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« ABSTRACT

A thecretical study of the soil-structure interacrion
effects on the dynamlc behaviour of structures is pre-
sented. The substructure approach is employed for which
foundatlon impedance, functlons are derlved from static

and dynamic continuum theories. Both rigid and flexible
structures supported by various types of foundations are
n‘ “ A » .

investigated. The free vibration analysis of the soil-
structure interaction system indicates that the damped

: s £ , .
natural frequencies of structures on flexible foundation

may be lower or higher than the undamped natural fre--
quencies. It also Shows that the foundation flexihility
provides damping to the structure due to energy dissipa-
tion in'soil and modifies the original structura{/Zamping.
&he effect of the foundation on the da‘ping of structures

¢

is calculated using an energy consideration and by means

of the complex eigenvalue analysis. Both methods give
almost the same results for the first mode but may give
\ . ‘ P
considerably different results for the higher vibration

modes. ,

_The dyna&&c response of the soil-structure inter-
action system excited by shock, earihquake and wind loading
‘is inbestigated. The analysis of hammer foundations, the

most typical of the shock experiencing structures, proves




_that the complex. eigenvaluelmeigod is an efficient and
accurate method of'respoﬁSe prediction.A Using this
approach, the response of hammer koundatiohs to either
initial velocity of ,the anvil or pulse logding can be

treated for any number of degrees of freedom.

“;sé;smic loading and response of buildings depend on
the flexibility of the foundation and its type. Shallow
flexible foundations may increase the response and decrease
the seismic forces of the structure, as compared .to the
respoﬁse of Fhe same structure on a rigid bdse. For pile
' foundations, the number and type of piles, their arrange-.
ment and the pile connectidnfyithvfhe'cap come into play.
The study shows that, fo; small buildings and%or low in-
tensity of earthquakes, the rigid connection of_piles with
the cap may not be nécessaryt The response of rigid
shructéreg to seisq%c loading is dealt with efficiently

using the direct random vibration analysis. ,
o L

Finally; the effect of foundation flexibility on
structural respdnse to gustihg wind is’ explored using the
gust factor éppFoach.'vThe parametriczﬁtudy indicates that
while the.gust.éffect factor may or may ﬁot be sensitlive

to Fpii flexibility, the resultant vibration may be sub-

stantially modified.
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CHAPTER 1

o INTRODUCTION
a L

» .

1.1 STATEMENT OF THE SOIL—STRUéTURE,INTERACTION
PROBLEM |

¢
!

- A soil-structure interaction problem arises when the
motion of the structure footing differs from that of the

ground. Thu::/if«ec s of soil-structure interaction can

. be rattributed to soil lexiﬁility or compliance and asso-

ciated ehergy dissipation in the form of wave propagation %

in the soil. Because soil flexibility is a relative
notion, it is éspeqyally im?6ftant to consider soil-

structure interaction effgdts in the analysis and design

of massive stiff .structures.
~ ’ o
The effect of soil flexibility on the dynamic res-

ponse of structures can be favorable or unfavorable and

’

can, therefore, represent a significant consideration’ in
design. For this reason, soil-structure interaction has

been a subject of considerable research ingthe last fif-

teen years. Nowadays, two methods of analysis are most.

often used to study the dynamib response of structures on

. flgxible soils, namely the finite element method and the

-imipedance approach.

s

The finite element method was firs£ used by Clough (1)

\

- k]
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v
and quickly spread inpp many fields, see e.g., Desai and
‘Abel (2). Among the manf applicationg, finite elements

have been used to model the soil in the soil-structure -
interaction problems (3,4,5). Usually, a large mass of

the soil near the strucfuré is discretized by two-dimensional
plane strain elements or axisymmetric solid elements.
Frequently, ihe number of degrees of freedom for the soil
model far exceeds that for the structure which is the

real ssubject of investigation. 'Thus the overéll efficiency
of this approach may be poof-(Clough and Penzien (6)) and
very costly..wﬁoweﬁer, it ié a Powerful tool which can

give detaile®d information about the response and other
effects such as’liqﬁefaction of the soil under a building

in the case of seismic analysis. Also, it permits a non-

linear analysis if the eonstitttive relations for the

soil are available.

The impedance approach is based on the idea of syb-
structuring. -First,’the foundation of the structure is
considered alone and usually assumed to be rigid with only
a few aegrees of freedom.~'The supporting soil is either
a deep deposit modeled by a homogeneous or nonhomogeneous
viscoelastic halfspace or a shallow layer modeled as a
homogeneous viscoeiastic stratum‘of limited thickness
(7 to 14). For a rigid_foundation, only six-by-six stiff-

. L l 4
ness and damping W{impedance) matrices have to be



established. . The second step, reqﬁired only in the case
of a seismic excitatioﬁ, determines the modification of
the ground motion due to the presence of the foundation
(kinematic interaction). The third step is the dynamic
analysis of the structure supported on a flexible soil
defined by the stiffness and damping matrices of the
foundation, subjected either to a airect dynamic -loading
or to the soil motion defined in the secoﬁd step (inertial
interaction). The kinematic interadtion effect vanishes.
if the foundation rests on the surface and the seismic
waveé are assumed to have the form of vertically propa-

gating shear, waves. 3}

’

The "impedance or substructure approach is limited~to‘

linea® systems since it is based on the principle of

s
superposition. However, nonlinear soil behavior can be

accounted for by equivalent linearization or by adjusting

the soil properties to the level of strain.

Using the impedance approach, the dynamic response

of the soil-structure interaction system can be analyzed

) .
much more easily. A freguency. domain analysis or a time

°

domain analysis can be pefformed (15 to 17). The impe-

dance épproach was incorporated into the well known docu=

ment ATC (14).




1.2 OBJECTIVE OF THE STUDY

The main objecﬁ of ;his investigation is to éiamine the
effects of soil—structure‘énteraction undexr various types
of dynamic loads using the iﬁpedance approach. First;
the ways in which foundation properties can be described
and included in the evaluation of modal properties and
response t& dynamic loadé\arq outlined. Then, the effect
of soil—structhrevinteraction 5n the free vibration is
studied. Finally, the dynamic response of structures
supported by various types of foundations and-expésed to
earthquake, wind and impact loading is investigated. A
variety of superstructures are analyzed. Some attention
is given to structures supported by pile.fbundations and

subjected to seismic excitation and uplift.

1.3 ORGANIZATION OF THE STUDY

This thesis consists of eight chapters. The litera-
ture survey and evaluation of recent work are included

in the introduction to each chapter.

Chapter 1 introduces the general topic of soil-

structure interaction and the ijectives of the study.

L]

Chapter 2 investigétgf/}he impedance functions used

to represent the soil and introduces the equations’ of



&

motion for soil-structure interagtion systems.

Chapter 3 describes classical and nonclassical modes
' T
of free vibration, a study of the effect of soil flexi-
bility on modal properties, and presents a parametric

study.

Chapter 4 deals with the methods of solution. These

include i?&tial value problems and transient problems.
-

Chapter 5 presents applications of the initial value
approach to problems of shock loading. This is applied

specifically to the problem of hammer foundations.

Chapter 6 investigates the soil-structure systems
unaer seismic loads. Structures supported by different
types of shallow foundations and by pile foundations with
the uplift of the pile cap prevented or allowed are exa-

mined.

!

Chapter 7 deals with the response of the soil-

structure interaction system excited by wind loading.

Chapter 8 gives the summary and conclusions.

,

’
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CHAPTER 2 ‘

IMPEDANCE FUNCTIONS OF FOUNDATION

2.1 INTRODUCTION

For most structures, a simple and realistic way to
model soil compliance in dynamiF analysis of a building -
is to assume that the foundation of the buildiﬁg is a -
rigid body resting on so%l represented by a suitéble
"mathematical model. This model may consist of a spring
and a dashpot defined for each possible degree of freedom
of the rigid foundation of a structure (18). There are
two ways in which the soil cohéliances can be presented.

: . K
(a)' Frequency dependent compliance functions (10, 19,
20, 21, 22). Complex stiffness functions are formulated //
for footing resting at or near the surface, using the
theory of a viscoelastic halfspace or a viscoelastic
layered system. The halfspace.and layered medium theories

" may also be used to generate approximate functions for

embedded structures (23, 24).

(b) Frequeﬁcy independent foundation springs plus dash-
pots may be employed (23, 25, 26). Various methods may

be used to estimate these approximate representations of

the soil.




The theories available can also be used in conjunc-
tion with equivalent linéar soil propertieslto approximate
nonlinear soil behavior. Once a linear model of the soil-
structure system is set up, the equations of motion can

be stated.

This ,chapter presents a summary.of approaches and
formulae which can be used to evaluate the impedance func-

tions of both shallow and deep foundations.

2.2 1IMPEDANCE FUNCTIONS FOR SHALLOW FOUNDATION

-

The principal advantages of the halfspace theory are
that it accounfs for energy dissipation throdgh elastic
waves (geometric damping), Rrovides for systematic analy-
sis, and describes soil properties by basic constants
such as shear modulus or shear wave velocity that can be
established by independent experiments. The theory pre-
sumes that the iﬁpedance functions are obtained from the
analytical study of the response of a harmonically excited
rigid foundation usually assumed to be circular (Figure
2.1). The basic theory also presumes that the foundation
"rests on the surface of the ground and that the halfspace
is linearly elastic or viscoe;astic, homogenecus, and
isotropic. These assumptions differ from real conditions |

and, therefore, some adjustment of tHe theoretical results



is neceéssary in order to account for the shape of the
base, embedment of the foundation, so0il nonhomogeneity,

and limited thickness of the soil stratum.

The correction for the shape of the base is made by
the introduction of the equivaient radius of the base.
The radius of the equivalent circular base, the eduivé—
}eﬁt radius for brevity,-is usually determined by equating
the areas of the true base and the equivalent base for

. the.vértical and horizontal translations and from the
equalityiof moments of inertia (sécond moment of area)
for the rotation im the vgrtical plane (rocking). From
these conditiéns, fhe following equivalent radii are ob-

tained for a rectangular base having dimensions a and b .

(Figure 2.2):

Equivalent, radii for

Translation R = vab/7 {(2.1la)
Rocking R, = a~b/3m ' (2.1b)

The equivalenf radius works very well for square areas.
and quite well fgr fectangular areas with ratios a/b of
up to about 2 (27). With increasing ratio a/b, the

. ‘ accuracy of this approach Qetegiorates. Dominquez }28)

provided a solution method to obtain the dynamic stiffness

functions for squafe and rectangular foundations. For




very iong foundations the assumption of an infinite strip

foundation may also be used (Gazetas (29)).

The stiffness, kij’ and damping, Cij' of a foundation
L -

afé defined aé'fo;ces in direction i1 associated with a
unit amplitude and a unit “®ibration velocity, respéc—
tiyely, in direction j. For surface foun8ations, these
stiffness énd damping functions were presented by Velétsos
and Verbic (10) and a few others. Novak et al. (25, @
31) developed an approximate practical’method for taking
into account realistiC*embedméﬁt conditions, which when
@ombined‘with surface foundation impédancesksuchoas tbose

of Veletsos results in the followiﬁg stiffness and damping

constants:

For vertical viHration v, the stiffness constant is

G
= = S sz X
kvv = GR(ch + s Gsvl) (2.2a)
and the damping constant is . )
e =R V/pG (5. + 5. 8/ -p-i.G—S-) (2.2b)
T Ty ; ve - v2 o G :

L

For coupled horizontal translation u and rocking V¢,

the stiffness constants are - - !
— - Gs p—
kuu = GR(Cul +‘ —(—;- 6Su1) (2_.3&)‘

3, Yo 2=
= GR [(—ﬁ-) Cul +

'
|

o

3,= J
+ GRw(cwl + = ﬁ; vl
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G ‘
_ - s _ 1=
kuw = GR[yCcul + = d(yc 2£)§u1] (2.3¢)

and the damping constants are

c = /58 R® (T vs v 808 g (2.4a)
uu P Cu2 p G Su2 - 28
4
L = 4 Yo 2 — Ps Cg 62
« 2 .
’ Yo sTeys ) v v RY
R R’ Su2 P “y2
o G .
£ S s = -
+ R Vv ra < Swz) (2.4b)
w .
c = -/pG R + 8§ v °s %5 (y . - 20)5 ]
uy . P YcCu2 o ¢ Yec 277542
(2.4c)

In these equations, the gmbedment ratio § = &/R,
whereil is the embedment-depth (Figure 2.3) and Y. = the
vertical distance of the reference point, C.G., from the .
base. Parameters ¢, c relate to the stiffness and |
damping, féspectively, derived from the medium under the
Base (the elastic halfspace or a stratum): parameters
s, s reléte respectively to the gtiffneSs and damping
derived from the reaction of the side layer: G = soil
shearnmodulus: p = mass density of the halfspace: and
G_, p_ are the shear modulus and mass dengity of the side

] s

layer (backfill), respectively.
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The parameters c and c depend primarily on' the depth
of the stratum, h, Poisson's ratio, v, and the dimension-

less frequency"'
aj = R w/V_ (2.5)

“in which w T circular frequency and VS = /G/p = shear wave

v

vélocity. The parameters s depend on the dimensionless

f}equency. Examples of the variation of c and s with'ao

and v are shown in Figure 2.4 for halfspace.

The analysis can be simplified {f the frequencf de-
pendent parameters are replaced by suitably Ehosen fre-
quency independent parameters. Sucéh constants are indi-
cated in Table 2.1. 'The values are given for cohesive
soils as well as for granulaf soils with Poisson's ratio
presumed as 0.4 and 0.25 respectively. The values shown
in Table 2.1 correspond to dimensionless frequencies
between 0.5 and 1.5.For other dimensionless frequencies
numerically more accurate values can Se computed. If a
large frequency range is of Importance, parameters c and
s should be considered as frequency dependent ,and calcu-

lated from the forming expressions.

2.3 ADJUSTMENTS OF THE HALFSPACE THEORY !
Equations 2.2 to 2.4 give results that agree quite

well with the finite element solution (32), but some



)

adjustments'are desirable to bring the numerical results
of the formulae closer to experimental observations.
These include: discrepancies between theory and experi-
ments in the:calculation of geometric damping, ambedmeﬂt,
imperfect elasticity of the soil, and shallow layer.

These are covered in the next four sections.

2.3.1 Corrections for Geometric Damping

Experiments indicate (33) -that the halfspace theory
tends to considerably overestimate the geometric damping
of the surface foundation in the vertical direction. The
reason for this discrepancy seems to be that the spil

\\/
usually features some layé?ing that reflects elastid¢ waves
back to the foundation and reddtes-geégetrlc damping. " An

- S
empirical reduction of Evz shown in Table 2.1 to about,
~one half the values valid for homogeneous halfspace

appears advisable for practical applications.

On the other hand, the first resonant amplitudes of
coupled response of'eﬁrface footings to horizontal forces
are often overestimated by severel hundfed percent if
material damping is neglected. This discrepancy, caused
by the low level of radiation damping in rocking, can Pe
eliminated by the inclusion of material damping as will be

outlined in section 2.3.3.
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2.3.2 Embedment Effects

The theory indicates tlifat embedment provides a signi-
ficant source of geometric damping and contributes also
to stiffness. These theoretical suggestions we;e, in
genefal, confirmed by experiments (33). Howeverx it was

also observed that, with heavy vibration, the soil may

separate from the footing sidesiand a gap ma& occur as

[oN

indicated in Figure 2.3. This gap is likely to develop
close to e surface where the confining pressure is not

sufficient to maintain the bond between the soil and founda-

oy

tion. The separation may be accounted for by considering
an effectise embedment depth, £, smaller than the actual
embedment depth L. The effective depth, of course, depends
on conditions. The bést bond is obtained when the footing
is cast directly into the excavatioﬁ. Another way of
accounting for footing separation is to assume a weakened
zone around the footing (34). When the footing is cast

in forms and then backfilled, the backfill shear modulus
and density are dsually lower than the original wvalues.
Unless estabiished more accurately, the ratios os/o = 0.75
and GS/G = 0.5 méy be adequate.

5.2

2.3.3 Soil Material Damping

3

" Foundation sﬁiffness and damping are also affected

'by imperfect elasticity of soil which manifests itself as
N -

4




S o

4

material damping. The material damping of soil is

hysteretic .and independent of frequency. It ég conveniently

EN

described using the complex shear modulus
G* = G + iG' = G(1 + itand) : (2.6)

in which i = v-1, tané = G'/G, § = the loss angle, .and
G' = the imaginary part of the complex soil modulus.

Another measure of material damping is the damping ratio

tand

™
I
N

Material damping can be incorporated using the cor-
respondance principle of viscoelasticity. 1In the sense
of the principle, the shear modulus, G, can be replaced by
the complex shear modulus, G*, everywheré it occurs in
equations 2.2 to 2.4, that is even in a = wR/VG/p.
Approximately and after some manipulation, the stiffness
and damping constants including material damping may be

calculated as:

K, = k - 2Bcw (2.7a)

il

C c + 2Rk/w (2.7b)

h

in which k and.-c¢ are evaluated from eguations 2.2 to 2.4

without regard to material damping. As equations ?.7

suggest, material damping reduces the stiffness but in-

creases the total damping. The degree of these effects




depends on the magnitude of both material and geometric

damping. For veértical vibration and a Halfspace, i.e.,
- i

a deep layer under Ehe.footing, these effects are small:

for rocking they are very significant.

With™layers, the incorporation of material damping
is particularly important as will be explained in the
next section.

\

- 2.3.4 Shallow Layers .

Another correction of the‘halfspace theory may be
required'if the deposit is a shallow layer. 1In such a
case, the stiffness increases and éeometric damping ée—
. crea§e§ or eveg vanishes. gggse effects, 'recognized al-
ready in the early studies such as (35), can be seen from
Figure 2.5 in which the stiffness and‘damping parameters'
are blotted in dashed lines for layers of different

L4

depths, h, with material damping neglected. The parameters
[

for the halfspace and side layers are -also shown for com-

parison. This behavior is further elucidated by more
4 general solutions of layered media presented by Bycréft

(36), Luco (37).and others. ~

It can be-seen from Figure 2.5 that geometric damping

of strata is guite small or even absent at low freqdencies.

Then material damping may be the principal source of energy

<




‘absence of material damping and only a vepy weak progres-

correction for a shallow layer is most important for both

. element method. The static stiffness for the horizontal

-

dissipation. It can be evaluated using equation 2.7b.
Studies of -the behavior of strata suggest that geometric

damping may completely vanish if the frequency of interest,
&5

_e.g., the excitation frequency, is lower than the first

2

natural frequenty of the soil layer (27, 38). For a

homogeneous layer with soil shear wave velocity Vs, the

first natural frequencies are

L4

S —
_ S 2(1-v) ~
v = Y T . , (2.8a)

for the vertical direction and

;(.U = Tﬁ— (2.8b)

i

for the horizon&al direction. At frequencies lower than

w, or mu,'dply material damping remains because no pro-

.- .

gressive wave occurs to generatf geometric damping in the
sive wave occurs in the presence of material damping. “The

the vertical and horizontal directions in which, the geo-
“Etric damping of the halfspace is highest. T
Footings embedded in a layer of limited thickness

were also studied by a few investigators using the finite

and rocking modes was derived by Elsabee (39) and for the

vertical and torsional modes by Kausel and Ushijima (12).
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These authors suggest the following empirical expressions
for the impedance functions for foundations embedded in

a homogeneous soil layer:

Koy = koglky, = 2wBe ) ! (2.9a) .
Ky f k‘;w(kW - 2uBcy) (2.9b)
Ky = kgw(kuu - 2uBc ) o (2.9¢)
. .
Ciy = koufCuy * ﬁfkuu/w) , (2.40a)
. * Ty - kiw(cw¢ + 28k /) | : . (2.10b)
Cup = kgw(c:u’+ 2Bkuu/@§ | (2.10¢)
~d

where X and ¢ are stiffness and damping constants for
shallow layer: kuu’ kww are those of halfspace given by

equations 2.3a and b with embedment terms, s = 0: B is

material damping ratioc: correction factors are:

5%

R - 28 ' .
‘kuu = (l + iﬁ)(l + 3—ﬁ) (l + _H—) (2.11&)
o _ L _ e}
kuw = R(.4 R .03)kuu (2.11Db)
-0 _ R 2% ! &
kw— (l+—6H) (1+——R)(1+ S71 H) (2.11c)

.

-

"

in which R, 4, H are defineg)earlier as footing radius,
embedment' depth and thickness of layer including embedment.

These correction factors are actually the modified sthtic.’

7



stiffness functions provided by Kausel (19) divided by

the corresponding static stiffnesses for halfspace. Also

in equations 2.8 and 2.9:

.65B8a
_ ,8GR,, R ol T R _

Cau T 2R (\7? I-(1-28) a_ for a, < 7/ = 201

- ' (2.12a)
For a_ > a ,\b is the halfspace solution (equation 4;

o ol uu
2.4a with embedment terms s = 0), and

8GR> -58a,, ;2O _

c = ( )(i)( o ) for a < TR L,
Yy 3(1-V) VS ‘l—(l—ZBiao o — 2 h 1-2v 02

(2.12b)
g . . / . .
For a, > agypr cww the\halfspace solution (equation 2.4b
with embedment terms s = 0), where aol and a,, are the

(non—dimensional)\fundamental shear beam &nd dilatation
frequencies of the stratﬁh. Thesge stifﬁﬁesses refer to

the C.G. of the base and are valid} for § = £/R < 1.5,

£/H < 0.75 and R/H < 0.5. Fiqure 2.6 shows these stiff-
necess func£ions. In Ehe low frequency range, these stiff-
ness functions of layers differ substantially from those

of the halfspace, as the geometric damping vanishes below
the first layer re;onance, and also differ ffom those

produced by Warburton (35) for vertical vibration (Figure

2.5).
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2.4 PILE FOUNDATIONS

Stiffness and damping of piles are affectéd by their
inte;action with the surrounding soil. In the past, con-
sideration of this interaction was limited to the deter-
mination 9f the ifngth of the so-called equivalent canti-

9 ‘ ’ -
lever which was a free standing, bare pile shorter than

the embedded pile. Pile damping was estimated:

More recent approaches (38, 40,t0~455'¢dnsidef soil- =~
pile interaétiop in terms of continuﬁmbmgbhanics and account
for propagation of elastic waves. For single piles, such
studies indicate that dynamic so&l—pile interaction
modifies pile stiffness making it, in general, frequency
dependent and generatés geometric damping through energy

-

radiation gs with shallow foundations.

In groups of closely spaced piles, the character of
dynamic stiffness §nd damping is further complicated by
interaction between individual piles known as pile-soil-
pile interaction or the group effect. Only recently were
the solutions exteﬁded to include dynamic interaction
between the piles in the group (46 tg 51).’ Dynamic be- ‘&
havior of closely spaced’pile grg:ps is very complicated
because it is much more frequency dependent than‘the be-

havior of single piles and its analysis requires the use

of an efficient computer program. Nevertheless, an
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approximate evaluation of group stiffness and damping is
possible at least in some situations, for example at low
frequencies, smaller groups ér relatively large spacing
between the piles. In such cases,hthe group stiffness
and damping can be predicted using the properties of a
single pile and accounting for the group effects by means
of the interaction factors. For static loading, these
factors were presented in the form éf charts by Poulos

(52 to 55). and for dynamic loads by Kaynia and Kausel (46).

When the spacing between the piles is large, pile-
. :
soil-pile interaction effects become negligible ‘and the
group stiffness and damping can be calculated by summation

of the properties of single piles.

+

Thus, the stiffness and damping of single piles are
basic items of information. Novak et al. (56) provided
tabulated data and charts which facilitate the evaluation
of stiffness and damping of vertical single piles for the
following conditions: Soil is homogeneous or its shear
modulus diminishes upward according to a quadraiic para-
bola: pile heads are fixed or pinned: the piles are end-
bearing or floating: and finally, geometric damping may be
absent and material hysteresis may be the only source of

-

damping.

e
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2.4.1 Stiffness and Damping of Single Piles

Theoretical studies done 5y Novak (42) have shown
that the stiffness constants, k, and the constants of
equivalent viscous'damping, c, of single piles can be
described for individual motions of the pile head (Figure

2.7) as follows:

Vertical translation, v:

EpA E A f\ ’
kv =Lt £, ¢ = 7?- £5 | (2.13a)

Horizontal translation, u:

E I E I
ku = 3 ful r Cu T 2 fu2 (2.13b)
R R VS

kw = R fw1 ’ cwl= vs f¢2 (2.13c)

Coupling between horizontal translation and rotation:

E I E I

- - P ' "
ke ]5? fo1 7 ST ®VD fe2 - (2.134d)
S
where kc = kuw = kwu'

In these expressions, Ep is the Young's modulus of
the pile, A aﬁd‘I its cross-sectional”area and moment of
inertia (second moment of area), respectively and R pile
radius or equiéaleﬁt radius: and V_ = YG/p is the' charac-

teristic shear wave velocity of soil: G = shear modulus



of soil and p its mass density.

The symbol f represents dimensionless stiffness

1,2

and damping functions (parameters) whose subscript 1 refers
to stiffness and 2 refers to damping. The most important

factors controlling these functions are: the stiffness

ratio relating soil stiffness to pile stiffness, Ep/G,

the soil profile and for the vertical direction, the tip

<

‘coddition and the slenderness ratio 2/R. For these

factors, the stiffness and damping parameters f1 , appear-
ing in equation 2.13 are given in Table 2.2
and Figures 2.8 and 2.9. These functions were ¢alculated

with material damping tand = 0.05 for soil and 0.01 for
' piles, mass ratio 9/0p = 1 and, apart from the layer,

a, = 0.3 (43, 58) but with some qualifications outlined

in (56) they can be used for other conditions as well.

Also, a unifogm circular cross-section was assumed.

»

Table 2.2 gives the parameters f associated with

1,2

horizontal vibration and rocking of pile heads. The soil

is presumed to be homogeneous with depth.

Alsco included in Table 2.2 are data denoted fﬁ and

1

fEZ' These correspond to pin-headed piles for which the

moment stiffness, k and thus £ , as well as the coupling

v’ Y
stiffness kc = k = k and damping cC,=rc¢ = cC all

uy Yu uy hu

vanish. The stiffness and damping of pin-headed piles
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pointff.Then the stiffness and damping constants are de-
fined as forceé that must act at the centroid to produce
a sole unit displacement or unit velocity at the reference
point. From this definition«and the notation of Figure

2.10°, the stiffness and damping constants of the pile

group for the individual directions are as follows:

Vertical translation:

k =7z k ’ (2.14a)

vv r v
¢ cvv=§cu B . (2.14b)

.

Horizontal translation:

‘ kK =48k ' _ (2.15a)
uu u s
r
c_ =1 c , ' (2.15b)
uu r u

Rotation of the cap in the vertical plane:

o 2 2
kIMJ = E(kw + kvxr + kuyc - 2kcyc) _ (2.16a)
o _ ! 2 2 _ —amptnrr 2 -
Cpp = i(cw +oCc Xl * Cc v ZCcyc) (2.16

v

1 Coupling: between horizontal translation and rotation:

. kuw = kwu = i(kc - kuyc) B (2.17a)
- . “ap T Spu T ﬁ(cc - CY) (?'l7b1

" ’ The summation extends over all the piles. The distances

»




-

X r Y, refer to the reference point as indicated in

£

Figure 2.10.

.

For closely spaced piles, equations 2.14 to 2.17
should be corrected for ‘the pile-soil-pile interaction

effects as already mentioned.

Many more data on impedance functions are available.
Only those used in this study later herein are presented

in this chapter.

2.5 FORCE-DISPLACEMENT RELATIONSHIP OF FOUNDATION

The impedanée functions, discussed in the previous
two subsections for both shallow foundations ana deep
foundations (pile), relate the foundation forces, PX and
M , and the horizontal translation, u,, and rotation in
the vertical plane (rocking), ¢, as follows (Figure 2.11):

Px kuu kuw ub , c c

I
+
N
L
e
[ o]
e

") e Fue] LYY [Cwa o e 1Y

in which u = du/dt, & = dp/dt and t is time, k = stiffness
constant and c¢ = the constant of equivalent viscous damp-

ing. Equation 2.18 can also be written as:
: - ;.




ﬁ
Px kuu(m) kuw(w) Uy
_ (2.19)
M kwu(m) kww(w) v
1 .
where k(w) = k + iwc_is the complex stiffness. Its real

(in—phase) part defines the true stiffness, k, while its
imaginary (out-of-vhase) part describes the constant of

equivalent viscous damping, c.
. ' (

Either of equaFioﬁs 2.18 or 2.19 can.be used to re-
‘ present the force dispiacemenﬁ relationship of the foundg—
tion depending on the method of solution of the equations
of motion.“

»

2.6 SOIL-STRUCTURE INTERACTION SYSTEM

A simple structure-foundation system, representing
a shear building, is shown in Figure 2.12b. This simple
system is chosen fof discussion purposes mainiy to facili-
tate the description of the soil<structure interaction
phenomenon. The structure will be subjected to horizontal
loads, e.q. free-field ground motion g; wind loading.
The displacement of the N floors and two interaction dis-

b4

placements at the base, ub and ¥, completely define the
A g
response of the system. .

The egquation expressing the horizontal dynamic equili-

brium of the ith floor mass is



4/
A

3

27

(2.20a)

In addition, there are two equations expressing the

equilibrium of the building as a whole in translation and

- T

rotation:

(i mg o+ om U+ (i m.hi)y Pyt Gy Yt ooyt

&

R Uy kb = O _ . (2.20Db)

2 . . :
* (omghy 4T )% + I mhi Gy 4o uy Focy b

(? mih )ﬁb su b _ oy

i i i
kwu u + kwww = M (2.20c)

In these equations{ cij and kij'a;e evalua§39 using
floor stiff?ess and damping constants Cj' kj' For example,
Cy1 = cl+c2, Cip = ~Cye cl3=0, etc., u, denotes the dis-
ﬁlacement of the ith floor due to structural deformations
relative to the base: Fi is the external dynamic ﬁorce‘
éertinent to mass m, Qb’ Mb are the base shear and moment,
respectively, caused by external excitation: hi is the
heiéht of the ith node above the base: and m is the mass
of the base. Also, in equatior 2.20, the summations are

taken from’l to N except for the total mass moment of

inertia which is




and includes both the floors and the base. -

28

(2.21)

" Equations 2.20 caﬁ‘be combined into one matrix equa-

tion: )
. .
W . .
, m]{4} 4+ [c]{u} + [k]{u} = {P}
in which
{F.}
J{ui} __i_ .
{u} = —a;— {p} = Qb
v My
il U SO b S
T 5
| + ) z m.
[m] = : b i=1 i=1 .l
we y | N ,
-(,SYM) It + iilmihi
- .
fel__1 {0} ___{o}| ®
o] = {o} 5 Suu * Suy
: .
: ]
Lﬂo} | yu ?ww_
x1__1_{0)____{o}]
{
(k] = {o} i kuu kuw
]
|
L
- [

(2.22)

(2.23)




The matrices [c] and [k] list all thelstiﬁﬁhess and
damping constants of the structure, ['m ] is the diagonal
d mass matrix of the structure, and {0} is the null vector.

The total mass matrix [m] is not diagonal, however.

»

Tﬁe goéerning equation of frée'damped vibration of
a lumped mass system can be qbtained from equatioﬂ'2:22
with the only difference being that the right side of
equatign 2.22 -becomés the null vector . <{0} 0 0 >T, which

yislds \ -

m]{d} + [cl{u} + [(kIl{u} = {0} . (2.24i

2.7 CONCLUSIONS

4

In this chapter a brief review of the various founda-*
tion types and their iﬁpgdance functgzns is'presenged.

Of main concern here is-the evaluation of the force- '
displacement relationship of the base shear and- the basé
moment with respect to the basé translation and rotationj
in the vertical pl;gz. The st;uctdre is modelkd with .
regular linear memberé.‘_The values ¢f the impedanceg func:

-

tions depend on the material properties and on the geo-*

metric configuration of the buildings and the soil. % .

- e

Once the input dynamic excitation and the base impe3~

. dances are known, the last step is reduced to a dynamic

arfalysis of a multidegree of freedom system.

-
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1

Free vibration of the soil-structure interaction
system and the effects of -soil flexibility on mpéai pro-

perties are discussed in the next chapter.

N »

¥

The solution - for dynamic excitations can Wk carried

in the time domain or in the frequency domain. Both

-methods are discussed in Chapter 4.

iy
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FIGURE 2.2 Notation for Calculation of Equivalent Radii
of Rectangular Basis
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FIGURE 2.3 Schematic of Embedded Foundation
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2.5 Stiffness and pamping parameters for vertigal
vibration of Footings on Halfspace and Strata
of Limited Depth (rO=R) (Ref. 35)
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VERTICAL HORIZONTAL ROTATION

-

FIGURE 2.7 Generation of Pile Stiffness in Individual
Directions o
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FIGURE 2.11 Typical Shallow and Deep Foundations
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CHAPTER 3

FREE VIBRATION OF SOIL-STRUCTURE

INTERACTION SYSTEM

- 3.1 INTRODUCTION

It is well kpown that an undamped;-linear, dynamiq
system’pdssesses*exactly thg same number of normal médes
& degrees of freedom. Each normal mode has associa%ed
with it a natural freque%cy and a characteristic shaééi’
When properly released into eksﬁate of free vibration, the
system can vibrate in any of its normal modes. A know- -

4

" ledge of normal mode shapes and frequencies is basic to

: an understanding and analysis of the dynamic response of

&

.a system under any kind of excitation. Two major advan-

,

tages of the normal mode method result from the convenient
prdpertiés of the normal mQégs. First, the complicated
probiem of a multi-degree-of-freedom system can readily be

"stransformed into a set'of simple problems of a single-
ldegree;of—freédqm”system using the orthogonality relation-

¢

ships' among mode shapes. Secondly, a good approximation

for .displacement can often be achieved by including only

‘ o _ | . ,
a few modes. -

o )
A system with pgoportional‘damping (i.e. damping pro-
. ", .

portional to stiffness or ‘mass terms or a polynomic

-




4

7

¢

combination of them) may be made to vibrate freely in a
set of uncoupled modes which resemble, in shape,* the
normal modes of the undémpéa system, with,amplitudes

diminishing exponentially with time and‘uniformly over the
system. These modes are distinguished by a definite

. . - —
spatial distribution of stationary nodal points. In con-
. Al l

trast, a system with nonproportional damping may- also~be

/a

mgde to.vibrate freely in a set of uncoﬁpled "modes" in
which all points 4in the system.undergé exponentigily'
damped ﬁétion at the same frequendCy, but at differing
phase angies. In these modes, the nodes are notlstationary.ﬁw
These modes are‘tgrmed nénclaésica% modes ip'conirast with

[}

the classical modes associated with proportional:damping
3 ! -

or wi! ﬁ ﬁndamped'system. B

%he basic difficulty gncountered in analyzing the
type of soil-structure mgéél,“identifiéq in Chapter 2,
relates to theufact that thé damping is nonclassical due
to'relatively‘large daﬁping of the‘foil stemming from both
material damping.and geometric‘damping. In\other‘ﬁords, {/’

the problem is a nonclassical dapping problém.

The determination of nonclassical modes af a general 4&~:'
viscously damped system rdjuires a gréat deal of computa-
tional effort and the use of a computer. On the other .

hand, the classical normal moédes cdn be obtained by means

-

-
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. " of well established methodg»or even approximate or asymp-
.totic procedures such as the Rayleigh-Ritz method or the
Vianello-Stodola algorithm: alspo, fiequency depéndent

damping can be readily dcéqmmodgted.

. =
N

£ The free vibration analysis is of interest because it
. - ‘g elucidates the effect of foundation flexibility on modal

properties of the structure-foundation~system. This effect

\

has three distinct components: ‘ »

.
.- .
) \ - *
. . . . - R
. : A

1. Reduction of the natural frequencies and modifi-
- cation of the modal shapes due to foundation

~

flexibility: o

‘

N . 2. Generation of damping in the structure through

ehergy dissipation in the soil; )

3. Modification of the original structural damping
(calculated for clamped base) due to flexibility

of the foundation.

.Effects of soil-structure interaction on modal proper-

ties of the structureahhgve received a g&eat deal qf atten-
':tion in the lite}atﬁre.. Some simplified analyseS—néglected
\cpupllng terms. in the generallzed damping matrix. Roesset,

Whitman, and Dobry (59) used an undamped mode of a soil-

structure system and calculated for it.a;wéighted damping
- ‘ raﬁioi léimilar analyses have been done/by Rainer (60).
‘ Novak (25, 30) usgd an energy critérion for the evaldgtion~
""‘ l ‘ .
‘e ' . ‘ . | . ‘ . .

Iy
4

T
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of an equivalent critical damping ratio in the soil-
'structure system. Another simplifigd method uses the shape
of the fundamental mode of a structure on a kixed base and
assigns to it an effective modal damping and frequency as

well as a modified seismic igput to reflect the effects

of interaction (13, 61).

The results of the modal approach to soil-structure
interaction have been adopted in the Teptative Pfovisions
for the Development of Seismic Regulatiogs for Building
prepared by the Applied Technology Council (14). This
approach is based on the studies due to Veletsos and Meek

(62).

In this chapter, the effecti of soil-structureginter-
action on modal damping are investigpted uéing twb
approaches: -the energy consideration which is a simple but
-approximate approach, and th; complex eigenvalue analysis
which is mathematically accurate but uses damped, non-
classicalsvibration modes. These two methods are examined
in detail and their results are cqmpared:,examples of modal
damping, ffequencies'énd mode shapes are given fof.typical

rigid structures and flexible buildin@s. ) .
e \ ' R .

PO

* 3.2 EVALUATION OF DAMPING - USING ENERGY CONSIDERATION

. - N
The damping a s‘cture‘ derives from energy dissipatien
<. ' )

.

-

~if

TN
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in the foundation when vibrating in a natural mode, as
weli as the modification of structural damping due to
foundation flexibility, can be evaluated on the basis of
an energy consideration. The basic assﬁmétion of fhis
approach is that the damped vibration mode can be taken.

as equal to the undamped vibration mode.

‘

The work done during a period of vibration T = 2nwj,

where wj is the frequency gf/the jth mode, by the damping

forces P(§) is, in general,

T . - -
W= f P(§)ds (t) _ (3.1)
(o}

in which 6.1is the effective path of the dashpot: for the
foﬁndatipn, § is the absolute displacement, while for
internal damping it is the relative displacement: i/@.

The

for c; in Figure 2.12 or Figure ?.l, di = u,-u; g

maximum strain energy of the whole structure can be calcu-

lated as maximum kinetic energy which is

. L

’

T
{uj} [m]{uj} (3.2)

_ 1 2
4in which {uj} are modal 5£splacements of floors including
modal translation and roté¢ion of the foundation ubj’ wj.

The damping ratio of the jth mode is defined as
D. = W/(471L) » . (3.3)

]
’



Both soil damping and structural damping can be con-

sidered at the same time but it is more illustrative to

consider them separately after W has been evaluated.

?

The damping ratio of the structure derived from the

soil for mode j is obtained from equations 3.1 to 3.3 as'

1 2

_ 2 |
[ =g Catly o 2yt G0

D ap®15%10

in which the magnitudes in the bracket refer only to the

foundation and the generalized mass-

]

_ T, . . )
Mj = {u.} [m]{uj} 13.5)

includes the masses of‘;he structure as well as the foun-

£

dation. The foundation damping constantS-cuup CWW and

Cuw are defined by equation 2.18.

)

¢ The modal damping due to soil described by equation
. . ’ : T e
3.4 and deriwved using the éenergy consideration is actually
. . v : =
equal to that obtained from the diagonal té‘ag of the

gene}alized damping matrix generat, by means of the un-

-

. P damped vibration modes. If the/matrjx of the undamped

~modes listed as columns ig [u]){, the/generalized damping

- LS

matrix pertinent t6 equation 2.

(c] = TulTle] [u]

‘ .
kN

. N ‘ ~
When considering the damping derived ‘from the foundation,

-
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A
only the foundation damping constants are ron-zero and the

. 1 . b
jth diagonal element of [C] reducggs to S

2

= T - 2
C.. = {uj} Ec]{uj} cuuulj + wawlj

33

+ zcuwuljwlj

.
- A

W
I1f the off diagonal elements of [C], Cji’ are neglected,

the generalized damping constant ij yields modal damping
equal to that given by equation 3.4.

‘

For a shear building, the damping ratio derived from

internal damping of the structure follows from equations

-~

3.1, 3.2 and 3.3 as

S 1 : ‘ 2
;=3 . cilujs=uy_q 5 7 (hi-hi_l)wj] (3.6)

O
!
nes

w.M. .
33 P

L ta

in which cy is the damping.constaﬁt of internal, int@r—
storey dampigg: andoh; is the height of the ith storeéy.
Constants c; are,indicaied by dashpots in Fijure 3.1. The
constants of internal damping ¢, can be evaluated as béing
proportional to either the stiffness

.constant, ki, or the

mass m, but other assumptions can algp be made. , _j)

The damping constants proportional to stiffness can
be established using the complex shear and Young's moduli

as in equation 2.6. For frequency independent structural

[ 4

damping the constant of equivalent viscous damping.follows

from equation 2.7b as frequency dependent, i.e.

£

~~
4
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c, = ZBki/w (3.7a)

For' viscous internal damping, B is replaced by B'w
and the equivqlept damping constants become c, = 28'k,

i.e. frequency independent.

For damping -proportional to mass, the damping con-

stants can be defined as
c. = 2am, (3.7b)
i i

where o is a constant. Damping proportional to stiffness
t
or mass is known as proportional damping as stated earlier.

S »

The modification of the structural damping due to

i L4
foundation flexibility‘can be described as the ratio

-/

, .
e. = D° /DY

4 3/D3 (3.8)

L
.t
&

in which 5? denotes tﬁehdamping the structurd would have

on .a rigid foundation, and D? is the structural damping ip

X3

1+ - "
"the case of a flexible foundation. The ratio.ej can be

' v
established by evaluating equation:3.6 twice: (1) with

) . “
- a rigid foundation: and. (2) with a flexible foundation.

'This’process\eliminate§ the-difficulty associated with the
evaluation of the“constants c, because the constants of

proportionality-a, @‘éanbel out in equgtion'3.8. Any

.

other type of structural damping cah be evaluated in the.

same way. The thfee_basﬁc tyées of models used to



CY
o

Q

represent structural damping are shown in Figure 3.2.
They are absolute damping, relative damping and ingsr-
storey damping. The latter model, used in the above dis-
cussioa; appears most suitabl; to represent energy didsi-
pation within the étructure. The first médel is suitable

for aerodynamic damping and leads to a diagonal damping

matrix. ’ ' “

The total modal damping of the structure is

. /.
t =S

D = D. + ¢€.D7 (3.9)
] ] J 3

-

The advantage of the energy approach, employed first
in this form by Novak (25, 30), is that it uses undamped
vibration modes which can be obtained by means of well
established methods. The energy approach is,lhowever,

approximate. The degree of accuracy of the energy approach

*:

can be agsessed by its comparisen with the complex eigen=+
value analysis which yields moéhl damping derived from

damped vibration modes.
[

3.3 EVALUATION OF DAMPING USING COMPLEX EIGENVALUE
APPROACH

In this approach, the modal damping is established
" from the complex eigenvalues obtained by the solution of
the hoﬁogeneoui.Foverning'equation’of damped free vibration.

The complex eigenvalue anaj#sis is an extension é? the -



familiar approach to free undamped vibration and was

given a comprehensive treatment already by Lord Rayleigh

. ‘ ’ .
in I8AK7 (63). For an undamped system or for one in which

damping is proportional, each component of any eigen-

%

vector is distinguished from other components by ampliz
tude only, the phase being equal or 180°:apart. .In thds

case, the n equations of motion (for n—degrees—ofrfréédom

o

system) provide a set of equations whose solution yields

£

"the set of-n amplitude ratios for any given mode. For a

system with nonpropdrtional damping, each componént of an
. b

. . . § .
-eigenvector is. distinguished not only Qx amplitude but

also by phase. For the convenience of the mathematical
solution of the eigenvalue problem in the case of non-

proportional damping, the equations of motion are reduced

N 1

to first order equations by adding:n additional equations

\ to thé basic n equations of motion, equation 2.22. ' Frazer

) ¢ _
(64) and Foss (16) seem to be the first to supply the n

additional equations in a most .useful way. These equa-

tions are given by the following matrix identity

-

-

({8} - [(mI{d} = {0} w (a0

.‘

This equation added to equation Z.j;/

(m]{@} + [(e){u} + (kI{u} = {B}

gives the fpllowing matrix equation of order 2n}

il
Y




ltoy  mif ()" [-m1 (o1] (rw (0}
+ = (3.11)

m]  [c]| |u (01 ™~ [k}l [{u} {P}

This” equation can be written as the "reduced" equa-

H]
tion, i.e.

(A1{z} + (Bl¥z}¥= (F)  (3.12a)
where - _ -
{u} {0}) -
N ﬁ?} = . {F} = ‘ (3.12b)
- {u) (P} |
and ’
[0] [m] » -[m] . (01
-[A] = , 1IB] = . . (3:12c)
[m] [c] - [07. (k1] N

The great advantage of this formulation lies in the
fact that the matrices [A] and [B], both of order 2n, are
real and symmetricf Tﬁerefore, to solve equa£idn 3.12a
techniques very similar to those used in the treatment of

\
undamped systems may be employed.

The homogeneous equation of free damped vibration can
"be obtained by setting the right side of equation 3.}2a |,
equél to zero, ’

(Al{z} + [Bl{z} =.{0} ' (3.13)
‘ Rl .
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The particular solution to this linear equation can

be written as
. ’ {z(t)} = "% {2} - (3.14)

If the solution for {u} is assumed to have a similar form,

{u} = E eut{Q}, the complex vector {Z} can be written as

o u{ o}
{z} = E
‘ {9}

N in which E is a complex constant.,

. . . o § .y
The substitution of equation 3.14 into equation 3.13

_J yields

- ' (ulal + [B]) {2z} = {0) (3.15)
ﬁ or

(o1 - L iz = o) (3.16)

where

‘ [0] . [1]
~1

(U] = ~[B] " ([A] = . _ (3.16a)
L -k 7Hm -k e .

»

In equation 3.16a, [I] = the -ideBtity ﬁétrix of order n

"’ ' [k]_l[m] = the dynamical matrix of

order n for the undamped system.

-

Equation 3.16 represents the eigenvalue problem of

+ the matrix ’1 in a form resembling the familiar eigenvalue
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A

problem of undamped systems. Howéver, tﬁe dimension of

the matrix [U] is 2n x 2n as opposed to the dimension n x n
typical of undamped systems. A simple iterative method

for the solution Qf equatiop 3.16 is given by Frazer et

al. (64) and efficient subrou%ihes are available. The
solution of the eiéenvalue problem yields 2n eigenvalues

My and 2n eigenvectors. For an overdamped sysfem all
values of M, are real and_pegative. For an underdamped,
stable system, i.e. oné in which decaying tscillation
occurs, W, are complex with a negative real part'and come

in complex conjugate pairs with associated pairs of com-

plex conjugate eigenvectors.

[

Thus, if the kth and 2th eigenvalues are complex

conjugates, they may be written as

(3.17)

Realizing that while p is associated with {¢}, the
- conjugate frequency u* is associated with the conjugate
mode {¢}* a solution for one mode is a sum of these two

particular solutions featuring two complex integration

’

constants, E. If these constants were ihdependent, four

initial conditions would be needed for their determina-,

tion. Since only two initial conditions are available,

i.e. initial displacements and velocities, the integration

constants have to be conjugate. Then, the complete

’ M -
.




-,

solution for one vibration mode can be written as

{uj} = E eut{é} + E* eu*t{

o} 4 (3.18)

in which E and E* are complex conjugate cbnétants given
by initial conditions.

. . r . -
x I .

The eigenvectors of a damped system are orthogonal

just ‘as -are thbée for an undamped system. The prodf Sf

orthagondlity may be found, in Ref. (65) and (66). The |,

orthogonality conditions between jth\and sth eigenvectors

¥

are: .
{2337 [a1(z5) = 0 for s # 3
= Aj“ for s = j (3.19a)
and T
_ A
(23T (B1{2%) = 0 . for s # 3
= B, . for s = 3 (3.19b)
AiSO
B, = “i. A. 3.19
j 9% : ( c)

In this study the EISPACK subroutine RGG was used to

-

calculate the complex eigenxglues. It is efficient and

has accuracy checks for ill-conditioned matrices. Other

subroutines were also used for comparison.




Evaluation of Damping

. . o C :
* Equations 3.14 and 3.17 indigate that the displace-

. -
. .“59_

¢ ]

ment in mode ) is time dependent, i.e.,

ed =ede (3220

It can be seen that-in the jth mode aj'will be neda-

tive for a dampéd system ana$8j*represents the frequency

of d amped free\vibration. Consequently, egquation 3.17 can.

be written more concisely in the form common with one-
“ z " - .

N \
-~

‘degree-of-freedom systems, - ' . .
v : o T
Tu .= =D.ws + iE. /(l-D?) i "t (3.21a)
1,2 J 31— ] ? "] . . ‘
on
" ‘ = - .—._ + 1 ',' \ : " e o 9 o
My 5 = Dby + iu! R (3.21b)
where o v v .
- * * - ' .
" T o= |ugt ' ©(3.22)
wy = lugl . ) ( , ( (3_)
— » [N - ’
) Rey.
D. = - T_J. . o (3.23)
j gl _ & L ,
and . T
- T2 I E '
' = w. VY (1-DI) = Imy. . : (3.24)
wj wj ( *J) 3 UJ _ o :

- i

\

In equations 3.21 .to 3.24, w% is the damped natural

frequency and Dj the damping ratio of mode j related to

SR

LI

‘
'
.
) .
. \ ]
1

NS
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.
- frequency Jj' T?e frequeficy Ej depends on the damped
vibration mode {¢} and is close, but gegerally not equal,
to th; und amped frequenéy wj. Only for damping proportional
' ‘to_stiffh?sé or mass Ej = wy. The dampéa natPrél fre-
.' quency, Qéfjis slw?fs smaller than the undamped frequency, ~—
wj, if the dampihé is proportional to mass or stiffness.
For nonpropoftiqnal'daméing,.i;e. nonclassical ‘modes, m%

may be smaller or greater than'mj. In particular, the

1

firg damped frequency of th¢ nonclassical mode may be
. greater than the first undamped frequency as was proved
‘for weak damping by Caughew and O'Kelly (67) and is demon-

" strated for heavy damping later herein.

’

1

<

., .
When* the complex eigenvalues uj are available from

the solution pf the ‘secular equation, equation 3.16, the

damping ratio of mode j follows from equations 3.21 and

—

3.2%~as ' .
N B. = -Reu. . = =Reyu. . 3.25
3 euJ/QJ euj/lujll . | (3.25)

T

.
/

, 4 b&bratory motion occurs as long as Dj < 1. "Other
- - details off the nonclassical mode analysis can be found,
<
"\
N\ ..
\ applications to structures have-beer scarce (69, 70).
~ , .

The campléx eigenvalue methdﬁ,is‘used most effectively
g . - . ! o

e.g. in References (16, Qﬁﬁ'GG, 67 and 68). The'complex

eigenvalide approach is an efficient technique but .its
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- '
and witﬁiadeqdate riggr when the stiffness and damping
‘ fhu‘"_\‘a\ .
matrices arew~firequency’ independent. If they depend on
freduency, an iterative procedure cah be psed.' $
' »

Y

¥
- "EqUapion 3.25 can be ,used to evaluate modal damping

due to boﬁh the soil and the structure itself. The

dhccuracy of this procedure is limited le§ by the accuracy
- S B '
with which the values of u are established.

. -

The modal dampiﬁg ratios calculated from the complex-

" eigenvalues can be compared with those obtained by-means

of the energy considé}ation.v Tﬁe:results'of such a com-
A3
‘parison depend on thé type of structure and its foundation
. . -

and therefore, a few typical structures, both rigid and

.
<

flexihle, aré examined below. ., g -

. B
r o . y J

\

,h- . : ( . . \
3.4 EXAMPLES OF MODAL PROPERTIES, ' | ‘_KLV/ 4
. . 4

z ’ "7 - L

.Using the two approaches outlined, the effect of

A}

5011-structure 1nteract10n on :modal damplng and frequenc1es

..can be studled. Whlle it is posslble to evaluate botﬁ'the‘

[

. ' . e "
- ‘ /

goil ﬂampingsahd structufai damping at the sam% timeafit
N - K ’ . -
is more. illustrative to consider them separateiy.

s
~

o

In the examples presented, goil mateflal damplng ig

neglected and foundatioh st;ffness and radxatipn damplng

‘

Aare taken as trequency 1ndependent,_ In any partxcular
I} l‘ "k,‘ L3 ‘ - :‘ , .. \ . R .

»
. \ ., » . .
.- - ' g - . ' M »
1 g ; i ““ i



e situation the soil properties have to be,chosen with

regard to the frequency of interest, strain level and
&, :

layering.

9
Rigid Structures : .

¥

Rigid structure$ such as silos or machine foundations

derive most of their damping frqm soil. Under horizontal

‘.‘ loads such structures usually ,have just two degrees of

L

’
freqgdom, i.e. hor_izonq translation u and rotation in the:
ng

vertical plane {rocki ¥. .The governing equation is

equation 2.22 with the diagonal mass matrix containing
beth the mass and maes-moment of ineftia of the whole
structure and tpe stiffness and damping~generated only by
the foundation as’described by equetion 2.18. Such a sys-

tem yields the first mode as rotation about a point lying
~ -

© below the foﬁndafioﬁ base and the second mode as.rotation .

A}
,

lying above the* center of graGity.

A silo. A silo 22 m (72.18 ftj high with a base dia-

a

' § meter of 10.5 m (34.45 ft) is analyzed for two types of
k - » ‘/ B

", foundation: a mat foundation (Figure 3‘.3(a)') and a 'pile
foundation (Figure 3.3(b)). Coupled vibration bongisting
‘ e " ’ S
. 0f horizontal translation and rocking is considered 'The

stiffness and damplng of the mat foundation are calculated

\

from the formulae (equatlons 2 3 and 2. 4),'assum1ng a very
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deep soil layer (halfspace).with a shear wave veloeity of
3011 V 152.4 m/s (500 ft/s), soil unit welght Y = 1924
kg/m (120 1b/ft ) and Poisson's ratlo v = 0.25. The
aeffects of embedment and 5911 materlal damping are neg-

lected. 'The pile.foundation comprises 72 endbearing wood

piles. Their properties. and the properties of soil are
given in Reference (Jévfpv 588). The group effect is

neglected for the sake of 51mpllclty) The stlffness and
L [ ”,
damping Qf ‘the plle foundatlon are evaluated using t

. >
procedure described in section 2.4.2.

The damping ratios of a silo depend on its l‘ading

.and are, therefore, calculated for various levels'of silo

!
content ranglng from an empty.silo to a full silo. The

unlt weight is taken as 2330 kg/m (145 lb/ft ) for con-

,érete and 820 kg/m . (51.2 l1b/ft 0 for the content.

L3
»

“The damping\derived from. soil is calculated from:

o

‘equatipn 3.25 for the complex eigenvaluwe approach and

4

to Bi'as suggested by equationj3.22 but is 3lso evalqatéd

with,péaard to the undamped frequency. w

from equation 3.4 for the energy approaeh. Theé damped
ratto of the first mode isAgfven,fqr the natlséﬁpqrted_
silo in Figure 3.4. -The damping ratio shown is re;ated
used in the

1.

eqergy method The difference‘between the'two is quitéf"

3

n,'small.,.Tho first mode damping ratio’ranges, from about-

' ‘
. - .. , , v
, . .

- ‘ -,

‘\

'

-~ Y
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‘wl.

.damping matrix. For the same reason, the. fregquency 51

/ ‘ ~

12 percént to 27 percent and in this range the energy
method ceonsistently overestimates the damping by about
15 to 22 percent. The modal damping of the second mode,

is not shown because it exceeds the critical damping ratio.

k]

. ¥
The frequencies of the first mode are shown in

Figure 3.5. It can be seen that for lower levels of silo

»

loading, for which the damping is highest, the dampeé

4
FoN

natural frequency wiLis hfbher than the qndaﬁpedifrequency

Vs
This is caused by thed nonproportionality of the

is somewhat higher than both the damped and undamped fre-
quencies. The Eurprising trend for the natural frequency

to increase with silo loading is caused by the shifting of

-

the' center of gravity which may increase or decrease the

. %
interaction effects. ¢

*

For the pile supported 5110, the damping ratjos of
both modes Dl and D2 are shown in Flgure 3.6. 1In thls
case, the damping ratlog of both modes are con51derahly
lower than f?r ‘the mat foundation, and the energy approach

and the complex elgenvalue approach g1ve practically 1den— ’

y

tical results. Thls is. 80 becau9e the damplng matrix of

A

the -pile foundation #s almost proportlonal to- the Stlff—

ness matrix. J ) \
‘. 4 M
- - [N

B . )

P

.Block foundations for rotating‘éndhred{procating |
haset . 3 1
. . Y



machines. ' Block foundations for these types of machine

.are anélyzed'in the same fashion as the rigid silo. A
‘ngmber of snallon feundations~as‘&erl as foundetions on
piles yerelinvestigated: As witn the 'silo, for the less
damped pire supported foundations both ‘methods ot analysis
give'the same results while for the shallow foundations
the energy method tends to overestlmate the damping by

»

) & about 10 to 20 percent dependlng on condltlons

Hammer foundations, Hammer foundations are most

»

often modeled by two rigid bodies which vibrate in phase

in the first mode and in antiphase in the eecond mode

a

(Figure 3.7). The damping originetes primarily from energy

Vdissipation in soil for the first mode and from energy
dissipation,in the viscoelastic\ped under the anvil, re-
presente&fby the upper mass, for the second modei In' .
) N , Flgure 3. 7 both modal damplng ratlos are presented for a
foundatlon whose soil damplng“ébnstant c, is supposed to
Qary from its full valu;? czkmax), to zero. The maxinun )

. " damping r'atio of tne first mode is abeut 50 percent. " How-
ever, ih the whele range of the damping ratios plotted inj;>
‘Eigure 3;?, both methods of Qanpinq evaluation yield al- -

- . 7

most identical results. (The data on the foundation for

i . . . 0 P )
‘ which Figure 3.7 is repfesented-yﬁll,be given in Chapter
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" Buildings

In buildingsl’structﬁral flexibilitjkcomes into play
. <

and considerable differences between damped and undamped J

>

modes may occur. Consequently, the behavior of flexible’

structures is more complex and it is advantageous to exa-
’ ‘q s ¢ R

- mine the foundation damping*separate;y from structural

) ‘ . e
damping.

Fqungetlon damplng. Examples of the damplng prov1$ed
by flexible foundatlons are shoWwn for flve— and ten-storey.

shear buildings in Figures 3,8 to 3.12. (Some_of the pro~ .
perties of the buildihgaare given in Table 3.1.)

L] =. -

The columns of the building presented 1in Figure 3.8

" rest on three separate block foundatlons of plan dimen-

sions 2 x 2.m® (6.56 x 6.56 £t2). The foundation (S0il) N

Ly

damping of the first four modes is plotted for varying
soil_stiffness characterized by shear wave velociiyﬂvsﬁ=s

) - ' . *

Y(G/p) in which G is the shear modulus of soil and p-is

the mass density. The stiffness and damping constants of
, .

the foypdations are established from the formulae given in°

r

subchepfer 2.3 with v = 0.25 and embedment neglected.- The

L
o ™ . °

structure is analyzed4using equation 2.23. The results
are shown for_boﬁﬁ methods of analysis. -The‘damping ob-

tained by the 9uild1ng from the fouqdatlon, Dl' 1ncreases

mqpotonzcally as soil stlffness decreases. The ma nltude

n‘ 3

o /
of this damPing ranges from abOut 1 to,8 percent for soils

e



F

of‘ave}age stiffness such as clays ‘or sands (VS ranging
from 400 to 700 ft/s, i.e. 122 to 213 m/s). Both
approaches'give almost the same resqits for the first‘mode
"and very close results. for the highe} modes. “In this

case, the damping is nonproportional but small.
i

Figure 3.9 shows the soil damping for the same build- .

¥

ing as used in Figdre 3.8,exeepﬁ for the foundation which
is, in‘this cese, a large ﬁet supportiné all columns. For
thielfdundatian; the soil dampirg of the building can
}eaéh~§uch higher vafﬁes fer the higher modes than in the
previous case. This is so because the damping constants -
of the foundation grow yith the radiusfsquared for Cue and

radius to the power of four for c¢ The variation of

py° ‘
dampihéfwith soil stiffness is monotonic only in £ﬁe first
vibratien‘mode (Dl), for which both approdches éive almost
identical fesults, and fof\she second mode evaluated using
the energy method. ‘For fhe'higher modes, the soil damping
ratios éiéplay marked peaks in which very high demping
ratios are reachedl The agneement between the two

approaches becomes worse as' the value of damplng increases

"and considerable dlscrepanc1es of up to’ 50'percentbor even

- #rore may occur in the higher modes. The first mode damping,

most 1mportant for practlcal appllcaﬁlons, is modest and

”\

‘predicted satisfactorlly us1ng elther of the two

approaches. N . ’ ’ "
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The complex eigenvalue approach\(iélds not only ¢
— "~ }arger peak values of thé damping for the higher modes

but indicates abrupt variqtioné in the damping‘and a

limiting envelope. To find out to which degree these

» features are affected bj the very high damping of the

higher modes the analysis was repeated witﬁ the damping
matrix reducéd to one fifth,of that yielding Fiqure 3.9.
}Suéh’a reduction of damping can occu? if the soil deposit
fesembles a stratum of limited‘thigkness rather than a
halfspace, a frequently occﬁrri%g situation with large
S buildings.i -The results are plotted in Figure. 3.10. In
"thiskcase, the modal d%mping due to{soil ié greatiy re-
ducgd, particularly for.the higher modes, and thé agree-
ment between the two épproachesmis far better. The peaks
sare not trﬁncated but smooth and th?)abqut change occurs ’

only in the fourth mode damping obtained from the complex
¢ . ®° .

eigenvalues.

;//”‘s ‘ The damping derived~from ;oil was also examined for
a ten-storey shear building wplch'differed froq.the-oﬂe
used in Figure 3.9 only by the addition of five,moré
_stofeys. The resuits are piotted in Fiqgure 3.11. The

. energy approach and,tﬁg complex eigenvalue‘app;oach‘give
aihést idénticalvgesults for the fifst mode, but conside-’
. .rable differences again oécur for the highef; heavily

. , v
-damped modes..- However, the damping values in excess of

L]

.~
A




50 percent, for which the truncéted,peaks appear “in,

¥

Figures 3.9 and 3.11,.are not very meaningful because at

‘this level of damping free motion just about ceases to be
¥

oscillatoery and thé‘eigenvalue analysis beéq@es spurious.
(The'gqps between\the t;unéated peaks tend to close as,
indicated by dotted lines if the increment in Vg is re-
fineds)

The ten-storey building‘is re-examined with the foun-
dation damping matrix reduced to one ' half of the full value

-

. valid for an elastic halfspace (Figure 3.12). The plots

[

are limited to she fifst three4modes for which the dgmping
is not excessive and the modes are well separated. The

results are similar to those observed in .the previous cases.

The variation of natural freq?engies with soil stiff-

i

ness is also of in‘terest. , Examples are shown in Figure
’ 3

o

3.13 and 3.14.. Figure 3.13 shows the undamped natural e
freduenéies and the frequeﬂcies Ej = |u| for the five- -
storey bu11d1ng of Flgure 3.9. For the full value of
foundation damplng, ‘the damp’d natural frequencies as well
as frequencies wj lead to frquency curvgs which overlap

or may even cross and this makes the shape of the damping

curves dependent on the interpretation‘of the order of the

.
! » v

for the figures showp because the frequencies Gj are

ﬁodes. The ordering by ascending values of Uj was used

J

- » . N
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.

directly related ﬁoydamping_ratios; The ordering of the

p @

"mpdés by w% would yield somewhat different“shapes for the

'vefy high damping ratids. For the reduced foundation

»

P
*

] - B v
.- damping matrix the natural frequencies of the five—storey

building are shown in Figure 3.14. These freguencies cor-

> >
b

.

respond to Pigure-3.10= They are well separatéd and be-

cause‘the damping- is smaller wj ¥ Gj' .Figure .14 also™

demonstrates that in the case of soil damping the damped

- - .

natural frequenc1es of bu11d1ngs may exceed the undamped

natural frequenc1es, as is shown for the silo in Figure

3.5, S

AN

The differences.in damping values obtained by the twq
-

approaches appear understandable because with a large mat
foundatlon, the damplng is hlgh and concentrated at the

base of the structure, consequently, the dampedvv1bratlon\
» <

modes differ significantly from the- undamped modes. This
[ 4 - ‘ ’

’

* difference can be seen from Figure 3.15 in which both the

undamped and damped modes are plotted for the building
* <
shown in Figure 3.9. For the damped modes, the absolute/

value of the displacemen | o] and “the phase shift ¢ are

-

defined by equations 3.26,and shown in Figure 3.15/ as

L}

| o] = ¢2 ¥ ¢2 : | , (3.26ay
and o '
. _ @2-? IR
¢ = arctan . (3.26b)

1

a2




o

r

where ¢, and ¢2 are the real and imaginary parts of the

1
mode shape.
A - X
Figure 3.16 shows the¥free vibration at diffefeﬂt

instances of time. The shifting of nodal points due to
damping can be noticed. The free vibration was evaluated

using equation 3.18.

Effect of foundation flexibility on structural damping.
a

Foundation flexilility changes the natural freguencies oi
the structure anl also its cuxvaigre. The latter effect
changes t amount of energy dissipated in’the structure
itself due to internal damping. The eximples of the effect
of foundation flexibility on the original structural damp-"
iﬁg are shown in Figurg‘é.lj and Fifure 3.18 The damping
matrig of the structure was chosen ds proportioRkal to the
stiffness matrix aﬁd the viscous Aam'ing constant so ad—.
jus;éd as to give the first mode dam;ing equal to 1 percent
for the case of a #igiﬁ,founaqﬁiqn. For fhe higher modes
the calculatgﬁ damping ratios were normalized to give 1
percent for rigid foundations also. This.was dgne to indi-
cate the trends rather than real values of d;mping. Both

the energy approach,, equation 3,ﬂ, and the complex eigen-

value analysis, eqhatidn=3.25, give identical results for

» - | , . + ,
the exizzles shown. The reason for this agreement is the

proportitonality ofifhe‘damping and stiffness matrices,

L
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except for the foundation whére the damping is absent,
é
and low level of damping: consequeptly, the damped and

undamped modes are almost identfcal.

L4

In the example buildings, structural damping is always
reduced by foundation flexibility. For the first mode,
~structural damping decreases monotonically with decreasing
soii stiffness. This decreaée is in good agreement with
the approximate formula, derived for one-storey buildings
by Veletsos and Meek (62) and Bielak (71), accbrd;ng to.

.

which

- D] = D] (=5) \ (3.27)

where the bar indicates the damping and first natural fre-
»quenéy the structure would have in the case of a rigiq
foundation: Di and w, are the structural damping and the

first natural frequency of the structure on a flexible

- foundation.

For the hjgher modes, structural damping varies with

54

soil stiffness in a more complicated manner and the damp~- -

ing reduction can be smaller or greater than that observed

in. the first:mode, as Figures 3.17 énd 3.18 indicate.

. ; - .
For heavy values of stxuctural damping often used in ,

I

- aseismic design the reduction of damping due to foundation

flexibility may ‘be significant. This reduction is likely
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to occur in'strong earthquakes in‘!hich the soil shear

modulus may‘be considerably reduced due to high'strain.

Figure 3.19 shows the first circular natdral fre-
quencies and the total damping ratios of the ten-stotey

shear building, shown in Figure 3.11, for three types ot

-

foundatlons, deplcted as cases (a), (b) and (c) in Figure
3 21. *ThHe data are again plotted for diffefent values of

—

s0il shear wave yeloclty, and also assuming a structural
damping ratio of 1 percent for the basic case of.a rigid

foundation. The pile foundation consists of fifteen

»
»

floating reinforced concrete piles per bay. 'The pile-dia-
meter is 0.75 £t (0.23 m) and the pile length to diameter
ratio is 40. 1In this example and previous ones, the y

b‘uilding density is 10 1b/ft (158 kg/m ). Figure 3.19

*

lndlcates that the’ plle foundatlon prov1des the highest
natural frequency but~lowest. damping. The “three separate
mats yield lower frequency and, fow stiffer soils, higher:

damping than one large mat: The-differences in the damping
) , . R , \ )
ratios and natural frequencies are 'associated with the

differences ip the shape of the first vibration mode shown

in Figure 3.20. ,The higher the shear wave velocity, the

s

stiffer the foundation and the closer the mode shape to
- h“’ . ‘l . ’ [ 4 ‘
the one observed with the fixed base.

-

> @ .

The effect of soil-struttidre intéraction is salso’




¢
important for towers an8 tower-like ctures such as. \
chimneys begause of their small structurgll damping and

great sensitivity to dynamic excitation, especially to

wind.. An exaﬁple of the.variation of sg@itl Qampihg;fof ail
cﬁimﬁey is given in Chapter 7.'* Other examples of tower- _

like structures are available in Reference (72), .
. s v

3.5 CONCLUSIONS ' S

.
’

natural

/ . ' .
The effects of soil-structure interaction on
! . ) o

frequencies, modal damping'and mode shapes'o%.gt{pctures‘
are examined in detail in this' chapter. The foxibwiné‘«

conclusions emerge:.
- v

€ N a4y

. - ! . «
. - ' . "

- The undamped natural ﬁrequgncies are always reduced
R .
by soil flexibility. ) -

’ . o’
.

- The damped natural freqdenc&és of structures on _'[

-
-

flexible foundations' may be lower or niéﬁerathan the
. i [ !
" ;,L - )
undaMpbed natural frequencies¢s” - .- ¢ - -
’ - » . ' ) ~ . - oL
- .  The modal shapes érg those associated with the,struc- "
v . A . . . ., .. \ . .

) tural modes, and two adgddional ones, arising from

the introduetion of roc and translation,of the °
- . \ } ) (% : N X . » \ -
base. * S . .
s The softer the soil, the more the bade translation:

| 'y

" and rotation, and ‘the’ magnitude Mf the relative modal

displacement. AU A Lo o
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The damped ﬁodes_differ significantly from undamped
p I,

-~
-

" modes.

N

Foundation flexibility affects the total damping of
a structure in two wa#g: (1) it provides damping due

. to energy dissipation -in soil, and (2) modifies the
. original structural damping, reducing it for most

structures.

The possible loss of structural damping is usually
more than replaced bylthe dampiné from the foundation
but fﬁis need not be the case for strong earthquakes.
Thé'effects'of ghe foundatipn on the damping of struc-
tures caﬁ‘be evaluated usiné aﬁ energy consideration,

an approximate method, or the co@plex eigenvalue
approach; an accurate method. g

For internal (structural) damping, bpth methods yield
identical results because the undamped and damped -

modes do not differ very much: ’

For foundation dampinyg, which is‘nqpproportional,”
both methods give almosﬂ~phe same results for the
first mode t ﬁa§ give c&nsiderably different résults
for highe; vibration modeé..

The error of the energy apprbach iﬁcfeases as the
foundatiqn damping ingreases and may reach 50 percent

or even more for the higher vibration modes, depending

on foundation conditions.



a | '
Frequency dependent foundation impedance functions

complicate the analysis. In such a case, modal damp-

"ing can be evaluated by means of an iterative proce-

dure or established from transfer functions of the

— ~ AN

Ny — e e —_

~

system.

The damping generated by the foundation can be ex- .
/ :

. ploited to reduce structural response to wind, earth-

quakeg and other dynamic loads.

The response of the complex soil-structure interaction
system to dynamic loads can be analyzed accurately

using éuperposition‘éf damped modes since the equa-

tions of motion can be uncoupled using wonclassical
] . ’

modes.
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(a) ABSOLUTE (b) RELATIVE (c) INTERSTOREY
DAMPING r DAMPING - DAMPING

FIGURE 3.2 Baslic Types of Models for Structural Damping
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FIGURE 3.16. Cméarigon of Undamped *Vibration in Classical Mode With i

’ Damped Vibration in Nonclassical Mode for Five-Storey Building
With Mat Poundation. (Third mode with damping due to energy
dissipation in soil; displacement shown at times ranging from

0t:==k0 to half of natural period T3/2)
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CHAPTER 4

RESPONSE TO DYNAMIC LOADS

r

k]

4.1 INTRODUCTION

¢

Once the input forces and the base impedances are

known, the equations of motion of thé soil-structure
interaction systgy;' given by equation 2.22, can be
solved in many different ways. The solution can be carried
out in the time domain;or in the frequency domain. Both’
méthodg are discussed in.this chapter.' The frequency

domain solution allows a probaﬁlistic type an;lysis and

the consideration of frequency dependent impedance func-

tions. A time domain solution facilitates nonlinear

analysis and in the form of linear modal analysis offers

a simple physical interpretation of the results. Though,

the foundation impedance coefficients are functions of
¢

i ~ ' 4
frequency,  therefore they should be selected by an itera-

tive approach for the time domain analysis. These itera-

————————

tions can be made eithe; automatically in the computer
prograﬁ used for the solution or each solution's results
may be evaluated to determine if the asstmed ;alues'of
impedance coefficients are within acceptable limits. Also,
- this iteration can be circumvented using the procedure

.

suggested by Chopra et al. (73).

88
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When the equat@ons of motion are not'diagonalizable
by a coordinate tiénsformapiOn using undamped modes, an
exact normal mode analysis cannot be performed. However,

very good approximations to thie response can be obtained

by the use of. equivalent modal damping values and classi-
cal modal analyéis (15, 28, 30). The other alternative
.is to use the nonclassical modal aﬁalysis which is parti-
cularly wellfshited for the solution of the equation of

motion of' the soil-structure interaction systems. A

direct integfatién;of equation 2.22 is of course possible

i

. r
(74, 75, 76). How¢ver, a common problem of all direct

7
)

integratipn‘methodé is that the\time increment must. be

’

chosen small to ensure -accuracy and stability of the solu-
tiono "_ e
: ’ L . L] \

A b%ief'aescription and a discussion of the different
methods are divén below because these are used to analyze
some bastc cases of dynamic loading in the following

chapters.

A

-~

4.2 CLASSICAL MODAL ANALYSIS

n Modgl analysis is a general method for analyzing the
response of linear multi-degree-of-freedom systems. It \
is particularly suitable for systems whose properties are

frequency independent. The method describes the response

4
R

s
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in terms of the modes of free undambed vibration Qhose

. 1
'

orthogonality facilitates the solution.

A d

This method ngélects damping in the first stage of

the computations and proceeds to solve the eigenvalue

T problem B T

(4.1)

(k] = w?(m]){e} = {0)

This leads to a set of corresponding natural frequencies

W W

1 59
- n is the dimension of {u}: and [k], [m], {u} are defined

Ceen< W and mode Shapes {¢}j, j=1,...,n, where

for the soil—strﬁéture system bylequation 2.23. The method
then expresses the actual displacements’ {u} in terms of.

modal displacements .

{u} = [¢]1{n} (4.2)

where [¢] is an n x n matrix which contains the mode shapes
{6} in its columns and {n} is the vector of generalized

- coordinates. Substitution of equation 4.2 into equation

2.22 éﬁa premultiply by the transpose of‘[¢j which is [<I>]T
01T mIte1 (A} + (o1 (cl(el{n} + (¢1T (k][] {n}
= 1017 {p) ' - (4.3) T

v

Equation 4.3 considerably simplifies due to the genéra—

lized orthogonality conditions,'according to which .

L]




, , “ C91
? "
«
. | .
(01T ml[e} = M3 - (4.3a)
(017 k110) = DRI = [l M . d4.4p)

N )
-

The matrices [M-] and [~K-] are diagonal and contain the
Qeneralized masses Mj and generalized stiffnesses Kj res-

pectively. o r

Clearly, it would be most desirable if the triple

product

TN
—

fa

“161T (el (0] (4.5)

5

containing the damping constants of the system, résulged -

> .o .
in a diagonal matrix. In such a case, equation 4.3 repre-
sents .a set of n independent equations for nj, J = 1,2,...,0n

that are "uncoupled".

. bt
4

P ~
Since [@]T and [&], two,mulfipliers, are the same in - . .

gquation 4.5 and equation 4.4, the triple matrix product,
equation 4.5, can result in a diagonal matrix only when*i?
the damping matrix, [c], is proportional to either the—@égé\
matrix [m] or the stiffness matrix [kl or is a polynomig |
combinafion of.éhem. In this case, equation 4.3 Yields a

, . set of n uncoupled equations. Each of them has the fprm

) 2 P.(t) (4.6)
R. + 2D.w.n. + wsn, = —4— , 3 =1,2,...,n 4.6
" 39375 T U5ty T T )

in which ’

ot




P (t) = {o3Tp(1)) . (4.6a)

A t
. +

and Dy = modal damping ratio.= {Qj}T[cL{Qj}/ZMjwj if the ™

damping 'is proportional.

However, for soil-structure interaction, the damping

is nonproportional. 1In such a case, the damping matrix. .
. ' kY

. fc] is not diagonalized by the triple product, equation

¢

v

" 4.5, NeJertheless) modal dampipg ratios Dj can be calcu-

lated using approximate methods, -for example the energy

approach outlined in the previous chapter.

Thén, the' simple differential equation 4.5 can be

-

solved for the generalized coordinates nj(t).' The solu-

- tion of equation 4.5 takes the. form

: —D.w,t n.(0)+D w.n. (0) \
,nj(t) = e ? J [nj(09cosw3t + 3 , wg J ) sinwét]'
1 t =D.w. (t=-T1) L
C A P.(1)e 3 sinw?! (t-t)dt” (4.6b)
w‘ij o I J

B

where nj(O) and ﬁj(O) can be determined from the initial
conditions of the system and'mi is the damped frequency

of mode j equal to wj/l-Dj, and 1 is the integration

variable.’. The first term of equation 4,6b represents the

w. .

free viﬁratioﬁ:dqg to initial conditions. The second term

represents forced vibration.

s

The actual disélacemeqts {h} follow from the linear

-~
-

~
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transformation equaéion 4,2.'

. r
b ]

The success of the modal analysis method is due to

>

the fact that for a majority of practical problems it is

not necessary toAdetermine and consider all of the eigen-
values and mode shapes. *

This can obvidusly lead to considerable savings of

computational effork. However, the results of the classi-

cal modaly analysis may be inaccurate for cases of nonpro-

portional damping because of the manner in which damping

"is introduced. , .

- 4.3 NONCLASSICAL MODAL ANALYSIS

>

To uncouple the- equations of motion of the soil-
]

structure system using modal -analysis, equation 2.22 is

Al

transformed into the reduced equation 3.12 with the number

of degrees 6f freedom doubled. The¢ general solution of
LA o . -

the reduced equati .12 can be obtained via the linear

transformation
. . ' l ‘ ‘
{z(t)} = [z2]1{q(t)} . (4.7)

_.where [Z] is the mq‘rix containing 2n complex eigenvectors

and g(t) are the' generalized coordinates for the damped
! ’ [N

system. Substituting this transformation into equation

v

3.12 yields:. . o T : .

“




-

(a1 {2]1{3(t)) + [(BI{z]{q(t)} = {F(t)) (4.8)

Premultiplying ‘this equation by fZ]T one cbtains
. o . . . ° -
. : ' »

[z1TtA1[i'1,{é(t)} + 1217g) 210} = 217F @)

R | ' (4.9)

”

Since [Z]T[A][Z]' = [\'Aj\l and ‘(21T [B] (2] = By, as
.. t * {
stated by equation .3.19, equatioq 4.9 reduces to

[‘Ajd{é(t)’}’---{'*B;\]{q(‘t')-}-= Z1Tir(e)} = {£(t))

(4.10)

Because F‘Aj<J and P~Bj\J are diagonal matrices,

.equation 4.10 -results in the uncoupled inhomogeneous set

et

of equations

J.(6) + pag.(t) = £.(t)/A. L 3 =1,2,...,2 4.1
a5(8) + ujay(e) = E (0 /Ay ) 5 = no (4.11)

L]

_in which uj is the complex eigenwalue defined b§ equations

"3;16 and 3.19c. The solution of eéquations 4.11 has the

form ‘e

Y

, t .
= T -
9 (t) = qj(o)exp(ujt)' + % I Jexp[uj(t r)]fi(r)dr

J=1,2,...,2n (4.12)

. ' . . . L
where 1t is the variable of integration.

- -
LS

The magnitude of qj(O)'Ean be determined from theiin%}ial

i
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. ‘

conditions fbf z(t) at t = 0 as
(g0} = 12171 (z0)} (4.13)

When - the .quantities qj(O) are substituted into equa-
tidﬁ«4.12, qj(t)‘is“deﬁermined and the solution {z(t)} is- -
6btained by superposition of‘zke complex .modal  responses
A , Be

through the use of equation 4.7. . ~ ] ' v

o *
. B

<"In. equation 4.12, the first term provides the free

vibration with prescribed initial conditions and the second

N

term~providés'the response to time dependent forces.

-

The advantaéesiof the nonclassical modal analysis are
the insight it provides into the dynamic chaqadteristics
of the interaction system and the mathematical accuracy

obtained evep with nonproportional soil damping.

4.4 COMPLEX RESPONSE ANALYSIS

-

"

The equations of motion of the soil-structure inter-

: . o«

action system, equation’'2.22, can be solved in the fre-
) . .7 -

quency domain using Fourier transform method (complex res-

ponse method). For this purpose, each input force P(t)

is assumed to be given for an even number, N, of equi-

-
-

distant points in the time domain as
Pk = P(k.At) r k = 1'2‘r-o'1N (4-l4a)
L 2 ' ¢

§

e
/
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-

and is expanded into -a continuous function by the trigono-

metric interpolation formula
) -N/2 iwst , %
P(t) = Re I Pg-© - o ’ (4.14b)
) s=0 -

. ¢
where the frequencies w, are

AL s =0,1...,5 o . (4.15)

and ps,‘s = 0,1,...,% are complex amplitudes in the fre-~

quency domain. These amplitudes can be computed from the

Pk values by the very efficient Fast Fourier transform

f

" method (77).
X - . .Then, each of the terms of equation 4.14b is con-

4

sidered as an ‘input to equation 2.22, i.e.

-

, iw t ‘
. : *s _ . S ' .
[m}{a}  + [elfu}_ + [kl{u}g = ‘ps}g (4.16)
' Assuming the steady state solution. —
- o _ iwst |
{u}s = ﬁy}s e ‘ I (4.17)

equation 4.16 reduces to .

.
4

(4.18)

’

' Equation'4.18 constitutes a set of linear eQuations

which can be solved for the complex displacement ampli-

tudes {E}S. Then, {u}s follows from;equation-4.l7. The

.




~complete respénse in the time domain follows by superposi-
tion, remembering that the real part of the output corres-

]
ponds to the real part. of the input. Hence,

, N/2 N/2 iw t -
{u} =Re I {u} =TRe & {u} e S5 (4.19)
’ s=0 S s=0 S
. .

Thus, the displacement {u} in the time domain can be ob-
tained by performing ah’inverse‘Fast Fourier transform on

each of the terms of {u}_.
A .S

In summary, the time history response can be computed !/

through'tﬁé use of Fourier transforms by (1) finding the
', . direct transform of the excitation forces, (2) multiplying
it by the transfer.function
# L ‘ : . . -
' . 2 -1
H(w) = ([k] + 1ws[C] = wg [m]) (4.19a)

wnap

and (3) .obtaining the inverse transformation of the product.

For probléms of free vibration due to initial dis-

placements and velpcities, equation 4.18 can be rewritten

P

T as (65) .

(L) # w kel - wlim)) (8}, = (ogml+[c]) (T} + [m)u_)
: ‘ )
‘ , (4.20)

Y ' -

And velocity of the system. Again, equations 4.20 can be

‘solvéd fdr‘{a}s“it each frequency w_ and the time response

» v
.

,
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to initial conditjons can be obtained from equation 4.19.

\

A frequency solution”has some inherent advantages:
» A o

-

(1) freéuency dependent impedance functl s can be readily .
incorpoéated (2) it allows control of th accuracy of the
solution w1th1n different renges of frequéncxes and,

(3) once the transfer functions have been computed it per-

mits change of the excitation force, or its location, W1th—

-

out having to repeat the complete brocedure. .

— Also, the frequency domaln“plutlon allows a probablls—

,
// E%C type analysis (for nondeterministic exc1tatlon forces
f"}andom exc1tat10ns) This is so because the spectral
+~ densities of the random forces and response are directly
related through the transfer "functions. The spectral solu-
tion Can be carried out directly or- via modal anal&sis.

The latter type of solution is outlined in Chépter 7 where

it is applied to the problem of structural response to
randomly fluctuating gusting wind. The direct spectral

approach is outlined in the next subchépter.

4.5 DIRECT SPEGTRAL ANALYSIS"f

The random vibration theory was used to analyze prob-

lems involving soil-structure interéetioq by many authors

including Vanmarcke (78). It ist¢a powerful tool but not

7

well understood by most civil engineers.

RN




Efficient use of the random vibration theory relies

on a/functionnof frequency: w, called the power spectrai

density, S(w). The power speqtfal density, S(w), describes
how the -energy of a random procesé, such as earthquake
" acceleration, is distributed with regard to frequency.

The Fourier transform of a particu¥ar digitized process-can
foe used to obtain the corresponding S(w). Ideally, S(w)‘
'should be computed from a number éf measured samples. How-
ever, *this is seldoy possible f6£ earthquake problems be-

cause of a lack of data. Thus, it is'most oftén assumed

that the excitation forces are stétionary and ergodic.
\Stationarity implies thét the ensemble averages are inde-

pendent of time. Ergodicity means that the 1ntegratlon or

tlme averaging of one (long) sample yields the same results

as the integration or averaging among many samples of one

énsemble. _ T ' :

.

The power spectral densities of a procesé can be ob-
tained analytically or numerically. For example, for
- earthquake problems Tajimi (79) proposed an empirical
analytié 1 expression for power spectral density of earth-
‘qﬁake gripnd acceleration. 6n the other hand, the S(w) of
a specific ground motion can be obtained by means of Fast

Fourier trjnsform of the given , tlme history.
4 .

" Once e power spectral density of the excitation

%brce, Spiw » has been established, the spectral density of

.
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1vo

"the stationary response Su(m) is

s,(0) = |1 |* 5 () | (4.21)

in which H(w) is the transfer function between the input
and outpdi This function is obtainable directly by means
of the~ complex analysis outlined J% the previous sub-

chapter, as follows:

o
(P ()} =[] = w®(m] + 1ulell"HE ()

v

= [H(w)]{Fp(w)} (4.22)

where Fuband Fp are the Fast Fourier transform of the out-
put and input- respectively.. Multiplying each row of equa-
tion 4.22 by its conjugate yields the spectral densities

of displacements ;

4 -
- 2 ’ :
{5,y (@)}, = [H(w) | [Sp(w)] (4.23a)

or
n n s
S (w) = Real( I (m)H* (w)8 (w)) (4.23Db)
uay k=1 j= 2, ik Py “

in which i corresponds to the degree of freedom in direc-
tion i, the asterisk denotes complex conjugate aqd Sp'

k3]
are the cross spectral densities between forces in direc-

tions k and j. Cross spectral densities between output

. . . . s b
coordinates can be obgglned in a similar way.
! .

It can be seen from equation 4.23 that the direct

4 «
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spectral approach is particularly suitable for rigid bodies
on soil where the number of degrees of freedom is' not more
ALY .
" than six and the impedance functions are frequency depen-

dent.

“For buildings with many degrées of f%eedom, the problem
is mqfe convenien£ly treated in terms of orthogonal ﬁodes.
The random response is evaluatea:at each significant mode
and the final response i§ 6btained by superposition of in-
dividual modes. This latter approach'is particularlj‘aé-
vantageous when the structure response is domiﬁated by the';

fiyst mode of vibration as will be shown in more detail in -

Chapter 7. .

Mean Peak Response

The spectralldensitiéé of the response obtained from
equation 4.23 are useqkto compute the mean peak response
. for a chosen level of probability. Thé maximum value of
the réspbnse that®will not be exceeded within a certain
probability, a, can be computeq usiﬂg the approach due to
Davenport (80) or Vanmarcke (81) . The mean value of the -

s . ’
peak response can be expressed using the peak factor 9,

G = 9,9, ' . ’ (4.244

in which 04 is the standard deviation of the stationary

response found from

-
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2 (7 :
0, = fo Suufw)dw (4.25)

! <

and g;can be calculated using the approximate formula

given by Davenport (80) .as

g, = /2 InvT + 0.5772 (4.26)
, Y2 nvT

In equation 4.26, v is the apparent frequency obtained from

_ the formula due to Rice (82) .

® 2
fo W Suu(m)dw

1
Vo= 5 v (4.27)

f Suu(@)dw
o

[

o

and T is the period of the observation. Vanmarcke (815
describes a procedure to find the significant duration ‘for

a particular event.

It is also important to recognize that the response
may not be stationary, but builds up Qith time until a ‘
s§§tionary.va1ue of Ty is reached. If the process is non-
stationary, i.e. ensemble averages are time dependent, a

s

correction for the response can be made in two ways. The
first approach is to multiply the force reco;d P(t) by a

;uitable deterministic intensity function such as the box-
baf, trapezoidal or exponential functions shown in Figure

4.1.

’ ’ ‘
In the second approach, the spectral density of the

N
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response is described by an evolutionary spectral density
function suu(w,t) (78).. Then the time dependent variance
" of the response can be obtained by integration over all

frequencies,

oi(t) - fo Sy (0 t) dw (4.28)

-

The‘function guu(w,ﬁ) dgpénds on the input spectral
densities and the system properties. Equation 4.28 yields
apgroximately (78) - ' . .

2(t) = oP(1-e 00 (4.29)

u u
in which Ty is the standard deviation of the stationary res-
ponse,- w and D are the natural frequency and damping ratio

-Duw_t

respectively. Equation 4.29 ,indicates that the stationary
x:t increases and e

variance is achieved when D
approaches zero. For rigid bodies on soil, the damping
ratio D is high, often of the order of 20 to 30 percent as

shown in Chapter 3. This indicates the very rapid‘;ate at

which the response approaches its steady-state condition.

In conclusion, the random vibration approach.provides
an efficient way to cémpute the response of a linear system
to any irrégular excitations. The response can be asso-
ciated with a aesired proﬁability of occurrence. One liﬁi-

tation of the approach is that it usually requires a linear

system even though soils may not be linear. The iterative




104

linear approximation to nonlinear propérties can be used,
and the errors iﬁ doing so are probably no worse than

those of a deterministic solution. In this case, the
analysis requires that the nonlinear response be sensitive
to a narrow bahd of frequencies, as is the linear response,
and that the equivalent linear properties are constant in

time or vary slowly with time.

4.6 DIRECT INTEGRATION METHOD

{

In ;his.method, solution is carried out in the time
domain in which the system of differential equations 2.22
is solved through a step-by-step inteération wi&h respect
to time. This is done by making assumptions about the
variation of the displacementxor accelerations during small
time intervals; eﬂg.; it may be assfumed that during a small
‘time interval the displacement is a cubic function_of'time
or the acceleration varies linearly or is constant. With
such assumptions the set of n second order differential
equations 2.22 is replaced, in general, by h simultaneous
algeSraic equations. Their solution gives the dispiacement
at the end of the sbdrt time step for the known conditions

at the beginning. Successive appiication of this procedure
- '.q

gives the response.

Many methods exist; tﬁey include the Newmark B-method

(76) , Wilson 6-method (75) and a-method (83). To obtain a

4




comparable accuracy, the chosen numerical method should

possess the following attributeé (83):

(1)

(2)

(3)

(4)

L ¢5)

' Unconditional stability when applied to linear problems.

» The. size of the time step in the case of an uncondi-

tionally stable method is determined only by the
accuracy required. Cohdifionally stable algorithmé
require a time step which is less than a constant-.
(usually 0.1) times the shortest period of the struc-
ture: otherwise, the méthod gives a divergept solution.
This restriction is a stringent one and entails using
a time step which is much smaller than that needed for
accuracy. . -

Second-order accuracy. ‘The errér, e, involved in a
numerical procedure must be of the same order as ("At)2
where At is the time step. Accordiné to Dahlqhi%F
(84) , there is no unconditionally stable linear multi-
step method gccurate up to the third order.

No more than one set of implicit equations should be
solved at each time step.

Self-starting. Seif-starting algorithms do not require
dafa from more than two time‘stgps to advance the
solution.

Controllable dlgbrithmicldissipation in the higher

modes. Considering the response to comprise contribution

from a number of normal modes, the approximations in

L
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e .
thé*direct integration methods usually cause artificial

attentation (numerical dissipation) of the response and
some eryor inithe period of the mode predicted by the

numerical'solﬁ%ion. These two effects increase as At/Tn

\
o

increases,- where T, is the period of the mode whose contri-
g .

~'bution is S?ing concerned. For the Newmark B-method the
error in thé predicted modal period is higher'than that of
the other meﬁhods for the éihe value of At. Unlike other
methods, the ge&mark average acceleration method does not
‘cause any‘artfficial—atténuation of the modal contributions
to ré;ponse. é@yéver; this is’ not hecéssarily the best
algorithm, as tgéféeriod errors cause the contribution to
be combined with ;ncorrect relativé phase angles, and thus
the maximum response may be in error. This leads to the
recommendation (75, 83) that an algorithm should possesé
some artificial attenuation 6r numerical dissipation in
order that the s?uridus response from higher modes is damped

out. For ordinary structures, where only lower modes are

of interest, this property is considered useful. -
- ®

The predominant opinion is that only two numerical
methods possess the five aboée-mentioned'attribupes:

Wilson's 8-method and the o-method’ (6ther opinions also

5

occurred ih. the literature (85))., The only difference bet-

ween the two methods is in attribute no. 5. The a-method,

as demonstrated by Hilber and Hughes (83), is more accurate

in the lower modes than the Wilson-6 method but is more

&) . X

’
PRs

- A . a
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strongly dissipative in the higher modes. This property
makes the a-method superior over the wilsgn—e method when
analyzing ordinary structures. However, the comp:ghensiVe
study of Hilber and Hughes is based on matrix eguation

2.22 without the damping term fcl{a}. Therefore the
Wilson~6 method was chosen to Ealculéte the soil-structure
system‘re;ponse to seismic forces in Chapter 62 It is also
worth mentioning here that the numerical damping‘addedtto
the systém is of the order of 1% of the criticélvdaméing

-

which is not significant when compared to the damping of

i

the soil-structure system." . ’

Wilson-86 Method

The Wilson-8 method is a modification of the Newmark
linear acceleration method. Tﬁis modification ig based on
the assumption that the acpelération varies linearly over
an extended computation interval 1t = 6At as indicated in
Figure 4.2. This integration method is unconéitionélly
stable previded 6 > 1.37. Ny

fhe proceduré of step-by-step algorithm for linear

[y

structural system is summarized as follows:
1. Form an effective stiffness matrix [E],

k) =k] + & m) + 2 (e (4.30)

T

2. Initialize {u(0)}, {u(0)} and {i(0)}.
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-

3. For each time step:

»

(i) Form an effective load vector {A%},

[

(AP} = {P(t)} + 6{P(t+At) - PL{t)}

+ m (S fue)} + 2 faad 4 20
T . (] -
+ el {ult) )+ 200(0) } +

i) 1) (4.31)

NI

(ii) sSolve for the .effective displacement vector,

7 .
{u(t+1)}, using the relation

(k1 {u(t+0) } = {P) - g (4.32)

.(1ii) Calculate new acceleration, velocity and dis-

placement vectors, ’
- ~

{i(t+at)}

Il

1 - aw) + Loiuesn -t
' Ch ’

6 .
- {u(t) }

(a(erat) } = (a(e)} + BF ({a(e)} + fa(e+ae) )

cd . - « 2 .
(u(t) } + at{a(t)} + 2= ((u(t+an) )

+ 2{d(e) ) ' \\) (4.33)

(iv) Calculate forces, moments and stresses of

{u(t+At) }

interest.
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Step no. 3 is repeated for the next time step-and so on

until the whole time history .of the response is obtained.

@

%he above methdd can be used for nonlinear structural
systems, but the algorithm will be quite different depending
on the type of nonlinearity. AWilson (86) presented a
general step-by-step solution technique for the evaluation
of the dynamic response of structural systems with physi-

’

cal and geometrical nonlinearities.

4.7 CONCLUDING REMARKS

A brief review of some ‘methods of determination of
response'of soil-structure systems to dynamic loads is
presented in this chapter. The excitation may be simu-

lated deterministically or stochastically.

For deterministic anglysis, the choice of the solution
method depends on the following factors: problem size,
' y
the nature of the excitation, frequency dependency or in-

dependency of foundation impedance coefficients, and non-

linear behavior of some parts of the soil-structure system.

The practical use of the stochastic apbroach to inter-
action problems is relatively limited because the technique
is less understood by earthquake ?ngineers. Application
of the direct'rando;'approach to the response of rigid

bodies to earthquake excitation is given in‘€hapter 6.



The random approach, using modal analysis, -is more commonly
used to study the effects of wind forces on a building.

The application of the stochastic or prqﬁabilistrc methods
to the soil-structure interaction proBlém for the along-
wind ékcitation is’ given:inkchapter 7. The state;of-the-

art of the-stochastiic approach has been surveyed recently

by Christian (87) .

P
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CHAPTER 5 , a
- *STRUCTURAL RESPONSE TO SHOCK LOADING
5.1 INTRODUCTION %’s .

4

2ty
1

‘dynamic forces that are quite short in duration and can

Many types of structures are subjected to transient

be characterized as'pulses/or shocks. Typicai examples (;;\’
of such loading involve forging hammers, collisions .of |
aeroplanes with towers or a nuclear reactor building and

~ impact of icebergs with ©ffshore structures or oil drill-
ing rigs (Figure 5.1). The forces generated 'in such |
structures are often very powerful and ecan result in many

®ndesirable effects such as cracking or ‘local crushing

»

of -the structure, large settlement of the foundationé and ‘ .
unacceptable shaking of the vicinity. The objective of

the structural design is to alleviate these hazards and

»
s

secure optimum operation of the facility.

=
N

Hammers are most typical of the shoqy-producing

¢

machines and therefore tiiis chapter is limited to them.

"‘ﬁb

This is not a serious limitation, however, because the »
4

N -

analysis of the other structures subjected to shock loading
would follow the gsame pattern and result in c¢riteria that

are in many respeets similar to those applied to hammers.

< \- b,
113
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The basic épproaches to the analysis of foundations
for shock producing maching; were formulated by Rausch
(90) , Barkan (91) and a few others but apart from a few

_contr@butions, e.g. (29, 93), the area has been rathef'
néglectea in recent Qears. The methods of analysis of
hammer foundations aée well developed but suffer from in-
consistent description of soil properties and particularly
from the omission or arbitrary definition of damping.

This chapter presents two methods of analysis in

which damping is accounted for in a rigorous way: in the
first method, the analy;is of the respénse of hammer foun-
"~ dations to the blows of the fallingjhead (tué) is based

on the assumption that thé duration of the collision
betﬁeen the head and the anwvil is much shorter than the
“naturallperiqas of the foupdation. Then the response can
be treated as one resulting from the initial velocity ;f
‘the anvil. This approach is acceptable in most situations
but may not be quite justified in some cases of stiffly

supported foundations such as pile foundations or rigidly -

supported anvils. .

The second approach removes this limitation .and is
suitable for those cases in which the duration of the
collision is not much shorter than the natural periods of

the foundation: hence, the response is better dealt ‘with

. ' .
£
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in terms of pulse loading.

With the.aid of the computer, both apgfoaches are
suitable for any. number of degrees of freedom: this is'ah
advantage particularly for multi-mass systems gnd eccen-
tric blows. The solutions are based on the notion of the
complex eigenvalues outlined in Chapter 4. Both methods
are preéented in this chapéer_in fuIi degail and examples
( " as well as comparisons Hgtween the two approaches are

given, o i

The theory is ;ihear, separation (uplift) of the

anvil from the anvil pad is not considered and all stiff-

#are assumed to be independent

ness and damping constants

of frequency:’howeVer, the damping matrix does not have
- £0 be proportional to stiffness or mass matrices.

. - .

5.2 HAMMER FOUNDATION SYSTEMS

There are many types of hammers. The description of
\ ~ the most common types can be found in (91, 94, 90, 95
Theﬁbdsic elements of a typical hammer-foundation systé%
aréﬂéhq frame, head (tup), anvil and thé foundation block
~~*embedded in soil (Figure 5.1c). When vibration transmis-
sion is of particular concern; springs and dampers are
uged tolsupport‘;he fou;datiaﬁ block‘and/or the anvil and

in some moré recent designs, the foundation (inertial)

A
Y




block is deleted. 1In these cases, a reinforced concrete
trough is needed to protect the isolation.elehents from

the environment.

3

The forging‘ aection of ham;ﬁers is generated 'the
impact of the failing head egaidst the envil. To reduce
the stress in the concrete and shock transmission into
the frame, viscoelastic mounting of the anvil is usually
provided.. This may have the form of a pad ofvha?d/indus—
trial felt, a layer of hardwood or, with very powerful

hammers, a set of springs and dampers. .

’ The foundation block or the protective trough are

either cast on soil or supported by pifes.ﬂ The main foun-
dation types are described in Chai)ter 2. The varieps types
of hammer foundat%pns can be modeled by ldmpeq mass sys-
tems) shown in Figure 5.2. The one mass model (a) can be
us€d for a foundation with no elastic pad under the anvil:
it is also adequate for a foundatioanith no inertial
foundation block in which the anvil rests on springs and
dashpots and the protectlve trough is rigidly supported.
In the two mass model (b) , the mass my represents the
elastically mounted anvil and m, the foundation block Sup-
ported by soil or piles. With the d%yéée%y sprung anvil,
mass m représenﬁs the anvil and mélthe proﬁective trough

1
founded on soil or piles. Model (c) comprisee the mass

-
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of the anvil, m, mass of the block,'m and mass of the

2

trough, m all elastically supported.

37
If the blows are centric and the foundation arrange-
ment ig symmetrical, only vertiFal vibrations occur .and
the foundations have one, two or three degrees of freedom
as indicated.-~ Wlth eccentrlc blows and/or asymmetrlcal
Efarrangement,of the system horizontal translations and
rotations’ “of . all masses occur and the number of degrees’ -
of freedom grows tp three, six or nine for the three models

shown in Figure 5.2. o - -

5.3 STIFFNESS AND DAMPING CONSTAN?E'OF THE SYSTEM

The predictionr 6f the response of tbe'hammer founda-

tion requires the description of the stiffness and damping

of the foundation and the pad under the anvil.

Al

Foundation

Stiffness and damping of figndations supported on
soil or by piles are readily established as discussed in
Chapger 2. Dynamic properties of soil needed in the

approaches given ineChapter 2 can be established by experi-

ments or - estlmated using publlshed data, e.g. (21, 96).
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Pads and Absorbers

When the foundation block or the anvil rests on a
& )

pad of viscoelastic material, the vertical stiffness

.

constant of the pad is

k =EA /h 5.
D php/ (5.1)

in which Ep = Young's modulus of the pad, Ap = area of
the pad and h = its thickpess. The damping constant can
be calculated in terms of the complex Young's modulus and
is, |

cp = ZSP kp/w - (5.2)

where Bp = the damping ratio of the pad material and w =

the frequency of the block or anvil vibration. '

The stiffness in shear is analogously GpAp/h where

Gp = shear modulus of the pad. Rocking stiffness is

kp'w = EpI/h (5.3)

in which I = chond moment of pad area. Damping constants
for shear and rocking are obtained as a fraction of stiff-

ness, just as in equation 5.2. ‘

It is obvious from equation 5.2 that frequency inde-

pendent (hysteretic) material damping results in frequency

L

dependent constants of equivalent viscous damping, c. If
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material damping is assumed to bé viscous, the constant B
‘can be replaced by B'w, in which B' is the constant of
viscous damping and the resultant damping constant be-

comes frequency independent and equal to'ZBékp

5.4 EQUATIONS OF MOTION

A schematic of a typical hammer foundation is shown
in Figure 5.3. Tﬁdﬁkoundation comprises the block sup-
porting:the frame and ﬁhe elastically mounted anvil. For
the sake of generality, it is assumed that the anvil is
mounted eccentrically and that the blows of the tup may
act Qith eccentricity relative to the center of gravity
}of the anvil whose mass is m, . Choosing the center of
gravity of the anvil and of the foundation block as refe-

rence points; the governing equation of motion can be

written as
CmJ{i} + (e){u} + [k1{u} = {P(t)} (5.4)
in which, in the case of one veftical plane of symmetry

as indicated in Figure 5.3, the displacement vector is

T

{ul = [, vy ¥ Uy vy 9y...] * » (5.5)

where u = u(t) = horizontalvtranslation, v = v(t) = verti-

cal translation, ¥ = Y(t) = rotétion in the vertical plane

(rocking) and the subscript 1 pertains to the anvil and 2
’ {




té the foundation block. If there is a protective trough

under the block, three additional displacements are needed
to describe the'motion of the trough and the total number
of degrees of freedom, n, becomes 9., In the ;bsence of |
the trough, the system has six degrees of freedom. The

mass matrix [Pm. is diagonal with the diagonal elements

being

mymy Iy mymy I,

where m, = mass of the anvil, m, = mass of the foundation

block and Il’xz = mass moments of inertia of the anvil and
foundation, ‘respectively. (The frame is usually included
in m, and Iz.) v : }

., The stiffness matrix [k] can be assembled as follows:

_ ‘ o
ka 0 RKann kg 0 “Ka¥2
kap o 0 0‘ *a ~t2
(k1 = kwl+ku1y:2L kY1 0 K1ty
) Ktk O Ky ur¥2
symetracal kaitkez KTtk
kw2+kwl+kvlr§+kv2ri+kuly§
L . -
(5.6)

In these expressions (see Figure 5.4)

!
o
~
N
]
Q

¥q = d-ez-h ry

Y, e2-f r, b-c 4 s

"
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»

%
and the constants kv k and k

1" Tul vl
stants of the anvil. They follow from equations 5.1 to

are the stiffness con-

5.3 as

kyp = EA/M 4 Ky =G

A/h , %X,, =EI/h.
vl P p/ V1 p /

p

Constants k k k and ku describe the stiffness of

u2’ "v2'’ Y2 .
the foundation block. For embedded foundations and pile

supported foundations, these constants are evaluated using

the approaches referred to ‘in Chapter 2.

[N

The damping matrix has the-same form as Fbe stiffness
matrix and its elements cij are calculated'.in the same way

as k.. except that the constants k _, k_ and k, are re-
ij u’ v oW

placed by cu, c, and ¢,. For the anvil, thése damping

v

constants follow as a fraction of stiffness from equation
5.2. The frequency to use is the dominant frequency for

the anvil. The force vectoa {P(t)} describes the impulse,

»

if the response is to be analyzed for a given tire history

of the load. For a pulse acting with eccentricity e rela-

¥
tive to mass my . the force vector 1is

-

{P(t)} = [0 P(t) eP(t) 0 0 ...17

If the response is treated as free vibration triggefed by

El

initial velocity {P(t)} = {0}. Both approaches are con-

sidered. Using‘the complex eigenvectors introduced in

Al

-
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Chapter 4, the complete solution to equation 5.4 can be

sought in the form

{z(t)} = (z2){gq(t)} (5.7a)
where
_ jaw
{z()} = u(t) (5.7b)

Here, [Z] is the matrix containing 2n complex.eigen-

vectors: {z(t)} is the vector containing displacements

4

{u(t)} and velocities {u(t)}: and {q(t)} are generalized

coordinates given by equation 4.12 as

: t 5
= 1 -
‘ qj(t) qﬁ(O)ex?(ujt) + Aj [O eXp[uj(t T)]fj(T)dT
5=1,2,...,2n (5.7¢c)

in which uj are the complex eigenvalues and fj(T) is
o -

(according to équation 4.10)

fj(t) = [Z]T{F(t)} (5.74)
where
S {0}
{F(t)} = (5.7e)
{P(t)}

”

Other terms of equation 5.7c are defined in Chapter 4.

The first term of equatibn 5.7c can be used to des-
cribe the respbnse of the hammer foundation to initial

 velocities caused by the iﬁpact of the head: the second
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term can ‘be used to evaluate the response to the pulse

-

given by its time. history.

5.5 INITIAL VELOCITY APPROACH

The duration of the pulse of hammers is quite short,
in the order of 0.01 to 0.0é s. For the most severe im-
pact, which~occurs with the blaﬁk absent, the pulse dura--
tion may be even shorter, about 0:001 Er 0.002 s. Thus,
it appears possible to predict the response using the
assumption of an infinitely short pulse which is tanta-
mount tb the assumption that the response is caused by
an initial velocftylimparted by the impact. For ﬁulses
éf longer duration, this assumption is conservative be-
cause the reéponse decreases with increasing duration of
the pulse.

For the application of the initial\conditions only

2

the initial velecities of the anvil are nonzero giving

{3(0)} =-'<0,.‘.'1 ¥y T

and {u(0)} = {0}. These initial conditions determine the

initial—vaiues“of'{z%t)}'by-equation 5.7b and then, the
initdal values df'qj(O)'follow from equation 5.7a. The
initial velocity 01 follows from the basic formula for:

collision as
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m

v, = (1 + k) ° c (5.8)
1 r 2,.2 To
mo+ml+e /1l

-
™~

‘The initial angular velocity follows from the well known

expression

e

wl = (1+kr)

7 %o (5.9)

11(1+m1/mo)+e
where mo, co'are the mass and impact velocity of the
"hammer head respectively and kr is the coefficient of

restitution, usually taken as 0.5 or so, e is the blow

eccentricity relative to mass my and ii = Il/m1 is the
square-of the radius of gyration. The ‘mass m, is the

1
. mass of the anvil in multi-mass systems or the total mass

.

in one mass systems.

With d; established from equation 5.7c {z(t)} follows
from equation 5.7a and this determines the displacements
{u} by equation 5.7b.

3

5.6 RESPONSE TO PULSE LOADING
. V]

¢
When considering the pulse given by i}é time history,
the secénd part of equation 5.7c deécribes_the Fesponé%
during the duration of the pulse:; the first part, i.e.,
the homogeneous solution, describes the response forltime'

ekceeding the duration of the pulse. The integral in

equation’ 5.7¢ has to be evaluated for a specific time

v

{
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history P(t) and hence fj(t)‘giveﬁ’by equation 5.7d.

For simple shapes of the pulse, such as those shown
in Figure 5.5, the integral can be evaluated in closed
form. (For one mass systems analytical and numerical
sélutioné of the response are availablg in the 1itera1
turé, e.g. 93, 97 and 98). For more complicated pulses
and multidegree of freedom systems, numerical’integration
of the integral in equation 5.7c can provide the solu-
tion. .However, the exact time history of the pulse is
rarely known and in hot forging may chéhge from blow to
blow. Thus it may be adequate to concentrate on the prin-
cipal characteristics of the p&lse dhich are its total
power and the duration of the dominant (strong) part, Tp.
Then the prue pulse\gay be replaced by a.suitable simpler
time history P'(t) (Fifure 5.6), amenable to élosed form
integration, such that

T t
f P p(eyat = f P pr(t)at (5.10)
O (@]

in which tp is the duration of the ;eplécement pulse.
One simple time history which seems to be suitable

is a half-sine wave shown in Figure 5.5b. Dropping the

prime, this time history is

P(t) = PO 51nwpt {5.11)
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where frequency wp = Tr/tp and PO is force amplitude. For

this sine pulse, equation 5.7e yields the loading vector
* b -

{0}
{F(t)} = (5.12)
{P(t)}| . ) :

_ , o
in which, limiting the symbolics for {0} and {P(t)!} to ‘
six degrees of freedom each, as it would correspond to

the foundation shown in Figure 5.3,

(P(t)} =, L0 P_sinut eP_sinwt 0 0 0]" -~ (5.13)
v .
Substituting into equation 5.74d,
fj(t) = Po(zj,8 + Zjlge)51nwpt | (5.14)
in which Zj 8 and Zj 9 are the eighth and ninth modal

coordinaﬁes of mode j. Thén, the second term of equation
5.7c 1is
1 » ' t
qj(t) = K; Po(zj,B + ezj,g)exp(ujt) JO exP(-ujT)

e | sinw ) (£-1)dt (5.15)

Performing the jntegration, the (generalized) coordinates

qj(t) determining the motion for t < tp through the vector
E
{g(t)} in equation 5.7a Recome

-y.si t+ ex .t)-cosw_t

Q. (t) = == P (2. +el. o) bysinuptreplexp(uyt) c? “p*!
3 A. 03,8 3.9 2 2
] Myt Y

(5.16)
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,

» (

for j = 1,2,...,2n, With on = 12 for the foundation con-

4

sidered.

For t > tp, the coordinates qj(t) are described by ¢he

first term in-equation 5.7c in which the comstant qﬁ(Oﬁ,is

given by the initial cendition t

¢ ‘>

h
[ ]
(9 . t = qg.(t
qj( ) exp(uj p) qa( p) .
Thus, -~ .- . ’
‘ 4
. 0 = . t -~ -t -
qj( ) qj( p)eXp( My p)’
and the coordinates qj(t) are. ' v
. | S 't
.(t) = (t .(t-t f t t 5.17
q5(t) = gyt )expuyl -)) or t > t,, ( )
and j = 1,42...,2n. . . .
, . ) R ’ .

—

" With qj(t)'estabiished respectively from equations

5.16 and 5.17, the vector {z{t)} follows from equation /
v R . . - , 3 .

5.7a and the vector of true displacements {u} from e¢quation

5.7b. The ith displacement- cofmpeonent uy of the,vector {ufF

is equal to the (§+i)th element“of the vector {z}, i.e. L.

« m ‘s
»

6+i(t) . ‘ (2.18)

- v

ui(t) = Z

For other types of Rulses the calculations of h%mmer j

‘rgsponse follows the same pattéfn and differs only in the

form of equation 5.16 for”q}(t). The coordinates qj%t)
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.

can be written in a general form -as

qj(t) = =2 (Z',e + e‘zjrg)as(t) (5.19)
¥ . ‘

For the four types of pulses shown in Figure 5.5 the func-

tions aj(t) are given in Table 5.1.

The principal advantages of the complex eig;nvalue
approach are that the effect of damping is incorporated
in a rigorbus why, the eguations for generalized coordinates
uqtbuplé for any typg ofﬁdamping and thé~I;?€grals involved
are somewhat simpler thgp the Duhamel integral used iA
standard moéal analysis. The analysis was efficiently
programmed and included in a general codehfér anaiysis of

Kl

machine foundations (97).

5.7 EXAMPLES

The above théory can be used to analyze any foundation
for the effect of a .given pulse P(t) or initial veltdity

vl(O)h

In the examples shown here, the character of the res-

ponse and the effect of pulse duration will be demonstrated.

*

tFirst, the complex eigenvalue meg?od was used to
( * ' )

analyze the response of symmetrical two mass.hammer founda-

tions with two degrees of freedom. The foundation analyzed

(8
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" is described in detail in Ref. 752) and differs from the
' one shown in Figuré 5.3 only by symmetrical arrﬁngement
and absence *of. any eccentricity (e=e;=0) . In order to
facilitate a.oomparison with the initial velocity approachT
\J{;ﬁh to indicate.the effect of pulse dﬁration the pulse is
taken as equal to the momentum of the anvil after the

[

collision, i.e.

(5.20)

£t .
‘j;p ?(tdpt T m, c
;n which ¢ = 61(0) is‘the initial velocity of the anvil
caléulated bf means of Newton's formula f6£ colligsion
(egquation 5.8 with e=0). Thevlast column o% Téble'S.l
gives  the values of the force amplitudes P0~that satisfy

equation 5.20 for the four basic types of pulses.

The response histories shown in Figures 5.7 and 5.8
were calculated for sine pulses (Figure 5.5b) having diffe-
rent durations, tp' but the same power }tp P(t)dt = const.
The duration of the pulse is expressed ;; tp/Tl where T,
is the fundamental natural pgfiod of the system, T, =
2"/wl‘, The curves with tp/'Ifl = 0 r?present the initial
velocity approach results. fFor the responsg.shown in
Figure 5.7, full value of d%mping was considered as it was
ocbtained from the elast;c.h+lfspace theory for soil and a

viscoelastic anvil pad of hard felt 6 in (0.15 m) thick.

The response shéwn in Figure 5.8 was calculated with the
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. s0il damping reduced to one foufth as it may be appropriate
for a shallow soil layer and the anvﬁ& éad thickness re-
duced to 1.5 in (0.04 h). The pqu displacements of both
the anvil and foundation are shown;;s the ratio tp/Tl for
the two cases in Figures 5.9 and 5.10. They are normalized
by the peak displaceménts for tp = 0.0. I£ can‘be seen
that fhe peak response decreases as the pulseAdufation in-
creases and the decrease of the anvil }esponse is much more
than tﬁat of the foundation blobk_for ratios of tp/Tl highér
than gbout .05. Thus the initial velocity approach (in-
finitely short pulse) overestimates the real response and
its assu;ptién is, thereforé, conservative. It can also

be seen from Figures 5.7 to 5.10 that damping due to both
the anvil‘pad and soil has a profound effect on the time

histories of the vibration, modal damping ratios and the

peak values of the response. .

c

-

}In another example, the complex eigenvéiue method was
used to analyze the respopse of the. hammer foundation with
eccentrically mounted anvii shown in Figure 5.3 but with
e = 0.0. The basic dimensions of the fpundation'are shown
in the figure. The foundation diffgrs from that used in
the proceeding example only by the eccentric position of

the anvil and‘conééquently, by the'eccentricity of the

hammer blow felative to the foundation block. The system

has ;six degrees of freedom as indicated.,in Figure 5.4.
& . P ' : )
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Full value of soil and anvil pad damping was assumed. The
damped response calculated for sine pulse of varying dura-
tion and constant powér is shown in Figure 5.11. (The
response curves for tp/Tl = 0.0 are again those of the
initial velocity approach.) The vertical response shown
“in Figure 5.11 can be compaxed with the damped vertical
response shown in Figure 5.7. Wﬁile the level of the ver-
tical displacements is changed only slightly by the eccen-
tricity of the blows (notice the difference in scales),
horizontal response and rocking are obtained for both the
anvil and the block of the asymmetrical foundation. The
rocking} although not very large, translatés into vertical

and horizontal displacements comparable with the others

and for the anvil does not decay vety fast.

The variation in the peak respoﬁse with pulse dura-
tion can be seen from Figure 5.11 or in more detail froﬁ
’ Figure 5.12. Figures 5.11 aﬁd 5.12 show that the response,
decreases with the incr;ase in‘pulse duration but the de-
crease neeéd not be monotonic. For r;%io tp/Tl = 0.5, the
peak vertical and rocking respbﬁse values of the anvil are
about 50 percent of those\calcu;ated assuﬁing infinitely
short pulse: for the foundation, the peak vertiéal response
;s decreased by 20 to 30 percent but the reducti&n of tﬁe

*

peak horizontal displacément is much less. Figure 5.13

. _.shoys the undamped and damped vibration modes of the 2 8
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L

‘ foundation from Figure 5.3. The foundation block movement
dominates the first three modes which explains. the high

values of modal damping in these modes.

Figure 5.13b shows absoiute values of the complex
damped modal displacements but does not indicate the phase
shift between the anvil and the foungation block. The
inphase and antiphase motions of thé twofmasses of the

) |

system can be seen most clearly in the uﬂdamped.modes

(Figure 5.13a).

In the last example shown in Figure 5.14, the response
of a symmetrical two mass hammer foundation (e=el=0) is
plotted for loading by a rectangula; pulse and by a sine
pulse with both pulses satisfying eduation $.20. The peak
values of the }esponse differ only slightly but the anvil Ve
response to rectangular p;lée indicates a moré significant
contribution from the gsecond vibration mode. This is to
belexpected becausg a Fourier description of the rectan-

gular pulse would -contain higher harmonic components which

” are absent from the sine pulse.
- /“

/

/

)

y 5.8 CONCLUSIONS

Two approaches are presented that make it possible to

L4

predict the damped response of hammer foundations to the

. blows of the head either as caused by initial Qelocitx
Y -
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impd%fed to the anvil or as a pulse. These approaches are
based on complex eigenvalues and damped vibration modes

and incorporate damping in a rigorous way. With the aid

of a computer, the approacﬁ can be applied to complicated
hammer foundations and particularly to those in which
asymmetry of the arrangement and/or eccentricity of the
blows call for the consideration of more degreés of freedom.
A few examples were analyzed for initial velocity of the
_anvil, sine pulse loading of constant power but different
duration ana for a re€tangular pulse. This analysis sug-

/' gests the following conclusions: p

- The complex eigenvalue method is an efficient and
aécurate method for the analysis of hammer foundation
response to either initial velocity or pulse loaaing.

- The initial velocity approach overestimates the res-
ponse to pulse loading and is; therefore, conservative.

- Depending on the duration of the pulse the simpler 8

initial velocity apprééch may overe§timate the true

/’.'\‘ ‘
response by up to about\qoo percent for the anvil and

. less than4that for the féundation.
. | o
¢ - With asymmetric hammers, significant horizontal vibra-

tion as well as rocking may be generated.
- The reduction of the peak response with the increase
‘of pulse duration is more in the vertical and rocking

vibration than in the horizontal vibration.

S
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" The exact shape of pulse 1o$ding affects the time his-
tory of the responsé, particularly for the anvil, but:
has little effect on the peak value of the response,
The\bamplex eigenvalue approach ig a very suitable -
method for the solution of collision problems in which
large damping due to soil-structure interaction is

anticipated.

-
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(a) Impact of Ice

i (i) (ii) .
(b) Collision of Airplane With (i) Tower, (ii) Nuclear ‘
Reactor Building - ‘

o

[ \ ) ANVIL
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H 7
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157 - % Z
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. SrrrrrrrIrIYY BLOCK Lo T ! X
' SPRINGS AND
. . PP ; (11) - moucH DAMPERS
. (c) Schematic of Forging Hammer and Its Foundation (i) Most

- Common Arrangement: (ii) Directly Sprung Hammer

FIGUﬁEQS.l Examples of Structures Expoéed to Pulse ‘Loading
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*#." CHAPTER 6

SOIL-STRUCTURE INTERACTION UNDER

SEISMIC LOADING

w

6.1 ‘INTRODUCTION
\

L d

‘@ - Flexibility of the foundation medium affects the

modal pfopé;ties of structures and may affect the free-
field ground motion in the viciﬁity of the footing. The
hét éffeqt of éhésg two factors on seismic loads and res-
ponée,of the strﬁctﬁré depends 6ﬁ the propertiesvof the |
Stfugture re}api&é to 'the foundation, intensity-of sei's-
mic ggcitationﬁadd the type of foundation. Numerous

ahal§ticér studies have been «onducged to investigate the~

ihfluence ‘of the flexibility of the foundation ‘on the

. .

seisndcﬁieéponse of Btrucfurés: It was observed (17, 30)°
that shallow flexible foundations may produce an increase

or a-decrease in- the flexural response and base shear of
A ' ) .

the structure, as Eompared tp the réqunse of tné same
buiidihgibn ajrigid base: ’Nevertheless, the brédomin;ﬁt
opinion is. that’ for shallow foundations soil-Structure

interaction is a f;vorablerfactor which usualiy reduces

base shear. This opinion was agoéte& even in the well

"known document ATC (14), based largely on the studies due

~

to Veletsos (13, 62), which allows a reduction of base

L d




. shear of up to 30 percent on account ¢of soil-structure

interaction., ’ Y

hd - *

Little information is available concerning pile
supported structufés. Bielak aqg‘falencia (98) used a
single storey bui}ding having a base mass-Supported on °
p?les and subjected to harmonic excitation to study these
effects. They concluded that the peak response déérébsés

—’;/35 a resu}£ of interaction and that actual reductfon is
e

strongiy dependent upon the system parameters.

r )

This chapter exﬁmings and compares the seismic res? \
-ponse of rigid structures as well as gglti—storey build-
ings supported b® various types of flexible foundatioijk(’

- Mat foundations are supported by a deep deposit or a

stratum of 1imitéd thickness. Pfles are considered- in

different configurations: pull-out stiffness and-damping

— -

diffgr from'push-in.values and uplift of the cap is pre-
'vented or allowed. 1In all cases, the response is"calcu-
' lated for, the San Fernando Valley‘earthquake of 19?;:A

component S90W with peak acceleration of b.ll g. .it is

assumed that the excitatién at the base of ghe structure

%

is the same as the free-field surface motion, i.e., the

Noe » v .
effects of kinematic interaction are neglected. This is
equivalent to'saying that the design ground motion is P

some sqrt’ of avefage free-field motion. in the immediate

’

/




(Y

° . . .- !
Ld - . .

a

action by assuming that the ground motidn réédi!s from -

- Tt

upward propagating shear waves.

6.2 MODELING THE BUILDING AND ITS FOUNDATION.-

* \
- v

The mathematical model chosen is shown in Figure

\

3. l which represents a multlstoreykshear bulldlng sup-
ported by either a shallow fbundatlon or plles This

system has N+2 degrees d? freedom, horlzontaI translation

s

- ) .
»ui of floor mass m,, horlzontal translation- db and rocklng,

in the vertlcal plane y of the base mass mb . The mass

L

of the floors is assumed to be egual and the interstorey

damplng coe£f1c1ents c §\3§ifé y/— 1,2 ,.:.,N, are aSSumed

4

+ " -to be ptoportlonal to the fquural’stlffness k J of

storey i. The proportlonallty factor is evaluated on the

i ”

) ba51s of one.percent.of critical damplng 1ﬁ the flrst mode'
of v1bration’of the, structure SUppofted on a rlgyd foundaa

tion. Five and ten storeys are analyzed Threé rows ‘of

* .

"columms are assumed to’ facilitaté the choice of various
. F ~
k/ ' ’ % ’ - [ ”_" ' /:)

/e
foundations._ . v “ o
- ' . . ’ .

r *

’ Ehe types of foundations cdnsldered afb schematlcally

[y

4gpiot¢d 1n Figure 3. 21. Por shallow‘foundatlons, twe

N
‘typol of mats are choseh: one iafbe mat supporting all

M 13
’ .- ? PN . 4 q M . -
4 R } . - ’ © 2‘ o, o " .-’ . ' 4 ¢ o o
, , - . .

woe



columns .and three separate mats .supporting individual

columns. The soil is either a deep deposit modeled by a

homogeneous viscoelastic halfspace or a shallow layer
-

modedled as a homogeneous v1scoelast1c stratum of llmlted

thlckness.

& | e ) ~

The bile foundations comprise groups of floating or’

endbearlng piles whose number and conflguratlon vary
Each plle 1s treated as an endbeatlng p11e as long as

there is a downward ,end force produced by the pile tip.

+

When this force vanishes or starts tending upwards due to

-

pull-out’ forces, the pile is treated as floq&}ng Thls

dlstlnctlon implies overall nonlinearity but is necessary

Mecause frlctlon piles provide less stiffness but more

dasmping than endbearing piles. Pile heads are either

connected to the cap" in a ten31on re51stant way or are

allowed to separate from the cap when the pile foré@ is

-

A.tendlng upwards in which case uplift and nonlinearity
. 5 ~

occur as indicated in Fiéure 6.1. .The‘figure shows the
: - ) ,

two models eﬂpsidered in'the analysis, i. e. a) the ten-

* sion resistant connectlon by, connectlon with no resis-’
tance in tensxon.' The dynamrc vertical £orce per pi, e,
fD' is calculated as the pile Vertical dlsplace vy,

times its vertrcal stiffness, kv} (Flgure 6.2),

-y
=xyk ‘/ f 6.1

r\



%}in_which ¥ is the rocking of the base in the vertical
plane and X is the horizontal distance between the pile
and the center of the base. Then the average total load

per pile, Ft,vis calculated as the sum of the static and

\___. dynamic loads. ' ,

) L
y ]
F, = Fp + (m + E m.’)go,/n ’ (6.2)

L4

where goi§fthe gravity Acceleration and n is the number

of piles.
Using the impedarjce function approach and limitinéﬁ .
.. : 4 r .
P the analysis to the consiferation of imertial ‘interaction,

¢

both shallow and deep’ foundations can be treated in the

-

;o same way.

'Q
-

-

Impedance Functions of Foundations - 4

[ 'S ' .« " ’
. The. impedance . functions are déscribed in terms of
the true stlffness k and constants of equlvalent viscous
damplng c. Then .the re&atlonship between the applled
Tey

. force P and moment Mb and the horizontal translation of

the base ub ‘and its rotatlon in the- verthal plane V. are

wrxtten in the,standgrd form;(equatzon 2.18)5 SR

\ o ’ - ‘-

Yy

, o "* The constamts k and ¢ are g,iven by equatlons 2 2 to ]

T 2.4 and 2.7 for halfﬁ%ace apd 2.9 to 2.12 fdr a stratﬁm

. ‘Material damping of soxl is assumed to be hysteretic which

!

- - o
« , . . . . . .
. . . A ¢ - ¢ 8. B A R4 . . o~




" 6.3 GOVERNING EQUATIONS AND THEIR SOLUTION :

results in frequency dependent constants k and ¢ (egua-

tion 2.7). Thepgfore, the constants are calculated for

the first natural frequency of the system and then con-

"sidered as freéaéhcy,independent.

«.

‘For pile foundations, impedénce functions of single

\

piles are obtained from equations 2.13 and Figures 2.8
, - . ) ;
to 2.10. Pile-soil-pile interaction is'heglected‘énd'the

group“impedance functions are evaluated using eguations

4

2.14 to 2.17.

Finally, nonlinearity of soil behavior is always of

concern particularly with piles. Here it is assumed to

v

be accounted for approximately by adjusting soil shear

w~modulus and miterial damping 'to the expected level of:

strain. . 5 - ‘ -

b

4

The governing equations of the building motion are

given by equation 2.22,

/'t’mu'ﬁ} + [eld} + W = (2} L (6.3

’

" in which [m], [c],,[k], {u} and {P} are defined by. equa-

‘tion 2. 23 With ground acceleratlpn u , the loading
vector {p} beﬂes Co .o

.#



mb+

{P} = - <“{mi}

-1
|

C
3

o
o
v
c
o
=

" in which hy is’ the height of floor i.

With the structure and foundation stiffness, damping

[ .’ »

’ ’ ‘Anvand maas matiices defined, the egquation of motlon, 6.3,
is SOIyed by the humerieal 1ntegration technique, the
,Wiison—e method, desctibed in Chapter 9.- In thie method,
N :Adieplaeement velocity and acce;eration of each floor and" P
the foundation are calculated at each time step - The\floof

_equivalent earthquake forces P (t), the base shear Qb(t),

and overturnlng moment Mb(t) are calculated at each time

. N - . -

step as , .
R . _— o . ' .
Pijt) = mi(ﬁi(tY + ﬁE(t)) + mihiw(t) (6.5) .
: S N . \ N . . ’
- Q (t) = ,.IT-m, i.(&) + ( + I m.)u (t)
. “ ‘ b . . ’i=l 1 1 rnb i=1 1 ub '
. + m.hiW(t) e, -+ (6.6)
Ci=1 ) :
() = I m, h (4, (t) t’u’b)t)) + (I
Mplt) = ioy i Ve
B R ) oo s ' 2 . ) . . -
_ L + Inghj)pe) . S (Y ‘

» -

g - in which/I is the sum of mass moments of 1nert1a of all
_ masses including the~(OUndation. The storey drift, u '
h _ qﬁi(t), defined ?s the relative displacement between con-

#ecutive gIoors. is

. -~ ~ ;..
‘ .
-
. : _ e
3 .
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A, () = (u;(t) - u,_y(£)) + By - h;_ vt} . .(6.8)
f

P
6.4 EXAMPLES

e J o : \ , ’
, qu.differeﬁt_types of flexible foundations depicted

e - ~

in Figure 3.21 may have a profound effect on the rééponse

- of buildfngs to seismic excitation, the resultapt storey ’
) -
N i, , S
shear and the base shear. ‘Examples of these effects are

]

‘presented for a ten-storey building in Figures 6.3 and
6.4. Thé‘earthéuake signal used is shown in Figure 6.5.
The soi¥ layer indicated as case {b) in Figure 3.21 is of

two differentpdepths, yielding the first natural frequency

of the-layer equal to either 2w, or 4u where wy is the

1 1
. fundamental natural freéueﬁdysof the building‘oﬁ the elas-

tic halfspace. ,The‘responsenSf the structure on a fixXed .
,‘q ‘ ’ ) . ° '
base‘was'bbtiined from the N equations of motion given
by equation 2.23 with U and ¥ identicaily‘equal to zero.
B . . i bl N to .

S

~

k]

,FO{“:Oth the haffspace qﬁd shalqu;zéyer, Figures
6

6.3 and 4 show an appreciable decrease of the base shear

\ ) ,
with decreasing shear wave velocity, Vs, i.e., as the

foundation medium becomes more fiexible. , This patterh of
behavior is not observed for the case of pile foundation.
_,‘< . . N

"In this case as'thelfhear wave velocity of the foundation |,
MEdiumﬂihcreasgd frém 300 fi/set (591.m/sec) td;600 ft/sec
- » . . [N 'y

(183 m/sec) , there is a decrease in the base shear.

< -
¥
-

R

S .
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Generally, the effect of piles depends on the number and\

type of piles as is shown in the next section.

/

Figures 6.3 aﬁd 6.4 algo showf%Q;t the limited depth
of the layer results in larger displacements and stbrey o
shearé'than'fhoée obtained ffom halfspace. 'Tperefdpg,
the procedu;g assuming a halfsp?ce may ngt be con-
bérvétive if small material damping is assumed. As soil-
material damping, cﬁaracterized here by the damping ratio
X4 B increase@ from 0.025 to 0.05, the storey digplacement,
shear and base shéar decreased for the casé of‘Fhe léyer.\ *
b - Thus the loss of‘geometiic‘damping is replaced by the
effect of maté;ial démping. For the case of halfspace,
the effect of soil-material damping is not préneuncedn
S 4

The two depths considered for the soil layer yield almost

\the same result. . )
. -For. all foundations, the maximum storey sheags are -

reduced and the maximum storey displacements. and drift ///ﬁf‘

Are‘inc;eksgd by foundation flexibility.

Pile Cap Uplift” B

" .. - It is a common design practice, someiz;es required

' by codes,’to‘attach\éhb pilgs to’ the pap’in a tension

resisting way (anchofage) and if it appears neceSsAri, to

design the piles for tension. .The'aim.bf these often

-




[

costly\ﬁeasufes is to prevent cap uplift and, supposedly,

to secure . a gteater measure of safety. According to the
National ﬁuilding Code of Canada (100) , "anchorage is re-
quired if the effect of the loads tends to cause uplift,
overturning or sliding." Therefore, it is of interest

to examine how the response, overturnlng moments and
seismic loading change if" rlgld connectlon of the plle
with the cap is not. provided. The problem which is non-
linear is solved as a stepwise linear ptobleﬁ in the tiﬁe‘

ddhain.‘ Any time a pile is excluded due to cap uplift

or tip upiifts, therstiffness and damping matricgs change.

Examples of these are shown in Figures 6.6y to 6.12.

?

Figure 6.6 shows pile forces and‘étorey drift for
a ten/storey building supported by 15, 21 or 27 piles
installed 1n threé rows and dlfferlng in'the tip condi-
tion. Variation with ground motion iptensityS;s_also
shéwn; It can be seen that with pile cap uplift allowed
YﬁB conhection), the vertical pile 1oading may‘increase
by 30 to 50 percent and the stotey‘drift may increase by

N il hd - -
10 to 30 percent. Tension, denoted by a minus sign, is

" more likely to occur in floating piles. FqF pigh inten~-

sity_pf g;ound shaking, pile forces may even be doubled

if the rigid connection is not provided However , with
rigid connection and high earthgquake intensity, the ten-

sile force per pile is quite high The\dramatic increase
»

»
L]

A
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N
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[N
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-~ -
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5 “

L R

in pile compression caused by the elimination of even a
small tensile force is caused by the substantial decrease

of group stiffness in rocking due to the elimination of -
' é : . . :
| piles in tension. . ;

€ )

\

However, the rigid connection of piles to the cap
méy redace or increase the overburning'moment and base

~ shear depending on tie number and type of piles. This is

depicted in Figure 6.7 which also shows that for low

intensity of ground shaking, there is no‘significant diffe-

- . 4 . .
rence between the two arrangements (presence of rigid
i . o

connection or not) as far as base shears and overturning,

moments are concerned. The difference increases with in- /

creasing intensity of ground shaking. )
(S . ’ ,
Figure 6.8 shows the maximum storey displacement for -

the same building supported‘by 15 pinned plles. It can .

be seen from the figure that, for both floating and end- ’ E

-

bearjng piles, the rigid connection of the pile to'the
__~cap reduces the maximum dispiacemept by no more than 10
percent. The seme trend is observed for endbearing piles
- under high intensity of groun& shaking. For fIOating »
.piles, the response is more than doubled when the cap up—»\\\ .

' /
lift is allowed and the ground’éccelerathq\i:cregsed "

» s

- -'from .11g to .44g.

In smaller buildings, pile tension is likeiy to occur
# Lt '
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oﬁly»at high ground acceleration. This is indicated in
Figure 6.9 which shows the pile fo;ces and sto£e§ drift

( for a five—storey buildigg. In tbis case, the increase
of qampression‘fgrcg.perné:ie due to the absence of the

- tensile coﬁﬁéction'is less than that for the case of the
high building.‘ Fiquzé §.10a indicates that!/for'this
Tsmall’bhilding exposed to:strong ground motion(_thé base
shéar andioveréurning moment "are increased when the rigid
conneqtién'is provided for endbearing pilesf For floating
lpiies (Figure 6.10b), the seismic‘forces may increase or -
déﬁrease if the cap uplift is allowed. For ground acce-

leration of the order of .1llg ox .22g, there is no signi- o

~

A ‘
ficant difference between the two arrangements. -

Another important aspect to exeyine is’ the effect
N :
of pile configuration or arrangement on ‘the pile forces.

This is shown in Figure 6.1la-which represents the same

2

: ten—gtorey~building supported by 27 piles with different

tip conditions and ‘three different pile arrangements de-
, : /
picted as cases a, b and ¢ in Figure 6.12. The magnitude

of the pile force cgnybe-seen to decrease when the piles

are toncentrated at the extreme part of the foundation. -

The same trend is observed from Figure 6.11b for the same
. 4 '

ten-étorey building on 21 piles.
. . _ .

[
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Rigid Structures

v

: X .
Under seidmic forces, rigid structures such as
' - Y

. ) Y ; - .
nuclear containment vessels, silos or machine foundations,

usually have just two degrees of freedoﬁ, i.e. horizontal
translation u and rotation in the verticél plane y. Con-
sequently, the use of)the direcé speétral apﬁroaéh to
solve’ for the response is best suited fér these types of
structures.. The silo shown in‘figure 3.3a résting on a
mat foggdation énd full of slag is analyzéd for the same
earthﬁuake’signai,given in Figure 6.3. Dimensiéns of the
silo ang its £ooting, énd soil prbperties are given’'in
Chaéter 3. The response referred to the C.G. of the
silo-fougydation syétem is calculated using the direct
spectral proach and\ Wilson-90 meﬁh?d gf numerical

integration.
*

"Random vibration approach. The power spectral density

Y , -
of the ground acceleration, Sﬁ (w), is calculated as the
g .
Fourier transform of ig(t), Fij (w), times its conjugate,
. g ‘ , g wn
F:i (Q)) . .
g - .
2
= * = v .
$§ (W) = Fy (0)F% () = |Fy | (6.9)

g g g g

-

.whére w is the frequency in rad/sec. - Figure 6.13 shows

the normalized sp;ctrum of the ground acceleration, sg (w),
' ' g




R}

where .
o
B D ) . )
') n ’
f S. (wdw =1 (6.10)
u ¢
0 g .
and

gﬁ (@) = o2 s% (w)
g g Yg

in which 94 is the root mean square of the ground atce-

. g
leration. This spectrum is compared with the empirical

normalized spectrum, obtained from analysis of strong

motion records by Tajimi (79), as
2,0, 2
0 [l+4€g((£) ] N 469 )
S. (w) = 2 . > (6.11)
Ug (1~ (L) 212442 (232 7 1y (1+4e2)
“g 9 Wy g g

in which wg is a characteristic ground frequgncy and eg
is a characteristic damping ratioiof ground. This com-
parispn of the local spectrum of the San Fernando earth-
quake and the empirical form is made to verify the suita-
bilig; of’' theoretical spectrum and to establishfits~bara—

meters. Optimization yields the following values of Wy

and e‘
g “

!

w_ =.7.259 € ‘= .933 _ .(6,1la
g g . ( )

Tajimi's spectrum (equation 6.11) is calculated using

‘these values and is shown 4in Figure 6.13.

The spectral density of the response is calculated
using.equation 4.23 which for the two degrees of freedom .-

takes on the following form: )

s -



t . '
[ ] o7

Y | : '
) | : .
Suu(w) = -‘Hdu(w)H;g(w)Spuu(ue) + Huu(w);fl!b('{))spuw(w)
A * S y 1 S
+ Huw(w)Huu(w) pwu(w) + Huw(w)Huw(w) pw(w)
. )
o . (6.1%a)

»

\

.

) |
W@ () +Huu(w)n$,}((w)sp ()

(w) = H . (w)H
. Yu uu uy

by b

L

+ H  (w)H* (w)S_ (w) + H,  (w)yH* (b)S_+ (w)

" ' L (6.12Db)

|

]

v\ o

In eqlations 6.12, Suu(w)vand S (w) are the speétral

by

densities of displacement u and rocking in the vertical-

.Plane y: Hij(w) the elements of the transfer matrix

S W =ik - it md +ide]) T (6.13)

-

The asterisk: represents complex conjugate and Sb (w) are
T i3
the’cggfs spectral densities of.the excitation forces.

For the case of earthquake shaking,.only the force in

. the horizontal 4irection, 5 (w), exists and is equal to
‘ ' uu . |
‘ 2
S (w) = m® . S. (w)
Puu ! Ug
. = n . oé B2 () ' (6.14)
C <, kel 9

- . I .
In such a case, equations 6.12 reduce to
W oA ’ ’ ‘. ’ . ‘ "

'8 (w)

n y
uu Huu(le;u(w)-sﬁ tw) (6.15a)

g9 ’ g <

<P

2 -2
ey
|
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The mean peak response is evaluated USing equatiout o e
‘e 3 C :
1 2 "
4. 24 to 4.27 and compared w1th the values/obtalned using »
- 4 ?
the numer1ca1 integration of.the equatlons of mQtion in = . T
- R\
'Table 6.1. It can‘be seen that the agreement between the - i
. . ) . 2 L] . ) " .
two approaches is fairly good. The‘time histories of thé* )

I

responge displacement u and rocklng W d%e shown in Flgurew-'"”ﬁ

e oo - SO R T
6.14. ' o T ¥ - oL
e ) * 3 P ‘
« ‘e ‘.
: . : - St T
Table 6.1 COmpar;son of Peak Responses of & Silo . T
Obtained by Time - Hlsbory’Analy51s and e
; * Random Vlbratlon Approach - -
. , v s , F} N . ) o .' .' .-4 .
‘ -~ ' —— - -
' Maxlmum ~ _ - Maximum | o N,
- Dlsplacement Rocking -~ A o
; L u (a”n) - l” - w . : v i ’ ,.P
. . ) .: L3 i . - <, ! . v ) . . , b,ni
Time History Response - 2.010 . " .0g}16. s s .
R ”‘ N . ’ . ) . X » ‘.4\ v &‘
Random” Vibration T, L. T a Co st s
Approaeh . : o, - .- 2,098 a 0017 -, R Y f'e'
- - - —— L
. - s ' ’ .
. . . ‘L‘ " - a, L1 *I -
- & ‘ . BT
CONCLUSIONS ' N . C T
_ o T N “ A T . A
. L. . 4 - e I
The exaﬁination of dyhamic'response of buildings and & "<
rlgld structures supported by dlfferent foundatlons sug- .7, L
v LN 'l/'
- .o 4‘ g - e
gests the follow1nq conc1u51ons- . - ' . I
4 . L SANEEN - ‘ '-'~ v B R
i >

\SeISMlC respohse and load&ng of\bu11dings depend on "f AR

‘the fiexlbillty of the foundat1on and 1t; type. Eor ﬁélkw\f
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shallow foundations, the response increases and._.the

(4
seismic forces decrease as the soil medium becomes

more flexihle. These effects are due to the rocking
motion of the foundation and the redﬁ%tion in natural
frequency due to soil flexibility.

. . y \ . . . »
The limited depth of the stratum results in insigni-

fiq;ht increase in both displacement and storey shears
compared td;thdse obtained with the halfspace when
moderate material damping is assumed.

" Soil material damping decreases both response and
base. shear for the case of a layer of limited depth.
With.a halfspace, theée effects are insignficant.

The effect of piles dépends on the number and type

of piles, their arrangement and, as with the dfher
foundations, soil stiffnéss and the kind of seismic
excitation. ‘ -

-Rigid connection of piles with the cap may not always
be necessary pafticularly ig; small buildings aﬁd/o?

~ -

"low intensity earthquages. . r

The direct gpectral‘apéro h is & very effective method
-ofyanalygis of:dynamic rggignée of rigid‘structures

6n soil. ) .

in this analysis, .the San Fernando Valley earthquake

signal is used. For other types of earthquakes and

for bther‘structural systems, somewhat different



) )
’ .
_1%0
-
. ' ’ 4
A ' { ' : ) ‘
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A - trend described here can be expected to occur.
, .
)
L0
~ 7/
’, 4
.
- .l'
’ | 4 ’
Y
|
2
I
/‘/‘ : .
//
¢ .
!
. L
L ' 5
. g )




(i) Endbearing Pile
(b).
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SOIL-STRUCTURE INTERACTION UNDER
& . : L7} N )
A _ _ WIND LOADING

7.1 INTRODUCTION _ ’ .

A ] ‘

The effect of the foundation flex1blllty on .the

¢ Q

strUctgral response to dynamlcaloads has received much

attention in machine foundations, e.g. (21) and earthguake
D L . )

engineering, e.g. (10). 1In wiqd engineering, soil-

structure 1nteractlon is mostly either ignored or limited

: to the 1nclu51on of soil flex1b111ty 1nto the calculatlon ,

of natural frequencies and modes. Studies done by Novak

N

(30, 102) support the contention that the ‘effect of foun-

dation on the structural response‘to wind may also be

" important.

For any form of aerodynamlc exc1tatlon, the response ‘

. "

can be analyzed either directly usihg Fourler analysis and

3

other methods (103, 104, 105) or in terms of modal analysis

(1025 105, 107).. The latter appr?ach.offers 8reat simpli-
city, since the structural response is quite often dominated

by one modal component with the contribution of Qther modes
i \ &
being negligible. , . -

%

In this chapter, the direct method is briefly reb%ewed

v .
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and then the effect of ﬁoundapiop flexibility on AIOng—wind\\

response .is explored in detail using®the more practical - T

P -

approach Pased on modal anélyéés’and the concept of the .

-

gust factor.

.. 'R -

.

~

7.2 TYPES OF AERODYNAMIC EXCITATION . -

~

VAV/ fﬁe effect of soil-structure: interaction on the req—;
ponse of a structure to dynamié f6ads dependsﬁndt only on
the properéies‘of the structu}e.foﬁhdaﬂion éyétem but also
on the type of exci£ation. o o .

There are three main types of wind-induced oscillations

M ]

experienced b§ structures (106): . =

E

1. Turbulence-induced oscillétidns. This typéias due to
turbulence:in the oncoming fioﬁ:l These 6scillations
may be described as gust fnduéed oséiliétions. .The
gusts may cause longitudinal, transverse or torsional
oscillations of the structuré which monotonicaliy in-
crease with wind veloéity. fﬁ’tpis case, the excita-

- tion forces have the nature of a broad band random

process.

2. Wakerinducéd oscillations. When the wiﬁd blows across

a slender prismatic or cylindrical body, vortices are

- ‘ - -
- shed alternately from one 3ide ‘and then the other

\ i
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giving rise to fluctuating forces acting at right

*augles to the wind direction along the length of the

. a4

+ body. The resultant motion is known as vortex-induced
~oSciilation."The ekeitatieu‘forces have the uatute
of 'a harrow bandrranéom urbcess . A Structufe may be
consxaered ‘'slender in thlS context if the ratio of

helght to dlameter exceeds about 5. (108)

- . . ‘
~ . ]
T4

3. G’alloping.anc}.flutt'e'r""me&anisms. The final mechanism.
for excxtatlon is assoc1ated w1th the movemant of the
- -
structure 1tself " As. the structure moves relative to

the flow in response to the ex01t1ng forces, 1t changes

the flow regime surroundlng 1t and these changes are

L

coupled w1th‘theimqtlon.

A pressure change coupled with the veloc1ty may’ be
tetmed aerodynamlc damping. It may either be positive or
negative. 1If positive, it adds' to the mechanical damping
and leads to highet effebtive dampiug’apd a reduced tendency
to vibrate:; if negative, it can lead to instability and
large amplitudes of motion. This t;;e of excttetion occurs
with a wide variety of rectangular building shapes as well

as bridge cross-sections and common structural shapes such

as angles and I-sections.

-

In other instances, the coupling may be with. either

the displacement or acceleration, in which case its effects

L
\}

s
‘
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g

+

are described as either aerodynamic stiffness or mass terms.
Thg effect of this is éo modify'the stiffness or mass in
the equation af motion, If the aerodynamic stiffness is
negétive, it may lead to a form of instability‘known as
divergence._JAll types of instability feature a sudden
start at a critiCalvwind velocity and a rapid increase of

violent displacements with,wind velocity.

Typical variations of vibration amplitudes with wind

.. velocity are shown for the three types of responses in

Figure 7.1. The mechanism of excitation is different for - .
L]

each of the types shown and consequently, the foundation

conditions affe@® the response to different degrees.

v

Since response of most structures can be attributed
almost exclusively to turbulence in.the oncoming wind, the
gust-induced oscillation is considered as the basic type

for design. The treatment of the transverse or torsional

oscillations of' the structure due to gusts is somewhat

tentative but it could be guided through wind tunnel experi-

ments. On the other hand, the longitudinal fesponse of

the structure due to turbulent ‘gusty wind could be analyzed
3 rJ

analytically by making use of the general methodology of

random vibration (109, 103, 104).

The present work attempts to integrate the various
aspects of the problem of along-wind response of structures
on flexible( foundation into threeucomprehensive approaches.

- , .

T T T
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The first two approaches are rather complex and only the
basic theoretical steps are outlined. The third approach,
which is the design procedure known aé the gust factor
approach, is given in more dedaid—and is applied to 10-
and 20-storey buildings on mat foundations. Because the

oscillations dépend on the properties of wind, somé basic

wind characteristics are discussed first.

. A
7.3 BASIC WIND CHARACTERISTICS

Wind is caused by differences in atmbspheric~pres-
sure. At great altitude, the ai£ motion is independent
of ﬁhe‘rbughness of the ground gurface and is called
gradient‘or geostrophic‘wind. T Its yelocity, VG’ is~reached

at the gradient height z_ which lies between 1,000 and

G
2,000 ft (= 305 to 610 m). Below the gradient height, the
flow is affecfed by~s;rface friction and the wind kinetic
energy dissipates due to turbulence and airvviséosity. The
longitudinal component of the wind velocity below the
gradient height consists of mean velocity, Vz, plus an

irregular turbulent component, v(t). Hence, the longitu-

dinal wind velocity at height z can be expressed as

_ N S
v (t) =V +vi(t) | , (7.1)

s

It was suggested by Davenport (110) that for most

occasions of high wind, the mean wind speed Vz af height 'z
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ii§i3?/
McNamara (I41) found in his extensive investigation that

. and space. The randdm\nature of the wind requires the

195

o«

(below z.) can be described by the power law of the type:

B |
T o= (2 - 2y -
vV, = V(=) - (7<2)
G . R : o
- \_\ F
where z. and o are functions of the ground roughness whic?' .

‘can be characterized by the surface drag coeffic¢ient k. |

Suggested values of these quantities for three types of '

terrain are given in Figure 7.2. Another often used law

oretically substantiated logarithmic law.

%

the wind p“r iles are actually. random. <

The mean wind profiles are useful when predicting the
. . "\
wind spega»at a particular site. ' To that end, the gradient

wind speed is estimated using the wind profile and the wind
speedgregistered by the nearest meteorological stations at

the standard height, which is usually 33 ft (= 10 meters).

[
-

The mean wind velocity generally depends on’ the period. .
over which the wind speed is averaged. Periods from”10 to
60 minutes appear,adequaté for engineering considef;t?ons
and usually yield xéaébnably steady mean values. The same

duration is suitable to define the fluctuating’nd com-

pénent. The fluctuating components of the wind chaﬁéé with “

height less thar the mean wind and are random:both in time
. ‘ —

. ~ 7
application of statistical eoncepts. -
i

-

F N
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. , e
The baéic statistical characteristics of turbulent

wind are‘the intensity of turbulence, o;/VZ, where

g, =y ;5(t) is the root-mean square velocity fluctuation

in the iongitqdinal direction, the power spectrAl density

Sv(f), (f = frequency), the spatial correlation between

velocities at different points ylz(f), and the probability

distribution.

The spectrum of horizontal gustiness in strong wind °
is largely independent of height, above the ground, and is

proportional to both surface drag coefficient k¢ and thé

Square of the mean velocity ag’the standard height of 10

i

meters, Vl Davenport (109) suggested to represent the

0
spectrum, with 'some approximations, as
. =2
4V 2
10 X
S. (f) = (7.3)
v £ (l+x214/§

in which f = frequency, in Hz; k is given in Figure 7.2

and x = %ﬁi:where L = scale length = 4000 ft- (1220 meters).
Vi . :
10
This spectrum is shown in Figure 7.3. Other forms of
spgctfﬁm have been proposed as well, e.g., by Harris (112},

Simiu (113) etc., but they do not result in a significantly

different response prediction.

The- variance of/éhq,velocity fluctuation is
+
~2 0 _
o2 = [ s (frar (7.4)

0
1 V\‘
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s

which for the spectrum represented by equation 7.3 yields

2

02 = 6.0025 « 72

10 (7.5)

The spatial correlation of wind speed at two different

stations 1 and 2 is described by the coherence function

2
2 (£) = °12 (0 1
Y12 " 5[(Bs, (6

(7.6)

where Slz(f) = cross spectrum (generally complex) between
stations 1 and 2; Sl(f) and Sz(f) are power spectra at the
two statiqné. ‘The coherence function depends primarily on

'the parameter Az f/V, where Az = separation = |zl-z and

5 |
vV = %(Vl ¥ Vz) is the average wind speed. A 'simple empiri-
cal formula, often used‘'to describe the coherence function,

%

is
yYcoherence = o~ ClbzE/V)” (7.7)

where c is a constant having a value of approximately 7 for
vertical separation and approximately 15 for horizontal
separation. Coherence is descreased with both freéuency

and separation.

For homogeneous flows, Sl(f) = Sz(f).= Sv(f), and sub-

stituting equation 7.7 into equation 7.6 yields: Y

-c(AzZE/V)

.slz(f) = Sv(f)e




or

SIZJZI'ZZ’f) = Sv(f)e (7.?)

L4

The probability density function of velocity fluctuations

in,turbulence can be considered -approximately as Gaussian

and defined as (Figure 7.4):

. ‘ - (V-7) 2 /202 ,
p(V) = —— e v - (7.9)

»
L]

Also shown in Figure 7.4 are the distribution for

peak gust speeds in periods T defined by uT = 100, 1000

7 and 10,000. The parameter y is the effective cycling rate
of the process which is given by the formula due to Rice
(82) :
* 2
J £ s _(f)df
0 v '
H = poy % - o (7.10)
'J s, (f)af '
o

A more detailed discussion of the wind characteristics is

given in references'(lOG, 110 and 112).

7.4 AERODYNAMIC FORCES DUE TO TURBULENCE . p
. x4 '

The ?giifive motion between air particles and a°

building generates both drag and lift forces. The drag

forces are responsible for the along-wind motion of the




building. If the face area, A, of the structure is small

relative to the significant turbuilent eddies, the so-called
quaéi-steady theory for turbulence can be used to estimate_
aerodynamic forces. Drag force in the along-wind direc-

tion is

ST

F(t) p c, A Vz(t)

D

2 vit) , v?‘(t)]

\Y% v

(1 + 2 _(7.11a)

= % pcy A v

where p = air density (normally equal to .0024 slugs/ft3
= 1.24 kg/m3), and ¢y = drag coefficient. As v(t)<<V,
the squared term may be ignored and equation 7.1lla is

written -as

3

F(t) = F (1 + 2 L&) (7.11b)
v .

where F is the mean drag (static component of the drag),
= _ 1 ' .
F=3pcyav (7.12)

The spectra of the fluctuating drag and velocity are then

related as

52
— S_(£f) ~ (7.13)
‘-7~2 v

SF(f) = 4
With the ‘information on the power spectrum, cross-
correlation between different points and the probability
distribution of the drag forces available, the response

of structurgs on elastic foundations can be analyzed.

~
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7.5 .DIRECT SOLUTION

This method of solution dispénseéthe inter-
mediate étep of computing the normal hodes and deals
directly with both displacement and force types of
structural response. fhe approach by Lin (103ﬁ 105) allows
the analyzing: of the along-wind induced vibrations of a
multi-sforey building by making use 6f the c;ncept of
transfer matrices (114). This method is especially

suitable for tall buildings with every storey in the’

building identically constructed.

7.5.1 Formulation

The structural model used for }his analysis is shown
fg F%gure 7.5a. The following‘assumptiqés;are made’to
simplify the analysis: (1) Thé structure is composed of
N identical units typified by the one shown in Figure
7.5b: (2) the superstrucﬁure'is linearly élastic: (3) wind
excitationé‘are applied at discrete floor levels;

(4) damping is linear and viscous: (5) the soil behavior
is characterized by the impedance‘matri# which is fre-
quency dependent: and (6) the response of the structure
to external excitation can be described by disﬁlacements

and forces variable at each construction unit.

Let uj and Qj_l'be,_respectively, the displacement

/

rd
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at the floor and the shear force in the column of the jth

‘unit (Fiqure 7.5¢). It can be seen that-

.

Q. = Q.,l+m(uj + 1, + th)‘+ c(uj + ub + jhy) - F.

3 iks b J
(7.14)
Qj-l = k(uj - uj—l) (7.15)

~in which m = the mass of the jth floor, c¢ = aerodyhamic
damping coefficient related to absolute vibration velo-
city, and k = the stiffness which is complex-valued if

the structural intersioréyrdémpfng,is taken into account.

' The motion of the footing is governed by the follow-

ing equations:

. N . N
Qb =m _E uj + (mb + m N)ub + mhy 'E j (7.16a)
j=1 . j=1
+ N . N
, Qb =m I i, +m N'ﬁb'+ mhy I j . (7.16b)
: . 3=1 j=1"
for the horizontal direction and
N ‘ : N 2 N 2 C
mh [ j u; + mhﬁb' £ 3 + (mh Zji®+ It)w
j=1" 7 j=1 =1 |
N ' - .
+ =h I F. : (7.17)
"o j=1" I :
for the rocking direétiph. In these equations} m_ = mass
= |
of the footing, I, = I I with I, being the inertia of
. j=0 , i
the jth floor about its own centgoidal.axis: Qb and Mb




respectively are reactive horizontal traction and base
moment from the soil. Equations 7.16 and 7.17 can be re-

written as

% - gy = my Uy | (7.18)
M_=h _? JF, - mh ? 3 NNL) mhii,
=1 i=1
_~[N(N+lé(2N+l) N Itliﬁ (7.19)
‘ Q; ;nd Mb are rela;ed‘to uy and Yy as:
Q;‘, kx% kxw ub -

(7.20)

where the k-matrix may be frequency dependent. Taking
the Fourier transform ahd rearranging the terms, equa-

tions 7.14, 7.15 and 7.18, 7.19 may be written in a matrix

form as follows: - ' .

—0 " l . k ’ » _.

uJ . | 1/ uj_l

—= ' 2 . 1 - 2., -

Qj {-mw flcm) 1 + E(—mw +icw) Qj-l .

0 0
+ (~mw2+icw). e . (7.21)

ub+jhw Fj



o W, _mhwz N(I;Hl)] 2y [1,+ N(N+l)(2N+l) mh?] w2

. ‘ o (7.22)

1. ] ®

where i = V/=1: and an overbar denotes the Fourier trans-

form. Equation 7.21 may be written more concisely as:

0 o
.{z}j = [T]{z}j__l + (Twzm + iwc) _ R
ub+jhw FJ
(7.23)
in which {z}. = <u ,Q > = a staté vector: and [T] is known

as the transfer matrix. The matrix [T] represents the
v

transfer mechanism of a construction unit.

Equatlon 7.23 can be appiled repeatedly to obtain

a reLatlon between’ {z} and {le: namely.

-~

~ ) . N -.J
(2} = (Y {2} + (-mo’+icw) 1 [T)N3




and Q; = 0, the

With the boundary conditions Uy = U,
vectors {z}N and {z}o at the base and at the top floor
of the building dictate that
. b ‘ ' UN J
(23 A= b o (2l = - (7.25)
Qb O R e

Substituting equation §.25 into equation 7.24 and maki;g
use of equation 7.20 which relates U, and § to Qg and M.
" the solution can be obtai@ed in the:frequency domain in
which the Fj (3 =1,2,...,N) are the inputs and {z}, the
outputs at the fth flooé. {Z}l can be oﬁtained from

"equation 7.24 by replacing N by %.

-

The solution can be put in a closed form by making
use of the fact that the eigenvalues of the matrix ([T]
in equation 7.23 are reciprocal (115) and can be put in

the form, exp(+if), where

—mm2+icw
cosf = 1 + % ' (7.26)
A,

7.5.2 Spectral RelationsHip

When the wind loads on a-building are modeled as
stochast%c process, the inputs Fj (3 ='1,2,...,N) in
equation 7.24 are Fourier transform of stochastic process.

If the wind loads F(t) are assumed to be statistiéaliyf

stationary in time (may be assumed to have commenced at




-

t = -~ and must be presumed to continue until tr='w) then
their Fourier transforms .do not. exist. There is no
difficulty, however! @n determining the Fourier tran§form
of a“signal F'(t) which is defined’to be identicd} with'
F(tj over éhe interval - + < t < T and to be zero at all

2 2

other timess In this case, equation 7.24 can stilN be
[ ' ~

used conveniently to construct spectral relationship .

20

between the inputs and outputs. For examplé, the- spectral

density of the réndom displacement uj at the jth floor,

denoted by S (w) , cldn be obtained by multiplying the

u.u,
1] .
first row in equation 7.24 by its conjugate. This equa-

tion results in a very lengthy formula giwen in (104).

The crbs§~spectral density S (w) of the wind loads

F F
q

F (t) and Fq(t) at stations r and q is glven by equatlons

7.11 ‘and 7.13 as

S

(w) = F_F [6(w) + 4 8 (w) ] (7.27)
FrFq rq - vrvq
in which §( ) =-Dirac delta function and SV v (w) = cross-
% r g . -

spectral den51ty of the nondimensional random processes

vr(t) and vq(t) obtained from equations 7.3 and 7.8’as

610w .2
2 (——)
s (o) = 4% Vi, . " V1o
VrVq v (t)V () |w] [1+(610w ) 21473
. r - 4a w
10 ‘
c |w].|r-q}h
exp (- - ) (7.28)

27. V

10
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in which Vr, Vé, le are in m/sec. Having equations 7.28

and 7.27 and the spectral expression for S , One can

3

obtain the frequency spectra of flkoor displacements and

u.u

shear forces.

In this way, a closed'form solution fér the displace-
ment ‘and shear force at each storey unit in the st¥Yucture
is made possible by making use of the transfer matrices.
However, despite the fact that eac£ matrix [T] is only

2 x 2, the response equations are very complicated and

may only be evaluated using the'computer.

Lin (103, 104) gives these reasons, for adopting this
direct solution: (lf the calculation of nofmal ﬁedes for
complicated structﬁres is extremeiy diffiéult and time
consuming: and (2) the magnitude of damping in each mode
must be assumed and is rather arbitrary. Howexpr, these
arguments do not seem to be éompletelf justified. As
outlined in Chapter 3, the normal mode prediction is
straightforward and the damping associated with each
vibration mode can be calculated accurately. Also, for
a comblicated structure, the shear building model is not
applicable. Finally, the structural response to wind
loading is dominated by only the first few médes. This
is particularly so with flexible foundations which provide

-

heavy damping in the higher mode$.

<
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The direct solution is presented here for complete-
ness but it is far more advantageous to use normal modes
to express the structural response to fluctuating wind

as will be outlined in the next two subchapters.

3

+

-

7.6 PREDICTION OF FLUCTUATING RESPONSE USING‘MODAL

ANALYSIS -

This approach is preferred by researche;s and prac-
tising engineers (106, 109, 110). It enables the peak
stresses, accelerations, deflections, etc., to be ex-
pressed in terms of the mean wind velocity (equation 7:2),
the spectrﬁm of the gustiness‘(equat?ons 7.3 and 7.8),
and the mechanical and aerodynamic properties of the
structure. In this case of the wind treated as a random
input, the resultant spectrum of the wind force must be
evaluated with regard to spatial cofrelation of wind velo-
city. This effect can be described in terms of another
transfer function called the 'aerodynamic admittance
function', |Xaero(f)|2' This function describes how the
turbulence in the wind is modified by its encounter with

the building. Then the modified drag spectrum (eun&ion

\7;}3) is

-

v
»

N

1% t£)1?

SF(f) =4 aero

S, (£) (7.29)

kﬁ41|



208

7.6.1 Response of a Single Degree of Freedom System

If the forces defined b{k e§ﬁaé}on 7.29 act on a,

structure modeled as an elastic spring-mass-damper system,

the response, u, has the spectrum

L .4s_(f)
s (£) = a2|x,___|° .
u aero mech V2
_ 4 | 2] 12 L s () (7.30)
VZ aero mech k2 v '

¢

-

where static deflection u = F/k, k = stiffness constant,

and the mechanical admittance function

12 = 1 (7.31)

X ) ; 3
- (£/2,) %1 van (£/2,)

mech

where D = critical damping ratio, and fo = natural fre-

guency of the system.-

'The transiti&n from the spectrum of the wind-velocity
fluctuation to the spectrum of the respon;e defined by
equation 7.30 is shown diégrammatically in Figure 7.6.

The variance of the response oi is obtained from the spec-

trum of the response,

2 _ [7 ..
o, = J Su(f)df (7.31)
) .
The above relationships describe the mean u and the
variance oi of the response. For engineering purposes,

it is also useful to define the extreme values. It is
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J‘d
usually satigfactory to assume the process in question

is Gaussian with’probability density function given by

‘ wl —(u;5)2/203
~-p(u) = —— e .

Y2m O
u

(7.32)

This distribution is fully described by the mean and the
variance. The expected peak value of the response during

N > ‘
a period, T, can be written as

i\ Wiax = U + g Ou (7.33)

where g = peak factor given by the relation (80,109)

» . »

g = /2 0 uT-+ —9-2772 - (7.34)
vZ &n uT

. -
4

where uT is defil®d earlier in Figure 7.4.és the average -
number of timés the mean.value of the displacement (or
loéd) is crossed durihg the averaging time Tl u (apparent
frequency) depends on the spec%rum_and is obtained from
equation 7.10. As can be seen from Figure 7f4, when the

. 4
period T or the frequency u increases, the expected peak ~

displacement also increases. Tge factor g usually }angest“
. p ;

[

between 3 and 5. )

7.6.2 Response of Multi Degree of Freedom Systems

"1, o - .

For mulgti degree.of freedom systems the concept in-

‘*cludes the cross-correlation of the wind loads at different

p

N
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stations (e.g., heights), the properties of the vibration
mode, and the nonuniformity of the mean flow. These

R .
factors can be conveniently included into the solution

formulated in terms of modal analysis.

!

With a prismatic one dimensional structure, the res-

ponse may be ekpressed in the form

~»

alz,t) = & n.(t)o,lz) - (7.35)
: ‘=1 J 3
J =
‘ < - — .
where nj(t) = the generalized coordinate and ®j(t) = the

~

natural vibration mode chosen to an arbitrary scale. The

i
generalized coordinates are given by

L]

M.fi., + 47D.f.M.n. + k.n. = p.(t) (7.36) _
)] 1331 1] J :
o L IV 2.2 _ .
where M. = m(z}¢5(z), k. = 4n"f M., -D. = modal damping
J o i J‘ J 3 ]
ratio, fj = jth natural frequency, m(z) = mass of struc-
ture per unit length and pj(t) = generalized force
. H .
.(t) = . t) . dz 7.37
PJ( ) ) J PJ(Z, ) J(z) ( )

‘0

in which p(z,t) is the load per unit length and H = height

of the structure. .

\ ]

Squafing and averaging equation 7.35 gives the mean-

square displacement (the variance) as

2, .. —_—
u“(z,t) = izl jzl ninj ¢i(z)¢j(z) ‘ (7.3?a)

1

-
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However, in slightly damped systems with well separated
frequencies, the cross-~correlation terms . are insignifi-
cant and can be neglected. Then the double'series in

equation 7.38a reduces to a simple series,

wliz,t). = §F n? o?(2) (7.38Db)
.—7 3 3 A
J
The veriance of the generalized coordinate h§ is‘ -

determined from eqﬁation 7.36 if the:power spectrum of,

. v,
the gLneralized force pj(t) is known. When the lateral
dimension of the structure is sﬁali, only cross-correlation

in direction z needs to be considered. Then the power °

spectrum-oﬁnthé generalized force is
’

Py

s, (f) = JH JH Siz(zl,zz,f)¢j(zl)¢j(zz)dzldzz
O O ‘

. : (7.39)
where Slz(zi,fzjf) = cross spectrum of the windjloads at
heights Zq and z,. With respect to equations 7.8 and
7.13, the cross spectrum of the wind loads can be ex-

pressed in terms of the cross spectrum of the wind speed

as
cf
) F2 "5 Il
Slz(zl,zz,f) = 4 ‘;2- Sv(f)e (7.40)
s
where Sv(f) = power spectrum of the wind speed defined

N \ 4‘.
by equation 7.3 and F and V are taken as independent of

height. )
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Then the spectrum of the generalized force is
cf '
i?l B on "o %77l L
S_ (f) = 4 =% s_(f) J J e ¢.(z,)0.(z.)d2,dz
pj V2 v o ‘o b S 2’, 1772
. . ‘ (7.41)

‘ . 4

The spectrum of the generalized coordinate n. is as

\\ in a single degree of freedom system with kj = fj)zMj,
! 2 '
J kj 3 J '
S f
= Ei( ) (7.42)
(2mf.) qM2{[1- (29212 + ap? (D2 .
it 3 fj JEy
' i
T the variance of nj is . -
2 J” 1 1 "
n. = -— S (f)df
I Jo k2 [1-(£/£.)%124ap2 (£/£.)% P - v
J - J J J
1 7 5y o1 1y
= e = S (f.) + —= I S (£Yaf (7.43)
k§ 4 Dy /Py I k§ o Pj

-

The approximate integration of , equation 7.43 yields £he ~
respon;e composed of two parts, the resonanceteffect (the
first tgrm) and the background turbulence effect (the
second term) (Figure 7.7). The response variance follows

from equation 7.38b, and its standard deviation (rms

dynamic displacement) is

/

o (2) = / ul(z,t) (7.44)
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The peak response is established from equation 7.33 by
means of peak factor g (equation-7.34). The mean deflec-

tion u(z) is the static deflection due to the mean wind

Y

speed Vz'

. inJapplication‘to buildings and free—stdhding towers,

the analysis can usually be limited to the first modal

component in equation 7.38b.

e -
For structures which are not very slender, the cross-

correlation of the wind pressures in the horizontal direc-

tion also has to be accounted for as the pressure on an

area A = H x b is p(z,x,t). The spectrum of the total
load P(t) may be written as -
HiH b(b |
Sp(f) f L)L)L)LD Splpz(zl,zz,xl,x2,f)dzldzzdxldx.2
| (7.45)

. in which Splpz(zl’ZZ’xl’XZ'f) is the cross-spectrum of
the load per unit length at positions (zl,xl) and (zz,xz).
Davenport (116) derived an approximate exéression for
generalized‘drag forces acting on buildings aﬂ‘ structures
with significant lateral dimensions. Davenport (106, 116)
also gave a compleWe solution established by means of
~simplifying assumptions and numer fcal integration: This
simblified gsolution is known as the gust factor approach

’

and is outlined below.

o
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7.7 GUST FACTOR APPROACH

The gust factor approach is a design procedure de-

" rived oﬁ‘the basis ofhthe above theory By means of a few
simplifying assumptions (108, 117, 118). It considers
only the response in the first vibration mode which is
assumed to be linear. These assumptions are particularly
suitable for buildings. The method yields all the data
needed in design: the max@ﬁum response, the equivalent
static wind load\that would produce the same maximum res-
ponse, and the maximum acceleration needed for the evalua-
tion of the physiologicalheffects of strong winds (human

comfort).

The gust factor G is, as defined by Davenport (118),
the ratio of the expected peak displacement (load) in a
period T to the mean displacement (load) u. Hence,

maximum expected response

ag

-G = U3 :
Uiax = Gu=(1l+g {;)u (7.46)

Similar approaches have been proposed by others but these
can all be reduced to the same form of equation 7.46.
The Canadian National Building Code (108) has adopted this

approach and gives the gust factor G gs

G=1+g/ci(a+-s{- (7.47)
d e D
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Co ©
where g = peak factor, x = roughness factor, ce'= expo-

sure factor, B = the backgfound turbulence effect and

SF

Dt

S = size reduction factor, and Dt = total modal damping

= the resonance effect, in which F = gust energy ratio}

of the structure. For a flexible foundation the total
damping of the structure can be evaluated as shown in

Chapter 3.. An explanation of these factors follows (109).

1. The 'peak faétor, g, (Figure ﬂ?h) is a function of
the average fluctﬁation rate, u , and the averaging
period, T, which typically ié a period between 5
minutes and 1 hour. The average fluctuation rate
foilows from equations 7.3 and 7;10 as,

i /'SF/DE

el (7.48)
©  p4+gp/Dt

u = f

where fo = the natural frequency.

2. The\roughness_factor, K, is équél‘to
0.0é for open terrain (Zone A)
0.10 for suburban, or wooded terrain (Zone B)

0.14 for concentrations of tall buildings (Zone C).

3. . Exposure factor,.ce, is based on the mean speed pro-
file (Figﬁre 7.2) and thus on surface roughneés.
‘Fér the three zones, the exposure factor .is obtained
from Figure 7.9 for the height of the building H.

Co relates to wind pressure rather than speed. Hence,



the mean wind speed at the top of the building is

given by

VH = VlO {ce ‘ (7.49)
where Vlo = reference wind speed at the standard
height of 10 meters: V.. can be obtained from

10

meteorological stations.

¢

Factor K/ce can be thought of as scaling the re-

sult for the appropriate input turbulence level.

The background turbulgnce factor, B, is obtained frbm
Figure 7.10 as a function of height, H, and width, W,

of the windward face of the structure.

The size reduction factor, S, (Figure 7.11) depends
on the reduced frequency fOH/VH and the width to the

H
height ratio W/H.

The gust energy factor, F, (Figure 7.12) is a func-
tion of the wave ngmber‘at resonance,'fo/VH. Factor
F represents the spectrum of the wind speed given in’

equation 7.3.

The, total damping ratio, Dt, depends on the struc-

tural damping DS, damﬁing due to energy dissipation

- in soil, D, and aerodynamic damping, p2. Typical

values for structural damping for structures on rigid
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folindations are:

« [}
concrete structures:‘ D

0.01 - 0.02 ¢

steel structures: . DS

0.005 -.0.01

Soil damping, D, can be calculated from equationA3.4.
. Aerodynamic® damping can be obtained from the approximate

- formula given by Davenport (119) for the case of building:

3 pc V
a D H
D™ = (7.50)
4n(3+cx)fo o b .
in which
Py = equivalent density of building- ’

~ total mass/total volume »
b = depth of building (direction of wind)
o = exponenf of velocity profile appearing
in Figure 7.9 ‘
f = fundamental frequency of the structure on

flexible foundation ..

and p and ¢, were defined earlier.

¥

7.7.1 -Design Wind Pressure

The parameters given above yield the design wind pres-

sure p, which produces displacement u if applied as a

ax
static load. This design pressure is : ,
Y

p=quGCp ) ' ﬂ.sl)

/ 1




where q = 1/2 p Vio is' the reference mean velocity pressure,

and c¢_ = average pressure coefficient, which depends on
. the shape of the structure and the flow pattern around\it.

For a typical building with a flat roof and a height greater
than twice the width, the coefficients are given for the
windward and leeward faces in Figure 7.13 together with

the pressure distribution. Expoéure factor, Cq varies .
continuoﬁsly with elevation according .to Figure 7.9 for'
pressures acting on the windward’facé of the structure;

for the leewgrd face, Cq is constan£ and is evaiuated at

one-half the height of the building.

e

r

7.7.2 Wind Induced Building Motion® _

While it is generally found that the maximum wind
loading and defleé£ion are in theddirection of the wind
(the along-wind direction)L.the maximuﬁ acceleration of
mofion or even discomfort may occur in the direction per-
pénéicular to wind (aéross¥wind direction). While the
theory fo; the aléng-wind response is well developed, the
across-wind response can only be predicted much less

;eliably’and is best treated experimentally or empirically.

-

It has been found that the across-wind accelera;ions

are likely to exceed along-wind acceleration if the build-
»

ing is slender about both axes, that is if /WB/H is less

than 1/3, where W and’b are thé across-wind and along-wind




plan dimensions. The peak‘across-wind acceleration, aw;

-at the top of the building can be found from ‘the following
formula, based on a wide range of turbulent boundary layer |

‘ ' T
wind tunnel gtudies (108, 120)

_ g2 8y
a, = £ g Mb (——) (7.52)

W
t
Dbgo/D

+
_ -6 o _ 3.3 3L
where a_. = 78.5 x 10 [VH/(§O¢WE)] , kN/m”, o, is in
kg/m3, DY is the total damping ratio pertinent to ‘the first
vibration mode, and 9o = acceleration due to gravity =

9.81 m/sz. '

For less slender structures or for lower wind speeds,
the maximum acceleration may be in the along-wind direc-

tion, and can be -found from the expression for the gust

an,
effect factor assuming approximately that acceleration
equals the frequency squared times the peak displacement

due to turbulence with the background effect ignored. Thus,

(106, 108) o .
u " kSF
a, = (4nlfd) (B2 (g — (7.53)
D o G t .
. ¢ D
e/
where u_.. = maximum top deflection’ under the design pres-

L] ) ' -
sure p. The othgf parameters are equal to those used in

equation 7.47.

©

When the maximum acceleration exceeds one percent of

’

gravity or even less, the motion is usually perceptible 4 \
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7.8 SOIL-STRUCTURE INTERACTION UNDER GUSTING WIND

In this work, the gust factor approach, outlihed above,
is used to examine the effect of soil-structure interaction
on response to gusting wind: This is of interest because
the gust factor approach is widel§ used and experimental
work done at The University of Western Ontario and elseT
where verified the resuits of this method both on full Ecale
structures in the natural wind and on models. Also, the
'gust factorvapproaéh is adopted in the National Building

Code of Canada and in only a‘slightly different form in a

few other codes.

As was shown in Chapter 3, flexibiiity of the founda-
tion affects the natural frequencies and modal damping

ratios. An examination of equation 7.47 reveals that

foundation‘flexibility affects the factors g, S, F and pt.

-

As the soil stiffness deggreases the natural frequency, fo’

14

‘decreases and the total damping Dt iﬁcreases. Thé reduc- :
tioh in natural frequency for a certain building due to soil
flexibility results in a few effects: increase in the size
reduction factor S (Figure 7.11), decrease in the peak )

-factor g (Figure 7.8), and increase or decrease in the gust

energy'factor F,(Figure‘7.12). Consequently, the net result #

v
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ad
is to reduce or enhance the gust factor G and hence the

loading and the response of the building. This trend of
the soil-structure interaction effects depends on all the

factors involved, i.e. soil, footing, structure, and the

wind characteristics. : 1

7.8.1 Design Wind Loads and Maximum Response

-

The design wind pressure p given by equation 7.51 is

used to produce the equivalent static wind forces F. at

each floor i (Figure 7.14) as-

F, =p, . W. &, i=0,1,2,...,N (7.54)

where li the tributary height of floor i and W is the

Clle

width of the building. The base shgif and overturning

moment are given by

N
Q = ¥ F
b 1=0 i
(7.55)
i N
= ¢ F, . h
Mb j=0 I i ‘

These forces, applied to the structure on flexible
foundation, yield the total maximum displacements. These
are given by the relative displacements, u., and the base

displacements ub,w for which the equilibrium conditions

can be written as
’ ‘




{u}
in whieh
Yo {u)
{p3
and
[k]

k]

<0>

<0>

-

{0} {0}
kXX 'k
kwx k
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(7.56)

(7.57a)

v

(7.57b)

'(7. 57c)

in which [k] is the condensed structural stiffness matrix

(matrix expressing stiffness in translation with rotation

eliminated) and k__,
XX

placement is, then,

=k
XY TYX
stamts of the foundation.

and k

?

Ama:u: ‘uN Tt thb

o

vy

are stiffness con-

The absolute maximum top dis-

(7.58)

The maximum top accelerations in both across- and
.

along-wind directions are obtained from equations 7.52 and

7.53.

r 4
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7.8.2 Numerical Examples

With impedance functions available for footing 6n :
soil, the effect of soil-structure interaction on struc-

tural respongf'to gusting wind can be evaluated. The con-

~

sequence of the soil flexibility is gest illustrated using

some tYpical examples. A few 10- and 20~-storey buildings

are examined, and the results are tompared with an earlier

N .

'study of a tall reinfdrfed concrete chimney (102). Constant

-
stiffness and damping parameters are considered as it is

quite adequate when analyzing just the first mode response.

Buildings : S
X - ‘ ’ ' v
For a 1l0-storey building resting on a large mat sup;
porting all columns, Figures 7.15 to‘7.17 show the gfféct

of foundation fleiibility on dampihg, fréqugncf and wind

response. The data on the building and thé foundation for

‘ &

which these figures are obtained are given in Chaptér 3.
Figure 7.15 shows the ,variation ¢f struqtuné} damping Ds,
soil dampiné D ana totél dampirg Dt~= Ps + D of the first
mode with varying soil stiffnégs. The stmuctural damping
decreases monotonically as soil stiffnqsg éecréases; while
the damping obtained by ;Pg_building from the foundation
increases. The net resﬁlt is an increase of‘tﬂe total |

.damping with the soil flexibility. The magnitude of this

‘..

14
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‘ o v .
damping ranges from about 2 to 3 percent for soils with

shear wave velocity varying from 400 to 700 ft/s (= 122
Y . ,
to 213 m/s). For structural damping, tjb value of one
- a ’

percent was assumed for the structure on rigid foundation.

!

_ Figure 7.16 shows the effect of soil flexibility on

I
gust effect factor G, mean top displacement, Ast’ and maxi-

. mum tbp displacement, A, for the same building on mat
foundation. These values are mormalized by the corres-

ponding values for the.building with'a fixed base. Exp2§>~..N
. " e
sure A is used to obtain this figure with assumed design

“ "~

wind speed of 27.2 m/sec. - '

P

It can be seen that the gust effect factor is not
affected by soil flexibility for this séecific problem.
This is so because the resonant term in eduation 7.47
(Sé/Dt) is inFreased due to the reduction of soil flexi-

bility while the peak factor g is decreased. The net result

-

is to keep the gust factor G almost independent of soil
flexibility. On the other hand, both mean and maximum dis-
placements, at the top of the building, increased by up to

So‘percgnt when the shear wave velocity decreases from

A

about 800 to 300 ft/s (= 244 to 91 m/s). This is so be-

/
cause the loads P appearing in equation 7.56' are not sensi-

tive to soil flexibility while the stiffness parameters

2

pertinent to the foundation decrease, with soil flexibility,

- r -

-
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as, they are proportional to the square of soig shear wave

veloedty.

\\‘ For the same building, Figure 7.17 shows the varia-
tions of the natural freqﬁency fO aqd the along—win@ acce-
leration with sgil flexibilitz. The across-wind accelera-
tion, calculated from the empirical formula (7.52), is also’
shown in‘Figure 7.17. The across-wind acceleration in-
creases with decreasing stiffness of the soil while the-

along-wind acceleration,de!&eases.

The effect of soil—structure'interaction on modal
properties of the structure and on the structural response
to gusting wind is also examined for a twenty-storey shear
building which differs from the one used in Figures 7.15
to 7.17 only by the addition of ten more storeys. The
results are plgtted invfigures 7.18 to 7.20. They are

4
similar to those observed in the previous case.

Expésure C is also applied to the 10- and 20—storéy
buildings to examine the soil-structure interaction effects
on response to more turbulent wind. The trénd of the
normalized results ob#ained for expésure C is quite similar
to that shown in Figufgs 7.15 to 7.20 for expoere A. How-*
ever, the gust factorl G, maximum‘top displacement and

acceleration differ's‘gnificanﬁly. Comparisons between the
|

’ | '
results obtained for the two exposures are given in Tables
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7.1 and 7.2. It can be observed from these tablés that
the gust factor for expésure C is higher than tﬁat’for.
exposure A. This is mainly because (equation 7.47) of
Athe higher value of the friction coefficienf,ik, and of
the lower value of the exposure factor, ce, for exposure
C.. Tables 7.1 and 7.2 also indicate that the maximum.
displacements angell as along- and across-wind accelera-
tions for exposure C are less than those for expdsure A.
This is so because the exposure factor, ce,_}s lower for
exposure C than for exposure A. For the same reason, the
peak values of b;se shear for exposure C are less than
one-half the values for exposure A as éhown in Tables 7.1
and 7.2. Those tables also illustrate that the peak base
shear values are not sensitive to variation~of_soil
flexibility. ’

The above observations appear rqther typical of .
buildings of moderate size. For vefy large structures,
somewhat different effects of foundation flexibility may
occur. This is shown usiﬁg an example of a large chimney
exaﬁinea by Novak (102). The‘chimney is 1,000 ft (304.8 ﬁ)
tall, the outer diameter is 44§> ft (13.6 m) at the top

and 84.7 ft (25.8 m) at the base. The foundation is a

.

circular flat slab with a radius of 106 ft (30'.5 m) and

]

an embedment ratio‘l/R; = b.25. Horizontal translation

o

and rotation intthe vertical plane are taken into aecount.

:
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The stiffness of soil is considered variable and is
characterized by the shear wave velocity. Soil density
p 1s considered constant and equal to 3.6 slug/ft3

(1861 kg/m3).

Figure 7.21 shows the first three natural frequencies
And soil damping ratios, plotted vs shear wave velocity
of the soil. All natural freaguencies decrease with de-
creasing stiffness of the soil. The general trend for
the damping is to increase with the order of the mode and

with decreasing stiffness of the soil.

The gust effect factor obtained with different soil

properties for the chimney is shown in Figure 7.22. Three
exposures are.consid%red. It can be seen that with de-

creasing stiffness of the soil the gust factor decreases.

The dependence of the gust factor on the nature of the

. ~
terrain is minor because the chimney considered is very
Ay

tall and reaches very close to the‘levél of the gradient
wind where the effect of surface roughness on wipd
characteristics is not very significant.

Chimneys and other cylindrical structures are also
sensitive to vortex shedding and fhéir response to this
type of excitation may be affected by éoil-stfucture -
interaction very strongly. This is so because the vortices

depend very much on damping (102).

&
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7.9 CONCLUSIONS

4

The approaches in use for the prediction of struc-
tural response to gusting wind are examined. The fluc-
tuating part of the response is treated aé a stationary
random process. The general conclusion is that the gust
factor approach, available in the Canadian Building Code,
is the most simple and practical approach. The approach
considers just the first vibration mode which is well
jgstified by experimental observations. " However, all
vibration modes can be taken into account Eogether with

some other refinements in the approaches by Vickery (121)

and Simiu (113).

This stﬁdy examines the effects of soil-structure
interaction under the main type of loading due to turbu-
lent wind. The effect of soil-structure interaction -
results from soil flexibility ;nd enters the analysis
through the modifications of the modal properties of the

structure.

N

fhe gust effect factor may or may- not be-seqsitive
t6 soil flexibility depending on the shift of the natural
frequency“éf tﬁe structufe with reéard to the region of
the peak of the loading‘speqtrum. Gust, effegé factor

increases .with the roughness of terrain.

¢
s
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-

The resultant vibfation may be substantially\modified
due to soil flexibility. The along-wind acceleration is
reduced when the soi} structure interactionh is accou?ted
for, while the across-wind acceleration increases drgma—
tically. However, this depends on the type of the struc-
ture and may not be quite generally true because the
formula for the across-wind acceleration is an empirical
one. Soil flexibility has a minor effect on peak values

of base shear.

Response displacement, acceleration and base shear

)

. é
/;// In the buildings studied, surface foundations were

are)?maller for large cities than for open exposures.
considered. For embedded foundations, the above observa-
tions may change. This is so because with embedded
foundations soil damping increases but also stiffness

increases.

Soil-structure interaction affects structural res-

ponse to gusting wind and must, in general, be considered

.

- ) L}
'in design when the foundation is flexible. .

n

Responge to vortex shedding, .critical for some cylin-
drical g%ructures, can be affected by soil-structure

interaction even more markedly.
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(b) Storey Unit; (c) Forces on jth Storey Unit
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FIGURE 7.10
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Background Turbulence Factor As a Function
of Width and Height of Structure (Ref. 108)
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’ CHAPTER 8 T T ;
s SUMMARY AND CONCLUSIONS
. | | ' .
‘ The effec£ of soil fléxibility,on the dynamic behavior |
. of structures is investigated theoretically using the iﬁ—
pédance approach and the idea of substructuring. Fiwsst, ’
fpindﬁtion impedance functions are established f?om static
- “and dynamic continuum theories. Then, the_réspbnse;of tbé s
structure sﬁpporped by flexible soils 1is analyzed.' }fgg ’ :
"?@ vibration and dynamic response to)shock loadiné; earth-
guakes and wind are examined. The study suggests th;
following conclusions: | 7 e
A. Free §ibration "‘ ‘ ' /, x Y“”
. i A .
1. Undamped natural frequencies are alWayg reduced by
soil flexibility. *
2. - Damped freqﬁéﬁcies of stfucfures on flexible founda- .,
x . tions may be léwer or highe} than the unaamped'ﬁatgral
frequencies, \ \ ]
3. Damped modes may giffer significantly from undamﬁed modes.
4. Damping of structures resting on flexible founéat;ons
is affected by soil-structure interaction in two\ways.
) (1) The structure gains damping thr;;gh energy dissi-
| patioé in'soil, and (2)  the dampiné the structure
. ‘wbﬁld havern a rigid foundation is reduced. These

effects are calculated using an energy consideration,

an approximate method, and the cpmplé& eigenvalue

246 @
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.

analysis, an accurate method.

.For internal (structural) damping, both methods yield

almost identical results.
The foundation damping of the first mode is also the,
same from both methods. However, considerably diffe-

rent results are obtained for the higher vibration

modes.

Response to Shock Loading

Hammers are used to;exempiifylthe analysis of response
to shock loading. However, the analysis of other
structures would follow a similar pattern.

The complex eigenvalues and eigenvectors are used to
predict the response of hammer foundations to the blows
of the head either as caused by initial vélocity of
the anvil or as a pulse.

The initial veldoity approach overestimates the res-
ponse to pulse loading and is, therefore,ﬁconservative.

s

The exacf shape of the pulse‘loading affecté the time
history of tﬁ%\respéﬁse but has little effect on the
peak value of the response.

The complex eigenvalﬁe method is an efficient and
accurate method for the apalysis‘of collision problems

in which large damping due to soil-structure inter-

action is expected. "
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Response to Seismic Loading

Seismic forces and response 6f a structure depend on
the flexibility . of the foundation and its type.

For shallow foundations, sdil—structurg interaction
may reduce seismic forces and increase peak response.
The inclusion:of soil material damping is shown to’
decrease the seismic responseé and loads for the case
of a layer of limited éhickness.‘ Ho&éver, with a
halfspace, these effects are not significant.

The limited depth of the stra;um with moderate soil
material damping results in insignificant decrease in
base shear compared to that obtained with a fixed base.
This implies that the ATC document allowance of re- .
ducing base shear by up to 30 percent to account for
soil-structure interaction may not be valid for the
case of ; layér of limited depth.

For piles supported structures, the interaction effects
depend én the number and type of piles, their arrange-
ment and the tensile resistance of the connectiop of
the piles to the cap. -

A tension resistant connectionlof.the piles may not
always bé necessary particularly for short’'structures
and/or low intensity of seismic¢ excitation.

The direct random vibration analysis is a very effi-

cient and accurate method for the seismic analysis

»

»
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of rigid structures on soil.

D. Response to Turbulent Wind

The gust. factor apprdacﬂ,‘available in the Canadian
Building Code, is tﬁe most simple and practical approach
to the prediction of étructural régﬁéﬂsg tg>gu§{ing
wind. 5 \ . S '

The effect of soii-structure interaction on modal pro-
perties“résults in modifications of the éust effect
factor and’the ‘along~wind response, pressufe“and
acceleration. '

The gust effect factor may incfease or decreasevwith‘
soilﬂflexibilityn' This depends on the relationship
bétween the natural frequency of the structure and

the dominant frequency region of the design wind
spectrum.

Lateral response of buildings to wind loading may be
dramatically increased due to soil-structure in£er-\
action.

Soil flexibility has a minor effect on the design wind
préssures. ‘

The maximuf acceleration of a building leading to ’

possible human perception of motion is affected by

soil flexibility in two different ways: (1) the

along-wind acceleration decreases and (2) the across-

-

wind accelaration increases.
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) . T ’
Requpse‘of cylindrical struictures to vortex shedding .

may be affected By soil-structure interaction very
) :

-

strongly.

- t
Recommendations for Further Researqy/

\ . .

A complete s?lution of the seismic response of the pile

supported buildings should allow for kinematic inter-
action, wave scatteripg between piles and pile-soil-
pile interaction.

-

The complek eigenvalue appreach employed for the analy-

" sis of the response of structures with nonproportional

“damping ¢ould be extended ég analyze modern tall
buildings provided with vibfgti§n\con£rol devices
againstnwind léadiﬁgs; N ’ "

The complex gigenvaiée analysis sﬁoGld be extended to

‘accommodaterfrequeﬁé;.dependent fouﬁdation impedance
functions,. In-supﬁ a case, modal properties*could
be evaluated by'means' of iterative proéeéd;e. -
Experimental st&dy is needed to verify thé.ﬁheoretical
observétions of Ehd‘eff;cts of the soil-structure
interaction on structural-response to wind loading.
Further research isarequired to stud} the phgnomenoﬁ
6f nonlinear soil behavior, pa:t;cularly witﬁ p&les.

The coupling between foundatjon flexibility and the

P-A effect should also be studied.



tr

’ REFERENCES : -

»

1.+ Clough, R.W. "The Finite Element Method in Plane - '
Stress Analysis," Proc. 2nd Conft. Electronlc Comput a-
tion, ASCE, Pittsburgh, 8- 9_ 1960,

2. Desai, C.S. and Abel, J.F. "Introduction-ko the
. /Finite Element Method," Van Nostrand Reinhold Co.
New York, pp. 16-17, 1972
3. Lysmer, J.. "Analytical Procedume'in Soil Dynamics,"
Earthquake Engineering Research Center,.Report No.
EERC-78/29, U.C. Berkeley, CA., 1979.

4. Lysmer, J./, Udaka, T., Tsai, C.F. and Seed, H.B. .
"Flush - Computer Program for Approximate 3-D ®
Analysis of Soil-Structure Interaction Problems,
Earthquake Engineering Research Center, Report No.
EERC-75/30, U.C. Berkeley, CA., 1975.

5. Gomez-Masso, A., Lysmer, J., Chen, J. and Seed, H.B.
"Soil-Structure Interaction in Different Seismig
Environments," Earthquake Englneerlng Research Center,
Report No. EERC-79/18, U.&. Berkeley, CA., 1979.

6. . Clough, R.W. and Penzien, J. "Dynamics of Struc-
- tures," McGraw-Hill, Inc., New York, pp. 198-199,
226-230 and 578-594, 1975. .

7. Luco, J.E. "Vibrations of a ngld Disc on .a Layered
. Viscoelastic Medium,"™ Nuclear Engrg. and Desi#¥gn,
Vol. 36, pp. 325-340, 1976. ° ) -

8. Veletsoe, A.S. and Wei, T.Y. "Lateral and"Rocking
Vibration of Footings," Proc. ASCE, J. Soil- Mech. & .
Foundation Div., SM9, pp. 1227-1248, 1971.

9. Luco, J.E. and Westmann. "“Dynamic Response of Circular
Footings," Proc. ASCE, J. Engrg. Mech., Vol. 97,
EMS, pp.q1381-1395, 1971. | /

10. Veletsos, A.S. and Verbic, B. "Vibrations of Viscoé-
elastic Foundations,* Int. J. Earthguake Engineering
and Structural Dynamlcs, Vol. 2, No. 1, pp. 87-102,
- 1973,

11. Wong, H.L. "Dynamjic Soil-Structure Interaction,"
Earthquake Ehgineering Research Laboratory, Report
No. EERL 75- 01 Cal ‘Tech., Pasadena, CAJ, 1975.

*

-’ - ’
231




2.

13.

14,

15 .

o

16.

America, 59, Pp- 1061-1070, '1969. / Y,

*
*
4, R p—
-]

“\ .

Kausel, E. and Ushijima, R. "Vertical and Torsional
Stiffness of 'Cylindrical Footings," Resedrch Report-
Pub. No. R79-6, Dept. of Civi% Engrg.ﬁ M.I.T., MA.,
1979. ’

Veletsoe, A.S. "Dynamic of Structure-Foundation
System," in Structural and Geotechnical Mechanics,
ed. by W.J. Hall, Prentice-Hall, Inc., Englewood
Cliffs, N.J., pp. 333-361, 1977. . ‘
ATC-3 ‘Code,"Tentative Provisions for the Development
of Seismic Requlations for Buildings," Prepared by
Applied Technology Council, ATC Pub. ATC 3-06,
Natlonal Bureau of Standards Special Pub. 510, NSF
Pub 78~ -8, 1978. . \ ‘

L
Roesset, J.M., Whitman, R.V. and "Dobry, R. "Modal
‘Amelysis of Structures With Foundation Iateraction,”
Proc. ASCE, Struc. Div.,.ST3, pp. 399-416, 1973.

»

Foss, A.K. "Co-ordlnate Which Uncouple the Equatioms
of Motion of. Damped Linear Dynamic System,". J.
aApplied ‘Mech.’, Vol. 25, pp. 361-364, 1958.

) )
Parmelee, R.A., Perelman, D.S. and Lee, S.L. "Seis-
mic Response of Multlplestory Structure on Flexible
Foundatldns,” Bulletin Selsmologlcal Soc1ety)of

/

Newmark, (N.M.’ and Rpsenblueth E. ,ﬂ%uhd enta}s ‘of
Earthquake Engineering," Prentice-flall, ™nec.,
Engliiood Cllffs,«N J., pp. 23-101 and 149-151, 1971.

Kausel, E., Roesset J M. and Waas, G. "Dynamic o
Analy51s of Footlngs on Layered Meg;a," Journal of.
the Englneerlng Mechanlqs Division, ASCE, October
41'9753\ : . . f:

Kausel, E., Roesset‘ J.M. "Dynamlé Stiffness of

<

" Circular Foundatiens," Jourhal of the-Englngerlng

" Mechanics Division,:ASCE, -Vol. 101, No. EM6

”pp. J71- 785 December 1975b. L 0

"Richart; Jr., F.E., Ha&L, Jr", J.R. and Woods!, R.D.

"Vibrations of Soils anq,Foundatlons,% Prentlce-Hall (;
Inc., New Je:sey» 1970. ° s _ )

Luco, J. Es Impedance\ Functiohs for a ngld Founda- |
tion of a Layered Medium," Nuclear Eng}neerlng and’
Jesign, v°1 31, No.. . 2, December 1974. ~

- 4 ‘. { T ) <

-

G5 e “ 2 R

-




23,

24.

25.’

26.

27.

28.

29.

30.
31.
32,

33.

) : 29 3
Beredugo, Y.0. and Novak, M. "Coupled Horizontal
and Rocking Vibration of Embedded Footings," Canadian

Geotechnlcal J., PP. 477 497, November 1972.

Johnson, G.R., Chrlstlans, P., Epstein, H.I.. VStiff-

, ness Coefficiemts for Embedded Foot\ngs," Journal of

the Geotechnical Engineering Divisign, ASCE, Vol. 101,
No. GT8, pp. 789-800, August 1975.

Novak, M. "Vlbratlon of Embedded Footings and Struc- Ny

tures," Proceedings of the ASCE National Structural
Engingering Meeting, San Francisco, 1973.

Tsai, N.C., Neihoff, D., Swatta, M. and Hadjian, A.E.

eraction Parameters," Nuclear Enginegring, and
sign, Vol. 31, No. 2, December 1974,

é}tle Use of Frequency’ Independent Soil-Structure

Kobori, T., Minai, R. and Suzuki, T. "The Dynamical
Ground Compliance of a Rectangular Foundation on a

" Viscoelastic Stratum," Bull.'Disaster Prevention .

Research Institute, Kyoto Unlver51ty, vol. 20,

pp. 289-329, 1971.

Dominguez, J. "Dynamic Stiffness of Rectangular
Foundations," Publication No. R78-20, Dept. of Civil
Engrg., M.I.T., 1978. -

SN
Gazetas, ‘' G.C. "Dynamlc Stiffness Functions of Strlp
and Rec¢tangular Footings on Layered Soil," S.M.

‘Thesis, Dept. of Civil Engrg., Mass. Inst. of Tech., /

Cambridge, Mass., 1975.

Novak, M. "Effect of Soil on Structural Response to
Wind and Earthquake," Inter. J. Earthquake Engineering
and Struct. Dyn., Vol. 3, No. 1, pp. 79-96, 1974.

e B

Novak, M. and Bereaggo, Y.0. " "Vertical Vibration of
Embedded Footlngs, J. Seil Mechanics and.Foundations
Division, ASCE, SM12, pp. 1291—1310,aDecember 1972.

Roesset, J M. "Stlffness and damplng Coefficients
of Foundation," Proceedlngs, Specialty Se351on1 ASCE

Natlonal Convention, Florida, pp. 1-30, 1980 . %m |

) Novak, M. - "Prediction of Foot1ng Vlbratlons," J. of

‘the Soil Mechanics and Foundations Division, 'Pro-
ceedings of the ASCE, Vel 96, No. SM3 pp 837 861
May 1970. .

)

o 2 o - ) r - J
- .
o * A /




i 2

34. Novak, M. and Sheta, M. "Approximate Approach to
Contact Problems of Piles," Proc. Geotech. Engrg.
Div, ASCE National Convéntion "Dynamic Response of
Pile Foundations: Analytical Aspects," pp. 53-79,
October 1980.

35, Warburton, G.B. "Forced Vibration of a Body On An
Elastic Stratum," J. Applied Mechanics, pp. 55-58,

@ 1957. .

36. Bycroft,ﬁG.N. "Forced Vibrations of a Rigid Circular”
Plate on a Semi-Infinite Elastic Half Space and on an
Elastic Stratum,"” Phllosophlcal Transacjgions of the

J Roy. Soc., London, _Series A, Vol 248, No. 948,
pp. 327-368, 1956, %

37. Luco, J.E. "Impedance Functiohs for a Rigid Founda-
tion on a Layered Medium," Nuglear Englneerlng and
Design 31, pp. 204-217, 1974. .

38. Nogami, T. and Novak, M. "Soil- Pile Interactlon in’
Vertical Vibration," Intérnational Journal ‘of Earth-
Luake Engineering and Structural Dynamics, Vol. 4,
No. 3, pp. 277-293, January—March 1976.

39. Elsabee, F..and Morray, J.P. "Dynamic Behavior of "
Embedded Foundations," Research Report R77-33, Civil
Englneerlng Department, Massachusetts Institute of:
Technology, September 1977. . !

40. Kobori,.T., Minai, R. and Baba, K. "Dynamlc Behavigur
of a Laterally Loaded Pile,” 9th Int. Conf. Soil .
Mech., Tokyo, Ses51on 10, 6, 1977. LT ) ‘

. 41. Kuhlemeyer, R. L "Statlc and Dynamlc Laterally Loaded

Piles," J. Geotech. Eng. Div.,. ASCE Vol 105, No.

GT2 pp. 289-304, 1979.

42, ovak, M.’ "Dynamic™ Stlffness and Damping of Piles,"”
/l////ﬁanadlan Geotechnlcal Jeurnal, Vol. II, pp. 574-598,
1974 : »
43. Novak M. and Aboul- Ella, F. "Stiffness. and Damping
of Plles in Layered Media," Proc. Earthq. Engrg. and
Sbil Dyn., ASCE Specialty Conf., Pasadena, Callfornla,
Pp. 704 719, June 19-21,, 1978b. . .

44. Novak M. and Grigg, R. F. namic Experlnents With
Small Pile Foundations," Cana ian Geotechnical" Journal,
vol. 13, No. 4, pp. 372-385, Novembex 1976 ‘ : .

» , i

"4



45.
46.
417,

48,

4‘9 o

50.

51.

. 52,

753,

"Div., ASCE (to appear)";

Tajimi, H. "Dynamic Analysis of a Structure Embedded
in .an Elastic Stratum," Proc. 4th World Conf. Earth-
guake Engineering, Chile, 1969. )

1

Kaynia, A.M. and Kausel, Q% "Dynamic Behavior of
Pile Ggoups," »2nd Int. ConP: on Numerical Methods in ’
Of fshore Piling, Austin, Texas, 1982,

L]

Nogami, T. "Dynamic Stiffness and Damping of Pile

- Groups in Inhomogeneous Soil;" Proc. of Session: on

Dynamic Respbnse of Pile Foundations: Analytical
Aspects, ASCE Nat. Conv., pp 31-52, October 1980.
Sheta, M. and Novak, M. "“Vertical Vibration of Plle
Groups," Journal’ of the Geotechnical Engineering Div.
ASCE, Vol. 108, No: GT4, pp. 570-590, April 1982.

Trbojevic, V.M., Marli; J.) Danish, R. and Delinic,
K. "Pile-Soil-Pile Interaction Analy51s for Pile
Groups," 6th SMIRT, Paris, 1981.

Waas, G. and Hartmann, H.G. "Pile Foundations Sub-
jected to Dynamic Horizontal Loads," European Simula-
tion Meeting "Modelling and Simulation of Large Scale
Structural Systems," Capri, Italy, pp. 17, September,
1981 (also SMIRT, Paris). , |

S
Wolf, J.P. and von Arx, G.A. “"Impedance Functions
of a Group of Vertical Plles," Pro¢. ASCE Specialty
Conf.! on Earthquake Engrg. and Soil Dynamics,
Pasadena, Callf., 11, pp. 102441041, 1978.

Poulos, H.G. "Behav1our of Laterally Loaded Piles.
II -4Pile Groups,", J..Soil Mech. Foundations Div.,
ASCE, 97 .(SM5), pp. 733-751, 1971. !

Poulos, H.G.. "Group Factors for Pile-Deflection
Estimation,"” J. Geotech. Engrg. Diw., ASCE, GT1l2, ;
pP. 1489 1509; 1979. . , .

N
&

. .Poulos, H.G. and Davis, E.H. "Pile Foundations *° ,

alysis and Desxgn,“ John Wlley ahd Sons, pp. 397
1980. ,

Poulos, H.G. and Randolph, M.F. "A Study of Two
Methodsy for Pile Group Anaiy31s,' J. Geot. Engrg.

(]
Novak M. and E1 Sharnoubys,.B.. "Stiffness Constarits

of Single Piles," J. Geot. ‘Engrg. DlV., ASCE, Vol.
109, No. 77 PP 961-974, July 1943. < <y

= . ) IR




69.

70.

7.

72.

73.

74.

75.
76.

77.

80.

3, PP 65-77, 1944. .

Muto, K. and Kobayashi, T. "Experimental vibration .
Analysis of RC Building Model," (in Japanese), Trans. q

Architect. Inst. Japan, No. 205ﬂ pp. 43-51, 1973,

Traill-Nash, R.W. "Modal Methods in the Dynamics of
Systems Wlth Non-Classical Damping," Earthquake Eng
Structy DY"., 9, pp. 153- 169, 1981,

Bielak, J. "Dyhamic Behavior of Strtictures With Em-
bedded Foundations," Res. Report E8, Universidad
Nacional Autonoma de Mexico, p. 36, April 1974.

Novak, M. and El Hifnawy, L. %Eifsct of Soil-Structure
Interaction on Damping of Structurés," Earthquake Engrg.
and Structural Dynamics, Vol. 11, pp..595-621; 1983.
Chopra, A.K. and §ut1errez, J.A. "Earthquake Response
Analysis of Multistory Buildings Including Foundation
Interaction," Int..J. Earthquake Engrg. Struct. Dyn.,

¥

Argyrls, J.H., Dunne,'ﬁ.c. and Anelopoulos, T. "Dyna-
mic Response by Large-Step Integration," Computer .
Methods in Applied Mechanics and Englneerlng, Vol. 2,
pp. 185-203, 1973. e ' .
Voo
Bathe, K.J. and Wilson, E.L. "Numeridal Method in
Finite Element Analysis," Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., pp. 494-506-, 1376.

Newmark,; N.M. "A Method of Computation for Sfructural
Dynamics,"” J. Engrg. Mech. Div., ASCE, No. EM3,
pp. 67-94, July 1959.; , ) .

Cooley, J.W. and Tukey, J.W. "An Algo}ithm fqg\:;ih,
Machine Calculation of~Complex Fourier Series;" e-
matécs of Computatlion, Vol 19, No 19, .pp. 297-30%, .
196 . : :

Vanmarck E.H. *Structﬁral Responsé to Earthquakes,"

in eismlc Risk and Engineering Decisions, C. Lomnitz
and E. Rosenbluéth, Eds., Elsevier Publishing Co.,

’ Inc., Amsterdam, The Netherlands, pp.. 425~ 446 1976. v

Tajimi, H. ”A Stryctural Mejhod of Determining ﬁhe
Maximum Response of a Building Structure During an -

- Earthquake," Proceedings of Second World Conference

on Earthquake Engineering, Vol. 11, -1960,

Davenport, A.G. 'The Distrxbutxon of Largest Values

of a Random Function W;th Application to Gust Loading,* .
Proceedings, Institution of- Clvil _Engineers, London,, '
Vol. 28, PP.5187~196, 1964, '

a

"




3y
S

81.
82.

83.

84.
~_ Multistep Methods," BIT, 3, pp. 27-43, 1963.

85.
86 .
87.
88.
89.

90.

91.

92.

Vanmarcke, H. "Random Vibfation Approach to Soil
Dynamics Problems," The Use of Probability in Earth-
quake Engineering, ASCE,,pp. 143-176-, 1977.

Rice, S. 0. "Mathematlcal Analysis of Random Noise,"
Bell System Technical Journal, Vol. 24, pp. 40-416.
1945,

Hilber, H.M. and Hughes, T.J.R. "Collocation, Dissi-
pation and 'Overshoot' for Time Integration Scheme in - *
Structural Dynamics," Earthquake Englneerlng and
Structural Dynamlcs, 6, pp- 99-117, 1978. ' '

Dahlquist, G. "A Special Stability Problem for Linear .

Sharpe, R.D. "The Seismic Response of Inelastic Struc-
tures," Ph.D. Thesis, University of Canterbury, Christ-'.
church,-New Zealand, 1974.

Wilson, E.L., Farhoomand, I. and Bathe, K.J. "Non-
linear Dynamic Analysis of Complex Structures," Earth-
quake Engineering and Structural Dynamics, Vol. 1,

pp. 241-252, 1973.

‘Christian, J.T. "Probabilistic Soil Dynamics Spate-

of-the-Art," - Journal of the Geotechnical Division,

'ASCE, 106, pp. 385-397, 1980.

Rausch, E "Maschinen Fundamente," VDI-Verlag,

Dusseldorf“(in Germar), Chapter 6, pp. 107-232, 1950.
L)

Barkan, D.D: "Dynamics of Bases.and Foundations,"

McGraw-Hlll Book Co. » Inc., Chapter 5, pp. 185-241,

19682. ,

Y

- Novak, M. ;Foﬁnda%ions for Shock-Producing Machines,”

Canadian -Geotechnical Journal, No. 1, 1983.

_Rivin, E.I. "Design of Viﬁration.déolation Systems

for Forging Hammers," Sound and Vlbratlon, pp. 12-15,

April 1978. ° ' ‘J/
Major A.- "Vibration Analysis and'De51gn of Founda~’
tions for Machines. and Tyrbines;" Collet's Holdings:
Limited, London, Chapters XII. and XIIL, pp. 221 269
l962




93.

94.

95,

96.

97.

a8.

©102.

T 103,

. Natiopal Building Code of Canada, Issued by the 'Y

.Pp. 1099-1110, November 14-16, 1977.

Srinivasulu, P. and Vaidyanathan, C.V. "Handbook of

Machine Foundations, " Tata McGraw-Hill Publ. Co.
Ltd.} New Delhi, Chapter 4, pp. 103-134, 1976.

Kim, T.C. and Novak, M. "Dynamic Properties of Some
Cohesive Soils of Ontario," Canadian Geotechnical
Journai, vVol. 18, No. 3, pp. 371-389, August 1981.

Harris,. C.M. and Crede, C.E. "Shock and Vlbratlon’
Handbookg" McGraw-Hill, Chap. 8, 1976.

Lysmer, J. and Richart, F.E. “Dynamic Response of
Footings to Vertical Loading," Journal of the Soil
Mechanics and Foundations Division, ASCE, 92,

pp. 65-91, 1966.

Novak, M., Sheta, M., E1 Sharnouby, B. and El Hifnawy,
L. "DYNA, A/Computer Program for Calculation of Res-
ponse of Rigid Fouhdations’to Dynamic Loads," The

Systems Analysis, Control and Design Activity (SACDA) ,
The University qf Western Ontario, London, Canada,
May 1983. o

Bielak, J. and Palencia, V.J. "Dynamic BehaVvior of’

_ Structures With Pile- Supported Foundation," Proc. 6th

World Conference on. Earthquake Englneerlng, New Delhi,
Vol. 11, pp. 157651581, 1977.

]
Whitman, R.V. 2nd ASCE Specialty Conf. on Structural
Desigh of Nuclear Plant Facilities,'New Orleans, Lo.,
Vol. II, Session 6, Soil Structure Interaction, Pub.
by ASCE, New York, pp. 257-268, 1975. -

Assoeciate qgmmittee on the National Building Code,
National 5e earch Council of Canada, Ottawa, 1980.
Structural Analysis and Design.of Nuclear Plant
Facilities, ‘Supplement. "Analysis for Soil-Structure’
Interaction Effects for Nuclear Power Plants," Report
by the Ad Hoc Group on Soil-Structure Interaction,
Strqctural Division of ASCE May 1976.

Novak, M. _"Sorl-Structure ‘Interaction Under Wind
Loading,” ‘Proceedings 14th Annual Meeting of the
Soeiety of Engiheering Sodence, Inc., Bethlehem, Pa.,

Yang, J.N. and Lin, Y.K. "Along-Wind Motjon of Multy-
story -Building," J. Engrg Mech. Div.® ASCE, Vol. 107,
No. EM2, Proc. Paper 16170, pp. 295-307, April 1981.

- i ) ]




Nrm—————— v

+
»
—
3

'104.

'105.
106.

107.

108.

109.

. 110,

111.

112,

113, °

- o 260

Lin, Y.K. and Wu, W.F. "Along-Wind Response of Tall
Building on Compliant Soil," Fourth International
Conference on Application of Statistics and Proba—
bility in Soil and Structural Engineering,
Universita di Flrenzqa(Italy, Pltagora Edltrlce,
1983.

-

[

Vickery, B.J. "A Model for, the Prediction of the
Response of Chimneys to Vortex Shedding," Inter=
national Chimney Design Symp051um, Munlch pp. 25-26,
October 1978.

Davenport, A.G. and Novak, ‘M. "Vibration of Struc-
tures Induced by Wind," Chapter 29-11 in Shock and
Vibration Handbook, Second Edn., edited by C.M.
Harris and C.E. Crede, ‘McGraw-Hill, 1976.

Vickery, B.J. and Clark, A.W. "Lift or Across-Wind
Response of Tapered Stacks," Journal of Structurel
Division, ASCE, January 1972.,

The Supplement to the National Building Code of
Canada, Issued by the Associate Committee on the
National Building -Code, National Research Council

‘0of Canada, Ottawa, Commentary B, p. 149, 1980. .

L4

Davenport, A.G, "The Application of Statistical
Concepts to the Wind Loading of Structures," Pro-
ceedings of the Institution of Civil Engineers,

Vol. 19, pp. 449-472, August 1961, :

3
€

- Davenport, A.G. et al. "New Appfoaches to Design

Against Wind Action," Research Report, Faculty of
Engineering Science, University of Western Ontari’o.

McNamgra, K. "Characteristics of the Mean Wind and
Its Effects on Tall Towers," Ph.D. Thesis, Univer-
sity of Western Ontario.

A

Harris, R.I. "Seminar of Construction Industry
(Research and Information Association," Paper 3,
Institution of Civil Engineers, 1970.

Slmlu,‘E. "Wind Spectra and Dynamlc,Along Wind
Response," ‘Journal of the Structural Division, A CE .
Vol. 100, No: 'ST9, Proc.' Paper 10815, pp. 1897-19{0
.September .1994. '




“

114.

115,

o 1160

117.

11s..

179

120.

121.

261

"

Pestel, E.C. and Leckie, F.A. "Matrix Methods in

Elasto—Mechanlcs," McGraw-Hlll Book Co., Inc., New

Yogk 1963.

Lin’, Y.K. "Random Vibration of Periodic and Almost
Perlodlc Structures,” in Mechani€s Today (Ed. S.
Nemat Nasser), Vol. 3, pp. 93~ ~-124, 1976.

Davenport A.G. “"Gust Ldading Factors," J. Struc.
Div., ASCE, 93, PP. 11-34, June 1967.

Davenport, A.G. "The Besponsé of Slender Line-Like
Structures t¢ a Gusty Wind," Prqceedings, Institution .
of Civil Englneerlng, London, Vcol. 23, pp. 389-408,

" 1962.

Davenport, A.G. "The Distribution of Largest Values
of a Random Function With Application to Gust .
Loading," .Procéedings, Institution of Civil Engineers,
London, Wol. 28, pp. 187-196, 1964.

A ~
.- Davenport, A.G. "The Prediction of the Response of

tructures to .Gusty Wind," Internatiortal Research

Seminar von Safety of Structures Under Dynamic Loading ,

* Trondheim, June 1977, TAPIR, V. 1, pp. 257-284, 1978.

Hansen, R.J., Reed, J. W and Van Marke, E.H. "Human
Response to Wind- Induced Motion of Buildings," ‘
Journal of Structural Division, .ASCBE\ Vol. 99,

’pp. 1587-1605, July 1973.

7V1ckery, B.J. and Kao, K.H. "ﬁrag or Along-Wind

Response of Slender Structures," J. Struct. Div.,
ASCE,  Vol. 98_ pp. 21-36, }972

<
-

¢

.~




)

YRR T T

[TSY WEe—_

.

L

b R a i Y

’

09

ke —

D

~

e g et

e




	Western University
	Scholarship@Western
	1984

	Soil-structure Interaction Under Dynamic Loads
	Laila Mahmaud El-hifnawy
	Recommended Citation


	tmp.1410229803.pdf.854OG

