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ABSTRACT 

Mining of mineral resources results in extensive soil damage, altering microbial 

communities and affecting vegetation leading to destruction of vast amounts of land. 

Reclamation is the process to restore the ecological integrity of these disturbed mine land 

areas. It includes the management of all types of physical, chemical and biological 

disturbances of soils such as soil pH, fertility, microbial community and various soil 

nutrient cycles that makes the degraded land soil productive. Productivity of soil can be 

increased by adding various natural amendments such as saw dust, wood residues, 

sewage sludge, animal manures, as these amendments stimulate the microbial activity 

which provides the nutrients (N, P) and organic carbon to the soil. The top soil gets 

seriously damaged during mineral extraction. The consequences of physical disturbance 

to the top soil during stripping, stockpiling, and reinstatement cause unusually large N 

transformations and movements with eventually substantial loss. Management of top soil 

is important for reclamation plan to reduce the N losses and to increase soil nutrients and 

microbes. Revegetation constitutes the most widely accepted and useful way to reduce 

erosion and protect soils against degradation during reclamation. Mine restoration efforts 

have focused on N-fixing species of legumes, grasses, herbs, and trees. Metal tolerant 

plants can be effective for acidic and heavy metals bearing soils. Reclamation of 

abandoned mine land is a very complex process. Once the reclamation plan is complete 

and vegetation has established, the assessment of the reclaimed site is necessary to 

evaluate the success of reclamation. Evaluation of reclamation success focuses on 

measuring the occurrence and distribution of soil microflora community which is 

regulated by interactions between C and nutrient availabilities. Reclamation success also 

measures the structure and functioning of mycorrhizal symbiosis and various enzymatic 

activities in soil. This paper includes physical, chemical and biological mine soil 

properties, their management to make soil productive, top soil management, vegetation of 

various species and assessment of effectiveness of reclamation. 

Keywords:  mining, soil, reclamation, revegetation   

1.  INTRODUCTION 

Land is one of the most important resources on which human beings depend. The rate of 

consumption of mineral resources is continuously increasing with the advancement of 

science and technology, economic development, industrial expansion, acceleration of 
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urbanization and growth of population. Growth of our society and civilization thus 

heavily rely upon the mining industry to operate and maintain comfort. The end result for 

mining activities on the surface is mining wastes and alteration of land forms which is a 

concern to the society and it is desired that the pristine conditions are restored. Mine 

wasteland generally comprises the bare stripped area, loose soil piles, waste rock and 

overburden surfaces, subsided land areas, other degraded land by mining facilities, 

among which the waste rocks often pose extreme stressful conditions for restoration. The 

mining disrupts the aesthetics of the landscape along with it disrupts soil components 

such as soil horizons and structure, soil microbe populations, and nutrient cycles those 

are crucial for sustaining a healthy ecosystem and hence results in the destruction of 

existing vegetation and soil profile (Kundu and Ghose, 1997). The overburden dumps 

include adverse factors such as elevated bioavailability of metals; elevated sand content; 

lack of moisture; increased compaction; and relatively low organic matter content. Acidic 

dumps may release salt or contain sulphidic material, which can generate acid-mine-

drainage (Ghose, 2005). The effects of mine wastes can be multiple, such as soil erosion, 

air and water pollution, toxicity, geo-environmental disasters, loss of biodiversity, and 

ultimately loss of economic wealth (Wong, 2003; Sheoran et al., 2008).  

It is imperative from the above that the mineral extraction process must ensure return 

of productivity of the affected land. An increase in the concerns for environment has 

made concurrent post-mining reclamation of the degraded land as an integral feature of 

the whole mining spectrum (Ghose, 1989). Conservation and reclamation efforts to 

ensure continued beneficial use of land resources are essential. Reclamation is the 

process by which derelict or highly degraded lands are returned to productivity, and by 

which some measures of biotic function and productivity is restored. Long term mine 

spoil reclamation requires the establishment of stable nutrient cycles from plant growth 

and microbial processes (Singh et al., 2002, Lone et al., 2008; Kavamura and Esposito, 

2010). Soil provides the foundation for this process, so its composition and density 

directly affect the future stability of the restored plant community. Restoration of 

vegetation cover on overburden dumps can fulfill the objectives of stabilization, pollution 

control, visual improvement and removal of threats to human beings (Wong, 2003). 

Reclamation strategies must address soil structure, soil fertility, microbe populations, top 

soil management and nutrient cycling in order to return the land as closely as possible to 

its pristine condition and continue as a self-sustaining ecosystem.  

Ecological restoration and mine reclamation have become important parts of the 

sustainable development strategy in many countries. Good planning and environmental 

management will minimize the impacts of mining on the environment and will help in 

preserving eco-diversity. This article assesses the deterioration of chemical, physical and 

biological soil properties due to surface mining and also their management with a 

purpose to get productive mine soil. The article also assesses effectiveness of soil from 

mining waste in reclamation of mined degraded land for its sustainable and beneficial 

use. Discussion on post mining land use forms and control of soil pollution through acid-

mine-drainage is beyond the scope of this paper. Readers are encouraged to refer studies 

presented elsewhere on these subjects, e.g. Sharma et al., (1996) for post mining land use 

and, Saharan et al., (1995) and Sheoran and Sheoran, (2006) for acid-mine-drainage 

management issues.   
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2.  SOIL PROPERTIES IMPORTANT FOR PLANT GROWTH 

2.1  Chemical Property 

2.1.1  Soil pH 

Soil pH is a measure of active soil acidity and is the most commonly used indicator of 

mine soil quality. The pH of a given mine soil can change rapidly as the rock fragments 

weather and oxidize. Pyritic minerals (FeS2), when present, oxidized to sulfuric acid and 

drastically lower the pH, while carbonate (Ca/MgCO3) bearing minerals and rocks tend to 

increase the pH as they weather and dissolve. Unweathered (or unoxidized) mine soils 

those contain a significant amount of pyritic-S in excess of their neutralizers (carbonates) 

will rapidly drop the pH to a range of    2.2 - 3.5 after exposure to water and oxygen. 

Vegetation achieves optimal growth in soil at a neutral pH. When the soil pH drops 

below to 5.5, reduced legume and forage growth occur due to metal toxicities such as 

aluminum or manganese, phosphorus fixation, and reduced population of N-fixing 

bacteria. This growth hence inhibits plant root growth and many other metabolic 

processes. A mine soil pH range in the range of 6.0 to 7.5 is ideal for forages and other 

agronomic or horticultural uses (Gitt and Dollhopf, 1991; Gould et al., 1996). Maiti and 

Ghose, (2005) reported that the pH vary from 4.9 to 5.3 in a mining dump site situated in 

Central Coalfield Limited's (CCL), North Karanpura area in the Ranchi district of 

Jharkhand State of India and thus indicated the acidic nature of the dumps. This acidic 

nature arose due to the geology of the rock presented in the area. It has been reported 

earlier that at pH less than 5, along with Fe, the bioavailability of toxic metal such as 

nickel, lead and cadmium also increases (Maiti, 2003).  

2.1.2  Soil Fertility 

The three major macronutrients, namely nitrogen, phosphorus and potassium are 

generally found to be deficient in overburden dumps (Coppin and Bradshaw, 1982; 

Sheoran et al., 2008). All newly created mine soils, and many older ones, will require 

significant fertilizer element applications for the establishment and maintenance of any 

plant community. Organic matter is the major source of nutrients such as nitrogen, and 

available P and K in unfertilized soils (Donahue et al., 1990). A level of organic carbon 

greater than 0.75% indicates good fertility (Ghosh et al., 1983). The level of organic 

carbon in overburden was found to be 0.35% to 0.85%. Organic carbon is positively 

correlated with available N and K and negatively correlated with Fe, Mn, Cu, and Zn 

(Maiti and Ghose, 2005). Initial applications of fertilizers have shown to increase the 

specific numbers, plants co-density and growth rates of vegetation. 

Some of the important metallic micronutrients that are essential for plant growth are 

Fe, Mn, Cu, and Zn. These micronutrients are available in the soil due to continuous 

weathering of minerals mixed with primary minerals. These metals are more soluble in 

acidic solution, and they dissolve to form toxic concentrations that may actually hinder 

plant growth (Donahue et al., 1990; Barcelo and Poshenrieder, 2003; Das and Maiti, 

2006). Maiti and Ghose, (2005) while working on restoration of acidic coal overburden 

reported that it is essential to increase the pH and organic matter content for sustainable 

reclamation of mining overburdens. During investigation it was found that locally 

available drought resistant, fast-growing trees able to grow in acidic nutrient deficient 
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soils increased the concentration of available Fe in all   reclaimed dumps higher than 4.5 

mg kg
-1

, Mn with average value of 13 mg kg
-1

, 9 to 42 mg kg
-1

 for Zn, 0.32 to 1.22 mg 

kg
-1

 for Cu. According to Lindsay and Norvell, (1978) if the concentration of 

micronutrients in the soil was higher than 4.5 mg kg-
1
 for Fe, 1.0 mg kg

-1
 for Mn, 1.0 mg 

kg
-1

 for Zn and 0.4 mg kg
-1

 for Cu, the values are rated as highly sufficient for ecological 

sustainable reclamation.  

Type of fertilizer and its application rate will vary according to the site, soil type, and 

post mining land use (Kenny and Bremner, 1966). Care to be taken while preparing 

fertilizer prescription and applying on the rehabilitated areas. Roots of seedling can be 

damaged if the fertilizer is placed too close to the plant (Schmidt, 2003; Ghose, 2005).  

2.2  Physical Properties 

2.2.1  Rock Content 

Soil particles those smaller than 2 mm are responsible for majority of water and nutrient 

holding capacity in the mine soils. Particles larger than 2 mm are referred to as "coarse 

fragments". Soils constituting high coarse fragments have larger pores that cannot hold 

enough plant available water against leaching to sustain vigorous growth over the 

summer months.  The coarse fragment contents in a typical mine spoil vary (< 30- > 

70%) due to differences in rock hardness, blasting techniques, and spoil handling. 

Particle size distribution of mine soils is directly inherited from their parent rocks or 

spoils. The rock content in the surface of a reclaimed bench or outslopes will decrease 

overtime due to weathering of rock fragments to soil sized particles. Top soil materials, 

when they can be salvaged, are typically much lower in rock content than spoils and 

therefore have better water retention characteristics (Nicolau, 2002; Moreno-de las Heras 

et al., 2008)  Hu et al., (1992) are of the opinion that soil with stone content greater than 

50% should be rated as poor quality. Stone content of coal mine overburden dumps has 

been reported to be as high as 80-85% (Maiti and Saxena, 1998). Maiti and Ghose, 

(2005) reported stone content in overburden dumps in range of 35%-65%, with an 

average value of 55%. 

2.2.2  Soil Texture 

Relative amount of sand (2.0 - 0.05 mm), silt (0.05 - 0.002 mm), and clay (< 0.002 mm) 

sized particles determine the texture of soil. Mine soils with sandy textures cannot hold as 

much water or nutrients as finer textured soils like loams and silts. The silts are finer 

textured soils and have a tendency to form surface crusts, often contain high level of 

soluble salts, and have a poor "tilth" or consistence. The particle size distribution of the 

soils with loamy textures is generally ideal. Silt loam textures are common where spoils 

are dominated by siltstones (Ghose, 2005). Ghose, (2005) reported the maximum sand 

content of 66% and clay only 8.6% in mined soil. Singh et al., (2004) and Singh and 

Singh, (2006) also reported maximum content of sand (80%) and least content of clay 

(11%) at the Singrauli Coal field India.  

2.2.3  Soil Aggregation 

Soil aggregation controls soil hydrology, affect soil diffusion and the degree of nutrient 

availability to the soil (Lindemann et al., 1984; Heras, 2009), and may reduce erosion 
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potential (Elkins et al., 1984), and constitutes a pathway of organic carbon stabilization 

and long term sequestration(Six et al., 2004). Aggregate structure breaks down as 

successive layers of soil are removed and stockpiled elsewhere on the site when mining 

begins. The resulting compaction reduces water holding capacity and aeration. Macro 

aggregate stability is largely responsible for macro porosity, which determines soil 

drainage rate and aeration; it changes seasonally and is often affected by cultivation and 

cropping regime (Kay, 1990). Micro-aggregate stability is more resilient than macro-

aggregate stability as the organic matters responsible for binding the soil particles 

together reside in pores too small for microorganisms to occupy (Gregorich et al., 1989). 

Micro-aggregates are less sensitive to cropping practices than macro-aggregates (Dexter, 

1988) and are responsible for crumb porosity which controls the amount of available 

water for vegetation (Davies and Younger, 1994).  

2.2.4  Moisture, Bulk Density, Compaction and Available Rooting Depth 

Moisture content in a dump is a fluctuating parameter which is influenced by the time of 

sampling, height of dump, stone content, amount of organic carbon, and the texture and 

thickness of litter layers on the dump surface (Donahue et al., 1990). During the winter, 

the average moisture content of 5% was found to be sufficient for the plant growth. 

During high summer (May-June), moisture content in overburden dumps was reported to 

be as low as 2-3% (Maiti et al., 2002). Maiti and Ghose, (2005) reported average field 

moisture content of all the dumps was 5%. 

Bulk density of productive natural soils generally ranges from 1.1 to 1.5 g/cm
3
. High 

bulk density limits rooting depth in mine soils. In seven year old overburden dumps, the 

bulk density was found to be as high as 1.91 Mgm
-3

 (Maiti and Ghose, 2005). Bulk 

density in the soil under a grass sward in the UK has been found to be as high as 1.8 

Mgm-3 (Rimmer and Younger, 1997).  Soil compaction directly limits plant growth, as 

most species are unable to extend roots effectively through high bulk-density mine soils. 

Severely compacted (bulk density > 1.7 g/cc) mine soils, particularly those with less than 

two feet of effective rooting depth, shallow intact bedrock and the presence of large 

boulders in the soil simply cannot hold enough plant-available water to sustain vigorous 

plant communities through protracted drought. Three to four feet of loose non-compacted 

soil material is required to hold enough water to sustain plants through prolonged 

droughts. Compacted zones may also perch water tables during wet weather conditions, 

causing saturation and anaerobic conditions within the rooting zone. Repeated traffic of 

wheeled mining machineries (loaders and haulers), and bulldozers to a lesser extent, form 

compacted zones in the mining dumps. 

2.2.5  Slope, Topography and Stability 

Mine soils with slopes greater than 15% are generally unsuitable for intensive land uses 

such as vegetable or crop production, but they may be suitable for grazing and 

reforestation. Broad flat benches and fills with slopes less that 2% often have seasonal 

wetness problems. Many benches with an overall gentle slope contain areas of extreme 

rockiness, pits, hummocks, and ditches. Average slope of most reclaimed modern mines 

is quite a bit steeper than the older benches, but the newer landforms are considerably 

smoother and more uniform in final grade. Bench areas directly above intact bedrock on 

older mined lands are usually fairly stable but may be subject to slumping, especially 
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when near the edge of the out slope. Tension cracks running roughly parallel to the out 

slope indicate that the area is unstable and likely to slump. Decreased soil stability can 

lead to increase in bulk density because the matrix does not resist slaking, dispersion by 

water and the forces imparted by wheels, hooves and rainfall (Daniels, 1999).This, in 

turn, leads to decreased aeration and water infiltration rate and the development of 

anaerobic conditions. N losses by denitrification may follow under such environment 

(Davies and Younger, 1994).  

2.2.6  Mine Spoil/Soil Color 

Mining activities remove surface earth, piling it over unmined land and forming chains of 

external dumps i.e. mine spoil/ wasteland. Mine spoils possess very rigorous conditions 

for both plants and the microorganism culture. Biological functionality along with the 

nutrient cycle is disturbed leading to a non- functional soil system. This is mainly due to 

low organic matter contents and other unfavorable physico-chemical and microbiological 

characteristics (Singh and Singh, 1999; Jha and Singh, 1993; Singh and Singh, 2006).  

The color of a mine spoils or weathered mine soil can tell us much about its weathering 

history, chemical properties, and physical make up. Bright red and brown colors in spoils 

and soils generally indicate that the material has been oxidized and leached to some 

degree. These materials tend to be lower in pH and free salts, less fertile, low in pyrites, 

and more susceptible to physical weathering than darker colored materials. Gray colors in 

rocks, spoils and soils usually indicate a lack of oxidation and leaching and these 

materials tend to be higher in pH and fertility. Very dark gray and black rocks, spoils, and 

mine soils contain significant amounts of organic materials and are often quite acidic. 

Dark colored spoils are also difficult to re-vegetate during the summer months because 

they absorb a great deal of solar energy and become quite hot (Daniels, 1999). Natural 

succession process to recover this spoil may take hundreds of years. 

2.2.7     Top soil 

Top soil is used to cover poor substrate and to provide improved growth conditions for 

plants. Stockpiling of top soil in mounds during mineral extraction has been shown to 

affect the biological, chemical and physical properties of soil (Hunter and Currie, 1956; 

Barkworth and Bateson, 1964; Harris et al., 1989; Johnson et al., 1991; Davies et al., 

1995). Top soil is a scarce commodity, and it is never stored in the majority of potential 

sources. Also, in a tropical climate where 90% of rainfall is precipitated within three 

months of the rainy season, storing of the top soil and preservation of soil quality remains 

problematic. Top soil is never stored for reuse; instead it is borrowed from nearby areas 

for the reclamation of the degraded mined-out areas. At a depth about 1m in the 

stockpile, the number of anaerobic bacteria increases where as those of aerobic bacteria 

decreases (Harris et al., 1989). This inhibits nitrification due to poor aeration within the 

stockpile leading to an accumulation of ammonia in the anaerobic zones. Once the soil is 

removed from the stockpile and reinstated, aerobic microbial population rapidly re-

establishes, usually higher than the normal level (Williamson and Johnson, 1991) and 

nitrification restarts at higher than the normal rates. If high level of ammonia is present in 

a reinstated soil, the amount of nitrate generated is likely to be much greater than the 

normal. Consequently there is high potential for N loss to the environment via leaching 

or/and denitrification (Johnson and Williamson, 1994). Nitrate leached to water courses 
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is not only a threat to aquatic environment and drinking water supplies (Addiscott et al., 

1991) but if nitrogen is lost from soil in the form of gaseous nitrogen or nitrous oxides; 

this will contribute the degradation of ozone layer (Isermann, 1994; Davies et al., 1995). 

The period between the initial removal of top soil and final laying of the same over the 

reclaimed area might have a long time lapse. Hence, properties of stockpiled soil 

continually deteriorate and ultimately become biologically non-productive if it is not 

preserved properly (Ghose, 2005).  

2.3  Biological Properties  

2.3.1  Soil Microbe 

Soil microbe populations must be addressed deliberately as another soil component. It 

plays a major role in aggregate stabilization, which is important for maintaining suitable 

structural conditions for cultivation and porosity for crop growth (Ghose, 2005). Their 

activity declines when soil layers are disrupted and is slow to resume independently. Soil 

microbes include several bacterial species active in decomposition of plant material as 

well as fungal species whose symbiotic relationship with many plants facilitates uptake of 

nitrogen and phosphorus in exchange of carbon. They produce polysaccharides that 

improve soil aggregation and positively affect plant growth (Williamson and Johnson, 

1991). Sites with an active soil microbe community exhibit stable soil aggregation, 

whereas sites with decreased microbial activity have compacted soil and poor 

aggregation (Edgerton et al., 1995). Microbial activity decreases with depth and time as 

topsoil continues to be stored during mining operations (Harris et al., 1989). Microbial 

activity, measured in ATP (adenosine tri phosphatase) concentrations, plummets to very 

low levels within a few months. Response to glucose is slower by microbes at all depths, 

suggesting that metabolic rates decrease with time (Visser et al., 1984). 

2.3.2  Bacteria  

Bacteria play an important role in decomposition of organic materials, especially in the 

early stages of decomposition when moisture levels are high. In the later stages of 

decomposition fungi tend to dominate. Rhizobia are single celled bacteria, belongs to 

family of bacteria Rhizobiacea, form a mutually beneficial association, or symbiosis with 

legume plants. These bacteria take nitrogen from air (which plant cannot use) and convert 

it into a form of nitrogen called ammonia (NH4
+
) used by plants (Gil-Sotres et al., 2005). 

Free living as well as symbiotic plant growth promoting rhizo-bacteria can enhance plant 

growth directly by providing bioavailable P for plant uptake, fixing N for plant use, 

sequestering trace elements like iron for plants by siderophores, producing plant hormone 

like auxins, cytokinins and gibberlins, and lowering of plant ethylene levels (Glick et al., 

1999; Khan, 2005).  

When soil layers are removed and stockpiled, the bacteria inhabiting the original 

upper layers end up on the bottom of the pile under compacted soil. A flush of activity 

occurs in the new upper layer during the first year as bacteria are exposed to atmospheric 

oxygen. After two years of storage there is little change in the bacterial numbers at the 

surface, but less than one half the initial populations persist at depths below 50 cm 

(Williamson and Johnson, 1991).  
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2.3.3  Mycorrhizal Fungi 

Arbuscular mycorrhiza fungi are ubiquitous soil microbe occurring in almost all habitats 

and climates. The hypha network established by mycorrhizal fungi breaks when soils are 

initially moved and stockpiled (Gould et al., 1996). It is well documented that 

mycorrhizal associations are essential for survival and growth of plants and plant uptake 

of nutrient such as phosphorus and nitrogen, especially P deficient derelict soils (Khan, 

2005). An important arbuscular mycorrhiza genus is Glomus, which colonize a variety of 

host species,
 
including sunflower (Marschner, 1995). Dual inoculation with Trichoderma 

koningii and AM fungi increased plant growth of Eucalyptus globulus under heavy metal 

contamination conditions (Arriagada et al., 2004, 2005). 

There is a little decrease in viable mycorrhizal inoculum potential during the first two 

years of storage (Miller et al., 1985). Viability of mycorrhizas in stored soils decreases 

considerably and possibly to the levels 1/10 those of the undisturbed soil (Rives et al., 

1980). Miller et al., (1985) indicate that soil water potential is a significant factor 

affecting mycorrhizal viability. When soil water potential is less than -2 MPa (drier soil), 

mycorrhizal propagules can survive for greater lengths of storage time; when soil water 

potential is greater than -2 MPa, length of storage time becomes more important. In drier 

climates, deep stockpiles may not threaten mycorrhizal propagule survival. In wetter 

climates, shallow stockpiles are more important to maximize surface-to-volume ratios 

with regard to moisture evaporation.  

3.  MANAGEMENT OF THE PRODUCTIVE MINE SPOIL 

3.1  Rebuilding Soil Structure 

The first soil component addressed during reclamation is the structure of the soil itself 

as it is replaced onto the reclamation site. Soil structure includes soil aggregation, or the 

way in which soil particles are held together, and the size of the particles comprising the 

layers at different depths. The degree to which soil is loosely constructed versus 

compacted can be altered during reclamation by the method of replacement adopted 

(Visser et al., 1984). Using a tyre mounted mining machine (scrapers) than crawler 

mounted (dozers) to dig stored soil can minimize compaction. Transporting soil from the 

stockpile to the reclamation site on a conveyor belt with trundling action improves soil 

structure by breaking up massive aggregates. As smaller aggregates continue to tumble, 

they tend to acquire an agglomerative skin of fine particles, which promotes loose soil 

structure.  Loosely constructed, or "fritted", subsoil is very important to plant root 

systems. The extent of the root system determines a plant's ability to maximize its surface 

area and access a greater volume of water and soil nutrients. Plants grown in fritted 

subsoil have root patterns with extensive vertical and lateral penetration. Rock contents in 

the surface of a reclaimed bench or out-slope will decrease over time due to weathering 

of rock fragments to soil sized particles and therefore have better water retention 

characteristics. Gypsum (CaSO4.H2O) has traditionally been used to improve sodic media 

for plant growth (Richards, 1954). It can be used to improve the structure of poorly 

structured sodic soils. Gypsum is normally incorporated into soil at about 5-10 tonnes/ha. 

Application of gypsum results in replacement of sodium with calcium on the soil 

exchange surfaces, which can improve the soil structure, reduce surface crusting and 
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increase water infiltration. It may also reduce the pH of sodic soils (soil with pH>8.5) 

(Ghose, 2005). An exchangeable sodium proportion of greater than 6% can indicate an 

unstable soil structure. 

3.2  Management of Soil pH  

Acidic mine soils can be effectively neutralized once they have been again spread at the 

reclamation site by applying either cement kiln dust (CaO) or limestone (CaCO3). Lime 

application rates must account for both past and future pyrite oxidation in order to 

maintain neutral soil pH levels over time. Lime addition is a common method to decrease 

the heavy metal mobility in soils and their accumulation in the plant as it increases the pH 

of soil. Plants like Gravellia robusta, can be planted at acidic dumps (pH 3.6-3.9), which 

increases the soil pH (Gitt and Dollhopf, 1991). Organic amendments such as woodchips, 

composted green waste or manure, biosolids etc also increases the soil pH, in addition 

improves soil structure, water holding capacity, cation exchange capacity, provide a 

slow-release fertilizer and serve as a microbial inoculum (Tordoff et al., 2000; Jordan et 

al., 2002).  

3.3  Increase Soil Fertility  

Areas reclaimed for agriculture or other intensive use will normally require maintenance 

of the fertilizer programmed. There are also certain amendments which have shown 

promise for improving spoil as a plant growth medium. Saw dust has been shown to 

increase the survival rates of certain trees, forbs and shrubs (Uresk and Yamamoto, 

1986). Smith et al., (1985) observed that the addition of woodchips to bare spoils was 

second only to topsoil application for increasing plant establishing and their growth. Gitt 

and Dollhopf, (1991) observed similar results when wood residue had been used as a 

spoil amendment. Amendment with wood residue with N increases the effects of 

fertilizers such as N, P, K or gypsum while amendments with gypsum increases the level 

of soluble salts (Voorhees and Uresk, 1990; Sheoran et al., 2009). 

Majority of N needed to supply plant/soil community comes from N-fixation and 

subsequent mineralization of organically combined N. Therefore, maintenance of a 

vigorous legume component within the plant community is critical for reclamation 

success. Most mine soils do not contain native populations of the essential N-fixing 

Rhizobium bacteria those enable legumes to capture atmospheric N, so care must be 

taken to carefully inoculate all legume seeds used in new plantings. Since N is primarily 

combined in organic matter in soils, the addition of organic amendments to the soil can 

greatly enhance total soil N and its availability over time. Sewage sludge has been shown 

to be an effective mine soil amendment in numerous studies, but it may not always be 

available in sufficient quantities for use on remote sites. Local and state regulations and 

community attitudes frequently complicate the use of sewage wastes on disturbed lands. 

Sawdust and bark mulch are also helpful in increasing the initial mine soil organic matter 

contents but are generally low in N content. Saw dust and sewage sludge have been 

widely recognized as effective short-term fertilizers and sources of long term slow release 

nitrogen (Sydnor and Redente, 2002; Munshower, 1994; Hall, 1984), besides serving as 

microbial inoculums. In addition, organic matter improves soil structure, reduces erosion, 

and increases infiltration. Furthermore, organic wastes can increase the water holding 

capacity of minespoils. Therefore, use of these materials as soil amendments will also 
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require heavy fertilization with N- fertilizer. The maintenance of plant available 

phosphorus (P) in mine soils over time is hindered by two factors: (i) fresh mine spoils 

are generally low in readily plant available (water soluble) P; (ii)  as mine soils weather 

and oxidize they become enriched in Fe-oxides that adsorb water soluble P which is then 

"fixed" into unavailable forms. The tendency of mine soils to fix P increases over time. 

Because organic bound P is not subject to P-fixation, it is critical to establish and build an 

organic-P reservoir in the soil to supply long-term plant needs through P-mineralization. 

Large fertilizer applications of P during reclamation will insure that sufficient P will be 

available over several years to support plant growth and to build the organic-P pool. 

Some P will also become available to the plant community as native calcium phosphates 

in the rocks decompose, but this P is not sufficient to meet the needs of a vigorous plant 

community. Some species, particularly from the family Protease, are reported to be 

adversely affected by application of P-fertilizers. These adverse affects are likely to be 

seen principally on sandy soils, and are less likely to occur on finer soils with a greater 

capacity to adsorb P. The long term productivity of the plant/soil system is dependent 

upon several major factors: (i) accumulation of soil organic matter and N; (ii) 

maintaining N-fixing legumes in the sand; and (iii) establishment of an organic-P pool 

and avoidance of P-fixation (Daniels, 1999; Ghose, 2005). 

3.4  Recharging Soil Microbes 

3.4.1  Bacteria 

In one study, amending replaced topsoil with hay and processed sewage sludge was more 

effective than topsoil inoculation in stimulating bacterial growth and activity, particularly 

for bacteria that oxidize ammonia (Lindemann et al., 1984). Bacteria present in the soil 

require a source of readily oxidizable carbon provided by the hay and sludge to fuel 

metabolic activity and stimulate nitrogen cycling. Topsoil contains carbon, but it is often 

in the form of coal or other humic material mixed during soil replacement and is not 

readily usable (Moynahan et al., 2002). 

3.4.2 Mycorrhiza 

Mycorrhizal propagule densities remain low immediately after reclamation on 

uninoculated sites, but re-establish themselves after couple of years (Williamson and 

Johnson, 1991). This coincides with the appearance of host plants, such as tall fescue, 

that are more conducive to mycorrhizal colonization than those first appearing on the site 

(winter wheat) (Gould et al., 1996; Gould and Hendrix, 1998). Mycorrhizal propagules 

existing in the topsoil may be stimulated by the presence of suitable host plants. 

Lindemann et al., (1984) found that covering re-spread soils with 30 cm of topsoil 

(without mycorrhizal inoculum) also stimulated host colonization by mycorrhizal fungi 

whereas using hay, topsoil with inoculum, or sewage sludge had no effect. Sewage sludge 

may suppress mycorrhizal development by increasing the phosphorus available to host 

plants (Daft and Hacskaylo, 1976). Soil microbe population persists in stored soil and can 

be stimulated during reclamation by charging the system with a source of organic carbon 

or by adding suitable host plants. Many plant species, particularly those that are 

mycorrhizal (e.g. Sericea lespedeza), are able to draw P from difficultly available 

sources. 
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Managing the microbial population in the rhizosphere - by using an inoculum 

consisting of a consortium of plant growth promoting rhizobacteria, mycorrhiza-helping 

bacteria, N-fixing rhizobacteria, and arbuscular mycorrhizal fungus as allied colonizers 

and biofertilizers; could provide plants with benefits crucial for ecosystem restoration. It 

is important to use indigenous arbuscular mycorrhizal fungus strains which are best 

adapted to actual soil and climatic conditions to produce site-specific arbuscular 

mycorrhizal fungus inocula (Mummey et al., 2002b; Khan, 2004).  

3.5 Re-establishing Nutrient Cycles 

Nutrient cycling is very closely linked to soil microbe activity. It is the process by which 

carbon, nitrogen, and phosphorus are reused within an ecosystem due to the metabolic 

activity of plants and soil microbes. Carbon and nitrogen cycles in particular are 

disrupted as soil microbe populations decline and must be re-established during 

reclamation.  

3.5.1  Carbon Cycle 

Organic carbon fuels the metabolic activity of many soil microbes. Microbes obtain 

carbon through their symbiotic relationships with suitable host plants or from organic 

carbon available in the soil resulting from decomposition of plant and animal matter. 

Removal of topsoil from a mining site and mixing it with underlying soil considerably 

reduces the relative proportion of organic carbon (Visser et al., 1984). Little additional 

change in this proportion results from extended storage of soil.  

Researchers frequently found the amount of organic carbon to be the limiting factor 

in stimulating microbial metabolic activity (Williamson and Johnson, 1991). Amending 

soil with bark (Elkins et al., 1984) or fertilizing and planting ryegrass (Williamson and 

Johnson, 1991) provides bacteria with enough organic carbon to stimulate metabolic 

activity, which can be measured by increased microbial carbon. Plant like Dalbergia 

sissoo improves the field moisture content (7%), pH (5.5), organic carbon (85%), and 

NPK. The increase in organic carbon level is due to the accumulation of leaf litter and its 

decomposition to form humus (Maiti and Ghose, 2005).  

3.5.2  Nitrogen Cycle 

Soil organic matter has a very important influence on soil physical and chemical 

properties, on biological activities, and as a source of plant nutrients, especially nitrogen. 

Nitrogen in organic form is converted by microorganisms into ammonium (NH4
+
). Under 

certain conditions specific microbes in the soil use ammonium N in the soil for energy 

and in doing so oxidize ammonium N(NH4
+
) first into nitrite N(NO2

-
) and then into 

nitrate N(NO3
-
) which plants can then use to grow, a process referred to as nitrification. 

Some of that nitrogen is taken in by plants in that area, and some of it escapes into the 

atmosphere. Free-floating atmospheric nitrogen can in turn be “fixed” by plants which 

will eventually be eaten or die, starting the cycle all over again. Amending the stockpiled 

soils with 15 cm topsoil during re-spreading stimulates nitrification and reduces leaching. 

Davies et al., (1995) reported that   during the first two years after reclamation, 

nitrification rates in reclaimed sites were less than those in undisturbed sites, but 

approached levels similar to undisturbed sites after two years.  
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Nutrient recycling and availability on reclaimed sites is reflected in part by the rate of 

decomposition of plant material. Litter decomposition in mined land versus unmined land 

is often retarded during the initial months after reclamation (Lawrey, 1977). Presence of 

heavy metals which reduce soil pH and lack of an existing litter layer create an 

unfavorable microclimate for soil microbes responsible for breaking down organic 

matter. Decomposition rates begin to equalize after six months suggesting increased 

microbial activity, but the initial death of recycled nutrients could impede establishment 

of new plants. Elkins et al., (1984) demonstrated that amending mine spoils with bark 

rather than topsoil significantly increases soil microbe activity and consequently 

decomposition rates but results in less available NO3 than in the spoil which is not 

amended. Oxidation of soil nitrogen to NO3 may be impeded by acidic soils or by the 

time length required by certain bacteria to become established. 

3.6  Top Soil Management 

The top soil is severely damaged if it is not mined out separately in the beginning with a 

view to replace it on the filled void surface area for reclamation in order to protect the 

primary root medium from contamination and erosion and hence its productivity (Kundu 

and Ghose, 1998a, b). Sendlein et al., (1983), however, indicate that systematic handling 

and storage practice can protect the physical and chemical characteristics of top soil 

while in storage and also after it has been redistributed into the regarded area. Ghose, 

(2005) advised to avoid topsoil storage, especially in long term, for a time length by 

which the mine spoil can not maintain its sustainability for suitable plant growth without 

biological reclamation and also, maintenance of growth of aerobic bacteria. The 

following steps are; however, need to be followed for keeping the soil in good condition 

if storage is unavoidable:  

(a) The surface of the stockpile should be thoroughly ripped with suitable sub-soiling 

machinery for the purpose of  

• Relieving surface compaction caused by the passage of scrapers and other 

machines. 

• Aeration of soil. 

• Encouragement of deep-rooting plants by introduced vegetation. 

(b) Following ripping, the heap should be cultivated with suitable low-maintenance 

species (like dwarf grasses) immediately to prevent erosion and gully formation.  

(c) The surface vegetation should be actively maintained with seedling and weed 

control operations. 

After final grading and before replacement of the top soil, slippage surface should be 

eliminated to promote root penetration. Top soil should be redistributed in a manner that 

achieve an approximate uniform and stable thickness consistent with the approved post 

mining land uses, contours, and surface water drainage system. It prevents excess 

compaction of top soil and protects it from wind and water erosion. It is of greater 

importance than any other factor in achieving successful reclamation of surface mined 

land. The top soil must be uniformly redistributed in a manner which assures placement 

and compaction compatible with the needs of the species those will be used to restore the 

distributed area to its pre-mined potential (Ghose, 2005). Nitrogen losses can be reduced 
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by preventing the development of anaerobic conditions in the soil mound. Soil storage is 

for very short periods, periodically opening up and aerating the soil while stockpiled or 

permanently aerating, allowing drainage with a network of pipes and use of nitrification 

inhibitors after restoration are the operations that may in part ameliorate the problem 

(Davies et al., 1995). Vast majority of surface mines today employ some form of 

controlled overburden placement techniques and utilize top soil substitutes derived from 

blasted mine spoil materials. This occurs because natural soils tend to be thin, rocky, 

acidic, and infertile often making it impractical to salvage and re-spread topsoil on 

surface mined areas. The plant species used in active reclamation therefore are grown in 

mine spoils composed of freshly blasted overburden materials. The properties of these 

mine spoils are directly controlled by the physical and geochemical properties of the rock 

strata from which they are derived (Nagle et al., 1996; Daniels, 1999). Sydnor and 

Redente, (2002) reported that topsoil if amended with addition of organic wastes 

increased above ground biomass influence trace element uptake. Even waste rock if 

properly neutralized, fertilized and amended with organic matter could also be directly 

revegetated.                                                                                                                                                                          

4.  RE-VEGETATION AT ABANDONED MINE LAND 

Vegetation has an important role in protecting the soil surface from erosion and allowing 

accumulation of fine particles (Tordoff et al., 2000; Conesa et al., 2007b). They can 

reverse degradation process by stabilizing soils through development of extensive root 

systems. Once they are established, plants increase soil organic matter, lower soil bulk 

density, and moderate soil pH and bring mineral nutrients to the surface and accumulate 

them in available form. Their root systems allow them to act as scavengers of nutrients 

not readily available. The plants accumulate these nutrients redeposit them on the soil 

surface in organic matter from which nutrients are much more readily available by 

microbial breakdown (Li, 2006; Conesa et al., 2007a; Mendez and Maier, 2008a). 

The revegetation of eroded ecosystems must be carried out with plants selected on the 

basis of their ability to survive and regenerate or reproduce under severe conditions 

provided both by the nature of the dump material, the exposed situation on the dump 

surface and on their ability to stabilize the soil structure (Madejon et al., 2006). Normal 

practice for revegetation is to choose drought-resistant, fast growing crops or fodder 

which can grow in nutrient deficient soils. Selected plants should be easy to establish, 

grow quickly, and have dense canopies and root systems. In certain areas, the main factor 

in preventing vegetation is acidity. Plants must be tolerant of metal contaminants for such 

sites (Caravaca et al., 2002; Mendez and Maier, 2008b).  

Role of exotic or native species in reclamation needs careful consideration as newly 

introduced exotic species may become pests in other situations. Therefore, candidate 

species for vegetation should be screened carefully to avoid becoming problematic weeds 

in relation to local to regional floristic. For artificial introduction, selection of species that 

are well adapted to the local environment should be emphasized. Indigenous species are 

preferable to exotics because they are most likely to fit into fully functional ecosystem 

and are climatically adapted (Li et al., 2003; Chaney et al., 2007).  

Grasses are considered as a nurse crop for an early vegetation purpose. Grasses have 

both positive and negative effects on mine lands.  They are frequently needed to stabilize 
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soils but they may compete with woody regeneration. Grasses, particularly C4 ones, can 

offer superior tolerance to drought, low soil nutrients and other climatic stresses. Roots of 

grasses are fibrous that can slow erosion and their soil forming tendencies eventually 

produce a layer of organic soil, stabilize soil, conserve soil moisture and may compete 

with weedy species. The initial cover must allow the development of diverse self-

sustaining plant communities (Shu et al., 2002; Singh et al., 2002; Hao et al., 2004). 

Trees can potentially improve soils through numerous processes, including - 

maintenance or increase of soil organic matter, biological nitrogen fixation, uptake of 

nutrients from below and reach of roots of under storey herbaceous vegetation, increase 

water infiltration and storage, reduce loss of nutrients by erosion and leaching, improve 

soil physical properties, reduce soil acidity and improve physical properties, reduce soil 

acidity and improve soil biological activity. Also, new self-sustaining top soils are 

created by trees. Plant litter and root exudates provide nutrient-cycling to soil (Pulford 

and Watson, 2003; Coates, 2005; Padmavathiamma and Li, 2007; Mertens et al., 2007). 

On mine spoils, nitrogen is a major limiting nutrient and regular addition of fertilizer 

nitrogen may be required to maintain healthy growth and persistence of vegetation (Yang 

et al., 2003; Song et al., 2004). An alternative approach might be to introduce legumes 

and other nitrogen-fixing species. Nitrogen fixing species have a dramatic effect on soil 

fertility through production of readily decomposable nutrient rich litter and turnover of 

fine roots and nodules. Mineralization of N-rich litter from these species allow substantial 

transfer to companion species and subsequent cycling, thus enabling the development of 

a self-sustaining ecosystem (Zhang et al., 2001). Singh et al., (2002) reported that native 

leguminous species show greater improvement in soil fertility parameters in comparison 

to native non-leguminous species. Also, native legumes are more efficient in bringing out 

differences in soil properties than exotic legumes in the short term.  

5.  DETERMINING EFFECTIVENESS OF SOIL RECLAMATION 

Some assessment should be made to determine once the reclamation plan is complete and 

vegetation has established. It is to determine how closely the reclaimed site functions, in 

comparison to similar undisturbed sites, as an ecosystem. Reclamation of abandoned 

mine land is a very complex process. Most researchers agree that reclamation success 

must be measured by more than the presence of vegetation on the site. Several parameters 

must be considered in order to determine the state and functionality of the soil system 

since no individual parameter provides sufficient information for ecosystem reclamation. 

Both the activation of basic soil biological processes and the rearrangement of soil 

particles into stable aggregates are key factors related to the soil functionality (Filip, 

2002; Sourkova et al., 2005; Heras, 2009).  

Bentham et al., (1992) developed a three-dimensional system measuring ATP, 

dehydrogenase activity, and ergosterol to classify habitats based on microbiological and 

physico- chemical characteristics. While their entire dataset include other factors, such as 

soil moisture content, type of ecosystem, restored versus undisturbed site, they found that 

using the selected three-dimensional system allowed distinction of different habitats. The 

results can then be used in conjunction with reference databases of undisturbed sites to 

evaluate success of restoration. 
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Microbial activity is a key factor affecting the functioning of all terrestrial systems. It 

has an important role in decomposition and nutrient cycling. Measurement of process 

rates governed by the soil microflora and general metabolic activities of these organisms 

is used to evaluate the reclamation efforts (Mummey et al., 2002a; Izquierdo et al., 2005). 

Edgerton et al., (1995) found a positive linear correlation between soil aggregate stability 

and microbial biomass carbon suggesting that measuring the productivity of the microbial 

community leads to reasonable assumptions about the quality of soil structure. Further, it 

was suggested that evaluating soil microbe populations and their metabolic activity may 

be utilized to determine the stability of a restored ecosystem. 

A mycorrhiza is a mutualistic association between plants and fungi that affects all 

terrestrial communities. By affecting the success of individual plants, the association may 

play a role in the success of reclamation efforts by their presence (improving the growth 

and fitness of desirable species) or in failure by their absence. Several methods currently 

are used to assess mycorrhizal activity. These include both direct and indirect methods. 

Bioassays of soils for mycorrhizal fungi have been commonly used for a long time. There 

are two indirect techniques for quantifying mycorrhizal activity based on bioassays for 

mycorrhizal fungi. These have primarily been used to test soils prior to planting to 

estimate the potential for recovery of mycorrhizae.  Mycorrhizal inoculum potential 

(MIP) is used as a mean to determine the potential for mycorrhizae to reestablish 

following a disturbance. Another procedure is called most probable numbers estimate 

(MPN) of mycorrhizal fungal densities. In both types of procedures known amount of test 

soil is mixed into a standard, sterile soil and seeded with a given mycorrhizal plant. After 

a known period, the plant is harvested and the number of propagules (MPN) or 

mycorrhizal inoculum potential (MIP) estimated by the percentage of root length infected 

by mycorrhizal fungi (for VA mycorrhizal) or by the proportions of root tips infected 

(ectomycorrhizae). Direct method involves determining the percentage of the root length 

containing VA mycorrhizae or the percentage of root tips that are ectomycorrhizae using 

plants collected from the field at different times following the replacement of the growth 

medium (Allen and Friese, 1992). 

Soil enzymes activities have been used as sensitive indicators for reflecting the degree 

of quality reached by a soil in the reclamation process (Caravaca et al., 2003). A direct 

measurement of the microbial population is the dehydrogenase activity. Dehydrogenase 

is an oxidoreductase, which is only present in viable cells. This enzyme has been 

considered as a sensitive indicator of soil quality in degraded soils and it has been 

proposed as a valid biomarker to indicate the changes in soil management under different 

agronomic practices and climates. Measurement of soil hydrolases provides an early 

indication of changes in soil fertility since they are related to the mineralization of such 

important nutrient elements as N, P and organic carbon (Ceccanti et al., 1994).  

6.  CONCLUSION 

Reclamation is an essential part in developing mineral resources in accordance with the 

principles of ecologically sustainable development. The goal of surface mine reclamation 

is to restore the ecological integrity of disturbed areas. Revegetation constitutes the most 

widely accepted and useful way of reclamation of mine spoils to reduce erosion and 

protect soils against degradation. The revegetation must be carried out with the plants 
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selected on the basis of their ability to survive and regenerate in the local environment, 

and on their ability to stabilize the soil structure. Revegetation facilitates the development 

of N-fixing bacteria and mycorrhizal association, which are fundamental for maintaining 

the soil quality by mediating the processes of organic matter turnover and nutrient 

cycling.  

Reclamation of overburden dumps can be managed effectively once the chemical, 

physical and biological properties of soil have been correctly determined. Compaction, 

low water holding capacity, bulk density, deficiency of micro and macro nutrients and 

associated rooting restrictions are the major factors limiting the productivity of mine 

soils. High level of potential acidity (low pH) severely restricts the productivity of some 

mine soils but this problem is much more limited in extent than mine soil compaction.  

Stockpiling of top soil not only decreases the microbial activity but also disturbs the 

structure of soil. Top soil is an essential component for land reclamation in mining areas. 

Stockpiling should systematically handle and store the top soil so that its physical and 

biological characteristics can be protected. Productive topsoil substitutes can be 

generated from hard rock overburden of fresh soil, but care must be taken in selection and 

placement. Productivity of soil can also be increased by adding various amendments such 

as hay, saw dust, bark mulch, wood chips, wood residues, sewage sludge, animal 

manures as they stimulate the microbial activity (bacteria and mycorrhiza), which 

provides the nutrients (N, P) and organic carbon to soil. Acidic dumps can be restored by 

planting the metal tolerant plants, which can grow in nutrient deficient soil with elevated 

metal content. Planting of different grass, trees species, rotating with legumes and native 

species because of their adaptation to deficiency of nutrients and fast growing traits, shall 

be able to restore the soil fertility and accelerate ecological succession. Once the 

abandoned mine lands have vegetation growing on the surface, the regeneration of these 

areas for productive use will begin and offsite damages will be minimized. In addition, 

establishment of vegetation also improves the aesthetics of the area. 

Reclamation of overburden dumps is not an operation, which should be considered 

only at, or just before mine closure. Rather, it should be a part of an integrated program 

of an effective environmental management through all phases of resource development - 

from exploration to construction, operation, and closure. Mining organizations are 

developing the expertise to reassemble the species that have chance to grow, develop, and 

rebuild the local biodiversity. They are achieving this through careful attention to all 

aspects of reclamation and revegetation:  from initial planning, clearing, soil removal, 

storage and replacement through species selection and re-establishment of vegetation 

with its associated organism; to maintenance of areas for future. The initial vegetation 

efforts must establish the building blocks for a self-sustaining system so that successive 

processes lead to the desired vegetation complex. The best time to establish vegetation is 

determined by the seasonal distribution and reliability of rainfall. All preparatory work 

must be completed before time when seeds are most likely to experience the conditions, 

which are needed for germination and survival, that is, reliable rainfall and suitable 

temperature. 

Reclamation must go beyond planting a new landscape by considering the land as an 

integrated system that function above and below the ground. Researchers have 

demonstrated techniques that appear successful over periods of several years and have 

indicated that there is much more to learn about their long-range effects.  
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