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Abstract The Second Global Land Atmosphere Coupling

Experiment (GLACE2) is designed to explore the

improvement of forecast skill of summertime temperature

and precipitation up to 8 weeks ahead by using realistic soil

moisture initialization. For the European continent, we show

in this study that for temperature the skill does indeed

increase up to 6 weeks, but areas with (statistically signifi-

cant) lower skill also exist at longer lead times. The skill

improvement is smaller than shown earlier for the US, partly

because of a lower potential predictability of the European

climate at seasonal time scales. Selection of extreme soil

moisture conditions or a subset of models with similar initial

soil moisture conditions does improve the forecast skill, and

sporadic positive effects are also demonstrated for precipi-

tation. Using realistic initial soil moisture data increases the

interannual variability of temperature compared to the

control simulations in the South-Central European area at

longer lead times. This leads to better temperature forecasts

in a remote area in Western Europe. However, the covered

range of forecast dates (1986–1995) is too short to isolate a

clear physical mechanism for this remote correlation.

Keywords Soil moisture initialization � Seasonal

forecasting � Potential predictability � Europe

1 Introduction

The contribution of land surface conditions to the predict-

ability of meteorological features is of interest to a wide

community. A major portion of predictability at monthly to

seasonal time scales is attributed to anomalies in the sea

surface temperature (SST), in particular those related to El

Niño events (Kirtman and Pirani 2009). However, Koster

et al. (2004) identified a number of key regions where

anomalous soil moisture conditions may systematically

affect precipitation variability in the boreal summer season,

based on a model experiment involving multiple Global

Circulation Models (GCMs). In combination with a realistic

initialization of soil moisture and a long enough memory in

the soil water reservoir, increased predictability may be

feasible in these regions (Koster et al. 2010b). Dirmeyer

et al. (2009) explored a systematic soil moisture–precipi-

tation interaction using a range of observations and (offline)

land models for all seasons, roughly confirming the exis-

tence of areas where adequate soil moisture information

could lead to improved forecasts at the monthly to seasonal

time scale. In general these areas are found in transitional

zones between dry and wet climates, where the coupling

between soil moisture and evapotranspiration is expected to

be strong and large enough to affect climate (Koster et al.

2004). Several observational and modelling-based studies
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approximately agree on the location of these regions

(Seneviratne et al. 2010).

Douville (2010) showed that soil moisture conditions in

late spring played an important role in successfully mod-

elling contrasting summers concerning precipitation and

temperature in the Eurasian continent using a single GCM.

A more systematic evaluation of the contribution of soil

moisture to the forecast skill with up to two-month lead-

time was presented by Koster et al. (2010a) in the context

of the second Global Land–Atmosphere Coupling Experi-

ment (GLACE2). This experiment consists of an extensive

series of subseasonal ensemble forecasts with multiple

models (see below for details). Concentrating on the North

American area, the study showed that using realistic soil

moisture initial conditions contributes to temperature

forecast skill at subseasonal (2 months) lead-times. For

precipitation, prediction skill was gained only when a sub-

set of starting dates was selected based on the size of the

initial soil moisture anomaly: more extreme soil conditions

are found to have a stronger effect on the atmosphere than

moderate or small anomalies. These results are consistent

with those of Huang et al. (1996), who used observation-

driven soil moisture anomaly estimates and statistical

techniques to demonstrate the possible contribution of soil

moisture anomalies to temperature prediction at multi-

month time scales in the continental US.

This study evaluates GLACE2 results over Europe,

another area where adequate observations permit a sound

evaluation of skill. The metric analysed (proportion of

explained variance of 2-week averaged standardized model

outputs) is similar to the one presented by Koster et al.

(2010a). The results are compared to the potential predict-

ability, defined here as the ability of a collection of models

to reproduce temperature or precipitation anomalies gener-

ated by any onemodel in this collection, which is treated as a

pseudo-observation. This measure sets an upper limit on the

skill improvement that can be expected from a multi-model

experiment, bypassing the effect of systematic model biases

with respect to observations. The potential predictability of

temperature and precipitation in Europe differs significantly

from that in the US, due to different characteristics of the

variability and remote influences on the local climate

(Rodwell and Doblas-Reyes 2006). We present first a brief

outline of the general set-up of GLACE2 and the applied

post-processing. This is followed by the main results.

2 Set-up of GLACE2, observations and diagnostics

2.1 The GLACE2 experiment

The multi-model experiment GLACE2 was designed to

isolate the contribution of realistic soil moisture

initialization to forecast skill of temperature and precipi-

tation at lead-times of up to 60 days (Koster et al. 2010a).

Each participating GCM produced two sets of 60-day,

10-member ensemble forecasts for 100 starting dates: the

1st and 15th day of the months between April and August

of the years 1986–1995. The different ensemble members

were generated using a range of different techniques by the

different participants, depending on their technical con-

straints or preferred methods of ensemble generation; see

Koster et al. (2010b) for details.

In the first set of forecasts (series 1), initial land surface

states were extracted from a continuous offline land surface

model simulation forced with observed precipitation,

radiation, temperature, humidity and wind speed, as pro-

vided by the second Global Soil Wetness Project (GSWP2,

Dirmeyer et al. 2006). This approach was followed because

available in situ soil moisture information is not spatially

comprehensive enough in itself to be useful for model

initialization. Although the soil moisture fields generated

by the offline models may substantially deviate from

(highly localized) direct in situ observations (Guo et al.

2006), they generally do represent the effects of major

anomalies in the hydrological conditions (precipitation,

evaporation) that are captured by the offline forcing data.

In addition, the modelled soil moisture products have the

advantage of being consistent with the representation of

soil moisture in the GCMs participating in GLACE2. In

Series 2, initial land conditions were randomized, either by

shuffling the GSWP2 fields (for a given day-of-year) in

time, or by generating initial conditions for the day-of-year

using a free climate run. In all experiments sea surface

temperatures were prescribed during the 60-day forecasts.

For this, an SST dataset was provided that was an estimate

of the observed state on the start date of the forecast with a

gradual relaxation to climatology as time proceeds. This

set-up mimics the operational application of seasonal

forecasting where future SSTs are derived from (uncertain)

ocean model simulations (see Koster et al. (2010a, b) for

details).

2.2 Data processing

Output from the ten participating models (see Table 1)

were interpolated to 2.5� longitude 9 2� latitude gridboxes

and averaged to 15-day values, starting at the forecast start

date. All ensemble members were averaged with equal

weights and only the ensemble means are considered

throughout this study. For each model and each day-of-year

used as a forecast start date, a mean climatology was

computed from the 10 years of integrations, as well as a

standard deviation rx. Results were normalized by recast-

ing individual outputs x(t) in terms of the standard normal

deviate Z:
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ZðtÞ ¼
xðtÞ � x

rx

ð1Þ

We will refer to these normalized anomalies when dis-

cussing the temperature and precipitation results below. To

avoid the effects of differences in atmospheric initialization

or methods used to create the model ensemble members,

results for the first 15-day period of each forecast are not

analysed; we analyze instead the averages over days 16–30,

days 31–45, and days 46–60 of each forecast. Similarly, for

each day-of-year used as a forecast start date, the 15-day

averages from the observations were expressed as standard

normal deviates by calculating the mean and standard

deviation of these averages over the 10 years in the sample.

2.3 Validation data sets

Observations over Europe were taken from the E-OBS data

base (Haylock et al. 2008), in which carefully quality-

checked station observations are gridded to 0.25� resolu-

tion. The observations were interpolated and time-averaged

to the same grid and time axis as the model data. Care was

taken to average the observations over the same calendar

days as used for averaging the model output, implying

slightly different intervals for different lead times. Over

North America we used the data sets used by Koster et al.

(2010a, b).

2.4 Predictability measures: forecast skill and potential

predictability

The collection of models, ensemble members and start

dates implies that a total of 6,000 forecasts are used to

construct results for the June–July–August (JJA) season.

As in Koster et al. (2010a, b), the diagnostic of interest here

is R2 (square of correlation coefficient) between

observations and the ensemble mean model results, effec-

tively a measure of the explained fraction of variance. For

this metric, the normalized ensemble mean model outputs

for each of the ten participating models were plotted

against the corresponding observations, resulting in a

scatter plot with 600 different points. R2 values from this

scatter plot were separately calculated for series 1 and 2,

and the contribution of realistic land initialization to skill is

measured as the skill difference:

sign Rð1Þð ÞR2ð1Þ � sign Rð2Þð ÞR2ð2Þ ð2Þ

where the sign of R(1) and R(2) is considered to avoid

rewarding large negative correlations over small positive

ones. For testing the hypothesis that the skill of series 1

exceeds that in series 2 in a statistically significant way, a

1,000-member bootstrapping procedure was applied in

which, for each member of the procedure, the 60 obser-

vational values were shuffled. The significance level is

indicated by the fraction of redrawn sets of data for which

the correlation R between the observations and series 1

simulations R(1) exceeds R(2).

To estimate the maximum possible value of land-derived

skill that could be obtained from the multi-model experi-

ment, we derived a measure of the ‘‘potential predictabil-

ity’’—R2 calculated as above, but instead of using the

observations as the reference ‘‘truth’’, we used the ensemble

mean results from an individual model. This calculation

was repeated using each of the ten models in turn as the

reference truth, and the ten resulting score values were

averaged after transforming them to a normal distribution

using Fisher’s Z-score statistic 0.5 ln (1 ? r)/(1 - r). Note

that this metric is different from the average potential pre-

dictability calculated using the individual ensemble mem-

bers as truth for every model separately. The procedure was

applied to both the series 1 and series 2 simulations.

Table 1 GLACE2 participating

models used for this study

For references see Koster et al.

(2010a)
a Models using a Gaussian grid;

indicated resolution is

approximate

Acronym Model resolution Remark

CCCMA 2.8� 9 2.8�

COLA 1.9� 9 1.9� Version 3.2

COLA_CAM 1.4� 9 1.4� NCAR CAM 3.5

ECHAM 1.9� 9 1.9� Version 5; initial soil moisture series 1 derived

from different land surface model simulations

ECMWF 1.1� 9 1.1�a Integrated Forecasting System (IFS),

ocean–atmosphere coupled

FSU 1.9� 9 1.9� Soil initialization from data assimilation suite

KNMI 1.1� 9 1.1�a As ECMWF, with prescribed sea surface

temperatures

NCAR 2.8� 9 2.8� CAM 3.0

NCEP 0.9� 9 0.9� GFS/Noah

NSIPP 2.5� 9 2� GMAO forecasting system
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2.5 Data subsets for extreme soil moisture

initializations

For various analyses presented below, a subset of forecasts

was constructed based on initial soil moisture content.

Extreme wet or dry soil moisture values were identified at

each grid point from the 60 initial soil moisture conditions

there (one for each start date providing data during the JJA

period) by subtracting the mean seasonal cycle from the 60

values and then ranking the 60 anomalies. The extreme

20%-values refer to the 12 wettest and 12 driest start dates

in the sample, and the 10%-values are the 6 wettest and 6

driest start dates. The fields used for this selection are a

representative set of GSWP2-derived initial soil moisture

fields, namely the fields constructed for the models EC-

MWF and KNMI, generated using the HTESSEL land

surface model (Balsamo et al. 2009) which carries a 4-layer

soil scheme. The total water content in the top three layers

(top 1 m of soil) was taken as the grid point value. These

soil moisture fields do represent the effects of anomalous

hydrological forcings and are statistically very similar to

the fields used by a majority of GLACE2 participants

(see below).

The anomalies were calculated and ranked at each

individual grid point to produce a subset of start dates

specific to that grid point, ignoring the possible spatial

coherence of the anomalies. In one analysis below, how-

ever, this coherence was retained by examining how the

subset of start dates generated at one location affects the

skill score generated in a predefined remote target domain.

3 Results

3.1 Potential predictability

The term ‘‘potential predictability’’ is often interpreted as

an intrinsic property of a geophysical system, expressing

the degree to which chaos would limit forecast skill

assuming a perfect model configuration. The predictability

inherent in nature is not measurable; the best we can do is

quantify the effects of chaos within a given model or set of

models, for purposes of understanding better the models’

behaviour. Here, we estimate predictability from the ability

of the multi-model simulations to predict the behaviour of a

single participating model (Sect. 2.4).

The potential predictability of two-weekly mean near

surface temperature in JJA in Europe is generally higher

for series 1 than for series 2, particularly for shorter lead

times (see Fig. 1). A similar result (but at much lower

levels of R
2) is obtained for precipitation, although the

spatial patterns of the potential predictability differ from

the values for 2 m temperature. This implies that using

similar initial soil moisture values (derived from common

external data) for this collection of models increases the

reproducibility of the temporal variations generated by the

individual models, resulting in a smaller inter-model spread

in series 1 than in series 2. Again, these estimates of pre-

dictability reflect the modelling systems used; systematic

model biases may be producing, for example, predictability

levels larger than those present in nature, resulting in

overconfidence of the predictions (Huang and Van den

Dool 1993; Hagedorn et al. 2005).

From Fig. 1, it is also evident that the soil moisture

related potential predictability increase is generally much

higher in the US than in Europe. This is true for all lead

times.

3.2 Forecast skill at different lead times

Figure 2 shows that, in analogy to the North America

results shown by Koster et al. (2010a), initial soil moisture

in Europe affects temperature forecast skill more than it

affects precipitation forecast skill, and that forecast

improvement (difference in R2 between series 1 and 2)

reduces with lead time. For reference, the results for the

longest lead time for North America have been reprocessed

using the same set of models and plotted with the same

colour scale. Grid points with significant differences

between series 1 and 2 (p = 98%) are shaded. For pre-

cipitation no meaningful skill improvement could be

detected using the GSWP2 soil moisture data, but tem-

perature is positively affected up to 1 month ahead in all

areas except the land area around the Eastern Mediterra-

nean Sea. At longer lead times, the contribution of realistic

land initialization to temperature forecast skill decreases,

and for the 46–60 day period, the realistic initialization

appears to lead to a decrease in skill around the Baltic Sea.

The potential predictability from the use of realistic initial

soil moisture in this area is fairly low (Fig. 1). A change of

the initial soil moisture can therefore affect the forecast

skill in multiple directions, certainly at longer lead times.

Reasons for this may be effects of snow treatment around

the initialization in April/May, systematic model drifts

(e.g. due to persistent low intensity model precipitation),

natural variability, or a wide variety of initial soil moisture

fields used by the individual models, in spite of the fact that

most models used offline GSWP2 simulations to generate

series 1 soil moisture fields. Cross-correlations between

pairs of model-specific Western European time series of

soil moisture anomalies averaged over the first 15 days of

the simulations yielded values as high as 0.98 between

KNMI and ECMWF (which used identical land models and

identical fields at time zero) to as low as 0.26 between

NCAR and NSIPP. While a disagreement between 15-day

soil moisture averages does not necessarily imply a
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disagreement in initial conditions (given differences in

model structure and given variations in rainfall during the

first 15 days) it is interesting that the five models with the

highest mutual correspondence of day 1–15 soil moistures

(ECMWF, KNMI, FSU, NCEP and COLA) do give rise to

higher skill scores for temperature, particularly at longer

lead times (Fig. 3), with hardly any grid points showing

decreased skill.

In general, the positive results for series 1 forecasts are

less convincing over Europe than over North America, both

for temperature and precipitation. This is consistent with

the lower values of potential predictability calculated for

Europe (Fig. 1). Figure 4 shows the fraction of the poten-

tial predictability of temperature actually gained by

applying the realistic soil moisture initializations, using

results from all participating models. The mean potential

predictability of series 1 and 2 is taken as reference.

Results for precipitation are much noisier and are therefore

not shown. Also shown is the statistical significance

(p value) of the difference between series 1 and 2. Note that

discrepancies between actual and potential predictability

may have several causes, including an overestimation of

potential predictability in the models (insufficient spread

between the models), imperfect soil moisture data or ini-

tialization procedures, imperfect observations, and sys-

tematic model errors leading to imperfect predictions.

Reasonable fractions of potential predictability ([20%)

are attained at short lead times in a major part of the

European continent. This fraction drops with lead time, but

less so in the Western half of Europe. Over the Iberian

peninsula the fraction tends to increase, but this is at least

partly an artefact of normalizing a low skill increase by a

low potential predictability in that region. Within the limi-

tations of the methodology followed here, Fig. 4 suggests

that soil moisture initialization as implemented in the

GLACE2 simulations does close the gap between actual

and potential predictability at short lead times to some

extent, and that more can be gained from other sources of

Fig. 1 Difference in potential predictability (expressed as R2 aver-

aged over all ten models serving as reference; see Sect. 2.4) between

series 1 and series 2 of two-weekly 2 m temperature in JJA for (left

column) Europe and (right column) the US domain. Results are shown

at lead times ranging between16–30 days (top), 31–45 days (second

row) and 46–60 days (bottom row). Positive numbers indicate a gain

in potential predictability owing to using realistic soil moisture values
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skill, such as better model representations, higher resolu-

tions, and improved datasets for the initialization and vali-

dation of the model variables.

As before, one can infer from Fig. 4 that the situation in

North America is more promising than in Europe. One

potential reason for the difference is the shorter autocor-

relation time scale of soil moisture in Europe. Figure 5

shows the multi-model mean correlation between the

average soil moisture anomaly for days 1–15 and the

average anomaly for days 46–60. Only forecasts ending in

the JJA season are considered in the calculation. Correla-

tions are calculated separately for series 1 and series 2

forecasts; the difference in correlation between these two

series is fairly small. Both for North America and for

Europe, many areas with relatively high utilized fractions

of potential predictability in series 1 (Fig. 4) at 46–60 days

lead time coincide with areas with high temporal correla-

tion across the 2-month forecast interval: Southern Europe,

the US West coast and South-West of the Great Lakes

region. This is consistent with findings of Weisheimer

(a)

(b)

Fig. 2 Gain in forecast skill by using realistic soil moisture

initialization [R2(1) - R
2(2)] for (left) temperature and (right)

precipitation for three different lead times: 16–30 days (top),

31–45 days (second row) and 46–60 days (bottom two rows). Results

for the US are similar to the results published earlier by Koster et al.

(2010a). Grid points for which the difference between series 1 and 2

are significant at 98% confidence are shaded
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(private comm), who demonstrated that soil moisture per-

sistence is an important factor for explaining the skill of

seasonal forecasts for the anomalous 2003 European

summer, for which anomalously low soil conditions in

spring gave rise to improved predictability of the summer

temperature anomaly. However, high soil moisture auto-

correlation is not the only factor determining the positive

skill of series 1 forecasts: some areas with low soil mois-

ture autocorrelation (e.g. South-East US) also have a rela-

tively high skill.

3.3 Forecast skill for extreme initial soil moisture

conditions

A slightly more optimistic picture emerges when a selec-

tion of dates is used for the temperature forecast skill

calculation, based on the size of the initial soil moisture

anomaly (Fig. 6; see Sect. 2.5). This analysis does not

explicitly account for spatial correlation between soil

moisture values at different grid points; different selec-

tions of start dates may apply to adjacent grid points.

(An additional analysis below will deal with this issue.)

The patterns shown in Fig. 6 have roughly the same spatial

structure as those shown in Fig. 2 (but with more noise due

to the smaller sample size), but overall, the skill levels have

increased. Figure 6 confirms the notion that initial soil

moisture is not equally informative across the entire range:

extreme wet or dry conditions have a greater ability to

affect near surface temperature. In analogy to the North

America results of Koster et al. (2010a), the positive

impact is most pronounced at short forecast lead times,

while at longer lead times areas with positive and negative

skill remain. For precipitation, the results show an overall

increase of the field significance (grid points with positive

skill appearing more frequently than those with negative

skill), but the results are very noisy and, hence, are not

shown.

A supplemental analysis was performed in which the

start dates were subsetted into two bins: those for which the

initial soil moisture was lower than the climatological

mean, and those for which it was higher. Temperature

forecast skill levels were then computed for each subset to

Fig. 3 As Fig. 2, but using a selection of five models with a high mutual cross-correlation of 1–15 day anomalous soil moisture time series in

Western Europe (10�W–25�E, 35�N–55�N)
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determine if drier conditions might lead to less (or more)

skill than wetter conditions, in analogy to the analysis of

Koster et al. (2010b). However, for the European area, no

clear patterns of asymmetry were evident, and results are

not shown.

The seasonal evolution of the effects of soil moisture

initialization on forecast skill is shown in Fig. 7. Here the

average score difference R2ð1Þ � R2ð2Þ in an area roughly

covering the Iberian peninsula through Poland (10�W–

25�E, 35�N–55�N) is shown for different lead times and

initial soil moisture selections. For temperature the selec-

tion of extreme quintile or decile soil moisture content has

a strongly favourable effect on the forecast scores in all

months for days 16–30. For the longer lead times, the

strongest impact is during the late summer season (parti-

cularly August). Note that the apparent negative skill in

September for the decile calculation likely reflects the very

small sample size available during this particular month.

For all forecasts after day 30, all subsettings produce very

little temperature forecast skill for May, June, and July.

For precipitation, the noise level at individual grid

points is too high to detect a clear signal, especially at

longer lead times. Further investigation, however, reveals

(for the all data case) that when the individual precipitation

(a)

(b)

Fig. 4 Left panels gain in forecast skill [R2(1)) - R2(2)] of JJA temperature as fraction of the potential predictability averaged for series 1 and 2

for temperature at lead times as in Fig. 2. Right panels p value of the difference between series 1 and 2 (two-sided)
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forecasts are spatially averaged to coarser resolution prior

to computing the skill levels, realistic land initialization

provides a larger positive impact. Figure 8 shows the sea-

sonal evolution of the skill obtained for large spatial

averages, i.e. for the individual temperature and precipi-

tation forecasts averaged over the same Western European

domain (R2ðxÞð1Þ � R2ðxÞð2Þ; with x indicating the time

series of spatially averaged temperature or precipitation).

The results for temperature are similar to those in Fig. 7.

For precipitation, larger improvements are seen at both

short and long lead times. The shorter spatial correlation

length scale of precipitation contributes to the difficulty of

detecting the effects of initial soil moisture conditions on

forecast skill at grid point spatial scales.

3.4 Spatial patterns of initial soil moisture and forecast

skill improvement

Similar to the notion that soil moisture is not equally

informative across the entire range of its distribution, the

potential contribution of soil moisture to forecast skill

(both local and remote) also varies spatially. This is

illustrated by Fig. 9, which shows the results of a special

calculation. In effect, forecast skill for spatial averages in

the outlined red box (again, the value of R2ðxÞð1Þ�

R2ðxÞð2Þ) is computed for different subsets of start dates.

To generate these subsets, each grid cell in Europe is

considered in turn. For a given grid cell, the extreme

quintiles are established as above, and the corresponding

subset of dates for that one cell are used to compute the

skill level for the outlined red box; this skill level is then

plotted at the location of the given grid cell. The process is

repeated at the next grid cell, with the skill for the outlined

box plotted at that cell, and so on. Note that in contrast to

the results presented in Figs. 6, 7, 8, the spatial structure of

the soil moisture analyses is retained here.

For temperature and—to some extent—precipitation

forecasts for days 16–30, a great majority of the grid cells

provide subsets of start dates for which land initialization

contributes positively to skill in the Western European

area. However, for precipitation, no grid cell provides a

useful soil moisture subsetting for lead times longer than

4 weeks. For temperature, the 4–6 week and 6–8 week

forecast in Western Europe is improved when the extreme

Fig. 5 Temporal correlation between average soil moisture anoma-

lies in the first forecast interval (days 1–15) and the last interval (days

46–60), calculated from simulations of all ensemble members of all

models ending in the JJA season (N = 6,000). Results for series 1

(left) and series 2 (right) are shown separately
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soil moisture time slots are determined from Balkan and

central-eastern European grid cells. Interestingly, this area

is outside the domain in which the skill is improved, sug-

gesting a potential physical or statistical connection

between the two areas.

The south-central European area is roughly co-located

with the area where the GLACE2 multi-model ensemble

shows a large interannual variability in temperature

(Fig. 10). The interannual variability of temperature

(defined as the standard deviation of ensemble mean JJA

forecasts over the ten simulation years, averaged across all

models) is higher in series 1 than in series 2, and it shows a

marked pattern with a local minimum in West-central

Europe and maxima to the east and west of this area. The

difference between the temperature variabilities of series 1

and 2 gradually decreases with lead time, as the models

approach their own equilibrium climate values. In the

South-central European area, the temperature variability

remains relatively high at longer lead times, which might

be related to the impact of the subsetting there on west

European skill, as shown in Fig. 9. However, the 10-year

time range of the experiment does not allow the isolation of

a clear physical mechanism behind this potential remote

connection.

(a)

(b)

Fig. 6 Gain in forecast skill [R2(1) - R
2(2)] of JJA temperature for forecasts where initial soil moisture is within the extreme quintile (left) or

extreme decile (right) range at lead times and significance levels as in Fig. 2
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4 Discussion and conclusions

Results from the second Global Land Atmosphere Coupling

Experiment (GLACE2) for Europe show that realistic soil

moisture initialization in the spring and summer seasons

does lead to improved forecast scores for temperature across

the entire area at short lead times (16–30 days). At longer

lead times the areas with improved scores decrease, and even
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Fig. 7 Time series of score differences [R2(1) - R
2(2)] averaged

over a large part of Western Europe (10�W–25�E, 35�N–55�N) for

(left) temperature and (right) precipitation at different lead times (top

panel 16–30 days, middle panel 31–45 days, bottom panel

46–60 days) and different initial soil moisture selections (red lines

all data, blue lines extreme quintiles, green lines extreme deciles)
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Fig. 8 As Fig. 7, comparing, the spatially averaged skill (‘‘average skill’’, same values as ‘‘all data’’ in Fig. 7), and the skill of the spatially

averaged temperature (left) or precipitation (right)
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some negative scores emerge at long lead times. The rela-

tively low potential predictability in Europe may be related

to the relatively large influence of remote (Atlantic) air

masses on temperature and precipitation anomalies. Larger

predictability and skill levels are seen in North America,

perhaps due to the more continental (less maritime) nature of

the climate there (especially in the central US), allowing soil

moisture processes there to be more effective. In addition,

the northern half of Europe is on average situated at higher

latitudes with lower radiation levels (and thus lower evapo-

ration and/or evaporation variability), and it contains fewer

areas that might have soil moisture deficits.

As expected, the precipitation forecasts do not improve.

Precipitation in most parts of Europe is dominated by

atmospheric advection of moisture from the Atlantic (e.g.

Van der Ent 2010), and local adjustments of soil moisture

conditions may on average have a small impact on

precipitation.

The contributions of realistic land initialization to skill

in Europe are less pronounced than those shown by Koster

et al. (2010a) for North America. The potential predict-

ability at the time scales considered is lower in Europe than

in North America, but in addition, the fraction of the

potential predictability captured by the skill calculation is

fairly low in Europe, particularly at long lead times, and

with a systematic reduction of skill around the Baltic Sea.

Although predictability metrics reflect model behaviour

rather than intrinsic properties of the real climate, there

may be ample room for improvement of the skill, particular

through the use of better models, larger ensembles, sam-

pling over a longer period, better initialization methods,

and better observations. Koster et al. (2010b) already point

at the limited quality of the soil moisture fields used to

initialize the series 1 simulations in many areas of the

world, largely a reflection of sparse rain gauge density. The

verifying temperature and precipitation observations are

also not free of errors, which will lead to a systematic gap

between skill and potential predictability. Here we also

show that the spread in the initial soil moisture content

used for series 1 affects the multi-model skill: selecting a

Fig. 9 Locations where selection of extreme initial soil moisture has

a strong effect on the R2-difference for (left panels) temperature and

(right panels) precipitation averaged over the area indicated by the

red box. The difference in JJA R
2 averaged over the indicated area is

plotted at locations where soil moisture values in the extreme

quintiles of the distribution were used to make a selection of time

slots
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multi-model ensemble characterized by a high similarity in

initial soil moisture gives better results.

As demonstrated for North America by Koster et al.

(2010a), performing the skill calculations on subsets of the

forecast periods as determined by the size of the initial soil

moisture anomaly improves the skill scores in many areas

of Europe. Soil moisture is not equally informative across

the entire wetness range (Koster et al. 2009); selecting

extreme soil moisture conditions apparently results in

selecting moisture regimes that do affect evaporation and

other atmospheric characteristics that in turn determine the

surface temperature.

A suggestive result is that temperature forecast skill in

Western Europe appears to be related to extreme soil

moisture conditions in South-Central Europe. At longer

lead times (46–60 days), computing skill for start dates

subsetted on anomalous soil moisture conditions in the

remote South-Central Europe region leads to larger skill

levels in Western Europe. The South-Central Europe

region (a ‘‘soil moisture initialization hotspot’’) coincides

with an area associated with strong soil moisture effects on

the surface energy balance in climate simulations (Sene-

viratne et al. 2006) as well as with recent summer heat

waves in regional climate simulations (Fischer et al. 2007).

This area is also coincident with findings based on GSWP2

simulations and Fluxnet observations regarding the loca-

tion of regions lying within the soil moisture-limited

evapotranspiration regime in Europe (Teuling et al. 2009).

Fig. 10 Difference in

interannual standard deviation

of JJA 2 m temperature between

series 1 and series 2 at different

lead times. Shown is the

interannual standard deviation

of ensemble mean forecasts,

averaged over all models and all

JJA time slots
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Even with the large number of simulations and models

examined here, the noise level in this experiment is rather

large. For the highly variable European climate, the 10-year

time range covered by the GLACE2 experiment is too short

to confirm the existence, for example, of clear atmospheric

teleconnections via surface heat low development which

can affect the circulation in a large domain. Using a 17-

member ensemble climate simulation of 150 years dura-

tion, Haarsma et al. (2009) demonstrate an effect of a

Mediterranean heat low development in response to

excessive soil drying on atmospheric circulation at higher

latitudes. This teleconnection could not be confirmed in the

multi-model data set explored here, probably due to the

limited number of weather situations covered in the

experiment. To address such questions, we require an

extended version of the GLACE2 experiment, covering a

more comprehensive weather history—an experiment uti-

lizing, for example, the multi-decadal forcing dataset of

Sheffield et al. (2006) for the soil moisture initialization

rather than the 10-year GSWP2 forcing dataset.
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