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Copyright © 2014 Liliana Suñer et al. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

	e dynamics of soil P forms and particle size fractions was studied under three wheat-based cropping sequences in production
systems of Argentina. 	e whole soil and its coarse (100–2000 �m) and 
ne (0–100 �m) fractions were analyzed to determine
Bray-Kurtz extractable (Pe), organic (Po), inorganic (Pi), and total (Pte) phosphorus. 	e reference soil was determined at time 0
and compared to a four-year period (time 9 to 12) in three crop sequences: wheat (Triticum aestivum L.)-cattle grazing on natural
grasses (WG), continuous wheat (WW), and wheat-legume (WL). Levels of Pe showed di�erences over time, from 10 to 16�g g−1
in WG, in line with agriculture and cattle grazing alternate sequences. In WW, P level increased with time, while in WL systems
a signi
cant decrease in P from 33.7 to 10.4 �g P g−1 was found during the legume period. Soil P values varied between reference
soil and soil samples in year nine and between treatments. Pi was signi
cantly lower in WW, and its concentration increased with
time. 	e coarse fraction of the reference plots had signi
cantly higher levels of Po and Pi than the cultivated treatments, probably
a consequence of the particulate organic matter decomposition and coarse mineral particle weathering. 	e observed changes in
Pi content could be attributed to di�erences in occluded P equilibrium under di�erent soil environments (mainly pH) and crop-
tillage-climatic interaction.

1. Introduction

Plants absorb mainly inorganic phosphorus (Pi) but the
organic phosphorus (Po) is also an important reservoir for
plant nutrition [1, 2]. Several studies have reported reduction
in soil organic P fraction during crop growth [3, 4]. 	e Po
can be found in chemically or physically protected forms,
which can be slowlymineralized into available forms for plant
uptake, mainly as a product of soil organic matter (SOM)
decomposition or by the action of speci
c enzymes [5, 6]. A
continuous loss of the soil P reservoir due to crop harvesting
can rapidly consume Po and Pi forms [5, 7, 8], which may
eventually lead to plant P de
ciencies.

Several soil studies have shown P de
ciencies in the
semiarid and semihumid regions of Argentina, and that
extractable P content is lower due to soil pedogenetic char-
acteristics and the agricultural history of the region [9–11].
Agricultural and cattle breeding systems of the semiarid
Pampas region revealed negative P balances [12]. While P
in the soil has been widely studied, little information is

available on its organic fractions [13]. In the western area of
the Province of Buenos Aires, Po represents between 29%
and 51% of the total P reserve [14]. Soil total phosphorus
(Pt) reserve from the soil largely exceeds crop requirements,
however plants could su�er de
ciencies. 	us, the ability of
soils to provide P can be variable. While soil Pt content in the
soil may be relatively high (200 to 5000�g g−1; [8, 15]) only
a small and variable fraction is available for crops. 	is may

vary from 5 to 20 �g P g−1 in Pampaean soils [10]. However
de
ciencies do not take place when the soils contain adequate
quantities of plant-available or rapidly usable P forms (such
as fertilizers or labile organic P compounds).

McKenzie et al. [16] found that the wheat (Triticum
aestivum L.)-fallow sequence was the most e�ective for Po
mineralization. When a legume crop was added to the
cropping rotation, soil Pi values decreased [17]. Some studies
[18, 19] quanti
ed soil Po and Pi contents in the soils, others
analyzed their dynamics over time [8], but little information
is available about their distribution in di�erent soil particle
sizes and their relationship with the available P.
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	e P compounds strongly bound to soil 
ne fraction
have been shown to be una�ected by tillage treatments [14,
20]. Phosphorus in the coarse fraction, however, sharply
decreases due to cultivation. Results of these studies sug-
gested that the greater decomposition of the SOM in the
coarse fraction facilitated availability of Po and Pi for sub-
sequent crops. Particle size fractions of SOM may help
characterize nutrient dynamics and soil quality status [6].
Understanding Po dynamics within the soil system is useful
to assess P availability and to avoid excessive fertilization
with undesirable environmental consequences [21, 22]. In
addition, quanti
cation of P mineralization in di�erent
environment-management conditions will allow the inclu-
sion of true data in the simulation models [23].

When organic and inorganic phosphorus are determined,
in both 
ne and coarse fractions, it will expect that Po
content in the coarse fraction would be the most sensitive to
crop-tillage management changes. 	is Po is associated with
particulate organicmatter, a labile SOM fraction. However, Pi
content in the coarse fractionwould bemore stable because of
its relationship with sand size. On the other hand, Po content
in the 
ne fraction would be stable because of its relationship
with humi
ed organic materials, while the Pi content would
be more strongly linked to plant P availability due to its
relationship with 
ne size minerals of soil.

We hypothesized that crop sequences can modify the
P distribution within di�erent soil particle sizes, a�ecting
its availability for plants. 	e main objective of this study
was to evaluate the changes caused by di�erent wheat-based
cropping sequences on the distribution of P forms in particle
size fractions in an entic Haplustoll of the semiarid Pampas.

2. Materials and Methods

	is study was carried out at the Agricultural Experimental
Research Station of INTA, Bordenave (63∘ 01� 20��W and 37∘

51� 55�� S), Province of Buenos Aires, Argentina. 	e climate
in this area is temperate (continental moderated), with a
mean annual temperature of 15∘C. Mean annual rainfall is
about 667mm (1928–2013), concentrated in autumn and
spring, with a dry period at the end of the winter and semidry
period in the middle of summer. During the studied period
mean annual precipitationwas around 900mm.Mean annual
evapotranspiration rate is 28% more than the climatic o�er.
	e main soil subgroup is entic Haplustoll (FAO: Haplic
Kastanozem), which is a thermal, sandy loam, typically of
this region, which has low tomedium fertility and is sensitive
to wind erosion, with a calcareous layer located between
0.8 and 1.0m in depth [24]. 	ree cropping sequences were
established on 12 ha of pasture land in 1983. 	ey included:

(i) WG, one year wheat and one year cattle grazing on
natural grasses (Lolium sp., Avena sp., and other wee-
ds). Wheat was in conventional tillage: short or with-
out fallow; disk plough (0.15–0.20m) and harrowing;
regular seeding at 4-5 cm deep.

(ii) WW, continuous wheat. Following harvest, there was
a 4–6-month fallow (January–June) under stubble
mulch used for soil moisture storage, mechanical

Table 1: Crop sequences in the studied production systems and
mean annual rainfall.

Years from
the beginning

WG WW WL
Annual rainfall

(mm)

0

1 Grass/oat Wheat Wheat 683.7

2 Wheat Wheat Wheat 998.1

3 Grass/oat Wheat Wheat 965

4 Wheat Wheat Red clover 611.9

5 Grass Wheat Red clover 781.8

6 Wheat Wheat Red clover 647.1

7 Grass Wheat Wheat 697.1

8 Wheat Wheat Wheat 612

9 Grass Wheat Wheat 1194.7

10 Wheat Wheat Red clover 1108.3

11 Grass Wheat Red clover 678.9

12 Wheat Wheat Red clover 641.6

Wheat (Triticum aestivum); red clover (Trifolium repens).

weed control using chisel ploughing to a depth of
0.20m preceded wheat deep-furrow seeding, which
deposits the seed 8–10 cm deep.

(iii) WL, 3 years of wheat and 3 years of red clover (Trifoli-
um repens). Tillage was the same as WW rotation.

Crop sequence for each cropping system is shown in
Table 1. A reference (Ref) plot adjacent to treatments was
maintained with native grasses for over 25 years. Fertilizers
were not applied in any of the rotations.

Surface soil samples (0–15 cmdepth) were obtained a�er
wheat growing cycle duringNovember of each sampling year;
3 subsampling points were located using GPS for subsequent
sampling. 	ree blocks were randomly located in the three
production systems and in reference soil; three composite
samples consisting of three soil sample each were obtained
from each block. Soil texture di�erences were not observed
between di�erent blocks or treatments, with mean values for
clay and silt of 101 and 218 g kg−1, respectively. 	e samples
were returned to the lab, air dried, sieved (<2mm), and stored
for analysis. Soil was sampled 9 years a�er initiating crop
rotations and the subsequent years.

2.1. Soil Chemical Determinations. Soil pH with a glass elect-
rode at a 1 : 2.5 water ratio [25], total soil organic carbon
(SOC) by dry combustion (LECO carbon analyzer), and the
following P forms were determined:

(i) extractable (Pe) by Bray-Kurtz 1 [26]: extraction with
hydrochloric acid (HCl) 0.025M and ammonium
�uoride (NH4F) 0.03M (pH 2.9), soil/solution ratio
1 : 7, shaking time 1min; this method is indicated for
soils with neutral to slightly acidic pH [27];

(ii) total extractable (Pte), [28] with a perchloric acid
digestion to 270∘C;

(iii) total (Pt) with sodium carbonate [29]; 0.1–1 g sample
is fussed in sodium carbonate (Na2CO3) to 900∘C
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Table 2: Soil organic carbon (SOC), organic (Po), inorganic (Pi), total extractable (Pte), total and extractable phosphorus (Pe), Po : (Po + Pi)
relationships, and pH of di�erent cropping systems (CS).

Year CS
SOC Po Pi

Po : (Po + Pi)
Pte Pt Pe

pH
% mg kg−1 mgkg−1

0 Ref 1.28 189.0 328.0 0.37 529.0 562.1 30.9 6.7

9

WG 1.13a∗ 77.7a∗∗ 294.7a∗ 0.20a∗∗ 289.6b∗∗ 412.2b∗ 14.3b∗∗ 6.8a ns
WW 0.89b∗∗ 50.4b∗∗ 172.0b∗∗ 0.22a∗∗ 230.0b∗∗ 396.3b∗ 11.7b∗∗ 6.6b ns
WL 1.14a∗ 82.2a∗∗ 290.5a∗ 0.22a∗∗ 417.3a∗ 456.3a∗ 33.7a ns 6.6b ns

10

WG 1.08a 133.7a 231.1a 0.37a 396.7a 418.0a 10.2b 6.4ab

WW 0.84b 75.5b 159.0b 0.32b 344.1b 378.2ab 13.1b 6.3b

WL 1.11a 107.3ab 230.5a 0.32b 339.7b 362.1b 21.2a 6.5a

11

WG 1.07a 86.7 217.5b 0.38a 350.2a 440.0a 15.7b 6.3a

WW 0.85b 84.0 176.3c 0.32b 316.8b 407.2a 18.8b 6.3a

WL 1.12a 81.5 245.7a 0.33b 289.7b 328.4b 26.0a 6.1b

12

WG 1.16a 85.4 218.1b 0.28a 343.0a 420.0a 11.6b 6.4a

WW 0.95b 65.7 233.7ab 0.22b 365.2a 411.3a 27.2a 6.1b

WL 1.27a 78.3 250.2a 0.24b 280.1b 321.6b 10.4b 6.2b

∗∗, ∗ and ns indicate statistical di�erences � < 0.01, � < 0.05 and not signi
cant, respectively, between each treatment sampled in year 9 and reference soil.
For SOC, each P form and pH, di�erent letters indicate di�erences among treatments in each year.

followed by disintegration of the melt in clorhidric
acid (HCl);

(iv) and organic (Po) and inorganic (Pi) by Saunders and
Williams [30] method extraction with sulphuric acid
(H2SO4) 1 N, shaking time 16 hours; Po is determined
by di�erence between a calcined soil sample (in
mu�e to 550∘C) and another one without calcine.

Inorganic P in all extracts was determined by the ammo-
nium vanadate colorimetric method [31]. All these methods
are fully described in Sparks [32].

2.2. Soil Physical Determinations. For the size fractionation
of soil, we used the wet sieving of soil [33, 34]. Brie�y, 50 g of
soil previously air-dried and sieved (2mm) was dispersed in
glass containers of 120mL andmixed with 100mL of distilled
water. Ten glass beads (5mm diameter) were added to
increase aggregate destruction and reduce potential problems
created by di�erent content of sand [33]. 	e samples were
subjected to mechanical dispersion through a rotary shaker
for approximately 16 h (overnight at 40 rpm) to disintegrate
the aggregates.	e sieving was done with a sieve of 140mesh,
making moves back and forth until the water coming out
through the sieve was clear to the naked eye. Two particle
size fractions were obtained: the 
ne fraction (0–100 �m) and
the coarse (100–2000�m), both fractions were oven-dried at
65∘C. 	e 
ne fraction contained clay, silt, very 
ne sands,
and humi
ed or mineral associated organic matter (MOM).
	e coarse fraction had sand and less transformed, young,
or particulate organic matter (POM). 	e same chemical
methods above were also applied to determinate Pte, Po, and
Pi in both fractions. Pe was not determinate in the fractions
because physical separation of the particles could wash some
available P forms [20].

2.3. Statistical Analysis. Statistical analysiswas performed
using analysis of the variance (ANOVA) and InfoStat’s least
signi
cant di�erences (LSD) procedure [23].

Comparisons among years were not made due to signif-
icant interactions over time, probably as a consequence of
the crop-rainfall interaction. For that reason, the statistical
analysis was performed in two ways: (1) by comparing the Ref
soil with each treatment in year 9 and (2) by comparing the
three treatments in each year (9, 10, 11, and 12 years).

3. Results

3.1. Soil Phosphorus. Soil organic and inorganic P concentra-
tions decreased under the di�erent cropping sequences with
a sharp decline in the Po : (Po + Pi) ratio. Inorganic P was
the most abundant form in both the reference and cultivated
soils (Table 2). Soil Pi content was signi
cantly lower in WW
than in WG and WL. 	e Pte concentration (perchloric
extraction) showed lower concentrations in cultivated than in
the reference soil and variability was high among treatments
and years. In comparison the Pt concentration (Na2CO3
digestion) showed low variability among soils and years.
Di�erent trends were observed in the variation of the Pe
among the years in the analyzed cropping systems (Table 2).
	e pH showed di�erences among treatments.

3.2. Particle Size Fraction P. A�er years with di�erent crop-
ping systems, the Po in the 
ne fraction was stable among
treatments throughout sampling years (Table 3). 	e Pi in
the same fraction was signi
cantly lower in WW than in
WG and WL treatments. 	is di�erence did not change the
next sampling years. 	e Pte in the 
ne fraction of all three
treatments was di�erent during the 
rst year but there were
no statistical signi
cant di�erences in later years.

	e most important changes in Po and Pi contents in
coarse fractions were found between the reference soil and
the treatments, mainly due to the Po content depletion
(Table 3). Statistical di�erences over time were observed in
the inorganic P forms, which tended to disappear with time.
	ese di�erences were only found in Pi content under WW
during the 
rst three sampling years.
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Table 3: Soil organic (Po), inorganic (Pi), and total extractable phosphorus (Pte) in the 
ne and coarse fraction of di�erent cropping systems
(CS).

Year CS

Fine fraction Coarse fraction

mg kg−1 mgkg−1

Po Pi Pte Po Pi Pte

0 Ref 60.0 178.0 329.0 129.0 149.0 199.0

9

WG 72.1b ns 199.8a∗ 221.5b∗∗ 5.6a∗∗ 95.2a∗∗ 98.1a∗∗

WW 50.0c ns 98.4b∗∗ 149.7c∗∗ 2.1a∗∗ 73.6b∗∗ 80.2b∗∗

WL 88.1a∗ 200.8a∗ 331.4a ns 1.2a∗∗ 89.7a∗∗ 85.9b∗∗

10

WG 127.8a 149.6a 305.7a 6.1a 81.5a 91.0a

WW 72.2b 93.8b 256.3b 3.3a 65.2b 87.8a

WL 101.6a 144.3a 263.2ab 5.7a 86.2a 76.5b

11

WG 75.4a 143.4a 264.0a 17.5a 74.1b 86.2a

WW 75.4a 121.0b 239.5ab 6.8a 55.3c 77.3b

WL 77.6a 151.5a 207.9b 8.9a 94.1a 81.8ab

12

WG 84.8a 133.9b 259.2a 1.6a 84.2a 83.8a

WW 57.9b 150.7ab 256.6ab 8.6a 83.0a 108.5b

WL 89.3a 161.6a 199.0b 4.3a 88.7a 81.1a

∗∗, ∗ and ns indicate statistical di�erences � < 0.01, � < 0.05 and not signi
cant, respectively, between each treatment sampled in year 9 and reference soil.
For each P form di�erent letters indicate di�erences among treatments in each year.

4. Discussion

4.1. Soil Phosphorus. 	emain di�erences in P fraction were
observed between reference and cultivated soils. 	e highest
variability of Po with respect to SOC suggests quality varia-
tions during crop sequences [6]. However, total SOC, as well
as total Po, include fractions of a di�erent quality and dyna-
mics, which will individually be considered.

	e e�ect of continuous wheat with fertilizer application
on SOC content was a consequence of annual tillage and low
residue input. A grassing period without tillage (WG and
WL) and an increased residue input due to biological 
xed
N (WL) could explain the higher SOC in WG and WL as
compared with WW [34, 35].

During the 4-year study period, treatments did not a�ect
the dynamics of the organic P fraction. Other studies on Po in
Pampas soils detected slight di�erences between manage-
ment systems [36]. 	e characteristics of the method for Po
determination, which estimates Po indirectly, could account
for the di�culties in detecting statistical di�erences in these
studies. In the appliedmethod, Powas converted to Pi by high
temperature oxidation and it was quanti
ed by di�erence.
Temperature e�ect on Pi solubility and acid extraction e�ect
on Po hydrolysis could increase data variability [15]. 	e
Po : (Po + Pi) ratio showed di�erences between years and
treatments as a consequence of the cropping system charac-
teristics and the rainfall variations during the study period.
	e abundant rainfalls in the 10th year favored plant uptake
and dry matter production, which was re�ected in higher
Po : (Po + Pi) ratios in all treatments as compared with those
in other years.	ePte values weremore variable and, in some
cases, showed di�erences with Pt values. 	is suggests that
Pte extraction method depended on the soil conditions and
physicochemical equilibrium.

Considering that the Po plus Pi quantity ranged between

222 and 373mg kg−1 and the Pte ranged from 230 to

417mg kg−1, a variable fraction of the soil P is not quanti
ed

by the Saunders and Williams [30] method. 	e variations
could be related to organo-mineral complexes and would
seem to be associated with management practices [33].

A�er ploughing pasture soils, available P increased over
the plant requirements suggesting that physicochemical
equilibrium could result in precipitation of inorganic P
forms such as apatite (Ca5(PO4)3(OH,F,Cl)) or brushite
(CaHPO4⋅2(H2O)) [35, 37, 38]. Under similar conditions,
Galantini et al. [39] observed a sharp decrease in Pe during
the 
rst four years under continuous wheat and a slow
increase a�er the 5th or 6th year. Physicochemical equilib-
rium of soil P was climatic (water regime) and management
(phosphate status and tillage) dependent. As observed by
others, this dynamics could mask biological e�ects on soil P
changes [40].

In the WG treatment, Pe content ranged from 10 to

16mg kg−1 over time, showing higher values during grassing
than wheat years. In continuous wheat, Pe level increased
over time, whereas in WL they decreased signi
cantly, from

33.7mg kg−1 at the end of the wheat period to 10.4mg kg−1

at the end of the legume period. A decrease during legume
periods was also observed by other authors [17]. Statistical
di�erences in pH values were observed among treatments in
all sampling years. All three cropping systems showed a pH
decrease over time; thismight in�uence the P balance because
a pH decrease could improve P solubility favoring �ux from
inorganic nonlabile to inorganic labile P forms.

4.2. Particle Size Fraction P. 	e inherent variability of Po,
due to di�erent plant residues and analysismethod variability
of this organic fraction, due to di�erent plant residues and
analysis method variability (obtained by di�erence between
Pi and Po plus Pi), may explain the di�culty in detecting
expected di�erences among sequences. Nine years under
WW produced the lowest Pi content in the 
ne fraction, but
no changes were found in WG and WL cropping systems.
During the following sampling times, Pi concentrations
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tended to increase in WW and to decrease in WG and
WL treatments. 	e importance of the observed di�erences
would suggest that it might be a consequence of the type and
accessibility of P forms.	is observation could be accounted
for by the lower variability of Pte values. 	is increase of Pi
in WW might occur because of the change from inorganic
occluded or nondetected P to inorganic available forms, and
later quanti
ed in the analysis. In addition, losses due to plant
uptake could be compensatedwith P from the coarse fraction.

More than 95% of the organic and 35% of the inorganic P
as compared to the reference soil was lost in the coarse fra-
ction due to cultivation. Probably, there was a combined e�-
ect of crop sequences (due to P requirement and residue in-
put) and climatic condition e�ects on crop production and
fresh organic matter mineralization [34, 39, 41]. Results reve-
aled that the coarse fraction wasmainly altered when the nat-
ural pastures were cultivated. Tillage e�ect on mineral weat-
hering decreases were most likely related to faster decompos-
ition of POM and the tillage in�uence on particle size and
organomineral complex stability [41]. Previous results sho-
wed that tillage intensity modi
ed humi
ed SOM quan-
tity and quality [6]. As tillage increases, humic substan-
ces decrease in quantity and reactivity. Some of the P cha-
nges were due to crop uptake and export through harvest,
while other changes were linked to losses from the coarse
fraction to the 
ne fraction by size reduction during tillage
activities.

	e e�ect of cropping system on P content in whole soil
and its 
ne and coarse size fractions in a semiarid Haplustoll
can be summarized as follows:

(i) 	e major di�erences for all P forms were observed
when cropping systems were compared with the
reference soil.

(ii) Reduction in the Po : (Po + Pi) ratio wasmainly due to
decomposition of SOM and this decomposition rate
was dependent on moisture availability.

(iii) 	e Pe content was modi
ed by cropping system,
increasing under a WW sequence and decreasing
under WL or WG.

(iv) 	e main e�ect of a cropping system on P dynamics
was the rapid decomposition of the P in the soil coarse
fraction with an increase of Pi in the 
ne fraction.

(v) Soil P distribution depended mainly upon tillage
e�ect on SOMmineralization and particle size distri-
bution, as well as the cropping system and the poten-
tial changes in water availability modi
ed physico-
chemical equilibrium.

5. Conclusions

Soil cropping modi
es P distribution within di�erent soil
particle sizes. A decrease of the P in coarse fraction (both
organic and inorganic forms) was observed. As was hypoth-
esized, crop sequences modify P distribution on soil particle
size. 	e Pi form is mainly a�ected.
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[11] L. Suñer and J. Galantini, “Fertilización fosforada en suelos cult-
ivados con trigo de la región sudoeste pampeana,” Ciencia Del
Suelo, vol. 30, pp. 57–66, 2012 (Spanish).

[12] E. J. Chaneton, J. H. Lemco�, and R. S. Lavado, “Nitrogen and
phosphorus cycling in grazed and ungrazed plots in a temperate
subhumid grassland in Argentina,” Journal of Applied Ecology,
vol. 33, no. 2, pp. 291–302, 1996.

[13] E. N. Hepper, G. G. Hevia, D. E. Buschiazzo, A. M. Urioste, and
A. Bono, “Efectos de la agricultura sobre fracciones de fósforo
en suelos de la región semiárida pampeana central,” Ciencia del
Suelo, vol. 14, no. 2, pp. 96–99, 1996 (Spanish).



6 Applied and Environmental Soil Science

[14] J. A. Galantini and R. A. Rosell, “Organic fractions, N, P and S
changes in an Argentine semiarid haplustoll under di�erent
crop sequences,” Soil and Tillage Research, vol. 42, no. 3, pp. 221–
228, 1997.

[15] S. Kuo, “Phosphorus,” inMethods of Soil Analysis, Part 3- Chem-
icalMethods, D. L. Sparks, A. L. Page, P. A. Helme et al., Eds., pp.
894–895, American Society of Agronomy, Madison, Wis, USA,
1996.

[16] R. H. McKenzie, J. W. B. Stewart, J. F. Dormaar, and G. B. Sch-
aalje, “Long-term crop rotation and fertilizer e�ects on phosph-
orus transformations: II. in a Luvisolic soil,”Canadian Journal of
Soil Science, vol. 72, no. 4, pp. 581–589, 1992.
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