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Abstract

Little is known about the factors affecting the relative influences of stochastic and deterministic processes that govern the

assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities

using six different successional soil datasets distributed across different regions. Different relationships between pH and

successional age across these datasets allowed us to separate the influences of successional age (i.e., time) from soil pH. We

found that extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial

communities through deterministic processes, whereas pH conditions close to neutral lead to phylogenetically less clustered

bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main

driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of

stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with

community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when

studying globally distributed samples collected without regard for successional age. This dataset confirmed the strong

influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH

conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological

and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes

shape soil bacterial community assembly is a consequence of soil pH rather than successional age.

Introduction

Understanding the fundamental ecological processes that

shape the assembly of microbial communities is a major

challenge in microbial ecology [1]. The assembly of

microbial species in a local community is influenced by two

types of ecological processes, namely deterministic and

stochastic [2, 3]. Deterministic processes include ecological

selection imposed by abiotic and biotic factors, which

influence organismal fitness and thereby determine the

composition and relative abundance of species [4, 5]. Sto-

chastic processes, in contrast, involve random birth, death,

and dispersal events that result in patterns of species com-

position indistinguishable from those produced by random

chance alone [6, 7]. Both deterministic and stochastic pro-

cesses act concurrently to regulate the assembly of ecolo-

gical communities [8–11]. However, variation in strength of

ecological selection and rates of dispersal influence the

relative importance of deterministic and stochastic pro-

cesses across time, space, and from one system to another

[12–14].
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An open question is the degree to which differences in

the balance between stochastic and deterministic processes

are driven by differences between environments rather than

time itself. Successional soils represent a series of soils of

different ages with varying abiotic and biotic characteristics

[15]. The pedogenesis (soil development) processes along

successional soils results in directional change in nutrient

content and often, but not always, lead to declines in pH

[16–19]. Over the past decade, several studies have char-

acterized the shifts in soil microbial communities along

successional soils—on both shorter [20–25] and longer [26,

27] time scales. However, relatively little is known about

the underlying ecological processes that govern the

assembly of microbial communities in successional soils

[13, 21, 28]. One limitation is that in any single dataset or

system, environmental conditions often vary systematically

with time such that these variables are confounded. Bring-

ing together a set of successional systems that differ in the

relationship between soil age and environmental properties

is ideal for disentangling the relative contributions of the

environment vs. time.

Recent studies have indicated that in early successional

soils, bacterial community assembly is largely governed by

stochastic processes, with the relative importance of deter-

ministic processes increasing progressively in later succes-

sional soils [13, 28]. However, it is still not clear what

underlying environmental factors or community processes

may be changing between early and late successional soils

to produce this increased importance of determinism. For

instance, it is well known that soil pH is very important in

determining variation in bacterial community structure and

diversity [29–33]. As pH often changes along successional

soils [17], this could be the main cause of the observed

trends in bacterial community assembly and also influence

the relative importance of stochastic and deterministic

processes across successional soils. Alternatively, time itself

could be the driver wherein biological interactions change

through time to alter the balance between stochastic and

deterministic processes. To examine whether differences in

soil pH (and other environmental variables) or time were the

primary drivers of shifts in the stochastic-deterministic

balance, we carried out a meta-analysis across a range of

different successional soils, not all of which show the same

trend in soil pH over time. This is a powerful design

whereby successional age does not consistently co-vary

with pH. Because successional age and pH do not confound

each other, their relative influences can be evaluated. We

applied an ecological null modeling approach to analyze the

community assembly processes with the following

questions:

1. Are there a predictable differences in bacterial com-

munity assembly across successional soils, regardless

of differences in local environmental constraints? If

community assembly processes are driven primarily by

the amount of time a local community has had to

develop, we expect ecological selection to be relatively

weak during early succession and to increase in

strength with time. In this case, the influence of

stochastic processes relative to deterministic processes

should decrease with successional age. On the other

hand, if niches become more available as nutrients

accumulate in later successional soils [17], a broader

range of species may be able to establish. This scenario

would lead to an increase in the relative influence of

stochastic processes. In either case, there should be a

directional shift in the balance between stochastic and

deterministic processes regardless of differences in the

abiotic environment.

2. Does soil pH explain differences in bacterial commu-

nity assembly processes along successional soils,

irrespective of successional age? An earlier conceptual

model suggested that lack of strong environmental

filtering in early successional soils leads to dominance

of stochastic processes [13]. This suggests that time

itself is not a driver of community assembly processes,

and that assembly processes change through time

because of changes to the abiotic environment. In this

case, we expect that the balance between stochastic and

deterministic processes will vary with pH (or other

environmental variables) regardless of successional

age.

Materials and methods

Datasets

For studying the bacterial community assembly and relative

influence of ecological processes along successional soils,

we compiled six datasets of varying soil pH gradients

between early and late successional soils (Table 1). The four

shorter-term (~150 years) datasets of successional soils

were: Austre Lovénbreen Glacier (AL) [22], Midtre Lové-

nbreen Glacier (ML) (newly presented in this study),

Damma Glacier (DM) [24], and Easton Glacier (ES) [23].

The two longer-term datasets of successional soils were

120,000-year-old Franz Josef Glacier (FJ) [26], and ~4000-

year-old Wilderness Park sand-dune soil succession (SD)

[27]. Except for the ML site, the sequence and metadata

were obtained directly from authors or downloaded from the

public repository. In the case of ML, soil samples were

collected along the glacier chronosequence in summer 2014.

A total of 39 samples were collected from three transects

from the glacier terminus to the edge of the foreland moraine

(for detailed information on sampling, see ref. [34]). The
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successional datasets showed a strong influence of pH and

little influence of successional age. Given that pH had a

much stronger association with community assembly pro-

cesses than did successional age, we evaluated whether the

inferred influence of pH was maintained in a broader range

of soil ecosystems. To do so, we studied 130 globally dis-

tributed soil samples that were collected without regard for

successional age [29, 31]. Like all soils, these have a suc-

cessional history, but this information is not available in the

global metadata, and they were not systematically collected

with respect to successional stage. Hence, these samples

represent a heterogeneous set of soils that differ in climate,

vegetation, etc., and we assume they also differ in succes-

sional history. Despite this heterogeneity—and despite not

being able to control for successional stage—the effect of

pH was clearly observed. We suggest that better controlling

for potentially confounding factors (e.g., successional stage)

may reveal an even stronger influence of pH.

DNA extraction and sequencing

The MoBio Power Soil DNA extraction kit (MoBio

Laboratories, Carlsbad, CA, USA) was used to extract the

DNA from samples collected along the ML chronosequence.

The extracted DNA samples were sent to Macrogen Incor-

porated (Seoul, Korea) for sequencing. The V3 and V4 region

of the 16S rRNA gene was amplified using bacterial primers

Bakt_341F and Bakt_805R [35]. The resulting amplicons

were sequenced using 300-bp pair-end Illumina MiSeq sys-

tem (Illumina, San Diego, CA, USA). The 16S rRNA gene

sequence data from the ML chronosequence was deposited in

the MG-RAST server under project ID mgp21131 (http://

metagenomics.anl.gov/linkin.cgi?project=mgp21131).

Sequence processing

The sequence datasets were analyzed separately as these

datasets contained sequences from different variable 16S

rRNA gene regions (Table 1). The initial quality filtering

steps were different for pyrosequencing and Illumina data-

sets. All the pyrosequenced datasets, except ES and SD,

were quality filtered in Mothur [36]. Briefly, sequences with

barcode ambiguities, with read length <150 bp, and with

average quality score <25 were removed. The obtained

sequences of ES and SD sites were already quality filtered

by authors (for detailed information on quality filtering, see

refs. [23, 27]). The Illumina sequences from the ML site

were quality filtered by following the error correction strat-

egy of Schirmer et al. [37]. Briefly, the paired-end sequences

were quality trimmed (Sickle) and error corrected (Baye-

sHammer) before being assembled using PANDAseq [38].

The quality filtered sequences were aligned against

SILVA alignment version 123 (http://www.arb-silva.de/).

Chimeric sequences were detected and removed via the

Chimera UCHIME algorithm in de novo mode contained

within mothur [39]. The operational taxonomic units

(OTUs) were clustered using the average neighbor cluster-

ing algorithm with a threshold of 97% sequence similarity.

Phylogenetic null models can be sensitive to sequencing

errors, so to avoid spurious results due to sequencing errors,

singleton OTUs were not used in subsequent analyses.

Finally, each OTU table was rarefied to equal sequence

depth (Table 1) by random subsampling to minimize the

effect of sequence depth variations among samples.

Phylogenetic analysis

Aligned sequences of representative OTUs were used to

construct a maximum-likelihood tree in FastTree [40]. To

test for phylogenetic signal, we first calculated environ-

mental optima for all OTUs with respect to soil pH by

following the procedure described by Stegen et al. [2].

Briefly, for each OTU its relative abundance-weighted

mean value was calculated for soil pH. To calculate the

abundance-weighted mean for a given OTU, we first found

all samples in which that OTU was present. We then found

the abundance-weighted mean pH of all those samples. To

do so, in the calculation of mean pH we weighted each pH

value by the abundance of the OTU in the associated

sample. This procedure was repeated for each OTU, and the

resulting value was used as a rough estimate of that OTU’s

pH optimum. Then, between-OTU differences in pH optima

were calculated as Euclidean distances. Finally, we used

Mantel correlograms to measure the correlation coefficients

between differences in pH optima and phylogenetic dis-

tances [3, 9], and significance of these correlations was

assessed using 999 permutations with Bonferroni correc-

tion. We also used Huisman–Olff–Fresco (HOF) hierarchic

regression models [41] implemented in the R package

“eHOF” [42] as an alternative method to calculate niche

optima. The eHOF approach selects the best-fit out of the

pre-determined model types (seven types of hierarchical

models) for each OTU, using Akaike information criterion

and bootstrapping to stabilize the model choice. We

excluded OTUs with type I model fit, because type I model

is flat and has no niche optimum.

To evaluate the phylogenetic community assembly, we

calculated the standardized effect size measure of the mean

nearest taxon distance (SES.MNTD) using the null model

“taxa.labels” (999 randomization) in “picante” R package

[43]. Lower values of SES.MNTD (<0) indicate phyloge-

netic clustering (i.e., co-occurring OTUs are more closely

related than expected by chance), whereas higher values

(>0) indicate phylogenetic over dispersion (i.e., co-

occurring OTUs are less closely related than expected by

chance) [44].
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The pairwise phylogenetic turnover between commu-

nities was calculated as the mean nearest taxon distance

metric (from here on we refer to this as βMNTD [2, 45]

using “comdistnt” function (abundance.weighted= TRUE)

from the “picante” R package [43]). Furthermore, to infer

community assembly processes, we implemented a pre-

viously developed null modeling approach [3, 9, 13, 46]. To

do so, we first calculated the β-nearest taxon index (βNTI),

which is the difference between observed βMNTD and

mean of the null distribution of βMNTD normalized by its

standard deviation. βNTI values <−2 indicate significantly

less than expected phylogenetic turnover (homogeneous

selection) [13], whereas βNTI values >+2 indicate sig-

nificantly more than expected phylogenetic turnover (vari-

able selection) [13].

If the observed βMNTD values does not significantly

deviate from the null βMNTD distribution (|βNTI| < 2), this

indicates that the observed difference in phylogenetic

community composition is not the result of deterministic

selection [47], and hence it should be due to dispersal

limitation (very low rates of dispersal), homogenizing dis-

persal (very high rates of dispersal), or is not the result of a

single dominant process (i.e., it is “undominated”). To

differentiate between these scenarios, we further calculated

the Bray–Curtis-based Raup–Crick metric (RCbray) as

described by Stegen et al. [9] on pairwise comparisons with

|βNTI| < 2.

The relative contributions of different community

assembly processes were estimated following the method

originally proposed in Stegen et al. [9] and modified in

Stegen et al. [46] and Dini-Andreote et al. [13]. More

specifically, the relative contributions of variable and

homogeneous selection were estimated as the percentage of

pairwise βNTI values that fell above +2 and below −2,

respectively. The relative contribution of dispersal limita-

tion was estimated as the percentage of pairwise compar-

isons with |βNTI| < 2 and RCbray >+0.95. The relative

contribution of homogenizing dispersal was estimated as the

percentage of pairwise comparisons with |βNTI| < 2 and

RCbray <−0.95. Pairwise comparisons that did not fall into

any of these categories indicate that no single process

dominated community assembly. The undominated fraction

was therefore estimated as the percentage of pairwise

comparisons with |βNTI| < 2 and |RCbray| < 0.95. The logic

behind this approach and simulation models that support

these inferences are provided in Stegen et al. [9, 46] and

Dini-Andreote et al. [13].

Statistical analyses

To test the effect of successional age and soil pH on SES.

MNTD across all datasets, we used a generalized additive

mixed model (GAMM). GAMM was fitted using the

“gamm” function of “mgcv” R package [48]. We used cubic

regression spline smoothers for each explanatory variable in

the GAMM, with study site as a random factor.

To assess the relative influence of stochastic and deter-

ministic assembly processes across successional soils, we

compared all possible pairwise comparisons of βNTI values

within different successional ages. To further evaluate the

variation in community assembly processes along gradients

of soil pH, βNTI values—which are derived from pairwise

comparisons—were regressed against Euclidean distance

matrices of soil pH. This was done both within and among

successional ages. The statistical significance of the result-

ing comparisons was determined by Mantel tests with 999

permutations. Further, to assess the relationship between

phylogenetic turnover and soil pH or spatial distance after

controlling for spatial or soil pH distance, we performed

partial Mantel test with 999 permutations. Similarly, the

influence of soil pH on βNTI was also compared with other

environmental variables and spatial distance. These ana-

lyses were performed using the “mantel” function of

“ecodist” R package [49]. As the library size varied widely

between subsampled datasets with lower coverage in some

of the datasets (Table 1), we evaluated the effect of library

coverage on results by varying the library size and sub-

sampling more and less sequences from datasets with lower

and higher library coverage, respectively.

Results

Phylogenetic signal

Phylogenetic signal was very similar between the

abundance-weighted mean and eHOF approaches. Both

methods indicated significant phylogenetic signal across

short phylogenetic distances (Figs. S1 and S2). Therefore,

we calculated SES.MNTD and βNTI because both of these

metrics emphasize phylogenetic relationships across short

phylogenetic distances. However, there are some caveats

related to the use of eHOF. In eHOF approach, model fits

can be poor when data are sparse and/or unevenly dis-

tributed across the environmental axis, and many OTUs can

be removed if the best-fit models are commonly type I,

which is flat and has no niche optimum.

Trends in phylogenetic community assembly

The mean values of SES.MNTD were significantly less than

zero in all datasets (Fig. S3; one sample t-test, P < 0.05),

indicating that in each dataset the bacterial community was

more phylogenetically clustered than expected by chance.

The GAMM analysis showed that only soil pH was sig-

nificantly related to SES.MNTD across all sites, and it

1076 B. M. Tripathi et al.



explained 17.2% of the model deviance with a significant

(P < 0.05) non-linear fit (Table S1). The effect of succes-

sional age on SES.MNTD was non-significant. The SES.

MNTD values increased from pH ~3 to ~7.8 and exhibited a

sharp decline across pH values >7.8 (Fig. 1). This result

indicates that bacterial community assembly was phylo-

genetically more clustered in more acidic and alkaline soils

and phylogenetically less clustered in soils close to neutral

pH. As the effect of successional age was not significantly

related to SES.MNTD in the datasets that were sampled

systematically across successional ages, we further analyzed

the SES.MNTD pattern in soils collected globally, and

without regard for successional age. These samples spanned

a wider range of pH 3.6–8.9 [29, 31]. The SES.MNTD

values showed a unimodal pattern along the pH gradient

(Fig. 2; Adj. R2
= 0.21, P < 0.0001), peaking at close to

neutral pH. This result further supports the importance of

soil pH in shaping community assembly processes in soil

bacterial communities.

Relative influence of deterministic and stochastic
assembly processes

We examined the relationship between βNTI and succes-

sional age to infer changes in the relative influences of

deterministic and stochastic assembly processes along suc-

cessional chronosequences. The pairwise comparisons of

βNTI values within each successional age category indi-

cated various patterns in different datasets (Fig. 3). In AL,

DM, FJ, and SD chronosequences, the βNTI distributions

gradually shifted over the successional ages, from stochastic

community assembly (|βNTI| < 2) to homogeneous selection

(βNTI <−2) (Fig. 3). However, the trend in the βNTI dis-

tribution over successional ages was opposite in the ML

chronosequence, where homogeneous selection was domi-

nant in early successional soils and then shifted towards

dominance of stochastic assembly in late successional soils

(Fig. 3). In the ES chronosequence, stochastic community

assembly remained dominant across all successional ages.

Pairwise comparisons of βNTI values both within and

among successional ages were significantly correlated to

differences in soil pH (Fig. 4), except in the DM chron-

osequence. After controlling for spatial distance, soil pH

distance was still significantly correlated with βNTI within

four sites (Table S2). After controlling for soil pH differ-

ences, spatial distances were significantly correlated with

βNTI only in AL and DM chronosequences (Table S2). The

relationship between soil pH and βNTI remained significant

across most of the datasets even when controlled for other

measured environmental variables and spatial distance

(Table S3). When we combined all possible pairwise

comparisons of βNTI values from all datasets, the rela-

tionship between βNTI and difference in soil pH remained

significant (Fig. S4). These results were further supported in

a global scale dataset, where we observed a strong corre-

lation between βNTI and difference in soil pH (Fig. 5).

These results indicate that as the difference in soil pH

increases, there is a transition in bacterial community

assembly processes from homogeneous selection, to sto-

chasticity, to variable selection.

We further divided each successional dataset into dif-

ferent soil pH categories. Within each pH category pairwise

comparisons of βNTI showed that the relative influence of

homogeneous selection was stronger in highly acidic or

alkaline soils (Fig. S5), whereas stochastic community

Fig. 1 Effect of soil pH on SES.MNTD of bacterial communities (solid

line) across all datasets obtained from generalized additive mixed

model (GAMM). The y-axis shows the contribution of the fitted

centered smooth terms (soil pH, estimated degrees of freedom) to SES.

MNTD. Ticks along the x-axis indicate the distribution of data for soil

pH. The dotted lines represent the upper and lower 95% confidence

intervals

Fig. 2 Relationship between soil pH and SES.MNTD of bacteria in

samples collected across several different biomes [29, 31]

Soil pH mediates the balance between stochastic and deterministic assembly of bacteria… 1077



assembly was dominant in soils close to neutral pH

(Fig. S5). We found similar results in the global scale

dataset (Fig. S6), with dominance of homogeneous selec-

tion in more acidic and alkaline soils, and dominance of

stochastic assembly in soils close to neutral pH.

Quantitative estimates of assembly processes

We quantified the relative contributions of each assembly

processes over successional ages in all datasets (Fig. 6). The

trend in the fraction of homogeneous selection was similar

in AL, DM, SD, and FJ chronosequences, which increased

with successional age (from ~3 to 30% at earliest succes-

sional age to ~70–100% at the latest successional age). Also

in these datasets, dispersal limitation (0–50%), homo-

genizing dispersal (0–16%), and the undominated fraction

(~27–61%) all showed significant influences in early suc-

cessional soils; these influences decreased in late succes-

sional soils (dispersal limitation: 0–5%, homogenizing

dispersal: 0–20%, and undominated: 0–12%). In the ML

chronosequence, the fraction of homogeneous selection

decreased from 100% in early successional soils to 53.3% at

the late successional soils, whereas the fraction of stochastic

assembly increased in late successional soils (dispersal

limitation: 21%, homogenizing dispersal: 3%, undominated:

28%,). In the ES chronosequence, the community was pri-

marily influenced by stochastic assembly, where homo-

genizing dispersal (100%) was dominant in early

successional soils and assembly was undominated in late

successional soils (66.6%). The fraction of various assem-

bly processes also varied across pH categories in all datasets

(Fig. S7), with the fraction of deterministic selection pro-

cesses (homogeneous and variable selection) highest in

acidic and alkaline soils, and the fraction of stochastic

processes (dispersal limitation, homogenizing dispersal, and

undominated) highest in soils close to neutral pH.

Effect of library size on inferred assembly processes

The effects of library coverage on inferences related to

phylogenetic community assembly processes were eval-

uated by comparing the results at three different randomly

subsampled sequence depths (including the original

sequence depth) of each dataset. The results showed that

except in ES chronosequence, the SES.MNTD and βNTI

trends were robust (Table S4; Fig. S8). It is therefore likely

that observed patterns and the associated inferences were

not the result of biases introduced by variation in sequen-

cing depth. Owing to low coverage, increasing the sampled

library size in ES chronosequence lead to removal of most

Fig. 3 Patterns of βNTI across successional ages in a AL, b ML, c DM, d ES, e FJ, and f SD chronosequences. Horizontal dashed blue lines

indicate upper and lower significance thresholds at βNTI=+2 and −2, respectively
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of the samples from early successional soils (0 and 5 years),

which also had lower pH values. The reduced sample size

and narrow pH range (after increasing the library size) may

have resulted in non-significant trends observed in SES.

MNTD and βNTI in ES chronosequence.

Discussion

To make ecological inferences using phylogenetic turnover

requires a phylogenetic signal in the ecological niches of

OTUs [45, 50]. We detected significant phylogenetic signal

across relatively short phylogenetic distances in all datasets.

This suggests that more closely related bacterial taxa have

more similar niche preferences related to soil pH [51].

Studying the phylogenetic turnover of closely related

organisms can therefore be used to infer the underlying

ecological processes in these successional soils [2]. These

findings are in agreement with other studies, which found

significant phylogenetic signal across relatively short phy-

logenetic distances across a broad range of ecosystems [2,

3, 9, 13].

Successional age was previously suggested as a primary

factor governing bacterial community assembly along a

glacial chronosequence [52]. It has been hypothesized that

niches are spatially distributed over successional ages with

more niches becoming available as succession proceeds,

which may lead to a temporal transition from deterministic

to stochastic assembly. On the other hand, it has also been

hypothesized that niches fill through time, leading to a

temporal transition from stochastic to deterministic assem-

bly [13]. However, we found that successional age did not

influence community assembly processes, which were

Fig. 4 The relationships between βNTI and differences in soil pH for a AL, b ML, c DM, d ES, e FJ, and f SD chronosequences

Fig. 5 The relationship between βNTI and differences in soil pH for

samples collected at global scale across several different biomes [29,

31]
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instead primarily associated with soil pH. We found that

extreme soil pH acts as a stringent environmental filter and

leads to phylogenetic clustering, whereas the level of clus-

tering is diminished under moderate pH regardless of the

successional age. The relationship between soil pH and

bacterial community assembly was also evident across a

broad range of biomes in which successional age was not

controlled (i.e., in the global dataset) [29, 31], which further

supports our findings. Environmental filtering is a key

determinant of community assembly [44], and this has been

shown to result in phylogenetic clustering in bacterial

communities [53]. These findings suggest that the relative

influences of stochastic and deterministic community

assembly processes can vary with successional age pri-

marily because soil pH can vary with age.

Our results indicate that during succession the temporal

trajectory of the stochastic-deterministic balance is not

governed by time per se, but instead by the temporal tra-

jectory of soil pH. Examining the relative influence of

stochastic processes (dispersal limitation, homogenizing

dispersal, and the undominated fraction) in early succes-

sional soils that differed in pH provides further support to

this inference. Specifically, pH was close to neutral in the

early successional soils of AL, DM, SD, and FJ, and for

these sites had relatively strong influences of stochastic

assembly processes. The ML site provided the contrasting

scenario in which pH was extreme in early successional

soils, which was associated with a strong influence of

deterministic assembly.

By complementing the within-community analysis (SES.

MNTD) with between-community null model analysis using

βNTI we further showed that spatial processes (i.e., dis-

persal) were overwhelmed by deterministic selection

imposed primarily by pH. In support of this inference, we

found βNTI to be more strongly associated (partial Mantel

coefficient) with soil pH than with spatial distance or other

environmental distances in four sites (Tables S2 and S3). It

is interesting to note that in AL and DM sites, spatial dis-

tance was significantly related to βNTI after controlling for

soil pH and other environmental differences. Although tra-

ditional analyses that link community dissimilarity metrics

(e.g., Bray–Curtis) to spatial distances often infer influences

of spatial processes, it has been argued conceptually and

shown via simulation that spatial variation in βNTI should

not be driven by spatial processes [3, 9, 46]. Previous work

linking βNTI with spatial variables has therefore interpreted

significant relationships between βNTI and spatial distance

as indicating that there are unmeasured, spatially auto-

correlated environmental variables driving community

composition through a selection-based mechanism, as

opposed to dispersal [9]. This is because the variation in the

magnitude of βNTI is driven primarily by variation in

deterministic processes, not by organismal dispersal [46,

47]. The reason is that the βNTI null modeling approach is

designed to detect differences in community composition

that arise due to selection on organismal environmental

optima, and is therefore not strongly influenced by dispersal-

based community assembly. We therefore infer that

Fig. 6 The percent of turnover in bacterial community assembly

governed primarily by various deterministic (homogeneous and vari-

able selection) and stochastic processes (dispersal limitation and

homogenizing dispersal), as well as the fraction that was not domi-

nated by any single process, across successional ages in a AL, bML, c

DM, d ES, e FJ, and f SD chronosequences
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ecological selection in the AL and DM sites is at least par-

tially governed by environmental variables that were not

measured, but that are spatially autocorrelated. It would be

interesting in future efforts to attempt to identify these

influential, yet unmeasured, variables.

Though soil pH is known to affect bacterial community

composition and diversity at local [32, 54], regional [29, 30,

33], and global scales [55], it has not been clear how soil pH

effects community assembly processes across these scales.

Our results were consistent in both short-term and long-term

successional datasets, and even in a heterogeneous global

dataset in which successional age could not be controlled for

[29, 31]. Our analyses spanned local to global scales and

short- to long-term successional trajectories. The results

showed consistent patterns across these spatial and temporal

scales, indicating that soil pH mediates the relative influences

of stochastic and deterministic processes across scales and

across a broad range of ecosystems. Our results are con-

ceptually consistent with the findings of Chase [56] on macro-

organisms, which demonstrated that the presence of an

extreme environmental filter such as drought results in strong

deterministic selection. This finding has been further sup-

ported by other studies on macro-organisms [57, 58] and

micro-organisms [59]. Combining those previous studies with

the results observed here indicates that the same ecological

principles govern community assembly processes across

spatiotemporal scales, ecosystems, and taxonomic groups.

It is also interesting to consider whether there might be

some link between the greater role of stochasticity in neutral

pH soils and their greater diversity [29, 31, 33]. In an earlier

study, Tripathi et al. [33] speculated the existence of a one-

way evolutionary filter along pH gradients, whereby linea-

ges of bacteria can easily branch from a more extreme pH

environment to colonize—in evolutionary terms—a more

neutral pH environment. This will tend to cause adapted

lineages to accumulate in neutral pH environments, result-

ing in their greater diversity. The greater role of stochasti-

city, with weaker niche-based exclusion in a neutral pH

environment, may assist the evolutionary arrival of lineages

from more extreme pH environments.

Conclusions and implications

These results together with the previous conceptual model

[13] lead us to propose a modified paradigm (Fig. 7), which

describes how bacterial community assembly processes

differ in relation to pH, across successional soils. We

hypothesize two possible scenarios for changes during

succession. First, near-neutral pH in early successional soils

will lead to more stochastic assembly and phylogenetically

less clustered bacterial communities, and a shift in pH

towards relatively extreme conditions in late successional

soils will lead to more deterministic assembly and phylo-

genetically more clustered bacterial communities. As an

alternative, extreme pH in early successional soils will lead

to deterministic assembly and phylogenetically more clus-

tered communities, and progressive shifts in pH toward

neutral conditions will lead to weaker selection, more sto-

chasticity and phylogenetically less clustered bacterial

communities. This conceptual model coupled with previous

models provides a framework that could be experimentally

tested in other successional environments.

Our broad examination of soils from around the world

reinforces the view that the importance of deterministic vs.

stochastic assembly of soil bacterial communities is sig-

nificantly influenced by soil pH. Thus, microbial commu-

nities in different types of soils are influenced by different,

pH-influenced balances between stochastic and determi-

nistic community assembly processes. This variation in

assembly processes may have implications for ecosystem

function [60]. For example in neutral pH soils, biogeo-

chemical function of the soil environment may be less

predictable through time and perhaps more spatially vari-

able due to the greater influence of stochasticity. In contrast,

the biogeochemical function of soils with more extreme pH

may be more consistent through time and more spatially

homogeneous. Given the importance of soil processes for

overall ecosystem function, this potential linkage between-

community assembly processes and soil processes should

be evaluated both theoretically and experimentally across a

Fig. 7 Conceptual model showing two different possible scenarios in

bacterial community assembly processes along successional soils with

change in a soil pH, and b temporal trajectory of the influence of

deterministic processes for both scenarios
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broad range of systems. Nevertheless, although the rela-

tionship between pH and assembly processes is clear, it is

important to bear in mind that pH accounts for a fairly small

proportion (17%) of total variation. Revealing additional

factors that influence the balance between stochastic and

deterministic assembly processes is an important topic for

further investigations.

Data accessibility

The 16S rRNA gene sequence data of Midtre Lovénbreen

Glacier chronosequence samples are deposited in the MG-

RAST server under project ID mgp21131 (http://meta

genomics.anl.gov/linkin.cgi?project=mgp21131). The R

codes used for calculating SES.MNTD and βNTI metrics

are provided in the supplemental material.
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