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Abstract

Background: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such,
there is a growing requirement for global soil information. Although several global soil information systems already exist,
these tend to suffer from inconsistencies and limited spatial detail.

Methodology/Principal Findings: We present SoilGrids1km — a global 3D soil information system at 1 km resolution —
containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg21), soil pH,
sand, silt and clay fractions (%), bulk density (kg m23), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil
organic carbon stock (t ha21), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy
suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a
compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global
environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful
covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and
taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies
assessed using 5–fold cross-validation were between 23–51%.

Conclusions/Significance: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at
a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km
are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty
to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations.
However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as
new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative
Commons Non Commercial license.
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Introduction

There is increasing recognition of the urgent need to improve

the quality, quantity and spatial detail of information about soils to

respond to challenges presented by growing pressures on soils to

support a large variety of critical functions [1–4]. Arrouays et al.

[3] argue that existing soils information is not well suited to

addressing vital questions related to mapping, monitoring or

modelling soil processes that are driven by fluxes or changes in

soils of water, nutrients, carbon, solutes or energy. Conventional

models of soil variation describe variation in the horizontal

dimension using polygons comprising classes of named soils [5]. In

the vertical dimension, variation is described in terms of classes of

horizons or layers that vary in their properties, thickness and

depth. These conceptual models of discrete variation of classes of

soil in horizontal and vertical directions are not well suited for use

in many of the (global) simulation models and decision making

systems currently used to describe and interpret soil functions and

processes, such as supporting crop growth modelling, modelling

hydrological and climatological processes, soil carbon dynamics or

erosion [2,5]. Most modern spatial models that require informa-

tion about soils as an input need accurate numerical information
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about continuous variation in soil properties. Models also require

input data layers that are complete, consistent and as correct and

current as possible. These requirements are not well met by

current sources of soils information, especially sources of global

extent.

Soil is probably one of the least well described thematic layers at

the global scale, and existing global soil maps are often of

undocumented or unknown accuracy [5]. At the moment, only

coarse scale soil maps of the world are available at an effective

resolution of about,20 km [10]. The most commonly used global

soil maps include [2,5]: Harmonized World Soil Database

(HWSD) [11], USGS-produced soil property maps (http://soils.

usda.gov/use/worldsoils/mapindex/) and ISRIC-WISE based soil

property maps [12].

While widely used and cited, these various coarse resolution soil

maps tend to suffer from artefacts due to use of different soil

mapping concepts between countries and regions, from variation

in the underlying soil mapping scale (usually between 1:0.5 M to

1:5 M) and from differences in reliability of source data within and

between continents [2,5]. They can also not easily be updated with

new information and often lack any measure of uncertainty, which

is assumed to be significant. In summary, currently available

global soil maps are not comparable in level of detail, spatial

accuracy and usability with other global environmental layers such

as global land cover and climatic products (Figure 1).

In this paper, we present and describe SoilGrids1km — a global

3D soil information system at 1 resolution — as a first response to

the need for a new, consistent and coherent, global soil

information. SoilGrids1km was produced using the Global Soil

Information Facilities (GSIF), which was recently developed at

ISRIC as a framework and platform to support widespread, open

collaboration in the assembly, collation and production of global

soil information.

Materials and Methods

Global Soil Information Facilities
ISRIC — World Soil Information has a mandate to serve the

international community with information about the world’s soil

resources to help addressing major global issues. Over the last four

years, in collaboration with a growing number of international

partners and with a direct support from the Bill and Melinda

Gates Foundation (AfSIS project; http://africasoils.net), ISRIC

has been developing a cyberinfrastructure called Global Soil

Information Facilities (GSIF).

GSIF has a particular emphasis on supporting the assembly and

collation of geo-registered soil profile descriptions with associated

analytical data, and on supporting the production of new maps of

3D continuous soil properties and soil classes at global to regional

scales. GSIF consists of several components: data portals for

assembling and hosting soil profile data and covariate data,

software for global soil data analysis and mapping, and facilities for

documenting data and methods and for automating workflows.

One of these components is ‘‘SoilGrids’’ — an automated

system for global soil mapping. SoilGrids is an implementation of

model-based geostatistics [13,14] for the purpose of predicting soil

properties (in 2D or 3D) and soil classes for a global soil mask (see

further Figure 3c) using automated mapping. Automated mapping

is the computer- aided generation of maps from point observations

and covariate layers, with minimal human intervention, so that

map updating is easy. In the context of geostatistical mapping,

automated mapping implies that model fitting, prediction and

visualization are run using fully automated and reproducible

workflows [14,15]. The current implementation of SoilGrids

focuses on producing predictions at 1 km spatial resolution and for

a selection of soil properties and classes of interest to modelers and

to international organizations such as FAO, Intergovernmental

Panel on Climate Change (IPCC), the Consultative Group on

International Agricultural Research (CGIAR) and similar.

We have imagined GSIF as a crowd-sourcing system, largely

inspired by systems such as OpenStreetMap, Geo-wiki [16] and

the R Open Source environment for statistical computing [17]. In

this context, GSIF follows the ‘‘Agile’’ approach to software/IT

development [18] meaning that we support rapid development,

integration of soil field data, output validation, and rapid

publishing of results. A new development cycle with new outputs

(in principle of improved accuracy) is implemented in succession

within an automated processing framework until the desired target

specifications have been reached.

Input data for SoilGrids1km
The main input data sources for SoilGrids1km are global

compilations of publicly available (shared) soil profile data and

environmental layers at 1 km resolution; both are freely accessible

via portals (http://worldsoilprofiles and http://www.worldgrids.

org). The main sources of soil profile data used to produce the first

version of SoilGrids1km are: the USA National Cooperative Soil

Survey Soil Characterization database (http://ncsslabdatamart.sc.

egov.usda.gov/) and profiles from the USA National Soil

Information System (http://soils.usda.gov/technical/nasis/), LU-

CAS Topsoil Survey database [19], Africa Soil Profiles database

[20], Mexican National soil profile database [21], Brazilian

national soil profile database [22], Chinese soil profile database

[23], and the soil profile archive from the Canadian Soil

Information System [24]. Other significant sources of profile data

used are: ISRIC-WISE [25], SOTER [26], SPADE [27], and

Russian soil reference profiles [28].

The compilation of points shown in Figure 2 is possibly the

largest compilation of soil ground-truth data in the world. It can be

compared, for example, to a compilation of meteorological station

data used to generate the WorldClim dataset [29]. A large part of

the soil profile data used to generate SoilGrids1km can be accessed

via the WorldSoilProfiles.org data portal, however some data sets

such as LUCAS [19] have strict data use policies and can only be

obtained from the original data provider.

As covariates for SoilGrids1km we used a selection of GIS layers

(75): mainly MODIS images, but also climate surfaces [29], Global

Lithological Map (GLiM) [30], HWSD mapping units [11], and

SRTM DEM-derived surfaces. These layers (apart for the GLiM)

are all available via the WorldGrids.org data portal. The actual

number of covariates used during the analyses is different for each

soil variable as these are iteratively selected for each soil attribute,

based on their statistical significance to help predict the specific

attribute.

Before model fitting, the original covariates were converted to

principal components (n=95) to reduce data overlap and help

remove noise and artefacts [7]. Number of components is larger

than the number of original covariates because covariates such as

lithology and land form classes are converted to indicators before

the principal component analysis.

Soil mask map
We make no spatial predictions for global land cover categories

that represent non-active soil areas, such as: artificial surfaces and

associated areas (.50% of pixel covered with urban areas), bare

rock areas, water bodies [31], shifting sands, permanent snow and

ice. The global mask map of soils with vegetation cover and world

deserts is shown in Figure 3c.

SoilGrids1km
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The soil mask map was derived using the long term MODIS

LAI images (MOD15A2), MODIS land cover product

(MOD12Q1) [6], and global water mask [31] products. We

distinguish three classes in the soil mask:

1. soils with vegetation cover — pixels with MODIS LAI.0 for

at least one month in the last 12+ years (2000–2011),

2. urban areas — equal to the MODIS land cover product

‘‘Urban and built-up’’ class,

Figure 1. Spatial resolution and temporal coverage/publication time of some widely used global environmental data layers (global
soil layers have been highlighted): GLWD — Global Lakes and Wetlands Database, HWSD — Harmonized World Soil Database,
MOD12C1 — MODIS Land Cover Type Yearly L3, MOD13C2 — Vegetation Indices Monthly L3, CHLO/SST — MODIS Aqua Level-3
annual Chlorophyll/mid-IR Sea Surface Temperature, FRA — Forest Resources Assessment, GPW — Gridded Population of the
World, DMSP-OLS — Nighttime Lights Time Series, GlobCov — Land Cover classes based on the MERIS FR images, GADM— Global
Administrative Areas, TanDEM-X — Germany’s topographic radar mission. Key agenda setters in the terms of production and
dissemination of remote sensing and thematic environmental layers at the beginning of the 21st century include: NASA’s MODIS (Moderate-
resolution Imaging Spectroradiometer) and Landsat products — in terms of thematic content and usability [6–8], and Germany’s TanDEM-X new
global 12 m resolution DEM with 62 m vertical accuracy [9]. Based on information retrieved on February 15th 2014. was produced using the Global
Soil Information Facilities (GSIF), which was recently developed at ISRIC as a framework and platform to support widespread, open collaboration in
the assembly, collation and production of global soil information.
doi:10.1371/journal.pone.0105992.g001

SoilGrids1km
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3. bare soil areas — areas without any biological activity but

classified as ‘‘Barren or sparsely vegetated’’ in the MODIS land

cover product.

Spatial prediction models
Two groups of spatial prediction models were implemented:

1. 2D or 3D regression and/or regression-kriging [32,33]

combined with splines for numerical properties as implemented

in the GSIF package for R. Here, the regression part is fitted

using either:

N Multiple linear regression [34] (for predicting pH, sand, silt

and clay percentages and bulk density),

N General Linear Models (GLM’s) with log-link function

[35,36] (for predicting organic carbon content and CEC),

N Zero-inflated models [37] (for predicting coarse fragments

and depth to bedrock; Figure 4),

2. Multinomial logistic regression (as implemented in the nnet

package for R) for predicting distribution of soil classes [36].

As a general framework for mapping soil properties and classes

we use the regression-kriging method commonly used in

geostatistical mapping of soil properties [32,33,38]. We extend

the existing 2D regression-kriging method to 3D space i.e. to

predict values at voxels (Figure 4 right). In addition, we combine

regression with splines, so that relationships between the soil

property and covariates as well as soil-depth are modelled

simultaneously:

ẑz(s0,d0)~
Xp

j~0

b̂bj
:Xj(s0,d0)zĝg(d0)z

Xn

i~1

li(s0,d0):e(si,di) ð1Þ

where ẑz is the predicted soil property, si are geographical

coordinates, di is depth expressed in meters below land surface.

Note that b̂bj
:Xj and ĝg(d0) are the trend part of the model, where

Xj(s0,d0) are covariates at the target location s0 and depth d0,

ĝg(d0) is the predicted vertical trend, modelled by a spline function,

and e(si,di) are residuals interpolated using 3D kriging using

kriging weights li(s0,d0). Because all covariates in the current

version of SoilGrids1km are in fact 2D (i.e. values available at

surface or for top-soil only), we copy the values of covariates for all

depths in the regression matrix, which is a simplification. With the

increasing availability of gamma radiometrics and similar, we

anticipate that also 3D covariates will be used more in the near

future with values differing per depth, although many covariates

(e.g. elevation) will always remain 2D by definition.

3D regression and/or regression-kriging can be considered

novel approaches to modeling soil variation. For comparison, the

GlobalSoilMap project (http://globalsoilmap.net) proposes that

soil-depth spline functions and spatial prediction functions should

be fitted separately [3,40]. This spatial prediction system can be

considered 2.5D because 2D models need to be fitted for each

standard depth, i.e. each depth is modelled using a separate model

that includes different combinations of covariates and in which

data from predictions at one depth do not influence predictions at

another. In the case of 3D modelling, a single model (Eq.1) is used

for predicting in both X,Y and d for any property or class of

interest, and fitting of the regression equation and residuals occurs

at the same time as part of a single step. Another advantage of

using a full 3D spatial prediction system, in comparison to the

2.5D, is also that it allows for producing spatial predictions and

confidence intervals at any 3D location and not only at standard

depths.

For each soil property, we have evaluated which version of the

model in Eq.(1) would be most applicable. For example, initial

tests showed that, for some soil properties e.g. soil organic carbon

content and bulk density, the soil-depth relationship (ĝg(d0)) can

often be better modelled using a log-log relationship. Consider for

example:

Figure 2. World distribution of soil profiles used to generate the SoilGrids1km product (about 110,000 points). Courtesy of various
national and international agencies (see: Acknowledgments).
doi:10.1371/journal.pone.0105992.g002

SoilGrids1km
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Figure 3. Examples of input layers used to generate SoilGrids1km: (a) long-term day-time MODIS land surface temperature, (b)
percent cover Chernozems (based on the HWSD data set), and (c) global soil mask map. The spatial prediction domain of SoilGrids1km
are the areas with vegetation cover and urban areas, while bare soil areas have been masked out. See text for more explanation.
doi:10.1371/journal.pone.0105992.g003

SoilGrids1km
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dORCORC(d)~ exp (t0zt1: log (d)) ð2Þ

where dORCORC(d) is the predicted soil organic carbon content at

depth d and t1 is the rate of decrease with depth. The model fitted

using the global compilation of soil profiles (Figure 5b) has

t0 =4.1517 (standard error 0.005326) and t1 =20.60934 (stan-

dard error 0.00145). This model explains 36% of the variation in

the log-transformed ORC, which is a significant portion. This

illustrates that any global soil property model can significantly

profit from including depth into the statistical modelling. For other

soil properties that do not show a monotonic vertical trend, higher

order splines implemented via the ns function in the package

splines [35] have been used to account for complex, non-linear

relationships.

Further, soil covariate layers (Xj) used to produce SoilGrids1km

were selected to represent the CLORPT model originally

presented by Jenny [38,41]:

S~f (cl,o,r,p,t) ð3Þ

where S stands for soil (properties and classes), cl for climate, o for
organisms (including humans), r is relief, p is parent material or

geology and t is time. Most of the cl,o,r,p,t covariates are now

publicly available and can be obtained at low cost thanks to

NASA’s/USGS Earth Observation projects such as MODIS and

SRTM. We have also included soil class information (WRB

reference groups) extracted from the HWSD (Figure 3b). These

are basically traditional soil polygon delineations, comparable to

other categorical covariates e.g. land cover classes or geological

units.

The 3D regression function used for modelling changes of the of

soil organic carbon content in 3D was thus (in R syntax):

formulaString~ ORCDRCz1ð Þ*PC1zPC2z:::zPC95

zns(altitude, df~2) glm (formula~formulaString,

family~gaussian link~logð Þ,

data~rmatrix)

where ORCDRC is the organic carbon content, PC1 to PC95 are the

principal components derived from some 75 covariate layers

representing Jenny’s soil forming factors, altitude is depth in

meters from the soil surface, rmatrix is the regression matrix with

values of target variable and predictors, ns is the natural spline

function and df=2 sets the number of allowed breakpoints (in this

case two breakpoints to allow for curvilinear relationship). Soil

classes are useful ‘carriers of soil information’ [42], hence for

SoilGrids1km we also provide global predictions for standard soil

classes classified according to the two most widely used interna-

tional soil classification systems:

N FAO’s World Reference Base (WRB) — with focus on

mapping soil groups e.g. Chernozem, Luvisols, Gleysols and

similar. The current system [43] defines 32 reference soil

groups.

N United States Department of Agriculture (USDA) Soil

Taxonomy — with focus on mapping the soil suborders.

The current system [44] defines 67 soil suborders (subdivision

of 12 orders: Alfisols, Andisols, Aridisols, Entisols, Gelisols,

Histosols, Inceptisols, Mollisols, Oxisols, Spodosols, Ultisols

and Vertisols).

Models for predicting WRB soil groups and USDA soil orders

were fitted using the nnet package (fits multinomial log-linear

models via neural networks) using the default settings of 100

Figure 4. Standard stratification and designation of a soil profile: (left) soil horizons, solum thickness and depth to bedrock (‘R’
layer), and (right) six standard depths used in the GlobalSoilMap project [3].
doi:10.1371/journal.pone.0105992.g004

SoilGrids1km
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maximum iterations [36]. Soil classes are modeled as 2D variables

i.e. the model does not include depth component, e.g.:

formulaString~TAXGWRB*PC1zPC2z:::zPC95

nnet :: multinom formula~formulaString,ð

data~rmatrix, MaxNWts~7000Þ

where TAXGWRB is the field observed WRB soil group, nnet::

multinom is the function to fit a multinomial logistic regression

and MaxNWts sets the maximum allowable number of weights high

enough for such a large regression data (regression model with ca.

100 covariates).

Note that all predictions in the initial version of SoilGrids1km

were made using regression modelling alone. 3D kriging on a

sphere at almost one billion locations (130 million pixels times 6

depths) was beyond our technical capacities in 2013/2014. Efforts

to use full 3D regression-kriging to produce the first version of

SoilGrids1km were abandoned in response to two main issues.

Firstly, the computational load to undertake global kriging was too

demanding for the processing resources and time we initially had

at our disposal. We are working to both increase our processing

power and to make the global kriging algorithms more efficient so

we can run them globally for subsequent versions of SoilGrids1km.

Secondly, there are very large areas of the world (e.g. Russia,

northern Canada) that presently have almost no point profile data.

These areas lack a sufficient number and density of point

observations to successfully compute residuals, which can then

be kriged (otherwise kriging leads to serious artifacts). Since we

were unable to produce residuals for large parts of the world, we

decided not to try to krige residuals globally at first, at least until

we obtain enough new point data to support computing and

kriging residuals for all major portions of the globe. A full

implementation of the 3D regression-kriging model built for

SoilGrids has been run successfully at the continental level in

Africa but, for the present (February 2014), we have not been able

to apply full 3D regression-kriging globally. As soon as these

technical limitations are solved, future versions of SoilGrids1km

will likely also include a 3D kriging component.

Quality control
Resulting spatial predictions in SoilGrids1km are evaluated

using two groups of methods:

N Cross-validation: We used 5–fold cross-validation to estimate

the average mapping accuracy for each target variable. For

continuous soil properties, we evaluate the amount of variation

explained by the models [45]; and for soil classes we evaluate

the map purity (i.e. proportion of observations correctly

classified) and kappa statistic.

N Visual checking and overlay analysis: Because there is a large

amount of spatial data, we have requested users to visually

explore maps and look for artefacts and inconsistencies.

Inconsistencies and artefacts in maps can be continuously

reported through a Global Soil Information mailing list.

Figure 5. Individual soil profile from the ISRIC soil monolith collection (a) and globally fitted regression model for predicting soil
organic carbon using depth only (b). The individual profile horizons are described by Mokma and Buurman [39]. Adjusted R-square for the
model on the right is 0.363. Open circles show measured values for the profile on the left.
doi:10.1371/journal.pone.0105992.g005

SoilGrids1km
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To derive amount of variation explained by the models for

numeric variables we first derive Root Mean Square Error [46]:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l
:

Xl

i~1

ẑz(si){z(si)½ �2

vuut ð4Þ

where l is the number of validation points. Amount of the variation

explained by the model is then:

S%~ 1{
SSE

SSTO

� �
~ 1{

RMSE2

s2z

� �
½0{100%� ð5Þ

where SSE is the sum of squares for residuals at cross-validation

points (i.e. RMSE2
:n), and SSTO is the total sum of squares.

Derivation of secondary soil properties: soil organic
carbon stock
The SoilGrids1km output maps can be further used for

estimation of secondary soil properties which are typically not

measured directly in the field and need to be derived from primary

soil properties. For instance, consider estimation of the global

carbon stock (in t ha21). This secondary soil property can be

derived from a number of primary soil properties [47]:

OCS ½kg m-2�~
ORC

1000
½kg kg-1�:

HOT

100
½m�

:BLD ½kg m-3�:
100{CRF ½%�

100

ð6Þ

where OCS is soil organic carbon stock, ORC is soil organic

carbon mass fraction in permilles, HOT is horizon thickness in

cm, BLD is soil bulk density in kg m23 and CRF is volumetric

fraction of coarse fragments (.2 mm) in percent (see also

Figure 6).

The propagated error of the soil organic carbon stock (Eq.6) can

be estimated using the Taylor series method [48]:

sOCS~
1

10,000,000
:HOT:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BLD2:(100{CRF)2:s2ORCzs2BLD

:(100{CRF)2:ORC2
zBLD2:s2CRF

:ORC2

q ð7Þ

where sORC, sBLD and sCRF are standard deviations of the

predicted soil organic carbon content, bulk density and coarse

fragments, respectively. Note that we first predict OCS values for

all depths/horizons, then aggregate values for the whole profile (0–

2 m). We further use a map of predicted depth to bedrock to

remove all predictions outside the effective soil depth (areas where

soil is shallower than 2 m). A more robust way to estimate the

propagated uncertainty of deriving OCS would be to use

geostatistical simulations (e.g. derive standard error from a large

number of realizations 100) that incorporate spatial and vertical

correlations. Because we are dealing with massive data sets,

running geostatistical simulations for millions of pixels was not yet

considered as an option.

Software implementation
SoilGrids1km predictions are generated via the GSIF package

for R, which makes use of a large number of other basic and

contributed packages — gstat, raster, rgdal and other R packages

for spatial analysis [49]. GSIF package for R contains most of the

functions required to produce SoilGrids, and will remain the main

platform in the future to obtain global model parameters and

access SoilGrids through an API.

As previously mentioned, the target resolution of SoilGrids1km

is relatively coarse, nevertheless, the compu- tational intensity and

memory required to produce SoilGrids1km is high: one run of

SoilGrids1km takes about 12–16 hours on a 12–core HP Z420

workstation with 64 GiB RAM running on a Windows 7 64-bit

system. Note also that since we produce predictions at six depths

and uncertainty for each depth, the quantity of GeoTIFF maps

produced is in the order of 2506912MiB<250 GiB. To deal with

processing such large data sets we used a combination of tiling and

parallel processing, as implemented via the snowfall package for R

[50], to maximize the CPU usage and minimize the time required

to produce predictions.

The spatial prediction process consists of four main steps:

1. preparation of gridded covariates (principal component

analysis),

2. preparation of point data,

3. model fitting and

4. spatial prediction and construction of GeoTiffs.

From the steps listed above, spatial prediction take the longest

computing time, which is often in the order of 20 or more hours

using the computer specification listed above. As a rule of thumb,

we look for mapping frameworks that can generate outputs within

48 hrs. If the whole process from model fitting to prediction and

export of maps to GeoTiffs consumes .48 hrs of computing, we

consider the system to be impractical for routine operational use.

Results

Model fitting
The results of model fitting (Table 1) indicate that the

distribution of soil organic carbon content is mainly controlled

by climatic conditions, i.e. monthly temperatures and rainfall [51],

while the distribution of texture fractions (sand, silt and clay) is

mainly controlled by topography and lithology. These key

predictors agree with expectations based on existing knowledge.

The regression models account for between ca. 20–50% of

observed variability in the target variables (Table 1). Detailed

model parameters can be obtained from the SoilGrids1km

homepage at http://soilgrids.org.

Figure 7 illustrates two examples of spatial predictions for soil

organic carbon content and pH. As mentioned previously, soil

organic carbon clearly decreases with depth (see also the soil-depth

curves shown in Figure 8). Areas mapped as having elevated

values of organic carbon are typically associated with cooler and

wetter climate regimes and boreal-tundra type vegetation [51–54].

Note that several soil variables have skewed distributions hence

also the output predictions are skewed, so that we use log-

transformed legends to maximize contrast in the map (Figure 7).

Figure 8 shows predicted values for organic carbon and pH

(mean value and confidence intervals) for the same location shown

in Figure 5. The prediction intervals are rather wide (see also

Figure 11), which is connected to the fact that the models explain

only 23–51% of the variation. However, it is important to note

that these are global maps of predictions made using relatively

coarse resolution covariates. We assume that is unlikely that any

effort to map the distribution of soils at a resolution of 1 km could

explain a much larger proportion of the total variation in soil

properties, as much of this variation occurs over distances less than

1 km [55].
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Also note that SoilGrids1km predictions are not capable of

representing abrupt changes in values through depth e.g. due to

buried horizons, textural heterogeneity or similar. Because we

have used linear or close to linear models (plus smoothing splines)

to predict values of targeted soil properties and not e.g. regression-

trees, these models have smoothed out a significant amount of the

variability in the point data, so that it is not realistic to expect

abrupt changes in soil properties; at least not vertically (as

illustrated previously in Figure 8).

Figure 9 (with a zoom in on Italy) shows that the SoilGrids1km

predictions exhibit an order of magnitude greater spatial detail

than previous global soil information products e.g. HWSD. This is

mainly because a large stack of fine resolution remote sensing

based covariate layers have been used to generate SoilGrids1km,

and many of these have shown to be significantly correlated with

soil properties and classes. Spatial classification accuracy for

mapped soil classes, when evaluated using kappa statistics

(Table 1), shows a somewhat better match between what was

observed on the ground for the USDA classification system

(ground-truth classification available for 16,212 profiles) than for

the WRB system (classification available for 37,015 profiles).

For many WRB classes our models predicted occurrences in

areas that are inconsistent with a strict definition of geographic

areas where these classes can occur. The most difficult to map

seem to be WRB classes such as Andosols, Solonchaks, Calcisols

and Cryosols. These classes are strictly defined (e.g. Andosols are

connected with volcanic activities and specific geology) and we

need to explore ways to prepare covariates that will prevent

Figure 6. Soil organic carbon stock calculus scheme. Example of how total soil organic carbon stock (OCS) and its propagated error can be
estimated for a given volume of soil using organic carbon content (ORC), bulk density (BLD), thickness of horizon (HOT), and percentage of coarse
fragments (CRF). See text for more detail.
doi:10.1371/journal.pone.0105992.g006

Table 1. Mapping performance of SoilGrids1km — amount of variation explained (from 100%) or purity/kappa for categorical
variables — for eight targeted soil properties and two soil classes distributed via SoilGrids1km.

Variable name Type GSIF code Units Range (observed) Amount of var. explained

Soil organic carbon (dry combustion) 3D ORCDRC g kg21 0–450 22.9%

pH index (H2O solution) 3D PHIH5X 1021 2.1–11.0 50.5%

Sand content (gravimetric) 3D SNDPPT kg kg21 1–94 23.5%

Silt content (gravimetric) 3D SLTPPT kg kg21 2–74 34.9%

Clay content (gravimetric) 3D CLYPPT kg kg21 2–68 24.4%

Coarse fragments (volumetric) 3D GRAVOL cm3 cm23 0–89 -

Bulk density (fine earth fraction) 3D BLDVOL kg m23 250–2870 31.8%

Cation-exchange capacity (fine earth fraction) 3D CEC cmol+/kg 0–234 29.4%

Depth to bedrock 2D DBR cm 0–240 -

Soil group (WRB taxonomy) 2D TAXGWRB - - 28.1% (kappa)

Soil suborder (USDA taxonomy) 2D TAXOKST - - 40.3% (kappa)

WRB= ‘‘World Reference Base’’; USDA= ‘‘United States Department of Agriculture’’.
Amount of variation explained by the models (Eq.5) i.e. kappa statistics for soil types was determined using 5–fold cross-validation.
doi:10.1371/journal.pone.0105992.t001
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prediction of those classes in areas where, by definition, they

should not occur. Likewise, USDA suborders are based on soil

moisture and climate regimes, for which we did not currently have

global covariate maps, and consequently strictly defined classes

such as Xerolls (Mollisols in Mediterranean climate; xeric moisture

regime) were predicted in Brazil, which probably does not match

the definition of the class.

Multinomial logistic regression is a purely data-driven method,

so that the overall mapping performance highly depends on

representation of environmental conditions by soil samples. All

classes that are poorly represented in the environmental space, due

to under-sampling, are understandably difficult to map accurately

using a purely data- driven model [56]. Nevertheless, the final

results of automated extraction of soil classes using multinomial

logistic regression are promising, especially for mapping the

USDA classes. The mapping accuracy could probably be

improved by adding more classification-related covariates and

more field observations of soil taxonomy, hopefully through

crowd-sourcing, in areas where the accuracy is critically low.

Figure 10 shows derived total soil organic carbon stock based on

Eq.(6). According to this map, the total (baseline) amount of soil

organic carbon (up to 2 m depth; excluding deserts, bare rock

areas and ice caps) is about 330 t ha21 on average. The highest

concentrations of soil organic carbon are in areas of cooler climate

and high rainfall, i.e. northern parts of Canada and Russia seem to

be pools for most of the world’s soil organic carbon. This largely

agrees with results by Hugelius et al. [53] and Scharlemann et al.

[57].

Figure 7. Example of SoilGrids1km layers: (A) soil organic carbon content in permille, and (B) soil pH for the topsoil (0–5
centimetres). Boxplots show the sampled distribution of the soil property based on the present compilation of global soil profile data.
doi:10.1371/journal.pone.0105992.g007
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The map shown in Figure 10 can be used to supplement maps

of total aboveground biomass (see e.g. Ruesch and Gibbs [58] and

Scharlemann et al. [57]). Our results also confirm that, overall, the

amount of organic carbon below ground is greater than held in

biomass above ground [51].

Quality issues
The results of cross-validation are shown in Table 1. The cross-

validation results, as expected, largely reflect the model fitting

success — properties that can be modeled successfully can also be

mapped with higher accuracy. The soil properties that were most

difficult to map are soil texture fractions, CEC and WRB soil

groups. Although the accuracies of the predictions rarely exceed

50% of the total variation, all statistical models are significant

showing clear spatial patterns (see e.g. Figure 7). Low cross-

validation percentages are common in soil mapping [38,55], these

numbers were not unexpected. Nevertheless, these can be

considered promising initial results considering the complexity of

harmonization of input point data (see further discussion).

Based on the feedback we received to date from users visiting

the project homepage at http://soilgrids. org, the main limitations

of SoilGrids1km are:

1. problems arising from poor relationships between covariates

and dependent variables e.g. covariates can only explain part of

the variability, which could possibly be improved by using

more sophisticated statistical models;

2. problems arising from high spatial clustering of sampling

locations (see Figure 2; observations are too sparse to improve

on the regression using a kriging step);

3. problems associated with using partially-harmonized soil

profile data;

4. problems arising from use of HWSD soil mapping units that

are of too coarse scale and often not completely harmonized so

that the country borders are still visible (obvious artefact);

5. limitations in the usability of SoilGrids1km for spatial planning

at county or farm scale due to coarse resolution of the maps;

6. inability to consider and model significant sources of variability

e.g. temporal variability due to changes in land use and/or

land cover [59];

7. limitations arising from insufficient use of higher quality and

finer resolution conventional soil maps prepared at national to

regional scales.

Discussion

SoilGrids1km were released on December 5th 2013 (World Soil

Day) at the FAO Rome, as a proposed contribution of the

Netherlands to the Global Soil Partnership [60]. The system, at

the moment, includes predicted values for (Table 1): soil organic

carbon (g kg21), soil pH, sand, silt and clay fractions (%), bulk

density (kg m23), cation-exchange capacity (cmol+/kg) of the fine

earth fraction, coarse fragments (%), soil organic carbon stock (t

ha21), depth to bedrock (in cm; see Figure 4), World Reference

Base soil groups [43], and USDA Soil Taxonomy suborders [44].

We focused on generating spatial predictions at six standard

depths (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and

100–200 cm), for which spatially distributed estimates of upper

and lower level 90% prediction intervals are presented. As such,

we follow the corresponding specifications of the GlobalSoilMap

project [3].

Initial predictions of soil classes were made at higher (more

general) taxonomic levels for both WRB (soil groups) and Soil

Figure 8. SoilGrids1km-derived soil-depth curves for the profile shown in Figure 5. Location of the profile: 6.3831uE, 50.479167uN. The
shaded background indicates the 90% prediction interval for each depth. ORCDRC = soil organic carbon content in permilles; PHIHOX = soil pH in
water suspension. See also Table 1.
doi:10.1371/journal.pone.0105992.g008

SoilGrids1km

PLOS ONE | www.plosone.org 11 August 2014 | Volume 9 | Issue 8 | e105992

http://soilgrids


Figure 9. Spatial predictions of WRB soil groups for SoilGrids1km (left) and HWSD data set representing conventional soil maps
(right). A zoom in on North of Italy. White pixels indicate missing values.
doi:10.1371/journal.pone.0105992.g009

Figure 10. Predicted global distribution of the soil organic carbon stock in tonnes per ha for 0–200 centimetres. Total soil organic
carbon stock (here displayed on a log-scale) was estimated as a sum of soil organic carbon stocks for six standard depths and adjusted for the depth
to bedrock. Projected in the Sinusoidal equal area projection to give a realistic presentation of areas. Vast deserts (e.g. Sahara or Gobi) can be
assumed to contain close to zero organic carbon stock. See also Figure 11.
doi:10.1371/journal.pone.0105992.g010
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Taxonomy (suborders). This was done because the available point

profile data sets do not provide a sufficient number of locations

representative of all of the lower levels of classification in each

system. Without a sufficient number of examples for all lower

classes, distributed fully across all of the feature space within which

each class can occur, it is not possible to successfully predict many

of the lower classes defined for either system. Once we have more

point observations that encompass the full range of lower level

classes across the entire environmental and geographic spectrum

of their distribution, we will be able to predict at a more detailed

taxonomic level for both classification systems.

The main purpose of SoilGrids1km is to provide initial, fully

worked, examples of how complete and consistent global maps of

soil properties, and soil classes, can be produced using currently

available legacy soil profile data, freely available gridded maps of

global covariates and an on-line automated soil mapping system

(GSIF). Additionally, we want to use these initial example maps to

implement and demonstrate procedures and systems for support-

ing free and unrestricted access to what we consider to be the best

possible current, globally-complete, estimates of soil properties and

soil classes. It is hoped that the production, distribution and use of

these new, initial, global soil maps will stimulate additional efforts

to both improve these maps and to launch new efforts to collect

and use new soils information in new soil mapping and monitoring

projects. We especially aim at supporting countries in Africa, and

large parts of Asia and Latin America, that often have limited

infrastructures to produce soil information at fine resolution [2,5].

We think that there is a great potential in using the existing field

observations and Open Source software to map spatial and spatio-

temporal patterns, i.e. without doing any major financial

investments.

A number of legitimate concerns exist relative to the initial

SoilGrids1km outputs. Probably the most immediate and signif-

icant concern has to do with the accuracy and usability of the

initial predictions of soil property and class values. We acknowl-

edge that the accuracy of these initial predictions rarely exceeds

50% of the total variation and, for many properties, is often closer

to 20–30% (Table 1). The results of cross-validation are informa-

tive but need to be taken with caution because most of the soil

profiles (Figure 2) were not collected using probability sampling, so

that the cross-validation results possibly carry the same sampling

bias as the original data [61]. Also note that the accuracy of

mapping WRB groups is likely lower than the accuracy of

mapping USDA soil suborders because over 40% of the soil

profiles that were used for the WRB classification were actually

classes translated from national systems. Translation i.e. harmo-

nization of international soil records probably introduces addi-

tional noise that cannot be solved by regression modelling.

We argue that it is unreasonable to expect any global map of

variation in soil properties to explain much more than 50% of the

total observed variation. It is well known that a significant

proportion of spatial variation in soil properties occurs over

relatively short distances of meters to tens of meters [55,56]. It is

therefore unreasonable to expect that a map of global variation in

soil properties, portrayed at a spatial resolution of 1 km, will be

able to capture and portray the 50% or more of total variation that

occurs at resolutions shorter than 1000 m. Our hope and plan is to

gradually improve the accuracy of the predictions by addressing

these issues and concerns one by one, in a systematic way

(Figure 13). This should be done primarily by working with

national and regional soil data agencies, i.e. by adding additional

covariates at increasingly finer spatial resolutions and by adding

more field/point data from areas that are under-represented.

Although millions of soil profile records have undoubtedly been

collected throughout the world, they are often unequally

distributed (Figure 2). Likewise, many soil profiles funded by

Figure 11. Lower and upper confidence limits (90% probability) of estimated soil organic carbon stock (tonnes per ha) for standard
depths 0–30 and 30–60 centimeters for the same area as shown in Figure 9. Derived using the procedure explained in Figure 6.
doi:10.1371/journal.pone.0105992.g011
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public money are not publicly available or are available in paper

format only. Due to unbalanced representation and spatial

clustering, predictions in the current version of SoilGrids1km are

largely controlled by point data sets available for the USA and

Europe. Most of these are from agricultural soils, which inflicts

additional bias. Our predictions are therefore likely to exhibit

lower accuracy for poorly represented areas such as most of the

former Russian Federation, the northern Circumpolar Region,

semi-arid and arid areas.

We have also purposely excluded all areas that show no

evidence of historical vegetative cover. Our predictions are hence

not globally complete. This is a definite drawback for use in global

modelling and we acknowledge a need to use either expert

judgment or data from other mapping sources to provide

alternative predictions for areas with missing values. Again, for

deserts and bare rock areas it is perfectly valid to assume a 0 value

for soil organic carbon, but it is not as straightforward to estimate

soil pH for shifting sand areas for example. For the present, we

argue that it is inappropriate to try to make predictions for areas

that completely lack vegetative cover e.g. shifting sands of Sahara.

These areas have very few to zero point profile observations which

can be used to calibrate statistical prediction models. In addition,

even if they did have a sufficient number of point profile

measurements, the environments of extreme climatic conditions

are so different from vegetated ones so that any prediction model is

likely to be very different from ones we develop for vegetated

areas. We recommend that SoilGrids1km users who require values

for the complete land mask fill in the gaps by using expert

knowledge or best regional estimates as available from conven-

tional soil mapping (e.g. HWSD, ISRIC-WISE).

Figure 12. Accessing SoilGrids1km from the SoilInfo app for mobile devices. SoilInfo app is available for download via http://soilinfo.isric.
org.
doi:10.1371/journal.pone.0105992.g012
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It is worth emphasizing that we designed GSIF as a flexible

framework with respect to the choice of depths, dimensions (2D or

3D spatial predictions), spatial support size, soil properties and

classes and prediction models. Outputs from GSIF are reproduc-

ible as a result of use of scripting. Consequently, all maps can be

easily updated as new inputs (point and covariate data) become

available. We used the GSIF system to generate SoilGrids1km

maps for the standard depths defined by the GlobalSoilMap

project, but basically one could use the same system for any depth

and also for any new property. GSIF is therefore scalable and can

be used to produce spatial predictions for virtually any soil

property, at any depth and at any spatial or temporal resolution.

This, of course, assumes the existence of a sufficient number of

point soil observations of appropriate quality and of sufficient

covariate layers at sufficiently fine spatial resolution to support

modelling at a given spatial resolution.

All methods and models fitted for the purpose of producing

SoilGrids1km are available via an Open Source platform (GSIF

package for R) and could be adapted for both regional and local

mapping. As with input data, the models used to make predictions

in GSIF can be improved or replaced in subsequent iterations

once better performing models are identified. Prediction models

that could be considered in the future include those based on

hierarchical Bayes models, regression trees, Random Forests and

other machine learning techniques. Regression- trees and similar

models could help model better abrupt changes in values

vertically, and Random Forests could help emphasize relative

importance of specific covariates. The actual modelling approach

used to produce any set of predictions will be reviewed

continuously to identify and apply the approach that produces

the most correct, consistent and usable outputs.

Figure 13. Projected evolution of SoilGrids in the years to come. We anticipate that the main drivers of success of SoilGrids will be use of
machine learning methods for model fitting, development of spatio-temporal geostatistical models, use of new sources of field and remote sensing
data and use of faster and more powerful computing capacities. Amount of variation explained by these models will eventually reach a ‘natural limit’

(short-range variation that cannot be explained using spatial prediction models), until there is a technological jump in soil remote sensing technology
e.g. ground penetrating scanners.
doi:10.1371/journal.pone.0105992.g013
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Because the SoilGrids1km maps can be easily updated (or

changed) the process used to produce the map (i.e. SoilGrids

system) becomes more important than the map itself. Previously,

the map product was seen as more important than the process

used to produce it, because any map had to be considered as valid

and useful for an extended period, as it took so long, and cost so

much, to revise or update the map. Under the GSIF model, the

final (or most current) map is no longer the most important output

and any system that only provides a final map is considered

deficient. We hence argue that it is more important to provide

access to all data and models needed to produce (and reproduce)

the map than to simply provide the final map itself.

In the future, we hope that GSIF will be used by an increasing

number and variety of interested parties, including national and

regional soil mapping agencies, commercial consulting agencies,

advocacy groups and non-governmental organizations. We

envisage GSIF as a platform for cooperation, collaboration,

innovation and sharing. It will become so if interested parties

decide to participate and contribute as committed partners. The

number of soil profiles freely shared by the soil science community

is constantly growing and national agencies and other data

providers are encouraged to contribute their point data to help

improve the prediction accuracy locally for specific countries/

regions, for the benefit of the global user community and in

support of the global UN conventions.

SoilGrids1km are available for download under a Creative

Commons non-Commercial license via http://soilgrids.org. Soil-

Grids1km are also accessible via a Representational State Transfer

(http://rest. soilgrids.org) service and via a mobile phone app

‘‘SoilInfo App’’ (http://soilinfo-app.org; Figure 12).
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