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Review article
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Abstract – The long-term stabilization of soil organic matter (SOM) in tropical and temperate regions is mediated by soil biota (e.g. fungi, bacte-
ria, roots and earthworms), soil structure (e.g. aggregation) and their interactions. On average, soil C turnover was twice as fast in tropical com-
pared with temperate regions, but no major differences were observed in SOM quality between the two regions. Probably due to the soil
mineralogy dominated by 1:1 clay minerals and oxides in tropical regions, we found a higher aggregate stability, but a lower correlation between
C contents and aggregate stability in tropical soils. In addition, a smaller amount of C associated with clay and silt particles was observed in tro-
pical versus temperate soils. In both tropical and temperate soils, a general increase in C levels (≈ 325 ± 113 kg C·ha–1·yr–1) was observed under
no-tillage compared with conventional tillage. On average, in temperate soils under no-tillage, compared with conventional tillage, CH4 uptake
(≈ 0.42 ± 0.10 kg C-CH4·ha–1·yr–1) increased and N2O emissions increased (≈ 1.95 ± 0.45 kg N-N2O·ha–1·yr–1). These increased N2O emissions lead
to a negative global warming potential when expressed on a CO2 equivalent basis.
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Résumé – Matière organique du sol, activité biologique et agrégation dans les régions tempérées et intertropicales. Effet du non-labour.
La stabilisation à long terme de la matière organique du sol (MOS) dans les régions tempérées et intertropicales est sous la dépendance de l’acti-
vité biologique (champignons, bactéries, macrofaune et racines), de la structure du sol (agrégation) et de leurs interactions. En moyenne, si le tur-
nover du carbone du sol (C) est environ deux fois plus rapide en régions intertropicales qu’en régions tempérées, peu de différences apparaissent
toutefois quant à la qualité de la MOS sous ces climats différents. La stabilité de l’agrégation est plus élevée pour les sols des régions intertropi-
cales, ceci étant probablement dû à leur minéralogie dominée par des argiles de type 1:1 associés à des oxihydroxides métalliques. Toutefois,
pour les sols tropicaux, la corrélation entre teneur en C et stabilité de l’agrégation est plus faible et de moindres quantités de C sont associées avec
les éléments fins (argile+limon). Aussi bien sous climats tempéré que tropical et subtropical, une augmentation générale des stocks de C du sol
(≈ 325 ± 113 kg C·ha–1·an–1) est observée avec les pratiques de non labour. Pour les sols des régions tempérées, si une fixation de CH4 (≈ 0.42 ±
0.10 kg C-CH4·ha–1·an–1) est mesurée sous non-labour, parallèlement une émission de N2O est observée (≈ 1.95 ± 0.45 kg N-N2O·ha–1·an–1),
conduisant finalement à un bilan négatif en terme de réchauffement global exprimé en équivalents de flux de C-CO2.

carbone du sol / agrégation / émissions N
2
O / non-labour / régions tempérées et intertropicales

1. INTRODUCTION

The conservation of sufficient soil organic matter (SOM)
levels is crucial for the biological, chemical and physical soil
functioning in both temperate and tropical ecosystems.
Appropriate levels of SOM ensure soil fertility and minimize
agricultural impact on the environment through sequestration

of carbon (C), reducing erosion and preserving soil
biodiversity.

Many different soil types are found within the vast tropical
and temperate regions. Consequently, the distinction be-
tween tropical and temperate soils is rather artificial and
makes the comparison between the two soil categories diffi-
cult. However, there are soil characteristics (e.g. soil
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moisture, soil temperature and mineralogy) that are often dif-
ferent between temperate and tropical soils across all soil
types within these two big soil categories. Consequently, the
comparison can be made and forms an avenue for advancing
our understanding of soil processes in drastically different
soils. For this review, we assigned soils to these two catego-
ries in accordance with location and climate. In the rest of the
text we use the simplified denomination of “temperate soils”
versus “tropical soils” to refer to soils of the corresponding
climatic areas. We included subtropical soils within the tropi-
cal category because most subtropical soils have more char-
acteristics similar to tropical soils (e.g. mineralogy)
compared with the temperate soils. Within our data sets, min-
eralogical dominance mostly coincided with our division
based on location and climate, i.e., 1:1 clays and oxides domi-
nated most tropical soils whereas 2:1 minerals dominated
temperate soils. However, some smectitic Vertisols and
allophanic Andosols were included within the tropical soils.

The long-term stabilization of C and nitrogen (N) in tem-
perate and tropical soils is mediated by soil biota (e.g. fungi,
bacteria, roots and earthworms), soil structure (e.g. aggrega-
tion) and their interactions, and is influenced by agricultural
management. Because it has been shown, in both temperate
and tropical soils, that aggregation decreases C and N miner-
alization, the focus of this review is on aggregate dynamics
and its interaction with SOM and soil biota in order to synthe-
size the current knowledge on long-term stabilization of C
and N. As a case study for the effect of agricultural manage-
ment, we chose the no-tillage/cover crop system. No-tillage
(NT) practices have been adopted at high rates in the US and
Brazil, giving us the opportunity to compare a widely used
agricultural practice under tropical and temperate conditions.

The objective of the first section of this review was to do a
general comparison of SOM stabilization mechanisms in
tropical and temperate soils. In a second section we focus on
the effects of NT practices on carbon and nitrogen dynamics
in tropical and temperate soils.

2. GENERAL COMPARISON
BETWEEN TROPICAL AND TEMPERATE SOILS

2.1. Soil organic matter turnover, stabilization and
quality

Primary plant production and soil microbial activity are
the two main biological processes governing inputs and out-
puts of SOM. The balance between them determines SOM
turnover and is controlled by biotic and abiotic factors. Cli-
mate, parent material, biota, topography and time are the ma-
jor controlling factors on production and decomposition (by
microorganisms) of SOM [153]. Climate, parent material and
biota (e.g. vegetation) are the factors that differ the most be-
tween tropical and temperate regions.

It is generally assumed that organic compounds [18] and
SOM [248] have a faster turnover in tropical than temperate
soils due to the enhanced decomposition under the higher

moisture and temperature regimes of the tropics. For exam-
ple, Trumbore [248] found a mean residence time (MRT) of
C in the surface layer (0–22/23 cm), estimated with radiocar-
bon, of 470 versus 990 years for a tropical and temperate soil,
respectively. Another way to estimate C turnover and MRT
relies on the difference in 13C natural abundance between
plants (and the SOM-C derived from them) with different
photosynthetic pathways (Calvin cycle [C3 plants] vs. Hatch-
Slack cycle [C4 plants]) [63]. A change in vegetation type re-
sults in a change to the 13C natural abundance signature of the
soil C, which enables one to calculate the proportion of C de-
rived from the original vegetation. The turnover of C derived
from the original vegetation is then calculated by using a
first-order decay model [20, 63]. Table I contains a summary
of published estimates of C turnover as determined by the
13C natural abundance technique. This summary indicates a
1.8 times longer average MRT of C in the soil surface of
temperate compared with tropical soils (63 ± 7 years versus
35 ± 6 years). This confirms the general assumption that there
is a faster C turnover in tropical than temperate soils. How-
ever, the range in estimated turnovers was similar for tropical
and temperate soils (13–108 years versus 14–141 years), in-
dicating the great variability in estimates and the substantial
overlap in C turnover between tropical and temperate ecosys-
tems.

The higher turnover rate for tropical soils is primarily due
to faster turnover rates of the slow C pool in tropical soils
[102]. Feller and Beare [102] compared the incorporation
rates of C derived from new vegetation in particle size classes
(sand, silt and clay) in temperate and tropical surface soils.
They found that, for all fractions, the time period before half
of the C associated with the fractions was derived from the
new vegetation was longer for temperate than for tropical
soils. However, the differences in half-lives were much larger
for the slow C compartment (i.e., the silt plus clay fraction;
29–38 years) than for the more active C compartment (i.e.,
the sand fraction; 13 years).

Three main mechanisms of C stabilization have been pro-
posed: (1) biochemical stabilization, (2) stabilization by
association with silt and clay particles, and (3) physical
protection within aggregate structures [71]. Biochemical
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Table I. Carbon mean residence time (MRT) in tropical and temper-
ate soils estimated with 13C technique.

Sites
and sources a

MRT (yr)

Region Low b High b Average ± stderr c

Tropical 10/13 13 [62] 108 [254] 36 ± 5

Temperate 19/12 14 [218] 141 [143] 63 ± 7

a First value indicates the number of sites used to calculate average MRT values; second
value indicates the number of literature sources surveyed (i.e., some sources provided data
for multiple sites).
b Number in brackets indicates reference.
c stderr = standard error.
Data from [39, 62, 83, 182, 193, 196, 212, 226, 234, 247, 253, 254, 255] for tropical soils
and [9, 20, 21, 22, 72, 74, 123, 124, 143, 152, 218, 234] for temperate soils.



stabilization of SOM is due to the recalcitrance of compounds
such as lignin and polyphenols [52]. Table II is a synthesis of
SOM quality parameters and parameters indicating the de-
gree of SOM decomposition across sand-, silt- and clay-sized
particle size classes. All four ratios presented in Table II indi-
cate a greater degree of decomposition when they are greater.
For example, the mass ratios of acids to aldehydes of vanillyl
(ac/al)v and syringyl (ac/al)s structural units determined by al-
kaline CuO oxidation have been used to determine the degree
of microbial alteration of the recalcitrant component, lignin
[138]. We found no differences in the ratios for the clay-sized
particle size class, indicating that long-term stabilized SOM
by clay does not differ in quality between tropical and tem-
perate soils. However, a trend to higher (ac/al)v and (ac/al)s

ratios was observed for tropical compared with temperate
soils in the sand- and silt-sized particle size classes (Tab. II).
These higher ratios suggest a proportionally greater stabiliza-
tion of highly decomposed and more recalcitrant materials in
tropical soils than temperate soils. Other measures of the de-
composition stage of SOM, such as the alkyl/O-alkyl ratio
determined by 13C nuclear magnetic resonance and the ratio
of glucose + mannose/xylose + arabinose (GM/AX), did not
reveal a clear difference between tropical and temperate soils
(Tab. II). The alkyl/O-alkyl ratio also tended to be higher in
tropical soils than in temperate soils in the sand- and silt-
sized particle fractions but the opposite trend was observed in
the clay-sized particle fraction. The tendency of higher
alkyl/O-alkyl ratios in the sand- and silt-sized particle frac-
tions corroborates the CuO-oxidation data in that SOM in
tropical soils is more decomposed than in temperate soils.
Baldock et al. [19] also found a higher alkyl carbon content in
two Oxisols compared with two Mollisols and an Andosol.
The tendency of more recalcitrant alkyl C stabilized in tropi-
cal soils is probably related to the generally faster turnover of
C in this category of soils. A faster turnover of C results in a
preferential stabilization of more recalcitrant and older C. In

contrast to the three previously described parameters, the
GM/AX ratio tended to be higher in temperate soils than in
tropical soils, suggesting that SOM is in a more decomposed
state in temperate than in tropical soils. In conclusion, the
SOM quality parameters did not reveal drastic differences
and were even contradictory. However, they indicated a ten-
dency for more decomposed and chemically recalcitrant
forms of short-term stabilized SOM associated with sand and
silt particles in tropical than temperate soils. Consequently,
further research and more sensitive analyses are needed to
draw firm conclusions concerning SOM quality.

The stabilization of C and N by association with silt and
clay particles has been investigated in many studies. Numer-
ous studies reported a relationship between clay or silt plus
clay content and the preservation of organic C and N [102,
135, 189, 238]. It has also been reported that not only the clay
content but also the clay type influences the preservation of
organic C and N [165, 238, 246]. In accordance with Hassink
[135], we investigated the C protective capacity of silt and
clay particles in temperate and tropical soils (Fig. 1); we re-
gressed the amount of C associated with silt and clay (g silt
and clay associated C·kg–1 soil) versus the silt and clay con-
tent (%) for tropical and temperate soils. Both regression
lines had a positive slope and were highly significant, indicat-
ing a positive influence of clay and silt particles on C stabili-
zation. However, the coefficient of determination was lower
in temperate than in tropical soils (r2 = 0.39 versus 0.66). Our
results also indicate a lower stabilization of C per unit of silt
and clay particles and, hence, a lower C protective capacity of
the silt and clay particles in tropical versus temperate soils
(Fig. 1). This lower stabilization of C in tropical soils is prob-
ably mostly related to the different clay types dominant in the
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Table II. Comparison of degree of soil organic matter decomposition
between tropical and temperate soils in the sand, silt and clay fraction
(average ± stderr).

parameter climate sand silt clay

(ac/al)v
a tropical 0.33 ± 0.08 0.60 ± 0.16 0.79 ± 0.15

temperate 0.21 ± 0.02 0.30 ± 0.03 0.59 ± 0.05

(ac/al)s
a tropical 0.84 ± 0.22 1.13 ± 0.22 1.42 ± 0.31

temperate 0.42 ± 0.02 0.64 ± 0.03 0.90 ± 0.05

Alkyl/O-alkylb tropicald 0.58 ± 0.08 0.76 ± 0.08 0.70 ± 0.14

temperate 0.49 0.64 0.86

GM/AXc tropical 0.55 ± 0.05 1.26 ± 0.15 1.68 ± 0.13

temperate 0.94 ± 0.15 1.53 ± 0.15 1.96 ± 0.19

a (ac/al)v and (ac/al)s are the ratio of acid-to-aldehyde of the vanillyl and syringyl units deter-
mined by CuO oxidation.
b The proportions of alkyl-C and O-alkyl-C were determined by 13C NMR.
c GM/AX is the ratio of glucose + mannose / arabinose + xylose.
d Data from [19, 31, Bayer et al., unpublished, 61, 101, 103, 120, 128, 129, Larre-Larrouy
et al., unpublished, Nacro et al., unpublished, 184, 237, 240] for tropical soils and from [6, 7,
68, 118, 128, 175, 180, 249] for the temperate soils.

Figure 1. Carbon stabilization by association with silt and clay parti-
cles in temperate versus tropical and subtropical soils. Data from [29,
44, 80, 102, 127, 195, 249] for tropical soils and from [4, 23, 44, 69,
70, 99, 128, 135, 170, 187, 224, 266] for temperate soils.



two categories of soil. Different types of clay (i.e., 1:1 versus
2:1 clays) have substantial differences in specific surface
areas and cation exchange capacities (CEC) [121] and
should, consequently, have different capacities to bind and
stabilize organic materials. Our data support this because the
tropical soils, dominated by 1:1 clays and consequently lower
CEC’s stabilized less C than the temperate soils, dominated
by 2:1 clays and consequently higher CEC’s. However, the
effect of climate cannot be ignored in this comparison. The
higher temperature and precipitation in tropical regions prob-
ably also induce a faster decomposition rate and therefore
contribute to the lower stabilization of C per unit of clay and
silt.

2.2. Aggregation, biota and soil carbon and nitrogen
dynamics

2.2.1. Model of interactions between aggregation
and biota activity

Aggregates are known to physically protect C and N [40,
96, 150, 209, 210, 230, 232, 245]. Aggregates physically pro-
tect SOM by (1) forming a physical barrier between microor-
ganisms plus microbial enzymes and their substrates, (2)

controlling food web interactions, and (3) influencing micro-
bial turnover [97]. A closer look at the processes involved in
aggregate formation and stabilization in temperate versus
tropical soils illustrates the close relationship between soil
biota and SOM dynamics. In both temperate and tropical
soils, there are several biological processes responsible
for the formation of initial unstable “biological”
macroaggregates (Fig. 2):

(A) Fresh plant-and root-derived residues form the nucle-
ation sites for the growth of fungi and bacteria [150,
210]. Fungal hyphae initiate macroaggregate formation
by enmeshing fine particles into macroaggregates [245].
Microbial (bacterial and fungal) exudates, produced as a
result of decomposition of fresh residue, form binding
agents that further stabilize macroaggregates (t1,A).

(B) Biological macroaggregates also form around actively
growing roots in both temperate and tropical soils. Simi-
lar to fungal hyphae, roots can provide the mechanical
framework for initial formation of macroaggregates by
enmeshing particles and production of cementing agents
(root exudates), which stimulates microbial activity (t0,B

to t1,B) [151].
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Figure 2. Aggregate formation and degradation mechanisms in temperate and tropical soils. Fungal and bacterial activity, active root growth
and earthworm activity are the biological aggregate formation agents in both temperate and tropical soils, whereas the mineral-mineral interac-
tions in tropical soils are the physicochemical aggregate formation agents. Based on [Albrecht, unpubl., 10, 116, 119, 150, 207, 230–232, 257].
UA = unstable aggregates; WSA = water-stable aggregates.



(C) A third common mechanism of biological macroaggregate
formation in temperate and tropical soils is through the ac-
tivity of soil fauna, i.e., earthworms [43, 181], ants and ter-
mites [47]. As an example, earthworms produce casts that
are rich in organic matter (t1,C). However, casts are not sta-
ble when they are freshly formed and wet [181]. When
earthworms ingest soil and particulate organic matter, large
amounts of watery mucus are added to it and the soil under-
goes a thorough kneading. This moulding of the soil will
break bonds between soil particles, thereby reducing stabil-
ity [125, 251]. However, this close contact between organic
matter, mucus and soil particles in casts can lead to highly
stable casts upon drying [181].

The importance of organic matter as a primary binding
agent for soil aggregates holds true for moderately weathered
soils dominated by 2:1 clay minerals. However, highly
weathered soils of the tropics are generally well known for
their large content of mineral particles with variable charge
(oxides and 1:1 clay minerals) (t0,D). Based on micro-
electrophoretic measurements, [200] reported points of zero
net charge (PZNC) for 1:1 clay minerals, such as kaolinites,
ranging from < 3.5 to nearly 4.6. Ionic adsorption data indi-
cated that positive charges were persisting in kaolinites up to
pH values as high as 8–10 [223]. The co-existence of nega-
tive and positive charges at prevailing field pH [99] can ex-
plain the capacity of these soils for mineral-mineral bindings
resulting in “physicochemical” macroaggregates (t1,D).
Moreover, in the presence of oxides, this mineral binding ten-
dency is even enhanced because of higher PZNC values of
both Fe(III)- and Al-oxides and their hydroxides [15, 98,
200] compared with kaolinites. These young “physicochemical”
macroaggregates are only held together by mineral electro-
static interactions, which are strong but have a limited range
of action. Therefore, on a macroaggregate scale, they are
probably not strong enough to resist slaking (t1,D).

All these forces (biological and physicochemical) can play
a role in initial macroaggregate formation. However, at t1, the
young, freshly formed macroaggregates (unstable macro-
aggregates; UA), are only stable when treated in the most
gentle fashion (i.e., when the aggregates are taken from the
field and brought to field capacity or from an incubation
where the water content is at field capacity, subsequently im-
mersed in water and retained when gently sieved). The for-
mation of water-stable aggregates (WSA) that can resist
slaking (i.e., air drying and quick submersion in water before
sieving) occurs through several processes (t1 to t2):

(1) Under wet conditions, ageing may increase the stability
of biological macroaggregates by thixotropic processes
and binding through microbial activity. Microbial activ-
ity is stimulated inside the biological macroaggregates
(and especially inside worm casts) because of their high
organic matter content. As a result, substantial amounts
of polysaccharides and other organics are deposited and
serve to further stabilize the macroaggregates.

(2) Dry-wet cycles can cause closer arrangements of primary
particles, resulting in stronger bonding and increased ag-
gregate stability [156].

(3) In the presence of active root growth, biological and
physicochemical macroaggregates can become even
more stabilized due to biological and physical processes
induced by the roots penetrating the aggregates. As men-
tioned before, roots can produce cementing agents (root
exudates), which can strongly adsorb to inorganic mate-
rials, thereby helping to stabilize aggregates [244]. In ad-
dition, root exudation stimulates microbial activity with
subsequent production of microbial binding agents. Fur-
thermore, roots physically influence aggregation by (i)
exerting lateral pressures inducing compaction, and by
(ii) continually removing water during plant transpira-
tion. This results in localized drying of the soil and cohe-
sion of soil particles around the roots.

The crucial role played by roots in the formation of water-
stable aggregates has been recognized for some time [244],
but only recently published results [116, 208, 257] have re-
ported that roots are more important than shoots in the forma-
tion of aggregates and stabilization of aggregate-associated
SOM (Tab. III). They found that more root-derived
(2.7–22.6%) than shoot-derived (1.1–3.7%) C was stabilized
as particulate organic matter (POM) and occluded within ag-
gregates (Tab. III). However, the ratio of root- over shoot-de-
rived C decreased with time: from 6.1 after 5 months to 2.9
after 12 months and to 1.8 and 1.2 after 18 months of addition
of labeled plant material. Consequently, it has to be deter-
mined how much root- versus shoot-derived C is stabilized in
the long term.

During macroaggregate stabilization (t1 to t2), the intra-ag-
gregate POM (i.e., the fresh plant material that was incorpo-
rated in the macroaggregates during “biological” aggregate
formation) is further decomposed by microorganisms and
fragments into finer POM [230]. This fine POM becomes in-
creasingly encapsulated with minerals and microbial prod-
ucts, forming new microaggregates (53–250 µm) within the
macroaggregates [10, 116, 150, 207, 230]. With active root
growth stabilizing macroaggregates, intense biological activ-
ity (induced by root exudation) may also cause further
encrustation of microbial products and mineral particles,
forming microaggregates around root-derived POM [116]. It
has been found that this microaggregate formation within
macroaggregates is crucial for the long-term sequestration
of C [231, 232] because microaggregates have a greater
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Table III. Root-versus shoot-derived carbon in total occluded partic-
ulate organic matter.

System [reference] Time
(months)a

Root-derived
(%)b

Shoot-derived
(%)

Root/shoot

Vetch (CT) [208] 5 22.6 3.7 6.1

Wheat (NT) [116] 12 3.2 1.1 2.9

Corn (CT) [257] 18 3.3 1.8 1.8

Corn (NT) [257] 18 2.7 2.2 1.2

a Time = time since single addition of labeled root and/or shoot material.
b Percentage of initially added material remaining in the occluded particulate organic matter.



capacity to protect C against decomposition compared with
macroaggregates [24, 40, 234].

The final step of the aggregate turnover cycle (t2 → t3) is
when the macroaggregates break down and release
microaggregates and microbially processed SOM particles.
The macroaggregates break up because over time with fur-
ther decomposition the labile constituents of the coarse sized
SOM are consumed, microbial production of binding agents
diminishes and the degree of association between SOM and
the soil matrix decreases. However, microaggregates are still
stable enough and not as sensitive to disruptive forces as the
macroaggregates, and therefore survive.

2.2.2. Carbon turnover and C and N mineralization
for different aggregate classes

The higher protection of C exerted by microaggregates
than macroaggregates is illustrated by the faster average C
turnover times associated with macroaggregates versus
microaggregates (Tab. IV). Data from Table IV indicate that
C associated with macroaggregates had an average MRT of
42 ± 18 years, whereas C associated with microaggregates
had an average MRT of 209 ± 95 years. The slower turnover
of micro- than macroaggregate-associated C was observed
both for tropical and temperate soils. Not only is C protected,
N is also protected against mineralization within aggregates.
Many studies have used incubations of crushed and intact ag-
gregates to determine the C and N protection level (see refer-
ences for Tab. V). In Table V, studies that crushed soil to a
size of ≥ 250 µm were considered as assessments of
macroaggregate protection whereas studies that crushed soil
to a size considerably smaller than 250 µm were classified
as assessments of microaggregate protection. It is evident
from the crushed/intact mineralization data that in both
tropical and temperate soils, both macro- and
microaggregates protect C and N against mineralization be-
cause mineralization was higher when the macro- and/or
microaggregate structure was disrupted (i.e., crushed). How-
ever, the ratios of crushed/intact mineralization were sub-
stantially higher when microaggregates were disrupted
versus when only macroaggregates were disrupted, indicat-
ing that microaggregates protect labile C and N to a larger
extent than macroaggregates in both tropical and temperate
soils. Balesdent et al. [24] also concluded that microaggregates
protect C more than macroaggregates. This conclusion is in
agreement with the higher MRT of microaggregate-associ-
ated C than macroaggregate-associated C. It is also inter-
esting to note that the crushed/intact N mineralization
tended to be higher than the C mineralization. This higher
N mineralization led to a lower C/N ratio of the mineralized
SOM in crushed versus intact macroaggregates (temperate
macroaggregates: 11.5 ± 1.7 versus 14.0 ± 2.1; tropical
macroaggregates: 8.9 ± 0.0 versus 9.5 ± 0.4). The calculated
C/N of the SOM released by crushing of macroaggregates
was 4.1 ± 1.1 and 7.2 ± 0.3 in temperate and tropical soils, re-
spectively. This indicates that SOM released from
macroaggregates upon crushing is in a more decomposed
stage and primarily of microbial origin.

The stabilization of organic C and N within aggregates is
partly related to the decreased oxygen concentration in the
center of the micro- and macroaggregates. Several studies
investigating oxygen profiles across aggregates have re-
ported steep declines in oxygen concentrations over small
distances from the aggregate surface [142, 225, 227]. This
more anaerobic condition in the center of macroaggregates
results in a decreased C and N mineralization, but increases
denitrification rates and consequently gaseous N losses [142,
225]. Increasing N2O fluxes with increasing water-stable ag-
gregate size class have been observed [37, 243], and gradi-
ents of oxygen and N2O concentrations are asymmetrical
across macroaggregates [142, 225], suggesting hot spots of
anaerobiosis and denitrification within macroaggregates.
The occlusion of POM within the aggregates favors
denitrification because POM is a substrate for microbial ac-
tivity, and consequently a source of carbon and nitrate within
an oxygen-limited environment [202]. The anaerobic sites
within the macroaggregates presumably occur in both tropi-
cal and temperate soils.

2.2.3. Carbon content and aggregate stability

Since tropical soils have the potential to form biological as
well as physicochemical macroaggregates, we hypothesized
that WSA formation should be more independent from or-
ganic matter inputs in tropical soils than in temperate soils.
With low organic matter inputs, physicochemical aggregates
can become stabilized through the physical action of living
roots that penetrate the unstable aggregates and subsequently
increase their stability by the same physical forces as
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Table IV. Mean residence time (MRT) of macro- and micro-
aggregate-associated C (adopted from [229]).

Ecosystem [reference] Aggregate
Size classa (µm)

MRT

Tropical pasture [234] M > 200 60

m < 200 75

Temperate pasture grasses [152] M 212–9500 140

m 53–212 412

Soybean [51] M 250–2000 1.3

m 100–250 7

Corn [192] M > 250 14

m 50–250 61

Corn [5] M > 250 42

m 50–250 691

Wheat-fallow, no-tillage [230] M 250–2000 27

m 53–250 137

Wheat-fallow, conventional tillage [230] M 250–2000 8

m 53–250 79

Average ± stderrb M 42 ± 18

m 209 ± 95

a M = macroaggregate; m = microaggregate.
b stderr = standard error.



described above. In addition, the previously described bio-
logical forces associated with living roots will further en-
hance the formation of WSA. We tested the hypothesized
lower dependency of WSA on SOM by comparing the rela-
tionship between C content and aggregate stability in tropical
versus temperate soils (Fig. 3).

In a first test, we collected published data on aggregate sta-
bility determined with the method of [157]. Except, we only
took data from studies that used surface soil sieved through a
2–4.75 mm sieve and air-dried prior to wet sieving with a 200
or 250 µm sieve in order to have only slaking-resistant
macroaggregates. The analysis corroborated our hypothesis
because we found for a certain C content a higher aggregate
stability in tropical than in temperate soils, but a lower signif-
icant correlation (r2 = 0.10 versus 0.44) between C content
and aggregate stability in tropical than in temperate soils
(Fig. 3a). For this data set, we did not find any correlation be-
tween clay content and aggregate stability, which excludes a

clay effect on the difference in aggregate stability between
tropical and temperate soils. In a second test, we investigated
the relationship between organic matter (OM) content and the
aggregate stability after benzene treatment (Agb) as proposed
by [191]. The benzene pretreatment is adopted from the
Henin-protocol [140] and tests specifically the effect of
hydrophobicity on aggregation. Therefore, it emphasizes the
effect of SOM on WSA in medium to high OM-containing
soils. Monnier [191] found a close relationship between Agb
and 100 × OM% / clay(%), the OM% being the OM associ-
ated with the heavy fraction (if OM% < 7 then heavy frac-
tion > 2.0 g·cm–3; if OM% > 7 then heavy fraction
1.75 g·cm–3). We adopted the data from Monnier [191] for the
temperate soils and combined it with data from Boyer and
Combeau [46], Combeau [75] and Martin [183] for tropical
soils. However, the OM% for the tropical soils represents to-
tal soil OM and not only OM associated with the heavy frac-
tion. Consequently the OM% is overestimated for the tropical
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Table V. Carbon and nitrogen mineralization of intact and crushed macro- and microaggregates.

Land use [reference] Organic C
(%)

Organic N
(%)

Crushed/intact
C mineralization

Crushed/intact
N mineralization

Macroaggregates

Temperate soils

Native [96] 2.35 0.22 1.04 1.38

Cultivated [96] 1.82 0.19 1.19 1.41

Native [131] 3.86 0.34 1.14 1.43

Cultivated [131] 2.04 0.20 1.05 1.18

Cultivated [122] 2.19 Nd 1.29 Ndb

Average ± stderra 1.14 ± 0.05 1.35 ± 0.06

Subtropical soils

No-tillage [36] 2.46 0.21 1.30 1.40

Conv. tillage [36] 1.35 0.12 1.17 1.21

No-tillage [45] 2.27 Nd 1.20 Nd

Conv. tillage [45] 1.01 Nd 1.17 Nd

Average ± stderr 1.21 ± 0.03 1.31 ± 0.10

Microaggregates

Temperate soils

Cultivated [122] 2.19 Nd 2.06 Nd

Cultivated [239] 0.80 Nd 4.30 Nd

1.30 Nd 6.90 Nd

2.00 Nd 10.80 Nd

2.40 Nd 6.40 Nd

Native [205] 2.95 0.29 2.49 1.61

Cultivated [205] 1.07 0.12 3.48 3.00

Average ± stderr 5.20 ± 1.16 2.31 ± 0.69

Subtropical soils

No-tillage [45] 2.27 Nd 1.76 Nd

Conv. tillage [45] 1.01 Nd 1.37 Nd

Average ± stderr 1.56 ± 0.20 Nd

a stderr = standard error.
b Nd = not determined.



soils. In agreement with the Kemper and Rosenau [157] data,
tropical soils had a higher Agb for a given OM/clay ratio but a
lower significant coefficient of determination (r2 = 0.26 ver-
sus 0.95) between Agb and OM/clay than temperate soils
(Fig. 3b). If we had had the OM% of the heavy fraction in-
stead of the total soil OM for the tropical soils, then the tropi-
cal soils would have had an even higher stability for a given
OM/clay ratio than the temperate soils.

In a third test, we used the Henin instability index (Is):

Is
(A LF) %

1/ 3Ag% – 0.9SG%
max

=
+

(1)

where (A+LF)max% is the maximum percentage of dispersed
clay + silt fraction (0–20 µm) obtained after three
pretreatments: (1) air-dried (2) immersed in alcohol, and (3)
immersed in benzene; Ag% is the sum of the percentages of
>200 µm aggregates of the three pretreatments retained after
shaking in water (30 manual turnings and sieving); SG% is
the percent of coarse mineral sand (>200 µm). We opted for
this index because it integrates the processes of clay disper-
sion and aggregate slaking [140]. The beauty of this index is
that a close relationship between Is and the infiltration rate
(K) has been found (Fig. 4), associating this index with a
functional attribute of soils. We compared the Is versus C
content of medium (16.7–44.3% clay + silt) textured temper-
ate [76] and tropical soils [75]. In agreement with the previ-
ous two tests, the temperate soils had a higher instability (i.e.,
lower stability) and coefficient of determination (r2 = 0.31
versus 0.07) than the tropical soils (Fig. 3c). The regression
for tropical soils was also not significant. The average insta-
bility indexes for the data set used of the temperate and tropi-
cal soils are 1.11 ± 0.04 and 0.55 ± 0.05, respectively. These
instability indexes correspond to infiltration rates of 4.2 ±
0.15 and 7.6 ± 0.7 cm·h–1 for temperate versus tropical soils
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Figure 3. Relationship between aggregate stability and soil carbon
content. (a) Relationship between soil carbon content and aggregate
stability measured according to Kemper and Rosenau [157]. Data from
[27, 28, 49, 64, 112, 162, 163, 240] for (sub)tropical soils and from [86,
92, 144, 160, 169, 186, 213, 262] for temperate soils. (b) Relationship
between soil organic matter, clay and aggregate stability measured af-
ter a benzene pretreatment as proposed by Monnier [191]. Data from
[46, 75, 183] for tropical soils and from [191] for temperate soils. (c)
Relationship between soil carbon content and the instability index mea-
sured according to Henin et al. [140]. Data from [75] for tropical soils
and from [76] for temperate soils.

Figure 4. Relationship between the Henin instability index (Is) and
infiltration rate (K). Adapted from [185].



(Fig. 4). Faster infiltration rates for low activity clay (LAC)
tropical soils compared with temperate soils have been attrib-
uted to the strong pseudosand aggregation of kaolinite,
oxyhydroxides and organic matter in LAC soils [90]. The
higher aggregate stability of LAC tropical soils than temper-
ate soils is mostly related to the difference in mineralogy be-
tween the soil categories and not to climate differences. This
is illustrated in Figure 5, where we compared soils within the
same tropical region (Martinique) that are dominated by
1:1 clays and oxides (LAC) versus soils dominated by
2:1 clays (Vertisols). Within these tropical soils, the LAC
soils had a greater amount of water-stable aggregates and the
amount of water-stable aggregates was less related to total
soil organic C content than in the 2:1 clay-dominated soil.
However, it is important to note that the studied Vertisols are
easily dispersible, partly because of their high percentage of
exchangeable Mg + Na on the ionic complex [1]. Also, Denef
et al. [81] found a greater response in aggregation to organic
matter addition in an Alfisol with a mixed mineralogy (ver-
miculite, kaolinite and oxides) compared to an Oxisol domi-
nated by kaolinite and oxides and a Mollisol dominated by
2:1 clays. This greatest response in aggregation in a mixed
mineralogy soil is probably a result of all possible binding
mechanisms occurring, i.e., electrostatic bindings between
2:1 clays and oxides/2:1 and 1:1 clays/1:1 clays and oxides,
in addition to OM functioning as a binding agent between
2:1 clays/2:1 and 1:1 clays.

3. NO-TILLAGE IN TROPICAL
VERSUS TEMPERATE CLIMATE

3.1. History of no-tillage in Brazil and the USA

No-tillage (NT) practices have been widely adopted in
North and South America. In the US, the adoption of NT

spread from several locations (Fig. 6a). In the late 50s and
early 60s several agricultural experiments were virtually si-
multaneously set up in the US Corn Belt (Blacksburg, VA;
Columbus, OH; Dixon Springs, IL and Lexington, KY)
[141] and the Great Plains (Sidney MT; North Platte, NE and
Bushland, TX). A farmer, Harry Young, from Herndon, KY
is considered the “father of no-tillage” because he was the
first farmer to adopt NT in 1961 [82, 141]. One big push for
the development of NT systems was the significant progress
in herbicide technology with the introduction of atrazine in
the late 50s and paraquat in the early 60s [141]. The farmers’
reasons for switching from conventional tillage (CT) to NT
differed somewhat between the Great Plains and the Corn
Belt. In the Great Plains, the high moisture retention under
NT was a major incentive for adoption of NT practices in this
semi-arid region [14, 41, 236, 261]. The high moisture reten-
tion allowed farmers to reduce the frequency of fallow, lead-
ing to cropping intensification. In the Corn Belt soil erosion
control was a major incentive for NT practices. In both re-
gions, the economical advantages of NT have played a role in
the adoption of the practice [141]. The Conservation Tech-
nology Information Center in the USA reports 21.1 million
ha or 17.6% of cropland under NT. However, this includes
short-term NT, such as soybean/corn rotations in which soy-
bean is under NT but tillage is used before and during corn
growth. Taking this into account, the most current estimate is
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Figure 5. Relationship between water-stable aggregates measured
according to Albrecht et al. [1] and soil carbon content of 1:1 clay
dominated and 2:1 clay dominated tropical soils. Data from
[Albrecht, unpublished].

Figure 6. First no-tillage experiments and no-tillage dispersion/adap-
tation patterns in the US and Brazil.



9.9 million ha or 8.8% of cropland is under continuous
(> 5 yr) NT management in the USA (Eve, pers. Comm.).

In Brazil, the practice of NT spread from the first NT ex-
periment established in 1972 in the state of Paraná (Fig. 6b).
The continuous summer soybean/winter wheat rotation
widely practiced in Paraná had caused serious erosion prob-
lems. The current estimate of annually harvested production
under NT covers 13.5 million ha, (Rio Grande do Sul, Santa
Catarina and Parana; Federacao Brasiliera de Planto Direto
Napalha), which accounts for approximately 32% of the cul-
tivated grain area in Brazil, and about 70% is in the southern
subtropical states of Brazil. The current expansion frontier is
in the central tropical region of the Cerrado (Fig. 6b). The
reasons for adoption of NT are: (1) erosion control, (2)
smaller number of field operations which reduces fuel input,
tractor-time and labor requirements, resulting in lower total
cropping costs than with CT practices, and (3) less cropping
risks due to the early planting option. In the future, it is pro-
jected that NT will expand to 20 to 25 million ha in Brazil be-
tween 2007 and 2010. The most important reasons for the
future expansion will be agricultural sustainability and envi-
ronmental benefits.

3.2. Effect of no-tillage on carbon and nitrogen
dynamics

3.2.1. Carbon sequestration under no-tillage

It is generally accepted that no-tillage/cover crop systems
have beneficial effects on soil fertility by, for example, de-
creasing erosion, increasing aggregation and potentially in-
creasing SOM contents. It is also known that microbial
biomass and earthworm abundance is higher under NT than
under CT [87, 88, 201]. In addition to the higher microbial
biomass, NT favors the fungal over bacterial populations [34,
91, 115], leading to higher fungal-derived glucosamine to
bacterial-derived muramic acid ratios [115, 130]. The prefer-
ential stabilization of fungal over bacterial biomass can lead
to more efficient C and N cycling [33, 115].

We found that with years under NT, both tropical and tem-
perate soils had an increasing SOC stock compared with CT
(Figs. 7 and 8). Based on a first approximation by regression
analyses, we found twice as much annual sequestration of C
in the 0–10 cm layer of tropical soils versus temperate soils
(0.43 versus 0.16 Mg C·ha–1·yr–1; Fig. 7). However, the inter-
cept for the tropical soils is –0.108 Mg C·ha–1 versus
0.145 Mg C·ha–1 for the temperate soils and the regression
line for the tropical soils is highly influenced by the 20- and
22-year-old experiments reported by Sa et al. [219]. In addi-
tion, only the 0–10 cm surface layer is considered in this
analysis whereas plowing depth is often 15–25 cm. A more
rigorous comparison between CT and NT systems should in-
clude at least the whole plow depth. Carbon inputs are distrib-
uted over the whole plow layer or even preferentially to lower
depths within the plow layer in CT systems. Therefore, we
reanalyzed the data using linear mixed effect modeling (S-
PLUS 2000 Professional Release 3; Insightful Corporation,
Seattle WA) with time, depth and climate as fixed effects and

site as a random effect. The random effect for site is to take
into account differences between sites and the dependency
between multiple samples across depth within one site (see
[198] for further details). We also tried to account for
temporal trends at the same site, but there were not enough
sites with repeated measurements to account for this effect in
the model. The results from this analysis suggest a similar C
sequestration rate in the 0–30 cm layer of NT systems in trop-
ical and temperate regions (i.e., 325 ± 113 kg C·ha–1·yr–1)
(Fig. 8a). In the tropics, the intercept was a little smaller, but
it was not significantly different from the temperate region.
The 325 kg C·ha–1·yr–1 sequestration rate falls well within the
range of estimates by West and Marland [260] and Eve et al.
[100] for temperate regions. West and Marland [260] re-
ported a mean C sequestration rate of 337 kg C·ha–1·yr–1 for
76 long-term experiments and Eve et al. [100] found a mean
C sequestration rate of 200–520 kg C·ha–1·yr–1 across regions
of the conterminous USA. It is important to note that in both
climates an initial decline in soil C was observed under NT
compared with CT. This has also been observed in other
short-term studies [11, 139, 186]. However, after 6–8 years of
NT practices, an accumulation of C was observed for the
0–30 cm layer (Fig. 8a). The initial decrease in C content un-
der NT is probably related to the slower decomposition and
lower C input with less incorporation of surface residue car-
bon. In order to further investigate the effect of NT on C dis-
tribution with depth, we used the linear mixed effect model to
assess C sequestration to a depth of 50 cm after 20 years of
NT (Fig. 8b). There were not enough data available to assess
C sequestration at a deeper depth than 50 cm. No differences
were found in C sequestration across depth between tropical
and temperate soils. In both soil categories, the highest C
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Figure 7. Carbon sequestration under no-tillage (NT) compared to
conventional tillage (CT) with time in (sub)tropical and temperate
soils. Data from [26, 35, 38, 59, 65, 66, 79, 109–111, 113, 114, 139,
164, 172, 173, 177, 194, Paustian and Elliott, unpublished, 219, 220,
241] for (sub)tropical soils and from [2, 22, 42, 54, 55, 58, 67, 72, 78,
84, 89, 93, 104, 105, 133, 134, 136, 146, 155, 167, 168, 176, 186, 190,
197, Paustian and Elliott, unpublished, 204, 206, 211, 214, 233, 259,
263] for temperate soils.



sequestration due to NT practices was in the surface layers
(~ 7 Mg·ha–1 over 20 years in the 0–10 cm layer). Greater
stratification of organic carbon is common in agricultural
soils following conversion to no-till (e.g., [11, 105, 186, 221,
256]. The stratification of C is less in CT compared with NT
because plowing distributes C inputs more evenly throughout
the plow layer. However, a net C sequestration was observed
to a depth of 50 cm after 20 years under NT (~ 3 Mg·ha–1 for
the 0–50 cm layer). Consequently, the gains in C at the sur-
face under NT seem to exceed any offsetting C increases at
depth in CT.

3.2.2. Mechanisms of C sequestration under no-tillage

Since the differences in C input between NT and CT are
generally small [203] the differences in C sequestration be-
tween the two systems is mostly related to differences in C
decomposition rates. Estimates of the MRT of total soil or-
ganic C based on the 13C natural abundance technique reflect
a reduced decomposition rate of C derived from the original
vegetation in NT versus CT soils in the temperate region
(Tab. VI). All published values for temperate soils corrobo-
rated this reduced C turnover under NT compared with CT,
except for the non-fertilized treatment in Rosemount, Minne-
sota (Tab. VI). On average, the MRT was 1.5 times larger un-
der NT than CT for temperate soils. No comparative data
between NT and CT could be found for tropical soils.

The direct and indirect effects of tillage on aggregation
can partially explain the increased decomposition rate under
CT. Conventional tillage is generally detrimental to soil
structure by continually exposing new soil to wet-dry and
freeze-thaw cycles at the surface [35, 217], thereby increas-
ing the disruption of aggregates. Converting from CT to NT
generally increases aggregation (Fig. 9). Increased aggrega-
tion under NT is probably not just a direct function of the lack
of physical disturbance due to plowing. As mentioned before,
fauna and microbial biomass, particularly fungal biomass, is
higher under NT [88, 115, 242], which probably results in the
formation of more binding agents (e.g., extra-cellular poly-
saccharides) and the development of hyphal networks en-
meshing particles and favoring aggregate stability. The
increased aggregation with NT compared with CT during the
first 15 years was more pronounced in the tropical soils than
in the temperate soils (Fig. 9). This more pronounced aggre-
gation increase does, however, not seem to lead to an
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Figure 8. Carbon sequestration under no-tillage (NT) compared to
conventional tillage (CT) with time (a) and by depth (b) in (sub)tropi-
cal and temperate soils; carbon sequestration assessed by a linear
mixed effect model. Data from [3, 26, 30–32, 35, 38, 59, 65, 77, 79,
109, 111, 113, 114, 139, 164, 172, 173, 177, 194, Paustian and Elliott,
unpublished, 214, 219, 220, 241] for (sub)tropical soils and from [2,
11, 22, 42, 50, 54–56, 58, 67, 72, 78, 84, 85, 89, 93, 95, 96, 104, 105,
133, 134, 136, 146, 154, 155, 167, 168, 176, 186, 190, 197, Paustian
and Elliott, unpublished, 204, 206, 211, 214, 233, 256, 259, 263, 265]
for temperate soils.

Table VI. Carbon mean residence time (MRT) in no-tillage and con-
ventional tillage systems estimated with 13C technique (adopted from
[229]).

Site [reference] Cropping, pasture or forest
system

Depth
(cm)

ta

(yr)
MRT
(yr)

Sidney, Nebraska
[230]

Wheat-fallow (NT) 0–20 26 73

Wheat-fallow (CT) 44

Delhi, Ontario
[218]

Corn (NT) 0–20 5 26

Corn (CT) 14

Boigneville,
France [22]

Corn (NT) 0–30 17 127

Corn (CT) 55

Rosemount,
Minnesota [72]

Corn (NT, 200 kg·N·ha–1·yr–1) 0–30 11 118

Corn (CT, 200 kg·N ha–1·yr–1) 73

Corn (NT, 0 kg N·ha–1·yr–1) 54

Corn (CT, 0 kg N·ha–1·yr–1) 72

Average
± stderrb

NT 80 ± 19

CT 52 ± 11

a Time period of experiment.
b stderr = standard error.



increased C sequestration in tropical soils (Fig. 8). This is
probably a result of the mineral-mineral bindings that occur
in tropical soils. Aggregates formed by this mechanism (i.e.,
physicochemical aggregates) will form faster but also protect
less C upon conversion to NT than aggregates in temperate
soils (i.e., biological aggregates). In the latter, the binding ac-
tion of SOM leads to the incorporation of SOM within aggre-
gates, where it is then protected against decomposition.
Consequently, first SOM has to build up before a greater ag-
gregation level is attained and there is a lag-phase associated
with this build-up of SOM under NT (Fig. 8a). However,
these biological aggregates protect more C because they in-
corporated more C during their formation.

Six et al. [230, 231] indicated that in addition to the
amount of aggregation, the rate of turnover of soil aggregates
influences C stabilization. They developed a conceptual
model of aggregate and SOM turnover in NT and CT systems
in the temperate region (Fig. 10), based on the concepts pre-
sented in Figure 2 and additional data collected, specific to
NT and CT systems. According to the model, fresh plant ma-
terial provides the POM that acts as a nucleation site for the
growth of fungi and other soil microbes [5, 150, 209]. Micro-
bial growth and the resulting production of extracellular
polysaccharides bind residue and soil particles into
macroaggregates. Following the incorporation of fresh plant
material, microorganisms utilize the more easily decompos-
able carbohydrates, yielding intra-aggregate POM (iPOM).
This iPOM is further decomposed and fragmented into
smaller particles, but decomposition occurs at a slower rate
within macroaggregates as compared with non-aggregate-as-
sociated POM. Some of this finely fragmented iPOM be-
comes encrusted with mineral particles and microbial

byproducts, leading to the formation of microaggregates
within macroaggregates and consequently an increased phys-
ical protection of the iPOM. As the binding agents generated
by decomposition of young POM are lost, highly recalcitrant
residual POM and stabilized microaggregates are released.
These materials may subsequently be reincorporated into
new aggregates (Fig. 10). This occurs in both the CT and NT
systems but at different rates and the new macroaggregates
do not have the same composition. Six et al. [232] found that
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Figure 9. Relative soil aggregation under no-tillage (NT) versus con-
ventional tillage (CT), expressed as the ratio of the mean weight di-
ameter of water-stable aggregates. Data from [35, 57, 59, 60, 106,
111, 132, 137, 164, 188, 216, 228] for (sub)tropical soils and from [8,
53, 108, 115, 161, 233, 250, 264] for temperate soils.

Figure 10. This conceptual model of the ‘life cycle’ of a
macroaggregate shows the diminished formation of new
microaggregates within macroaggregates and the reduced protection
of carbon within these microaggregates by tillage (adapted from
[232]).

Table VII. Percent microaggregates in macroaggregates and concen-
trations of inter-microaggregate particulate organic matter (POM)
and intra-microaggregate POM in no-tillage (NT) and conventional
tillage (CT) surface layer (0–5 cm) layer in Sidney, NE (adopted from
[232]).

Treatment Microaggregates in
macroaggregatesa

Inter-microaggregate
POM

Intra-microaggregate
POM

% g C·kg–1 sandfree macroaggregates

NT 47.1 b 1.3 11.1

CT 27.0 2.8 3.8

a The data presents the% of macroaggregate soil found in microaggregates (sand-corrected).



microaggregates within macroaggregates accounted for only
27% of the macroaggregate weight in CT, compared with
47% of the macroaggregate weight in NT (Tab. VII). Hence,
the formation of new microaggregates within macro-
aggregates was reduced by a factor of about 2 (27% vs. 47%)
in CT compared with NT. In addition, the concentration of
intra-microaggregate POM-C was three-fold greater in NT
compared with CT while the concentration of inter-
microaggregate POM-C (i.e., POM-C held within
macroaggregates but not within microaggregates) was two-
fold greater in CT compared with NT (Tab. VII). The lower
amount of microaggregates within macroaggregates and
lower stabilization of intra-microaggregate POM in CT com-
pared with NT is congruent with the faster turnover of
macroaggregates in CT compared with NT (Tab. IV). Thus,
macroaggregate turnover, microaggregate formation and sta-
bilization of C appear to be linked: a faster turnover of
macroaggregates reduces the microaggregate formation
within macroaggregates and stabilization of fine iPOM. The
greater accumulation of microaggregates rich in fine iPOM
contributes to the greater total SOM-C under NT. Six et al.
[234] found that the increase in total fine iPOM (i.e., inter–
plus intra-microaggregate iPOM) alone accounted, on aver-
age, for 21% of the total C difference between NT and CT at
four temperate agricultural experiment sites.

3.2.3. Greenhouse gas balance for no-tillage

It was previously suggested that congruent with the stabi-
lization of C and N an increase in N2O fluxes could occur.
Therefore, we collected and synthesized published N2O-flux
data from CT and NT systems in order to have an example
where management changes C and N stabilization and might
lead to differences in N2O fluxes. We found data for several
temperate sites, but only a single subtropical site (Fig. 11).
Consequently, tropical soils could not be considered for this
comparison. For temperate soils, N2O-fluxes were often
found to be greater under NT than under CT management.

The average N2O-flux difference between NT and CT
management presented in Figure 11 is 2.91 ± 0.78 kg N-
N2O·ha–1·yr–1 (Tab. VIII). This is a relatively small flux ver-
sus the yearly N input as crop residue and fertilizer, but it is a
substantial flux from a global change standpoint. The global
warming potential of N2O is 310 CO2 equivalents per N2O
molecule, resulting in large global change impacts of small
N2O fluxes. This is illustrated in the greenhouse balance
presented in Table VIII. Previously, we indicated that NT re-
sults in an average C sequestration rate of 325 ± 113 kg
C·ha–1·yr–1, which is much less than the average increase in
N2O-fluxes under NT expressed in C-equivalents (386 ±
104 kg C-equivalents·ha–1·yr–1). In order to complete the
greenhouse gas balance, we summarized published CH4-up-
take data for NT and CT systems, based on data from temper-
ate soils; no studies were found for tropical soils. Methane
uptake was on average 0.42 ± 0.10 kg C-CH4·ha–1·yr–1 greater
under NT than under CT (Tab. IX). The greater CH4-uptake
under NT is believed to be related to the higher pore continu-
ity and presence of ecological niches for methanotrophic

bacteria in NT compared with CT [148]. The higher CH4-up-
take and increased C sequestration, however, do not counter-
balance the greater N2O-fluxes under NT; this results in an
overall negative greenhouse gas balance of 214 kg CO2-equiv-
alents·ha–1·yr–1. However, it is evident from the error terms
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Table VIII. Greenhouse gas balance for no-tillage.

Greenhouse gas flux GWPa CO2-equivalents

325 ± 113 kg C·ha–1·yr–1 1 1192 ± 414

–2.91 ± 0.78 kg N2O-N·ha–1·yr–1 310 –1418 ± 382

0.42 ± 0.10 kg CH4-C·ha–1·yr–1 21 11.8 ± 2.8

Balance –214

a GWP = Global warming potential [149].

Table IX. Methane uptake (kg CH4·ha–1·yr–1) in no-tillage (NT) ver-
sus conventional tillage (CT) systems.

Site [reference] NT CT NT-CT

Scotland [25] 2.56 1.92 0.64

Michigan, USA [215] 0.89 0.71 0.18

Nebraska, USA [159] 2.74 2.15 0.59

2.7 2.37 0.33

2.96 2.92 0.04

Alaska [73] 1.17 0.84 0.33

Germany [147] 0.95 0.13 0.82

Average ± stderra 0.42 ± 0.10

a stderr = standard error.

Figure 11. Difference in annual N2O fluxes between no-tillage (NT)
and conventional tillage (CT) agroecosystems in temperate and
(sub)tropical regions. Data from [126] for the (sub)tropical soils and
from [13, 16, 17, 25, 48, 117, 158, 159, 171, 174, 178, 179, 199, 215]
for the temperate soils.



associated with each of the greenhouse gas fluxes that the er-
ror for the balance should also be large. We could not esti-
mate the error associated with the balance because we could
not account for interactions between the different greenhouse
gas fluxes. Another word of caution is related to the fact that
C sequestration with NT only lasts for 20–30 years as C-
stocks reach a new equilibrium [149], whereas the change in
N2O-fluxes with long-term NT is not known. The N2O-fluxes
presented in Figure 11 could suggest that the difference in
N2O-fluxes between NT and CT decreases with years under
NT, but it needs to be pointed out that the older sites in our
summary are not fertilized. Consequently, the trend with time
in Figure 11 is probably contingent on differences in fertil-
ization between the sites and not a temporal effect.

We presented here a first approximation of a greenhouse
gas balance for NT systems compared with CT systems based
on average values across a wide range of agroecosystems.
Consequently, local differences between agroecosystems
might lead to a different balance. In addition, we only in-
cluded in our data synthesis studies that held other manage-
ment practices equivalent to NT and CT treatments.
Consequently, our comparison did not consider the effects of
any other changes in management. For example, NT prac-
tices can allow farmers in the Great Plains to intensify (i.e.,
more crops in rotation) their cropping system, which leads to
more C-sequestration. In Brazil, farmers often combine their
NT practices with the introduction of cover crops, which also
have the potential to augment C sequestration, but also in-
crease the risk of more N2O emissions if cover crops are le-
gumes. Even without considering other management
impacts, this first approximation of a greenhouse gas balance
for NT and CT still reveals some important issues. First, there
is a need to consider the small difference in N2O-fluxes be-
tween NT and CT in studies concerning global change. Sec-
ond, comparative data between NT and CT for N2O-fluxes
and CH4-uptake are lacking for tropical soils. Third, from a
global change standpoint, agricultural management practices
that may reduce N2O-fluxes (e.g., application time and
method of N fertilizer, precision farming techniques, alterna-
tive crop rotations, type of cover crop, addition of nitrifica-
tion inhibitors) should be investigated and implemented if
found to be feasible.

4. SUMMARY AND CONCLUSIONS

In conclusion, carbon turnover is generally faster in tropi-
cal soils than temperate soils. This faster turnover seems to be
related to (1) a lower protective capacity of silt and clay parti-
cles in tropical than in temperate soils, and (2) a less tight
feedback between aggregation and C content. The faster C
turnover in tropical soils tends to lead to a proportionally
greater stabilization of more recalcitrant C compounds, but
this conclusion needs further corroboration. Even though the
feedback between SOM and aggregation is less tight in tropi-
cal than temperate soils, three “biological” aggregate forma-
tion agents were identified for both soil categories, including
microbial activity, actively growing roots and fauna (e.g.

earthworms). In tropical soils, additional aggregate forma-
tion agents are the oxides, leading to the formation of
“physicochemical” aggregates. The three biological aggre-
gate formation agents in temperate soils, along with the
physicochemical interaction in tropical soils have to work in
consortium over time to form water-stable macroaggregates.
Since all four aggregate forming processes can occur in soils
with mixed mineralogy, we hypothesize that these soils have
the highest aggregate formation potential. During formation
of water-stable macroaggregates, microaggregates are
formed within macroaggregates, which leads to the long-term
stabilization of C and N. However, the formation of
macroaggregates is suggested to also increase denitrification
and N2O emissions. No-tillage practices have been widely
adopted in the US and Brazil because of reduced erosion, in-
creased moisture retention, improved soil fertility and gener-
ally better soil quality. No-tillage has also been identified as
an option to mitigate greenhouse gas emissions [149]. In-
deed, we found a general increase in soil C levels (≈ 325 ±
113 kg C·ha–1·yr–1) under NT compared with CT for both
tropical and temperate systems. Increased soil C levels under
NT compared with CT are a result of a 1.5 times slower C
turnover, partially induced by an increased macro-
aggregation and a decreased macroaggregate turnover, lead-
ing to a stabilization of C within microaggregates. In addition
to the soil C sequestration, CH4 uptake (≈ 0.42 ± 0.10 kg C-
CH4·ha–1·yr–1) increased in temperate NT systems. However,
N2O emissions were ≈ 2.91 ± 0.78 kg N-N2O·ha–1·yr–1 higher
under NT compared with CT in temperate regions. Calcu-
lating a greenhouse gas balance by expressing all greenhouse
gas fluxes in CO2-equivalents revealed a negative balance of
214 kg C-equivalents·ha–1·yr–1 for temperate soils. Conse-
quently, from an agronomic standpoint NT is beneficial, but
from a global change standpoint more research is needed to
investigate the interactive effects of tillage, fertilizer applica-
tion methodology and crop rotation as they affect C-seques-
tration, CH4-uptake and N2O-fluxes, especially in tropical
soils, where data on this matter is lacking.
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