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Summary 28 

Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem 29 

functioning, no quantitative, spatially-explicit models of the active belowground community 30 

currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic 31 

levels in the soil food web. Here, we use 6,579 georeferenced samples to generate a mechanistic 32 

understanding of the patterns of global soil nematode abundance and functional group composition. 33 

The resulting maps show that 4.4 ± 0.64  1020 nematodes (total biomass ~0.3 Gt) inhabit surface soils 34 

across the world, with higher abundances in sub-arctic regions (38% of total), than in temperate 35 

(24%), or tropical regions (21%). Regional variations in these global trends also provide insights into 36 

local patterns of soil fertility and functioning. These high-resolution models provide the first steps 37 

towards representing soil ecological processes into global biogeochemical models, to predict 38 

elemental cycling under current and future climate scenarios. 39 



 40 

As we refine our spatial understanding of the terrestrial biosphere, we improve our capacity to manage 41 

natural resources effectively. With ever-growing functional information about the biogeography of 42 

aboveground organisms, an outstanding gap in our understanding of the biosphere remains the activity and 43 

distribution patterns of soil organisms1,2. Soil biota, including bacteria, fungi, protists and animals, play 44 

central roles in every aspect of global biogeochemistry, influencing the fertility of soils and the exchange 45 

of CO2 and other gasses with the atmosphere3. As such, biogeographic information on the abundance and 46 

activity of soil biota is essential for climate modelling and, ultimately, environmental decision making2,4-6. 47 

Yet, the activity of soil organisms is not explicitly reflected in biogeochemical models due to our limited 48 

understanding of their biogeographic patterns at the global scale.  49 

 50 

In recent years, pioneering studies in soil biogeography have begun to provide valuable insights into the 51 

broad-scale taxonomic diversity patterns of soil bacteria7-11, fungi11-13 and nematodes14-17, and patterns of 52 

microbial biomass11,18,19. However, until now, we have been unable to generate a high-resolution, 53 

quantitative understanding of the abundance or functional composition of active soil organisms because of 54 

two major reasons. First, due to the methodological challenges in characterizing soil biota, most previous 55 

studies have focused on a relatively limited number of spatially distinct sampling sites (<500), and therefore 56 

cannot detect high-resolution regional-scale patterns. Second, most global studies have used molecular 57 

sequencing approaches, which provide valuable semi-quantitative information on taxonomic diversity, but 58 

not information on absolute abundance or biomass that is essential to link biological communities to 59 

ecosystem functioning and global biogeochemistry20,21. DNA and RNA-based approaches cannot 60 

unambiguously differentiate between living (being either active or dormant) and dead cells, so they cannot 61 

be used to quantify the active component of the belowground community22,23. To generate a robust, global 62 

perspective of belowground biota and their roles in biogeochemical cycling, we need a sampling design 63 

that provides a thorough global representation of the belowground community, and direct, quantitative 64 

abundance data reflecting the active community. Here, we adopt this approach in order to generate a 65 



quantitative understanding of a critical component of the soil food web, for which direct extraction methods 66 

enable quantification of active organisms: nematodes.  67 

 68 

Nematodes are a dominant component of the soil community and are by far the most abundant animals on 69 

Earth2. They account for an estimated four-fifths of all animals on land24, and feature in all major trophic 70 

levels in the soil food web. The functional role of nematodes in soils can be inferred by their trophic 71 

position, and hence nematodes are often classified into trophic groups based on feeding guilds (i.e. 72 

bacterivores, fungivores, herbivores, omnivores, predators). Given their pivotal roles in processing organic 73 

nutrients and control of soil microorganism populations25-27, they play critical roles in regulating carbon 74 

and nutrient dynamics within and across landscapes26 and are a good indicator of biological activity in 75 

soils28. Yet, we still lack even a basic understanding of broad-scale biogeographic patterns in nematode 76 

abundance and nematode functional group composition. Despite expectations that nematode abundances 77 

may peak in warm tropical regions with high plant biomass14,15, other studies suggest that the opposite 78 

pattern might exist, with high nematode abundances in high-latitude regions with larger standing soil carbon 79 

stocks16,17,29-31. Disentangling the effects of these different environmental drivers of soil nematode 80 

communities is critical to generate a mechanistic understanding of the global patterns of soil nematodes, 81 

and for quantifying their influence on global biogeochemical cycling.  82 

 83 

Here, we use 6,759 spatially distinct soil samples from all terrestrial biomes and continents to examine the 84 

environmental drivers of global nematode communities. By making use of 73 global layers of climate, soil, 85 

and vegetation characteristics, we then extrapolate these relationships across the globe to generate the first 86 

spatially-explicit, quantitative maps of soil nematode density and functional group composition at a global 87 

scale.  88 

 89 

Results and Discussion 90 

Biome-level patterns of soil nematodes 91 



By compiling soil sampling data from all major biomes and continents we aimed to generate a representative 92 

dataset to capture the variation in global nematode densities. Within each sample, we quantified the total 93 

abundance of each trophic group using microscopy. In order to standardize sampling protocols, we focus 94 

on the top 15 cm of soil, which is the most biologically active zone of soils6,32. In line with previous 95 

reports33, nematode abundances are highly variable within and across terrestrial biomes, ranging from dozen 96 

to thousands of individuals per 100 g soil (Fig. 1b). This variation highlights the necessity for large datasets 97 

in soil biodiversity analyses to reliably predict large-scale patterns, as the accuracy of our mean estimates 98 

for any region improves considerably with increasing number of samples (Fig. 2a). Specifically, the 99 

confidence in our mean estimates for nematode abundance in any region is relatively low at the individual 100 

sample scale, but high only when calculated with larger (i.e. 400) sample size.  101 

 102 

Overall, we observed the highest nematode densities in tundra (median = 2,329 nematodes per 100 g dry 103 

soil), boreal forests (median = 2,159) and in temperate broadleaf forests (median = 2,136), while the lowest 104 

densities are observed in Mediterranean forests (median = 425), Antarctic sites (median = 96) and hot 105 

deserts (median = 81) (Fig. 1b, Supplementary Table 2). To examine the mechanisms driving the patterns 106 

of soil nematode density and functional group composition across biomes, we integrated the nematode 107 

abundance data with 73 global datasets of soil physical and chemical properties, and vegetative, climatic, 108 

topographic, anthropogenic, and spectral reflectance information (Supplementary Table 3). Antarctic 109 

sampling points were excluded from the modelling dataset due to limited coverage of several covariate 110 

layers. To match the spatial resolution of our covariates, all samples were aggregated to the 1-km2 pixel 111 

level to generate 1,876 unique pixel locations across the world. We analysed a suite of machine-learning 112 

models (including random forest, L1 and L2 regularised linear regression) to determine the environmental 113 

drivers of the variation in nematode abundance and functional group composition across the globe. We 114 

iteratively varied the set of covariates and model hyperparameters across 405 models and evaluated model 115 

strength using k-fold cross validation (with k = 10). This approach allowed us to select the best performing 116 

model which had high predictive strength (mean cross-validation R2 = 0.43, overall R2 = 0.86), whilst taking 117 



into account issues surrounding multicollinearity, and model overparameterization and overfitting. This 118 

final model, an iteration of random forests using all 73 covariates, was then used to create a per-pixel mean 119 

and standard deviation values. Mapping the extent of extrapolation highlighted that our dataset covered 120 

most environmental conditions, with the least represented pixels and highest proportion of extrapolation in 121 

the Sahara and Arabian Desert (Extended Data Figs. 1a, 1b). We acknowledge that our models cannot 122 

accurately predict nematode abundances at fine spatial scales, as local environmental heterogeneity can 123 

cause considerable variation in nematode abundances, even within individual locations. However, the 124 

strength of these predictions increases at the larger scales where our modelled estimates are informed by 125 

more data observations (Fig. 2b), ensuring confidence in our estimates. Predicted vs. observed plots 126 

revealed that, despite the high accuracy in most regions, the models tended to marginally over-represent 127 

the observed numbers at low densities and underrepresent at higher nematode densities (Figs. 2c-h). 128 

Moreover, our cross-validation accuracy calculations may be optimistically biased, as we cannot entirely 129 

account for the potential impacts of overfitting. Our analyses would have ideally included a subset of data 130 

removed at the beginning of the analyses for fully independent accuracy assessment. However, as the 131 

removal of a subset would mean a loss of geographic representation, we chose instead to maintain the 132 

integrity of the entire dataset and generate spatially explicit maps of model confidence that allow for error 133 

propagation throughout the final global calculations (Fig. 2i, Extended Data Fig. 1a). These maps provide 134 

spatial insight into the prediction uncertainties rather than a single accuracy measure for overall model 135 

accuracy. 136 

 137 

Our statistical models reveal the dominant drivers of nematode abundance across global soils. As with 138 

aboveground animals, climatic variables (i.e., temperature and precipitation) played an important role in 139 

shaping the patterns in total soil nematode abundance. However, soil characteristics (e.g. texture, soil 140 

organic carbon (SOC) content, pH, cation-exchange capacity (CEC)) were by far the most important factors 141 

driving nematode abundance at a global scale, with effects that largely overwhelmed the climate impacts 142 

(Supplementary Table 3). Linear models enabled us to assess the directionality of these relationships, 143 



revealing that both SOC content and CEC had strong positive correlations, whilst pH had a negative effect 144 

on total nematode density (Extended Data Fig. 2). These trends support the suggestion that soil resource 145 

availability is a dominant factor structuring belowground communities at broad spatial scales, overriding 146 

the impact of climate, in structuring belowground communities at broad spatial scales2,12,15. 147 

 148 

Global biogeography of soil nematodes 149 

The high predictive strength of the top model enabled us to extend the relationships across global soils to 150 

construct high-resolution (30 arc-seconds, ~ 1 km2), quantitative maps of total nematode densities. These 151 

maps reveal striking latitudinal trends in soil nematode abundance, with the highest densities in sub-arctic 152 

regions (Fig. 3), a trend that is consistent across all trophic groups (Extended Data Figs. 3a-e). Specifically, 153 

as with the regional averages, the highest abundances of soil nematodes are found in boreal forests across 154 

North America, Scandinavia and Russia. Whether nematode abundance is expressed as density per gram of 155 

soil or per unit area (thereby controlling for the differences in soil bulk density), the models reveal a striking 156 

latitudinal gradient in soil nematode abundance (Fig. 3, Extended Data Figs. 4, 5). Whether soil animals 157 

exist at highest abundances in the high or low latitudes has been a contentious issue in the soil ecology 158 

literature, with some studies highlighting highest abundances in boreal forests, and others suggesting that 159 

tropical forests support the greatest abundance29,31,14. Our extensive sample data from every biogeographic 160 

region allows us to see beyond these contrasting results to reveal a striking latitudinal pattern of nematode 161 

abundance, providing conclusive evidence that soil nematodes are present in considerably higher densities 162 

in high-latitude arctic and sub-arctic regions (Fig. 3).  163 

 164 

Along with the latitudinal gradient in nematode abundance, our nematode density map also reveals regional 165 

contingencies that stand out against the global trends. Although nematode abundances were relatively low 166 

in tropical regions, our sampling data and models reveal high nematode abundance in certain tropical 167 

peatlands such as the Peruvian Amazon (Fig. 1a; Fig. 3). These regions are characterized by high SOC 168 

stocks, which support high microbial biomasses that serve as the basic resource for most nematode groups. 169 



Similarly, increased SOC stocks at high altitude compared to lowland regions drive higher nematode 170 

abundances in mountainous regions and highlands, such as the Rocky Mountains, Himalayan Plateau and 171 

the Alps (Fig. 1a; Fig. 3). Although the respective climates of these regions exhibit large differences in 172 

mean annual temperature (<0˚C to >10˚C), their soils are all characterized by relatively high SOC stocks 173 

(i.e. >50 g kg-1). In contrast, the lowest nematode densities were predicted in hot deserts such as the Sahara, 174 

Arabian Desert, Gobi Desert, and Kalahari Desert (Fig. 3), regions characterized by very low SOC stocks. 175 

As such, the spatial variability in nematode abundance is highest in equatorial regions, which exhibit the 176 

full range of possible abundances from desert to biomes characterized by high SOC stocks. This is reflected 177 

by the spatial patterns in our model uncertainty, in which low-latitude arid regions with low sampling 178 

density and soil nematode abundances are characterized by larger uncertainty (Fig. 2i, Extended Data Fig 179 

1).  180 

 181 

The strong correlation between temperature and SOC content at a global scale19 makes it challenging to 182 

identify the primary driver of the latitudinal gradient in nematode abundances. However, regional 183 

deviations from the global biogeographic pattern help to disentangle their relative roles, as they decouple 184 

the effects of climate and soil characteristics. For example, low temperatures and high moisture content in 185 

high-latitude regions restrict annual decomposition rates, leading to the accumulation of soil organic 186 

material19,30. But the positive effect of SOC in tropical peatland regions (with high soil carbon but also 187 

warm temperatures) suggests that it is organic matter content, rather than climate conditions, that ultimately 188 

determines nematode abundance in soil. These models reinforce the dominant role of soil characteristics in 189 

driving nematode abundances. These trends suggest that the impacts of climate on nematode density are 190 

not direct, but instead act indirectly by modifying soil characteristics.  191 

 192 

We next examined how nematode community structure varied across landscapes by exploring the 193 

abundance of each trophic group across our dataset. At the global scale, all trophic groups were positively 194 

correlated with one another (Extended Data Fig. 6a), suggesting that biogeographic regions with high 195 



nematode abundances are generally hospitable for members of all trophic groups. Despite the distinct 196 

feeding habits, the global consistency across trophic groups provides some unity in the biogeography of the 197 

soil food web. That is, although different nematodes rely on distinct food sources for their energetic 198 

demands, the size of the entire food web is ultimately determined by the availability of soil organic matter. 199 

Nevertheless, the relative composition of nematode communities did vary across samples. To characterize 200 

the main nematode community types, we clustered the observed relative abundances into four types, based 201 

on the relative abundance of each trophic group (Extended Data Fig. 6b). Although there were no clear 202 

spatial patterns in these community types, vector analysis revealed that the indices of vegetation cover (e.g., 203 

NDVI, EVI) were the best predictors of herbivore-dominated communities, while edaphic factors (sand 204 

content, pH) were strong predictors of communities dominated by bacterivores (Extended Data Fig. 6c). 205 

 206 

By summing the nematode density information in each pixel, we can begin to generate a quantitative 207 

understanding of soil nematode abundances and biomass at a global scale. We estimate that approximately 208 

4.4 ± 0.64  1020 nematodes inhabit the upper layer of soils across the globe (Table 1, Supplementary Table 209 

5). Of these, 38.7% exist in boreal forests and tundra, 24.5% in temperate regions and 20.5% in tropical 210 

and sub-tropical regions (Supplementary Table 6). By combining our estimates of nematode abundance 211 

with mean biomass estimates of each functional group (using a database containing 32,728 nematode 212 

samples34,35), we can approximate that global nematode biomass in the global topsoil is approximately 0.3 213 

Gt (Table 1). This translates to approximately 0.03 Gt of carbon (C) (Table 1, Supplementary Table 7), 214 

which is three times greater than a previous estimate of soil nematode biomass36, and represents 82% of 215 

total human biomass on Earth (see Supplementary Methods). Using the same database of nematode 216 

metabolic activity34,35, we estimate that nematodes may be responsible for a monthly C turnover of 0.14 Gt 217 

C within the global growing season, of which 0.11 Gt C is respired into the atmosphere (Table 1). For a 218 

comparison, the amount of C respired by soil nematodes is equivalent to roughly ~15% of C emissions 219 

from fossil fuel use, or ~2.2% of the total annual C emissions from soils (approximately 9 and 60 Gt C per 220 



year, respectively37). As such, our findings indicate that soil nematodes are a major, and to date poorly 221 

recognised, player in global soil C cycling.  222 

 223 

Despite high confidence in our estimates of total nematode abundance and community composition, these 224 

approximations of metabolic footprint retain several assumptions that might lead to considerable 225 

uncertainty in our estimates. For example, seasonal climatic variation in metabolic activity could influence 226 

the values we present here, and total activity levels might be lower than expected based on these growing 227 

season estimates. On the other hand, extraction efficiency can be lower than 50% in some samples, which 228 

could lead to underestimation of the actual activity levels. Local variation in land use types and bias in our 229 

sampling data could cause variation in soil nematode abundances at local scales. Further, even though our 230 

sampling locations cover the vast majority of environmental conditions on Earth (Extended Data Figs. 1c, 231 

1e), our data underrepresented certain regions such as the Sahara and Arabian Desert, leading to relatively 232 

high uncertainties in these regions (Fig. 2i, Extended Data Figs. 1a, 1b, 6). Also, as our sampling approach 233 

focusses on the top soil layer, we stress that our analysis will underestimate total nematode abundances, for 234 

example in tropical regions where high nematode densities are found in litter layers38. Yet, the metabolic 235 

footprint that we provide enables us to approximate the magnitude of soil nematode contributions to global 236 

carbon cycling and highlights their contribution to the total soil C budget. Further, our findings emphasize 237 

the importance of high-latitude regions, characterized by high soil nematode abundances, in our 238 

understanding of soil carbon and feedbacks to on-going climate change. These regions compose a major 239 

reservoir of soil carbon stocks6, and may release much more carbon as a result of increased soil animal 240 

activity and a prolongation of the plant-growing season due to human-induced climate change.  241 

 242 

In conclusion, our maps provide the first spatially-explicit, quantitative information of belowground biota 243 

at a global scale. Besides providing baseline information about soil nematodes as a fundamental component 244 

of terrestrial ecosystems, it also alters some of our most basic assumptions about the terrestrial biosphere 245 

by highlighting that soil animal abundances peak in high latitude zones. The high nematode numbers that 246 



are present across all global soils highlights their functional importance in global soil food web dynamics, 247 

nutrient cycling terrestrial ecosystem functioning. This quantitative understanding of these belowground 248 

animals enables us to begin to comprehend the order of magnitude of their influence on the global carbon 249 

cycle, and the spatial patterns in these processes. By providing quantitative information about the variation 250 

in biological activity in soils around the world, our models can provide the information necessary to 251 

explicitly represent soil biotic activity levels in spatially-explicit biogeochemical models. That is, this 252 

information can now be used to parameterize, scale or benchmark spatially-explicit model predictions of 253 

organic matter turnover under current or future climate change scenarios. We highlight that this global 254 

nematode study can and should be supplemented with similar future efforts to understand the biogeography 255 

of other important soil organisms, including fungi, bacteria and protists. Our unique soil nematode 256 

abundance and biomass data can serve as a stepping stone to facilitate future modelling efforts that add 257 

additional layers of soil biodiversity information to build a thorough understanding of the overwhelming 258 

abundance of life belowground and its impact on global ecosystem functioning. 259 

 260 

  261 



Table 1 | Total nematode abundance, biomass and carbon budget.  262 

Trophic group Computed 
individuals (x 1020) 

Fresh 
biomass (Mt) 

Biomass (Mt 
C) 

Monthly 
respiration (Mt C) 

Monthly 
production (Mt 

C) 

Monthly 
carbon budget 

(Mt C) 
Bacterivores 1.92 ± 0.208 68.57 ± 7.42 7.13 ± 0. 77 34.17 ± 3.69 12.22 ± 1.31 46.39 ± 5.02 

Fungivores 
0.64 ± 0.065 9.56 ± 0.97 0.99 ± 0.10 6.49 ± 0.66 0.91 ± 0.09 7.40 ± 0.75 

Herbivores 1.25 ± 0.114 83.41 ± 7.59 8.67 ± 0.79 26.74 ± 2.43 7.01 ± 0.64 33.75 ± 3.07 
Omnivores 0.39 ± 0.046 96.50 ± 11.40 10.25 ± 1.19 27.38 ± 3.17 6.08 ± 0.70 33.46 ± 3.87 

Predators 0.20 ± 0.031 42.25 ± 6.59 4.39 ± 0.68 15.06 ± 2.35 3.00 ± 0.46 18.06 ± 2.82 

Total 4.40 ± 0.643 
302.30 ± 

33.99 31.44 ± 3.54 109.82 ± 12.31 29.24 ± 3.23 139.06 ± 15.54 
 263 

 264 
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Main figure legends 479 

Figure 1 | Map of sample locations and abundance data. a, Sampling sites. A total of 6,759 samples 480 

were collected and aggregated into 1,876 1-km2 pixels that were used for geospatial modelling and 481 

abundance data from 39 1-km2 pixels from Antarctica. b, The median and interquartile range of nematode 482 

abundances (n = 1,875) per trophic group (top) and per biome (bottom) from all continents. Axes have been 483 

truncated for increased readability. Biomes with observations from more than 20 1-km2 pixels are shown. 484 

 485 

Figure 2 | Model and data validation. The standard error of the observed (a) and predicted (b) mean 486 

values of nematode density decrease with increasing sample size. The operation was repeated with 100 and 487 

1,000 random seeds for the observed and predicted mean values, respectively, and the mean calculated 488 

standard errors are shown. c-h, Heat plots showing the relationships between predicted versus observed 489 

nematode abundance values, for total nematode number and each trophic group. Dashed diagonal lines 490 

indicate fitted relationships (R2 values are indicated in the bottom right), solid diagonal lines indicate a 1:1 491 

relationship between predicted and observed points. i, Bootstrapped (100 iterations) coefficient of variation 492 

(standard deviation divided by mean predicted value) as a measure of prediction accuracy. Sampling was 493 

stratified by biome. Overall, our prediction accuracy is lowest in arid regions and in parts of the Amazon 494 

and Malay Archipelago.  495 

 496 

Figure 3 | Global map of soil nematode density at the 30 arc-seconds (~1 km2) pixel scale. Nematodes 497 

per 100 g dry soil. Pixel values were binned into seven quantiles to create the colour palette. 498 

 499 



Methods 500 

Data acquisition 501 

We collected data on soil nematode abundances that morphologically quantified nematodes and determined 502 

taxa to the level of trophic groups or taxonomic groups. Rather than taxonomic diversity, we decided to 503 

focus on trophic groups as this gives more functional information. Trophic groups were assigned based on 504 

Yeates, et al. 39. We only collected samples that contained the following metadata: longitude and latitude, 505 

season or date sampled, sampling depth, information on land use (agriculture or natural sites) and if samples 506 

were collected from soils or litter. We then standardized our efforts by focusing on all samples that were 507 

derived from soils and in which samples were representative for nematode functional group composition in 508 

the top 15 cm of soils. This resulted in a final subset of 6,759 samples that were used for further analyses. 509 

Of these, 32.8% originate from agricultural or managed sites, and 67.2% from natural sites. All data points 510 

falling within the same 30 arc-seconds (~1-km2) pixel were aggregated via an average, resulting in a total 511 

of 1,915 unique pixels across the globe as inputs into the models (Extended Data Table 1). 39 pixels located 512 

in Antarctica were removed from the dataset as the covariate layers have limited coverage in these regions. 513 

This resulted in a total of 1,876 unique pixels that were used for geospatial modelling. 514 

 515 

Acquisition of global covariate layers 516 

To create spatial predictive models of nematode abundance, we first sampled our prepared stack of 73 517 

ecologically relevant, global map layers at each of the point locations within the dataset. These layers 518 

included climatic, soil nutrient, soil chemical, soil physical, vegetative indices, radiation and topographic 519 

variables and one anthropogenic covariate (Extended Data Table 2). All covariate map layers were 520 

resampled and reprojected to a unified pixel grid in EPSG:4326 (WGS84) at 30 arc-seconds resolution 521 

(≈1km at the equator). Layers with a higher original pixel resolution were downsampled using a mean 522 

aggregation method; layers with a lower original resolution were resampled using simple upsampling (i.e., 523 

without interpolation) to align with the higher resolution grid. 524 

 525 



Geospatial modelling 526 

Using the ClustOfVar package40 in R, we reduced the covariates of interest to the most representative and 527 

least collinear few. As we did not have a specific number of variables defined a priori to use as a parameter 528 

for the clustering procedure, we put a range of cluster numbers (i.e., 5, 10, 15, 20) into the ClustOfVar 529 

functions in order to compute multiple covariate groups for testing machine learning models. Using these 530 

selections of variables, we used a “grid search” procedure to iteratively explore the results of a suite of 531 

machine learning models trained on each group of covariates computed from the ClustOfVar function. 532 

Moreover, following recent advancements in machine learning for spatial prediction41, we tested models 533 

using all covariates with and without latitude/longitude data as well as a specific selection of covariates 534 

representing principal ecosystem components plus satellite-based spectral reflectance. In addition to grid 535 

searching through models trained on different groupings of the covariates, we also explored the parameter 536 

space of multiple machine learning algorithms (including random forests and regularized linear regression 537 

with both L1 and L2 regularization) and optional post-hoc image convolution using kernels of various pixel 538 

sizes. During the grid search procedure, we assessed each model using k-fold cross validation, to test the 539 

performance and overfitting across each of the 405 models. For each fold, a 10% subset of the data was 540 

extracted and held back for validation. Then, the model was trained on the remaining data, and tested on 541 

the validation data. To test each model on the entire dataset, this process was performed 10 times for each 542 

model (i.e., k = 10).  computing coefficient of determination values for each fold that were then used to 543 

compute mean and standard deviation values for the cross validated model. These mean and standard 544 

deviation values were the basis for choosing the “best model” of all 405 models explored via the grid search 545 

procedure, which was an iteration of random forests using all 73 non-spatial covariates. The grid search 546 

procedure was performed using the total nematode abundance data, and this final model was then used to 547 

model the sub-functional group abundance. The final R2 value for the ensembled total nematode abundance 548 

model (also assessed using 10-fold cross validation) was 0.43. 549 

 550 

Model uncertainty 551 



To create a per-pixel mean and standard deviation we ensembled multiple versions of the “best model”; as 552 

the “best model” was an iteration of random forests using all 73 non-spatial covariates, the ensemble 553 

procedure was to rerun this model 10 times (each with different random seed values) then averaging the 554 

model results. Using these values we calculated the coefficient of variation (standard deviation divided by 555 

the mean predicted value) as a measure of the prediction accuracy of our model (Fig 2i).  556 

 557 

To create statistically valid per-pixel confidence intervals, we performed a stratified bootstrapping 558 

procedure with the “total number” collection of nematode point data. The stratification category was the 559 

sampled biomes of each point feature (to avoid biases), and the number of bootstrap iterations was 100. 560 

Each of the bootstrap iterations required the classification of the composite raster data i.e., 209,000,000 561 

pixels classified 100 times. Doing so allows us to generate per pixel, statistically robust 95% confidence 562 

intervals (Extended Data Fig 1c). 563 

 564 

Next, we tested the extent of extrapolation in our models by examining how many of the Earth’s pixels 565 

exist outside the range of our sampled data for each of the 73 global covariate layers. To evaluate the 566 

sampled range, we extracted the minimum and maximum values of each covariate layer of the pixels in 567 

which our sampling sites were located. Then, using the final model, we evaluated the number of variables 568 

that fell outside the sampled range, across all terrestrial pixels. Next, we created a per-pixel representation 569 

of the relative proportion of interpolation and extrapolation (Extended Data Fig. 1b). This revealed that our 570 

samples covered the vast majority of environmental conditions on Earth, with 84% of Earth’s pixels values 571 

falling within the sampled range of at least 90% percent of all bands (Extended Data Fig. 1e). Across all 572 

environmental layers, the percent of pixels with values within the sampled range is generally above 85% 573 

(Extended Data Fig. 1f).   574 

 575 

To evaluate how well our data spread throughout the full multivariate environmental covariate space, we 576 

performed a Principal Components based approach. After performing a PCA on the sampled data, we used 577 



the centering values, scaling values, and eigenvectors to transform the composite image into the same PCA 578 

spaces. Then, we created convex hulls for each of the bivariate combinations from the first 11 principal 579 

components (which collectively covered more than 80% of the sample space variation). Using the 580 

coordinates of these convex hulls, we classified whether each pixel falls within or outside each of these 581 

convex hulls. 62% of the world’s pixels fell within the entire set of 55 PCA convex hull spaces computed 582 

from our sampled data, with most of the outliers existing in arid regions (Extended Data Fig 1e). 583 

 584 

Geospatial analyses and extrapolation were performed in Google Earth Engine42. Additional model results 585 

can be found in the Extended Data. 586 

 587 

Nematode density values 588 

To compute the original nematode density values (which were in “number of nematodes per 100 grams of 589 

soil”), we performed the following calculations at a per-pixel level. First, we multiplied the value by 10 in 590 

order to compute nematodes per 1 kg of soil; the new units, per-pixel, became “number of nematodes per 591 

1kg of soil”. Then, we multiplied this value by the per-pixel bulk density values as produced by SoilGrids43; 592 

bulk density values were then produced in “kg of soil per 1 cubic meter”. Finally, the new units after 593 

multiplication are the “number of nematodes per 1 cubic meter of soil”. Next, we multiplied this value by 594 

0.15 meters to compute the “number of nematodes per 1 square meter of soil (in the top 15 cm)”. For pixels 595 

that had a soil layer shallower than 15 cm, the pixel value was multiplied by the depth to bedrock values as 596 

produced by SoilGrids43. These respective pixel values were then multiplied by the area of each pixel 597 

presumed to have soil (i.e., we exclude areas of “permanent snow/ice” and “open water” from the 598 

calculations, following the Consensus Land Cover classes found here: 599 

https://www.earthenv.org/landcover); the units at this point, per-pixel, are the total number of nematodes 600 

(in the first 15cm of soil). Finally, all pixel values were summed to compute the final nematode abundance 601 

values across all pixels (i.e., across the entire globe). 602 

 603 



Clustering 604 

To delineate main nematode 'community types', i.e. the relative frequency of each trophic group in a given 605 

sample, we first defined the number of clusters for the analysis. Based on pairwise distances and Partitioning 606 

Around Medoids (k-medoids) clustering we chose to select four clusters. Each of the four community types 607 

was then plotted (Extended Data Fig. 6b) to reveal their composition. To examine which environmental 608 

variables best explained each of the community types, we plotted each of the samples using a non-metric 609 

multidimensional scaling (stress = 0.0691) and fitted environmental variables as vectors (Extended Data 610 

Fig. 6c).  611 

 612 

Biomass estimates 613 

Using publicly available data34,35, a database with taxon-specific body size values (i.e. length, width) of 614 

32,728 nematode taxa (including 9,497 observations of adult nematodes and 23,231 observations of 615 

juveniles) was created to calculate the biomass, and respiration and assimilation rates for each trophic 616 

group. A nematode community typically contains numerous juveniles35, we assume the presence of 70% 617 

juveniles and 30% adults. For all calculations described in this section, we calculated per-trophic group 618 

means using per-taxon observations. To produce the final values, we multiplied the mean calculated values 619 

per trophic group with the predicted number of individuals per trophic group and per biome. The biomass 620 

of an assemblage of nematodes can be calculated as the sum of the weights of the number of individuals of 621 

each species present. According to Andrassy 44, the fresh weight of individual nematodes is calculated by  622 

Wfresh=
L ∙D2

1.6 ∙ 106 623 

where Wfresh is the fresh weight (µg) per individual, L is the nematode length (µm) and D is the greatest 624 

body diameter (µm)44. Assuming a dry weight of nematodes as 20% of fresh weight and the proportion of 625 

carbon in the body as 52% of dry weight45,46, the dry weight (Wdry) of an individual nematode can be 626 

calculated as  627 



Wdry=
0.104 ∙ L ∙D2

1.6 ∙	106  628 

 629 

Daily carbon used in production 630 

To calculate the total carbon utilized per nematode per day, we assumed that life cycle length in days can 631 

be approximated as 12 times the colonizer-persister (cp) scale47,48 and that the accumulation of fresh weight 632 

is linear. Then, the daily increase in fresh weight is  633 

RW=	 Wt
12 ∙cpt

 634 

where Wt and cpt are the adult weight and cp value for a nematode of trophic group t, respectively. Then, 635 

we calculate the normalized daily carbon used in production (PC) as  636 

Pc=
0.104 ∙	Wt

12 ∙cpt
 637 

where cpt is the mean cp value of the respective trophic group. For a nematode assemblage, the daily carbon 638 

used in production can be calculated as 639 

Pc= Nt
 0.104 ∙	Wt

12 ∙cpt
 640 

 for Nt individuals of each trophic group present in the assemblage.  641 

 642 

Carbon respiration 643 

To estimate the carbon respiration rates of an assemblage of nematodes, we assume relationships between 644 

respiration rates and body weights for poikilothermic organisms, so that 645 

R=a ∙Wb 646 

where R is the respiration rate, W is the fresh weight (µg) per individual, and a and b are regression 647 

parameters49,50. Following literature, we assume that b is equal to 0.7551,52. The parameter a varies with 648 

temperature and the time interval on which the rate is based. For example, Klekowski, et al. 53 determined 649 

an average a-value of approximately 1.40 nl O2 h-1 for 68 nematode species. This converts to an a-value of 650 



2.43 ng CO2 h-1 at 15 ˚C. To estimate CO2 respiration in µg per day, we make the assumption of an a-value 651 

of 2.43  24/1000 (= 0.058) for our calculations. Using the relative molecular weights of carbon and oxygen 652 

in CO2 (12/44 = 0.273), we can calculate the total rate of carbon respiration for all nematodes in the system 653 

as  654 

R=	 Nt ∙	0.273∙0.058 Wt
0.75 655 

or  656 

R=	 Nt ∙	0.0159 Wt
0.75 657 

where Nt is the number of individuals and Wt the median body weight of each of the trophic groups summed 658 

over t trophic groups. 659 

 660 

Total daily carbon budget 661 

The total carbon budget (in µg per day) for each trophic group is the sum amounts that are respired and 662 

used for production, that is: 663 

Ctot=	 Nt ∙ 0.104 ∙	Wt

12 ∙cpt
+	 Nt ∙ 0.0159∙(Wt)

0.75 664 

  665 

 666 

Data and code availability 667 

All raw data, source code, sampled covariate layer data, models and maps are available under: 668 

https://gitlab.ethz.ch/devinrouth/Crowtherlab_Nematode 669 
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Extended Data Legends 716 

Extended Data Fig. 1 | Model accuracy assessment and extent of interpolation and extrapolation 717 

across all terrestrial pixels in 73 global covariate layers. a, coefficient of variation (standard deviation 718 

as a fraction of the mean predicted value) as a measure of the prediction accuracy of our model. b, 719 

proportional extent of interpolation (purple) vs. extrapolation (red) in univariate space. c, Percentage of 720 

pixels that fall within the convex hulls of the first 11 principal component spaces (collectively covering 721 

>80% of the sample space variation). d, percentage of pixels interpolated as a function of the percent of 722 

global environmental conditions covered by the sample set. On the global scale, 86% of the Earth’s pixels 723 

have at least 90% of the covariate bands falling within the sampled range of environmental conditions. e, 724 

percentage of pixels falling within the 55 convex hull spaces of the first 11 Principal Components 725 

(collectively explaining >80% of the variation. On the global scale, 62% of the Earth’s pixels fell within 726 

100% of 55 PCA convex hull spaces. f, percent of terrestrial pixels falling within the sampled range, per 727 

covariate band. 728 

 729 

Extended Data Fig. 2 | Linear regression models of the most important variables from the final 730 

random forest model and annual mean temperature. Soil organic carbon and cation-exchange capacity 731 

have a positive correlation with total nematode abundance, pH is negatively correlated. These linear 732 

regression models (n = 1,809) were not used to create global perspectives of nematode distribution patterns. 733 

The grey area represents the 95% confidence interval for the mean. 734 

 735 

Extended Data Fig. 3 | Global maps of nematode trophic group abundance. a, bacterivores. b, 736 

fungivores. c, herbivores. d, omnivores. e, predators. Scales differ per map. Most trophic groups show 737 

similar patterns, but predators (e) are predicted to be present in particularly high abundances in some arid 738 

soils e.g. in the Sahara and Arabian Desert. Pixel values were binned into seven quantiles to create the 739 

colour palette. 740 

 741 



Extended Data Fig. 4 | Global map of total nematode abundance per unit area (m2). Correcting for the 742 

lower bulk density in soils high in organic matter, this map shows the same global patterns of nematode 743 

abundance as in Fig. 3. Hence, it is not low soil bulk density in boreal regions resulting in the observed 744 

patterns, but rather the high nematode abundances. Pixel values were binned into seven quantiles to create 745 

the colour palette. 746 

 747 

Extended Data Fig. 5 | Global maps of nematode trophic group abundance per unit area (m2). a, 748 

bacterivores. b, fungivores. c, herbivores. d, omnivores. e, predators. Scales differ per map. Correcting for 749 

the lower bulk density in soils high in organic matter, these maps show the same global patterns of nematode 750 

trophic group abundance as in Extended Data Figs. 3a-e. Pixel values were binned into seven quantiles to 751 

create the colour palette. 752 

 753 

Extended Data Fig. 6 | Community types and driving variables of community type composition. a, 754 

Correlations between trophic groups. Overall, correlations of predators with other trophic groups are the 755 

least positive. b, based on the relative abundance of each trophic group, soil nematode communities can be 756 

classified in four distinct types. We find that these soil nematode communities are dominated by either 757 

herbivores (1), herbivores and bacterivores (2), bacterivores (3), or have a mixed composition (4). c, non-758 

metric multidimensional scaling to highlight environmental conditions that drive the composition of each 759 

of the four main community types. Vegetation-type indices, such as NDVI and Fpar, drive the dominance 760 

of herbivores in nematode communities (type 1), while edaphic characteristics are correlated with 761 

communities dominated by microbivores (types 3 and 4). The names of the environmental variables are 762 

listed in Supplementary Table 3. 763 

 764 

Supplementary Table 1 | Nematode abundance data and corresponding metadata values. Abundance 765 

data for each trophic group and associated metadata from 1,876 1-km2 pixels that were used for geospatial 766 

modelling and abundance data from 39 1-km2 pixels from Antarctica. (.csv file) 767 



 768 

Supplementary Table 2 | Summary of mean, median and sample size values per biome. The number 769 

of sites corresponds to the number of 1-km2 pixels into which the samples were aggregated. (.csv file) 770 

 771 

Supplementary Table 3 | Global covariate layers used for geospatial modelling. A total of 73 global 772 

covariate layers was used in our modelling approach. The 7 Nadir Reflectance Band layers (i.e., 773 

MCD43A4.005 BRDF-Adjusted Reflectance 16-Day Global 500m) are summarised as one entry in the 774 

table. (.xlsx file) 775 

 776 

Supplementary Table 4 | Variable importance metrics. Edaphic characteristics emerged as the most 777 

important variables. As the full dataset includes collinear variables leading to a false representation of the 778 

variable importance metrics, analysis was performed on a selection of main variables. (.xlsx file) 779 

 780 

Supplementary Table 5 | Number of soil nematodes per trophic group, per biome. Summing the 781 

predicted number of nematodes per 1 km2 pixel across biomes we estimate a total of 4.4  1020 nematodes 782 

are present in the top 15 cm of soil across the globe. (.csv file) 783 

 784 

Supplementary Table 6 | Relative abundance of soil nematodes per trophic group, per biome. (.csv 785 

file) 786 

 787 

Supplementary Table 7 | Nematode biomass per trophic group, per biome.  Note that values are 788 

presented in megatons (106 tons) carbon. (.csv file) 789 

 790 

Supplementary Table 8 | Relative nematode biomass per trophic, per biome. (.csv file) 791 

 792 


