

most spatially extensive one in the period of record

and covered over 40% of China’s land area in

October 1997.

3) The 1997–2003 drought was the most prominent

event in the period of record, with a spatial extent

that peaked in October 1997 with an area of about

40% of the land area of China (or 3.9 million km2).

This drought dominated most of the SAD envelope

curve for areas smaller than 5 million km2. This

drought was also identified in the global drought

SAD analysis of Sheffield et al. (2009) as being

particularly spatially extensive but was found to be

of much shorter duration in that work, likely because

of the higher minimum area threshold used. The

droughts of 2004–06, 1997–2003, and 1964–70 had

similar severities for areas less than 1 million km2 at

the 3-month durations. For the 12-month duration,

the 1964–70 event dominated the SAD envelope

curves for areas up to 5 million km2. The drought

of 1997–2003 contributed to most of the SAD enve-

lope curve at all durations for area between 1 and 4

million km2.The 2004–06 drought occupied the SAD

envelope curve for small areas at the 12-month

duration, but this drought was still developing in

2006, and thus its characteristics are uncertain.

4) An analysis of soil moisture trends shows spatially

contiguous areas of drying over the northeast to

north central China and wetting over most of the

west including Xinjiang, Tibetan Plateau, and small

areas over Yunnan province. The area with drying

trends was much larger than the area with wetting

trends (37% versus 22%) and passed a field signifi-

cant test (with the threshold of 20.3% at the 0.05

significant level). Overall, there has been a general

drying trend over China for the 1950–2006 study

period with a concurrent increasing risk of drought

(duration, severity, and frequency).

We used a multimodel ensemble approach to help re-

duce the uncertainty due to the bias of single model for

investigating the characteristics and changes in drought.

Multimodel ensemble analysis is a well-established tech-

nique in both climate prediction (e.g., Krishnamurti et al.

FIG. 8. Histogram of the percentage area of land for which a set

of 500 time series of randomly sampled spatial fields of soil mois-

ture with significant local trends. The 95th percentile (i.e., 25 cases

of total 500 trials) is indicated by the dotted line and has a value of

20.3%, meaning that the occurrence of the trends in original data

(i.e., 59% land areas) is significant, and the trends are not due to

data spatial correlation.
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2000) and surface hydrological studies (e.g., Gao and

Dirmeyer 2006). The combination of analysismethods we

used (severity–area–duration, cluster, and trend analysis)

is essential for determining drought characteristics and

recognizes that drought is a multivariate process that is

not physically restricted in time or in space by geographic

or political boundaries. The trend analysis shows anoverall

increasing risk of drought over China during 1950–2006,

which hints at a possible role of climate change. Pre-

cipitation and drought in China are dominated by the

strength of the East Asian monsoon, which has weakened

in terms of land–ocean pressure gradients over the past

30 years (Yu et al. 2004), shifting precipitation rain belts

southward. The reasons for this are the subject of current

research but are likely related to changes in land–ocean

thermal contrasts and connections to ENSO activity (Lau

et al. 2000; Dai et al. 2004) and northern Eurasian snow

cover (Wu et al. 2009). Whether these changes have been

forced by global warming or are part of the longer-term

decadal variability seen over the past 100–150 years is un-

clear. Nevertheless, climate models project that a warmer

and moister atmosphere in the future will actually lead to

an enhancement of the circulation strength and pre-

cipitation of the summer monsoon over most of China

(e.g., Sun and Ding 2010) that will offset enhanced drying

due to increased atmospheric evaporative demand in a

warmer world (Sheffield and Wood 2008).
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