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Abstract 

Protists are the most diverse eukaryotes. These microbes are keystone organisms of soil ecosystems 

and regulate essential processes of soil fertility such as nutrient cycling and plant growth. Despite 

this, protists have received little scientific attention, especially compared to bacteria, fungi and 

nematodes in soil studies. Recent methodological advances, particularly in molecular biology 

techniques, have made the study of soil protists more accessible, and have created a resurgence of 

interest in soil protistology. This ongoing revolution now enables comprehensive investigations of the 

structure and functioning of soil protist communities, paving the way to a new era in soil biology. 

Instead of providing an exhaustive review, we provide a synthesis of research gaps that should be 

prioritized in future studies of soil protistology to guide this rapidly developing research area. Based 

on a synthesis of expert opinion we propose 30 key questions covering a broad range of topics 

including evolution, phylogenetics, functional ecology, macroecology, paleoecology, and 

methodologies. These questions highlight a diversity of topics that will establish soil protistology as a 

hub discipline connecting different fundamental and applied fields such as ecology, biogeography, 

evolution, plant-microbe interactions, agronomy, and conservation biology. We are convinced that 

soil protistology has the potential to be one of the most exciting frontiers in biology. 

1. Introduction 

Protists are everywhere, in aquatic and terrestrial ecosystems, free-living, and as symbionts 

(including parasites) of many organisms including humans. These usually single-celled or colonial 

microorganisms are by far the most diverse eukaryotes (Adl et al., 2012) and their species-numbers 

might easily exceed 10 million (Global Soil Biodiversity Atlas; www.globalsoilbiodiversity.org). Since 

the    m ‘p       ’ was introduced (Haeckel, 1866), profound taxonomic re-orderings have taken 

place. The vast majority of eukaryotic lineages has been shown to be protists, with the exception of 

the derived monophyletic multicellular lineages: animals, plants, and some fungi (Burki, 2014). 
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Electron microscopy and molecular phylogenies have revealed that both algal and protozoan lineages 

are intermingled throughout the eukaryote phylogenies (Delwiche, 1999; Burki, 2014), and hence it is 

less confusing to use Haeckel’s broader category of ‘p      ’. Similarly, the classical protozoan 

morphological categories: flagellates, testate and naked amoebae – but not ciliates - are not 

monophyletic  but distributed across the eukaryotic tree of life (Adl et al., 2012). A snapshot of the 

immense morphological and phylogenetic diversity of soil protists is visualized in Fig 1. We therefore 

recommend to use ‘protist’ as a term for all single celled phototrophic, mixotrophic and heterotrophic 

eukaryotes, with the exception of fungi.  

The huge diversity of protist species has only recently become evident as many morphospecies 

recognizable under the microscope were shown to hide many cryptic species (Boenigk et al., 2012a). 

This ‘dark matter of biodiversity’ suggests that protist taxon richness has been considerably 

underestimated. A recent study of environmental eukaryotic diversity based on state-of-the-art high-

throughput sequencing (HTS) showed that protists are considerably more diverse than plants and 

animals in the sunlit zone of oceans (de Vargas et al., 2015). HTS studies of soil protists have shown a 

wide diversity of non-phagotrophic protists and the diversity of protists in soils is at least as diverse 

as that in aquatic systems (e.g. (Bates et al., 2013; Geisen et al., 2015c). Nevertheless, soil protists are 

much less well studied than their aquatic counterparts and this gap is increasing (Fig. 2a). 

Soil protists have received relatively little attention mainly due to methodological challenges, 

especially their isolation from the opaque soil matrix. These, however, do not entirely explain why 

soil protists are relatively less studied than other soil organisms, especially bacteria, fungi and 

nematodes (Fig. 2b). The volume of work on microbial bacteria and fungi far outweighs protist 

studies, possibly because of their direct role as primary decomposers, and they represent 

monophyletic groups that can more easily be studied with various targeted methodological 

approaches (Foissner, 1987; Mitchell, 2015). Even soil viruses have been subject to more studies than 

soil protists, despite being extremely challenging to study (Fierer et al., 2007) and their uncertain 

functional importance in soils. The under-studied nature of soil protists is exemplified by a 
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comparison between research on protists and on soil archaea, a domain erected in 1990 and 

reported to be functionally important in soil only decade ago (Leininger et al., 2006; Bates et al., 

2011). Historically studies mentioning soil protists in the title were eight times more abundant than 

those including archaea (Fig. 2b, Supplementary Table 2). However, in the last 15 years, this pattern 

entirely changed; studies on soil protists decreased by 15% while those on other common soil 

organisms increased by at least 30%, especially soil archaea which increased by 88% (Fig. 2b, 

Supplementary Table 2). 

The relative decline of papers on soil protists strongly contrasts with what we now know about their 

ubiquity, diversity, and perhaps more importantly, their functional significance. Soil protists can both 

make an important contribution to primary production (Jassey et al., 2015; Schmidt et al., 2016) and 

play a key role in the decomposition pathways as consumers of bacteria (Clarholm, 1981; de Ruiter et 

al., 1995), fungi, other protists, and small invertebrates; they can also act as parasites of plants and 

animals (Adl and Gupta, 2006; Jassey et al., 2012; Geisen, 2016b). As predators, protists transfer 

nutrients to higher trophic levels in the soil foodweb (de Ruiter et al., 1995; Crotty et al., 2012). 

Protist predation also stimulates microbial activity and nutrient cycling via the microbial loop, thus 

stimulating plant growth (Bonkowski and Clarholm, 2012) and representing an important link 

between aboveground and belowground components. 

The functional significance, abundance, environmental sensitivity, rapid response times and 

increasing ease of analysis of soil protists also makes them invaluable bioindicators of a variety of 

aspects of environmental change (Foissner, 1987; Gupta and Yeates, 1997; Payne, 2013). A particular 

example of this is in paleoecology, where the hard shells of testate amoebae, diatoms and 

foraminifera are widely used in the reconstruction of past environments and past climate change 

over a range of timescales (Mitchell et al., 2008; Adl et al., 2011; Charman, 2015).  

Most of these applications are, however, based on a few often small-scale studies. Thus significant 

taxonomic and functional aspects remain largely untouched. Our aim in this report is to pool expert 
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knowledge and opinion across the diverse field of soil protistology and soil microbial ecology to 

identify major knowledge gaps that need to be addressed and their significance for soil processes 

and ecosystem services. 

2. Materials and Methods 

2.1 Approach to identify the 30 most relevant questions 

Our aim was to review research gaps both in the field of soil protistology and in general soil biology 

with a special focus on protists. In line with recent studies (Sutherland et al., 2013; Seddon et al., 

2014), we aimed to pool community expertise to identify the most important questions in different 

broad categories. We modified previously-used methods (Sutherland et al., 2013; Seddon et al., 

2014) to obtain a list of most interesting questions through a democratic, transparent, multi-step 

curation process. 

The participants in this process are involved in a wide range of research areas, with self-determined 

primary research area expressed as being ecology (62%), palaeoecology (12%), evolution (9%), 

biogeography (6%), phylogeny (6%), taxonomy (3%), parasitology (3%). Each participant formulated 

up to 10 questions that they believed were most relevant for their future research. The resulting 368 

questions were then compiled via an integrative group effort into consensus questions and placed 

into six major categories following a discussion by 16 of the participants at the German Society for 

Protozoology meeting in February 2016. We included very broad, general questions as well as highly 

specialised topics into similar scaled consensus questions. 

The resulting consensus questions were then re-evaluated and groupings adjusted in a vote. These 

questions (Supplementary Table 1) were sent out to all 47 participants, who individually indicated up 

to 12 priority questions with at least one being allocated in each of the six following categories: (i) 

Morphology, Phylogeny, Taxonomy, Evolution and Physiology, (ii) Diversity, Community Composition 
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and Biogeography, (iii) Interactions among Protists and other Organisms, (iv) Functions of Protists, (v) 

Global Change, Bioindicators and Applications, and (vi) Methodology. 

All 47 participants were asked to provide their key scientific expertise and literature references for 

studies that (partly) addressed individual questions. Finally, minor comments raised by individual 

participants during the vote were integrated to clarify the questions and give consistent formatting 

without changing the meaning of the questions that had been voted upon. 

All individual votes were combined and five questions per category chosen to result in the final list of 

30 key questions. When more than one question received the same number of votes (as present in 

categories 1, 2, and 4), these questions were sent out to all 47 participants for another vote on the 

selected questions only.  

2.2 Potential limitations 

Biases in broad-scale studies are impossible to avoid (Sutherland et al., 2013). On the other hand, the 

more interdisciplinary the panel of authors is in terms of cultural and societal background and 

specific scientific expertise, the more biases are reduced. Researchers working on soil protists are 

often ecologists, whereas taxonomists, phylogeneticists, and physiologists more often focus on 

aquatic taxa that are easier to isolate and cultivate. Indeed, participants who indicated ecology as 

their first expertise dominated our list of participants (62%). Ecology, however, is a broad field and 

our division into finer categories such as biogeography, palaeoecology, community structure, and 

interactions resulted in a broad diversification into different subcategories. Additionally, 21% of the 

participants indicated topics such as taxonomy, phylogeny, evolution, and physiology as their main 

expertise corroborating the wide diversity of research fields among the co-authors. 

The majority of participants are PhDs (Professor: 38%; Graduated scientists: 29%; Post-doc: 24%) 

with an average number of publications on protists of 43 (minimum = 1; maximum = 230). A high 

proportion of the participants work on multiple ecosystems (41%). Many focus on testate amoebae 

(41%) although 26% of them work on multiple morphogroups (ciliates, heterotrophic flagellates, 
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amoebae, etc.). A majority (74%) of participants have a European background, but Asia, North and 

South America are also well represented, thus reducing potential impacts of geographic origin. 

Furthermore, most participants have international collaborations that partly compensate for gaps in 

the geographic distribution of individuals. 

Despite these potential limitations, we found few biases in the way participants replied to questions 

(Supplementary Results 1). Most participants (70%) selected questions evenly distributed across the 

six categories, except a small group of people mostly constituted of researchers from the same 

institute and/or with the same kind of expertise (phylogeny, taxonomy and evolutionary; see 

Supplementary Results 1). This small group allocated 45% of their votes to the category (ii). Except 

this small bias, most participants selected questions regardless of their experience, age, geographic 

background, and most importantly, their expertise and group of interest. 

Questions were differently formulated, hence we had to make decisions and remove some nuances 

as we merged similar questions. This resulted in some discussions about how questions should be 

best stated and consequently combined and grouped into non-predetermined categories. However, 

we preferred to receive non-restricted questions to stimulate lateral thinking as previously suggested 

(Sutherland et al., 2013); due to intensive exchange and to a democratic group effort at all steps of 

the procedure, we are convinced that we have reached a consensus format.  
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3. Results and Discussion 

3.1 The 30 most relevant consensus questions 

From the 107 questions in the final vote, 94% received at least one, 79% two, 67% three and 50% five 

votes showing that the pre-selected questions had a wide general appeal to the scientific experts 

involved (Supplementary Table 1). Therefore, all questions seem to be relevant for future studies 

that focus on soil protists. However, as we aimed at providing a highly specific list of the major 

research gaps and open challenges in soil protistology, we only provide the top-ranked 30 questions 

classified in six major categories that most researches voted upon.  

3.2 Categories 

I Morphology, Phylogeny, Taxonomy, Evolution and Physiology 

1 How long can protists survive in an encysted form? What are the tolerances of (encysted) protists to 

stress and what is the importance of cysts for ecosystem resilience? 

2 How much morphological and genetic variability exists within soil protists? 

3 How do species that occur in both aquatic and soil systems adapt to differing demands? 

4 What are the phylogenetic relations of true soil to aquatic protist taxa and how often have soils been 

colonized by aquatic protists and vice versa? 

5 How widespread is sex in soil protists?  

 

Linking the individual topics of this category is one of the major tasks confronting soil protistology. 

The coupling of morphology and phylogeny is crucial to obtain a stable taxonomic framework for 

protists. This is, for instance, crucial to answer evolutionary questions on the origin of eukaryotes 

(López-García and Moreira, 2015). Soil protists may have an important role to play in such research 

as most taxa likely remain unknown and novel higher-level taxonomic groups are continuously being 

discovered (Berney et al., 2015; Bass et al., 2016; Singer et al., 2016; Tice et al., 2016). Soil protists 
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might fill remaining phylogenetic gaps from better-studied aquatic taxa to improve phylogenetic 

resolution within and between protist clades, as strict soil protist clades seem to be common (Bass et 

al., 2016). Sequencing whole genomes will reveal ancient traits of eukaryotes and potential changes 

in their function during the evolution of eukaryotes. In this respect, soil protists must certainly play a 

key role for understanding the evolution of the eukaryotic cell and, therefore, of life as a whole. 

While the morphological and phylogenetic framework for ciliates is reasonably well established 

(Lynn, 2008; Foissner, 2016), it remains rudimentary for other morphogroups as well as phylogenetic 

clades of protists (Kosakyan et al., 2016). The taxonomy of the groups has profoundly benefited from 

(mainly) 18S rRNA gene-based characterisations that have often led to drastic changes in 

phylogenetic placements of individual species, genera, families or even orders (Boenigk et al., 2012a; 

Berney et al., 2015; Bass et al., 2016). This is exemplified by the morphologically and functionally 

diverse Cercozoa, which was the first protist clade inferred solely based on molecular phylogenetic 

information, and has become home to ever more morphologically different organisms (Bass et al., 

2016). Therefore, the true extent of morphological and genetic variability in different groups of soil 

protists remains largely unknown and is a key missing gap for future studies (Q2).  

A key feature of soil protist species is their capacity for cyst formation as this allows them to resist 

constantly changing conditions, especially with respect to moisture and temperature. Furthermore, 

given that protists can excyst after decades, even millennia (Shmakova et al., 2016), cyst formation 

may protect species from becoming extinct at local or even at the global scales, influence population 

dynamics and maintain biodiversity (Corliss and Esser, 1974; Jones and Lennon, 2010) The 

importance of the cyst bank in ecosystem functioning and resilience remains largely unknown and 

have consequently been identified as a key element for future studies (Q1). More generally, this 

applies to all specific (physiological) adaptations of soil protists in comparison to their aquatic 

relatives (Q3, Q4) and to reproduction (Q5).. 
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II Diversity, Community Composition and Biogeography 

6 What is the real diversity and community structure of soil protists in different systems (e.g. soils, 

rhizosphere, (plant) endosphere)? 

7 How similar are the diversity patterns of soil protists and other soil biota along ecological gradients, 

and to what extent do different environmental factors shape their respective diversity? 

8 What abiotic environmental factors influence the distribution and community composition of protists, 

and how? 

9 How cosmopolitan are protists and how many endemic soil protist species are there?  

10 What are dominant groups of soil protists in terms of turnover, abundance and biomass? 

 

We are progressively shedding light into the soil ‘b   k b x’; however, knowledge on protists lags 

behind that of other groups (Fig. 2) (Wilkinson, 2008). Traditional studies have focused exclusively on 

a few of the ‘       ’ morphogroups, especially ciliates and testate amoebae, at least partly due to 

their ease of isolation and feature-rich morphologies (Foissner, 1999). Despite dominating many soil 

protist communities in terms of numbers and diversity, flagellates and naked amoebae have 

remained understudied, due to their often smaller sizes, lack of diagnostic features when studied by 

light microscopy, and the need to establish specialised enrichment cultivation for their isolation from 

soils (Berthold and Palzenberger, 1995; Foissner, 1999; Smirnov and Brown, 2004; Tikhonenkov et al., 

2010). The development of molecular tools such as DNA barcoding and metabarcoding has 

considerably improved the situation in the last decade (Pawlowski et al., 2012) and allowed a 

phylogenetically based (morphogroup-independent) and consequently much more detailed analysis 

of the entirety of soil protist communities. These studies have revealed an enormous diversity of 

protists inhabiting soils, a phylogenetic diversity that might be similar to that of bacteria (e.g., (Bates 

et al., 2013; Geisen et al., 2015c; Mahé et al., 2017). Also, groups of protists previously almost 

unknown from soils have been shown to be common e.g. choanoflagellates, foraminifera, 

dinoflagellates, parasitic apicomplexans and pathogenic oomycetes (Bates et al., 2013; Geisen et al., 
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2015c; Grossmann et al., 2016; Mahé et al., 2017). Therefore, we are only beginning to understand 

the diversity of soil protists (Q10), which part is active, how this diversity differs in different soil 

environments (Q6), how protist communities are structured by, e.g., abiotic factors (Q7, Q8) (Geisen 

et al., 2014a; Lentendu et al., 2014; Geisen et al., 2015c; Dupont et al., 2016). 

In addition, the biogeography of (soil) protists has been addressed in some studies, but it is still 

unclear which and how many groups display a restricted biogeography and what the factors are that 

shape these distributions (Q8, Q9). Although distribution of bacteria may support the hypothesis that 

“ v  y    g     v  yw      but,       v    m           ” (Baas-Becking, 1934), its extrapolation to 

protists has been countered, particularly, by work on ciliates and testate amoebae (Foissner, 2006, 

2008; Fernandez et al., 2016). The diversity and biogeographical distribution of protists, is, therefore, 

one of degree (rather than all cosmopolitan or all limited) and the possibility exists that the 

investigation of cryptic diversity within morphospecies will allow a finer-scale resolution of these 

questions. 

III Interactions among Protists and other Organisms 

11 How do protist taxa affect the composition of the soil microbiome and what other important 

interactions take place? 

12 What are the biotic interactions of soil protists with other taxonomic groups, and how are 

protists linked within the soil food web? 

13 What is the relative contribution of nutrient cycling (i.e. the microbial loop) versus modification 

of the rhizosphere microbiome in protist-induced stimulation of plant growth? 

14 What are the mechanisms by which individual soil protist species affect plant performance, and 

do those mechanisms differ between plant species? 

15 What is the impact of protists on the community functioning of other soil microbes? 
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Soil protists are still predominantly considered as being mainly bacterivorous (Bradford, 2016; 

Geisen, 2016a). Differential feeding by protists stimulated by bacterial volatiles modifies the 

community composition of bacteria (Bonkowski, 2004; Glücksman et al., 2010; Schulz-Bohm et al., 

2017), which results in functional changes in the bacterial community structure (see next section). 

Many free-living bacteria can, in turn, defend themselves against certain protist predators and even 

kill them (Greub and Raoult, 2004; Jousset et al., 2006). Several bacteria, viruses, and even other 

protists can also parasitize protist hosts (Barker and Brown, 1994; Raoult and Boyer, 2010).  

The prey spectrum of protists has, however, repeatedly been shown to be much more diverse than 

bacteria. Indeed, archaea (Ballen-Segura et al., 2017), fungi (Gupta and Germida, 1988; Ekelund, 

1998; Adl and Gupta, 2006; Geisen et al., 2016), other protists (Page, 1977; Jassey et al., 2012), and 

nematodes (Bjørnlund and Rønn, 2008; Geisen et al., 2015b) constitute prey for diverse protist 

species. Recently, HTS approaches have revealed the ubiquitous presence and dominant roles of 

protist parasites and pathogens in soils, and they likely represent a key component controlling other 

soil organisms including larger soil metazoans (animals) and plants (Geisen et al., 2015a; Dupont et 

al., 2016; Geisen, 2016b). This draws attention to the enormous complexity and importance of 

protist interactions with other organisms (Bonkowski, 2004). 

Due to our limited knowledge of protist diversity and because most studies have used only one or 

few protists as models, we lack understanding about most aspects of how soil protist communities 

interact with other organisms. Disentangling the diverse interactions of protists with other soil 

organisms (Q11, Q12, Q15), the exact mechanisms (Q14) and the resulting importance for 

functioning (Q13, Q14), therefore, are key knowledge gaps necessitating future research.  

IV Functions of Protists 

16 What is the importance of soil protists in biogeochemical cycling? 

17 How much functional redundancy is there in the soil protist community? 

18 Does increased protist diversity affect ecosystem functioning? 
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19 What is the comparative importance of eukaryotic microbes vs. prokaryotes in driving key soil 

processes? 

20 Which individual functions are performed by distinct groups, and what is the entire functional 

diversity of soil protists? 

 

Many acknowledged functions of soil protists are attributed to interactions with other organisms as 

outlined above. Especially important is the role of protists in driving the microbial loop, i.e. releasing 

nutrients (particularly nitrogen) bound in bacterial prey. The microbial loop has been demonstrated 

both in aquatic (Azam et al., 1983) and soil systems (Clarholm, 1985). This ground-breaking research 

identified protists as important drivers of the global ecosystem. Subsequent work on the microbial 

loop demonstrated that differential feeding by protists on bacterial prey is beneficial for plant 

growth (Bonkowski, 2004; Rosenberg et al., 2009). The main focus in earlier studies was, however, 

mainly on nitrogen cycling, and the importance of protists for cycling of other elements such as 

carbon and phosphorus has been relatively neglected, with few exceptions (Cole et al., 1977; Gupta 

and Germida, 1988; Treonis and Lussenhop, 1997; Frey et al., 2001; Murase et al., 2011; Eisenhauer 

et al., 2012; Jassey et al., 2015). Protists might even play a role in silica cycling as some use Si as 

reinforcing elements or in an exoskeleton (Aoki et al., 2007; Creevy et al., 2016). More thorough 

investigations about the functional roles of additional protist species and communities as a whole 

will likely reveal insights into the importance of protists in biogeochemical nutrient cycling. This was 

identified by most participants of this study as the most important question for future research 

(Q16). 

In contrast to free-living protists, plant pathogenic protists, such as oomycetes or plasmodiophorids, 

have, not surprisingly, attracted considerable attention due to their agro-economic impact (Anderson 

et al., 2004; Bell et al., 2006; Neuhauser et al., 2014). These were, however, until very recently often 

              ‘f  g ’ (Schardl and Craven, 2003; Gams et al., 2011). Similarly, soil protists with 
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immediate relevance for human diseases such as those directly harmful to humans (Schuster, 2002; 

Siddiqui and Ahmed Khan, 2012; Geisen et al., 2014b) and                   “T  j         ” 

harbouring human-pathogenic bacteria (Brown and Barker, 1999; Molmeret et al., 2005) have 

received considerable attention. In turn, the role of protists in plant disease control due to, e.g., 

increasing bacterial biocontrol agents (Jousset, 2012) or by directly feeding on plant pathogens (Old 

and Chakraborty, 1986; Geisen et al., 2016) has received comparatively little attention. In line with 

their importance in nutrient cycling and as biocontrol agents, the role of individual protist species 

and that of protist diversity for the general functioning of soils and ecosystems (Q17, Q18, Q20), also 

in comparison to other groups of microbes (Q19), were identified as important questions to be 

addressed in future studies. 

V Global Change, Bioindicators and Applications 

21 How do changing climatic patterns affect the diversity of, community structure of and ecosystem 

services provided by soil protists? 

22 Which protist clades can be used as bioindicators to assess soil properties, ecosystem state, and 

anthropogenic impacts? How could this be implemented? 

23 Why are some species more sensitive to environmental change than others, why do some respond 

faster to environmental factors? 

24 How can protists be used for nutrient mobilization and biocontrol in cropping systems?  

25 What is the importance of soil protists for biodiversity conservation and ecosystem management 

and restoration? Should we protect particular species or habitats? 

 

Protist communities are often studied as bioindicators of past and present climatic conditions, land 

use changes and pollution (Gupta and Yeates, 1997; Mitchell et al., 2008). Abiotic changes affect 

protists in species-specific ways, thus forming the basis for their use as bioindicators (Fournier et al., 

2012). They may, for instance, provide information on soil state in agro-ecosystems (Foissner, 1997, 
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1999; Bharti et al., 2015). Testate amoebae and their subfossil remains have been used to evaluate 

wetland hydrological conditions, applied, for instance, in studies of peatland restoration (Marcisz et 

al., 2014) and reconstruction of Holocene environmental change (Turner et al., 2014; Lamentowicz et 

al., 2015; Payne et al., 2015). However, more generally, there has been little progress on evaluating 

protists as bioindicators even though reliable indicators to assess soil quality continue to be of high 

relevance (Griffiths et al., 2016) as also revealed here (Q22). Application of protists for stimulating 

plant performance in terms of nutrition, growth, productivity and disease suppression holds great 

promise but has received little attention (Q24) 

Effects of ongoing global climate change and human impact on the environment are the focus of 

increasing scientific attention. Global warming has been shown to alter the abundance and 

community structure of protists (Tsyganov et al., 2011; Jassey et al., 2013) in the limited number of 

studies that have been done. Predicted changes in precipitation regime will likely affect water 

availability, which will impact protist communities directly (Clarholm, 1981; Bates et al., 2013; Geisen 

et al., 2014a). Elevated atmospheric CO2 has also been shown to increase abundance and changes 

community structure of rhizosphere protists, possibly due to increased plant productivity and 

enhanced release of root organic exudates (e.g., (Treonis and Lussenhop, 1997; Anderson and Griffin, 

2001; Rønn et al., 2002)). Increased air pollution by nitrogen, sulphur, tropospheric ozone and metals 

are also likely to alter protist abundance and diversity (Meyer et al., 2012; Payne et al., 2012; Payne 

et al., 2013). Most of these studies focused on testate amoebae, but it is important to study how 

global environmental changes affect entire protist communities (Q21, Q23, Q25) as these changes 

are likely to have significant impacts on ecosystem functioning/services and, consequently, on 

human welfare, and may provide more informative markers of environmental change.  

 

VI Methodology 

26 What is the most practical taxonomic unit to measure protist diversity? 
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27 How can we standardize and calibrate cultivation based and molecular methods to reliably 

quantify soil protist abundance, diversity and activity? 

28 How should sampling be performed to adequately evaluate soil protist diversity? 

29 At what scales (temporal, spatial/physical, morphological, phylogenetic) should we study protists 

to fully understand their diversity and function in soil; which one should be prioritized? 

30 How can we infer functional traits of soil protists based on morphology or phylogenetic affiliation, 

and what taxonomic resolution is needed?  

 

Diverse methods are used to study community structures of soil protists. Even with respect to more 

classical culturing and morphological observational techniques, the application of methods of non-

protistological disciplines, such as mycology, have the potential of broadening our perspectives on 

the soil protist community (Spiegel et al., 2004). However, especially recent developments in 

molecular sequencing technologies, have changed and will continue to change our knowledge about 

protist diversity and community structure in soils (Bates et al., 2013; Geisen et al., 2015c). However, 

some issues relating to HTS-based efforts remain as they provide relative abundances of taxa without 

providing information on absolute abundances. For example PCR-based HTS efforts have been shown 

to artificially alter the observed community structure of soil protists, a problem which needs to be 

solved to decipher their real community structure (Geisen et al., 2015a). PCR-free ‘ m   -

 pp       ’, i.e. metagenomics and metatranscriptomics, might resolve some of these issues (Geisen 

et al., 2015c; Jacquiod et al., 2016). Indeed, these sequence-based omics approaches and sequence-

independent metaproteomics provide valuable information not only on taxonomic diversity but also 

on their potential functions (Prosser, 2015). Calibrating, standardizing and adopting community-

defined methodologies to study soil protists will, consequently, be key for cross-study comparisons 

(Q27) and correct sampling and analyses through different scales need to be defined a priory (Q28, 

Q29). Furthermore, it is essential to identify the most meaningful taxonomic levels to use in the study 

of diversity and functioning of soil protists (Q26), but even the definition of a species remains a 
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challenge (Boenigk et al., 2012b) and integrating morphology to phylogeny to function remains 

missing (Q30). 

In addition, medical and novel imaging techniques applied to soil are revolutionising in situ work 

allowing us to study protist species in undisturbed soil and on plant roots. These include applications 

of NanoSIMS technology to precisely locate isotopic markers and isotopic composition of material in 

fixed preparations and to study dynamics of nutrient fluxes (Stockdale et al., 2009), which allows 

tracing nutrient flow from microbial prey to protist predator and further in the food web in high 

resolution. This will allow detailed investigations how protists selective interact in microsites with their 

prey, how nutrients become released and where they are translocated. Applications of a variety of X-

ray based synchrotron spectroscopy and tomography with undisturbed soil is becoming technically 

feasible and permits the study of dynamics and fluxes at a very fine resolution without interfering 

with the matrix (Keyes et al., 2013). The ability to use soils with intact fine roots, and examining 

undisturbed natural soil communities finally provides access to rhizosphere processes. Techniques to 

measure and analyse chemically soil community molecular interactions and communications are now 

only a few steps away.  

3.3 (Partial) knowledge gaps and future directions 

In this paper we provide a guide to 30 highly relevant questions for future studies in soil protistology. 

Research has already been conducted on many of these questions. Literature searches and personal 

knowledge of the literature allowed us to identify studies that addressed 91 % of the initial and 97 % 

of the final questions. However, many of these studies focus on organisms other than soil protists 

(e.g. aquatic protists or non-protist microbes), and may not be directly applicable to the situation 

with soil protists. The fact that these 30 questions have been identified by our pool of experts 

strongly implies that previous research has been insufficient to provide conclusive answers. In 

Supplementary Table 1 we provide an extensive bibliography of previous research relevant to 
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addressing these questions. This bibliography will be a valuable literature guide to the current state 

of the art on soil protistology. 

We are beginning to understand many aspects of soil protist biology, as we are identifying the 

hyperdiverse nature of protist communities, determining their (a)biotic drivers, deciphering 

interactions with other organisms, and shedding light on their importance in ecosystem dynamics. So 

far, however, we are only seeing the tip of the iceberg. Addressing many of the 30 questions 

highlighted here will undoubtedly reveal novel insights, not only into soil protists, but also into other 

organisms, soils, and fundamental ecological processes. We hope that these questions will be used to 

catalyse soil protistology and to build research agendas for the future. More specifically, we 

encourage both protistologists and researchers in closely related fields to consider these questions 

carefully and to use them to develop new and innovative individual and collaborative projects. With 

newly available techniques, an increase in knowledge and a growing awareness of the importance of 

soil protists, we are at the start of a bright future for soil protist research! 
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Figures 

Fig. 1: Common free-living soil protists as visualized by size (lengths), morphology and phylogenetic 

affiliation. Note, soil protists belong to a wide range of supergroups (in brackets), whereas animals 

are only placed in the supergroup Opisthokonta. Furthermore, soil protists span a much wider size 

range as commonly assumed. With the exception of ciliates, morphogroups are not phylogenetically 

conserved and are placed in different eukaryotic supergroups. Most soil protists can occur in 

different life forms including active form (amoeba, flagellate, ciliate), but most form cysts, while 

some can form special reproduction structures (sorocarps and fruiting bodies). 

Fig. 2: (a) Overview of studies specifically mentioning protists in the title in 5-year intervals since 

1980. Soil studies represent only about a fraction of aquatic studies (separated into freshwater, 

marine and those that more broadly indicate aquatic) showing a strong increase in protist research in 

aquatic, but not soil environments; (b) Comparison of soil studies specifically mentioning protists in 

the title with those on other micro-sized organisms including viruses (blue filled circles), archaea 

(green open circles), bacteria (red diamonds), fungi (orange crosses) and nematodes (green 

triangles). See Supplementary Methods for details on the search. 
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