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ABSTRACT 

Field data of soiling energy losses on PV plants are scarce. Furthermore, since dirt type and accumulation vary with the 
location characteristics (climate, surroundings, etc.), the available data on optical losses are, necessarily, site dependent. 
This paper presents field measurements of dirt energy losses (dust) and irradiance incidence angle losses along 2005 on a 
solar-tracking PV plant located south of Navarre (Spain). The paper proposes a method to calcúlate these losses based on 
the difference between irradiance measured by calibrated cells on several trackers of the PV plant and irradiance calculated 
from measurements by two pyranometers (one of them incorporating a shadow ring) regularly cleaned. The equivalent 
optical energy losses of an installation incorporating fixed horizontal modules at the same location have been calculated as 
well. The effect of dirt on both types of installations will accordingly be compared. Copyright (Ü) 2010 John Wiley & Sons, 
Ltd. 
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1. INTRODUCTION 

The radiation received by the cells inside a PV module is 
significantly lower than the radiation arriving to the module 
surface The main causes of this energy loss are dirt 
accumulated on the surface (dust, pollution...) of the 
modules and reflection and absorption losses by the 
materials covering the cells. The reflection and adsorption 
losses depend on the radiance incidence angle [1-3], thus 
they are normally referred to as angle of incidence (AOI) 
losses. The AOI losses tend to increase as dirt on the 
surface augments [3,4], henee it isreasonable to study them 
concurrently. The term Optical losses encompass both 
types of energy losses. The valué of the optical losses is 
essential to estimate and analyze the energy behavior of a 
PV installation. 

Soiling energy loss field data are scarce in the literature. 
More to the point, since type and accumulation of dirt 
depend on the climate (rainfall, etc.), location surroundings 
and the position and inclination of the PV modules, 

available data on optical losses are, necessarily, site 
dependent [5-9]. The interest on studying dirt energy 
losses particular to different locations is patent. 

In the literature, each field analysis treats soiling energy 
losses in a particular way. For instance, Hammond et al. in 
1997 [5] recorded throughout a year the effect of dirt on the 
short-circuit current of several modules assembled into a 
two-axis PV tracker (Phoenix, Arizona). These data were 
compared with other identical modules placed on the same 
tracker but regularly cleaned. From the comparison of both 
datasets, it was concluded that rainfall rates over 5mm 
reduced dirt energy losses (due solely to dust) approxi-
mately 0.5%. Also, the máximum dirt energy losses regist-
ered during rain periods on tracking PV modules were 3%. 
As a conclusión, the influence of the incidence angle on 
radiation energy losses due to dirt was confirmed—but not 
quantified. 

Becker et al. [6] and Haeberling et al. [7] analyzed the 
reduction of the annual efficieney of fixed PV facilities 
with a 30° inclination angle located near urban áreas, thus 
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cióse to pollution sources such as train stations or chimneys 
and biological pollution sources such as forests, farms, etc. 
The first of these studies reported that regular cleaning of 
the modules resulted on an energy ranging from 2 to 6%. 
Haeberling et al. determined that, in 4 years, the generator 
power had decreased between 8 and 10% during the 
summer months due to pollution. 

Kimber et al. [8] tried to simúlate dirt energy losses in 
arid climates as a function of rainfall data and number of 
manual clean-ups. So, they suggested a linear model to 
represent the daily system efficiency reduction due to dirt 
(dust) between rainfalls. To adjust this model to a choice of 
locations, several datasets of the system efficiency during 
the dry season were used. The daily dirt energy loss rates 
range from 0.1 to 0.3%. The model was also used [10] to 
estímate year dirt energy losses in the Los Angeles área 
(south of California). This analysis determined energy 
losses of about 5%. 

In spite of the fact that Hammond et al. analysis showed 
that there was a dependency between the irradiation 
incidence angle and dirt energy losses, none of the studies 
mentioned hereby took it into consideration. As a matter of 
fact, although year energy losses due to incidence angle are 
frequently estimated [4,10], field measurements are scarce 
and the existing ones do not account for dirt energy losses 
[2]. 

This paper presents field measurements of dirt energy 
losses (dust) and irradiance incidence angle losses along 
2005 on a PV plant located south of Navarre (Spain). The 
plant incorporates single vertical-axis trackers (azimuth 
tracking systems) tilted 45° from the horizontal plañe. The 
analysis methodology is based on the difference between 
the irradiance measured by three calibrated cells placed on 
separated trackers and the irradiance measured by two 
horizontal pyranometers (one of them incorporating a 
shadow ring) regularly cleaned. Likewise, the equivalent 
dirt and incidence angle losses of a fixed horizontal plant 
have been determined based on the measurements of three 
horizontal cells placed along the plant. The effect of dirt on 
both types of installations will accordingly be compared. 

2. LOCATION CHARACTERISTICS 

The plant "Montes del Cierzo" has a total power of 
1.2 MWp and integrates 400 single vertical-axis trackers 
(azimuth tracking) with 45° tilted modules (Figure 1). 

The plant is located in Tudela (North of Spain) in a rural 
área surrounded mainly by crops (cereal and some trees) 
and forest (conifers). Approximately 1 km away, there is a 
road with regular traffic flow (Figure 2). 

Table I summarizes the main climate particularities of 
the área. 

In this área, it rains mostly during spring and autumn. 
Because of the particularities of the área, the dirt accu-
mulated on the modules is basically dust, although bird 
droppings are often found on the panels (Figure 3). 

Figure 1. "Montes del Cierzo" PV plant. 

Figure 2. Satellite ¡mage of the PV plant and surroundings. The 

blue colored áreas correspond to forestall rural ground (F.R.G.) 

composed of conifers; the green colored áreas correspond to 

treeless forestall rural ground; the light brown colored áreas 

indícate dry-farmed crop lands (cereals) and the dark brown 

colored ones indícate woody crop lands. 

3. METHODOLOGY 

There are six calibrated cells distributed along the plant, all 
of them with the same technology as the cells of the PV 
modules (Equivalent Technology Cells). The cells are 
placed on three different trackers. Three of these cells are 
placed on the same plañe as the modules and the other three 

Table I. Main climate data characteristic of the Tudela área (lat. 

42.1°) 

Year horizontal irradiance 

Year rainfall (mm) 

Spring rainfall (mm) 

Summer rainfall (mm) 

Autumm rainfall (mm) 

Winter rainfall (mm) 

Daily máximum rainfall (rr 

Mean wind speed (m/s) 

(kWh/m2) 

im) 

10 year 

average 

1680 

370 

125 

75 

100 

80 

60 

4 ± 2 

2005 

1619 

291 

100 

30.9 

128.4 

31.9 

33.4 

4.3 



Figure 3. (a) Dust deposits on a PV module and (b) bird excre-

ments on a PV module. 

are on the horizontal plañe (Figure 4). The irradiance 
incident on the cells is calculated through measurements of 
the short-circuit current and temperature. So, the tempera-
ture effect on the short-circuit current can be corrected 
according to a current temperature factor. Cell calibration 
uncertainty is approximately ±2%. 

Since these cells are not cleaned up, the dirt deposited on 
the cell surface can be assumed to be the same as the dirt 
accumulated on the PV modules. It should be pointed out 
that, during the study, a particular effort has been made to 

Figure 4. Keierence cells placed on one of trackers of the PV 

plant. 

eliminate localized dirt, such as bird drops, on the modules. 
This type of dirt is only found on certain generators and 
depending on its size it can short-circuit bypass diodes in 
the modules. The scope of this study is to ascertain the 
influence of dirt that affects in a similar way all the 
generators, mainly dust. 

The global and diffuse horizontal radiation is measured 
by means of 2 Kipp & Zonen CMl 1 pyranometers, one of 
them incorporating a shadow ring. These pyranometers are 
regularly cleaned; henee the measurements can be consi-
dered not to be affected by dirt. Besides, the pyranometer 
cosine responses can be considered to be perfect [11]; that 
is to say, the incidence angle losses can be neglected 
(except for very high incidence angles). The expected daily 
aecuracy of the pyranometer measurements is ±3%. 

In order to reduce the influence of the uncertainty in the 
cells and pyranometer measurements, all the devices were 
previously assembled in horizontal position and adjusted 
so that the difference in measurements at midday of a 
summer clear day was in the range of ±1 % (on a summer 
day, near midday, the influence of the AOI is negligible). 
Figure 5.a shows the horizontal irradiance measured by the 
pyranometer and two of the calibrated cells during a clear 
day. Both the cells and the pyranometer were cleaned prior 
to start measuring. As shown in Figure 5.b, the difference 
between measurements is in the range of ±1%. 

3.1 . Theoretical model 

Martin and Ruiz have proposed a model to describe the 
incidence angle losses as a function of the amount of dirt 
[3]. The model includes an expression for the angular 
loss factor of the solar radiation direct component, FTS 

(6S ) , defined as the ratio between the transmittance at a 
certain incidence angle, 9S, and the transmittance at normal 
incidence: 

FTfl(0s) = l - -
exp 

cosús 
ar exp 

exP(-t 
(1) 

10 12 M 

Figure 5. (a) Horizontal irradiance measured by the pyranometer and two of the calibrated cells during a clear day and (b) difference 

between measurements provided by the cells and the pyranometer near the midday. 



Table II. Typical valúes of aras a function of dlrt accumulated on 

the surface 

Dirt amount ' soilec ea /Tci. 3r 

Clean 

Low 

Médium 

High 

1 

0.98 
0.97 
0.92 

0.17 

0.2 

0.21 

0.27 

where ar is an adjustable parameter function of dirt acc-
umulation on the surface. The amount of dirt on the surface 
can be characterized by the ratio between the normal 
incidence transmittance on a soiled surface and the normal 
incidence transmittance on a clean surface, rs0iied/rciean. 
Table II includes typical valúes of ar as a function of the 
amount of dirt on the surface. 

Equation (1) can be applied not only to the direct 
radiation, B, but also to the circumpolar component of 
the diffuse radiation, Dc- The same paper [3] includes 
formula to calcúlate the angular loss factor for the isotropic 
component of the diffuse radiation, FT^, and the angular 
losses factor for the reflected radiation, FTfi. Besides, Hay 
et al. presented a model to obtain the isotropic component, 
D¡, and the circumpolar component, Dc, of the diffuse 
irradiance over a tilted surface based on the horizontal 
irradiance without the need to use any empirical 
parameters [12]. 

D = D, + DC (2) 

D/ = D ( 0 ) ( l - t 1 ) 
1 + eos B 

£>(0)fci 
Dc — maxfO, eos 0S 

eos ezs 

where 

*i 
5(0) 5(0) _ 

So(O) fi0eocos6»zs 

(3) 

(4) 

(5) 

In Equations (2)-(5), B(0) and O(0) are the direct and 
diffuse components of the horizontal radiation; B0 is the 
solar constant; s0 is the eccentricity correction factor, /3 is 
the inclination of the surface from the horizontal plañe and 
(?zs 1S the zenith angle. 

Combining both models, the incidence irradiance on 
a tilted and dirty surface, Geff (6S ) , can be modeled 
according to the global and diffuse irradiance on a clean 
and horizontal surface, G(0) and O(0): 

--, / /i \ -* soiled 

-* clean 

x[(l -FTfl) (B+Dc) -(1-TTD)D! + (1-FTR)R] 

(6) 

As mentioned above, field measurements of horizontal 
radiation, G(0) and O(0), measured by both clean hori-
zontal pyranometers, and irradiance on a tilted and dirty 
surface, Geff (6S), measured by the reference unclean cells, 
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Figure 6. Measured, Geffj meas, and calculated, GCaic, irradiance 

on the tracking surface during the date 16 July 2005. Calculated 

irradiance including dirt and angle of incidence effeets (D+A), 

Geff, modei. ¡s also represented. 

are available. The daily normal incidence transmittance, 
Tsoilcd/Tclc¡m, and the optical energy losses on a tilted 
surface are calculated by the best fit of Equation (6) for 
each day of the period under analysis. Figure 6 presents the 
results of a certain day assuming that dirt remained 
constant throughout the day. Parameter ar was equal to 
0.22. The corresponding normal incidence transmittance 
was 0.96. Errors are frankly small. The optical energy 
losses on a tilted surface resulted to be 0.5%. 

Similarly, the normal incidence transmittance and the 
optical energy losses can be calculated for a horizontal 
surface. Adapting Equation (6), the incidence irradiance on 
a horizontal and dirty surface, Gs¡¡ (0,6s), can be calculated 
according to 

-* soiled i 
Geff (0,6 

-'clean 
[(1-FTB)B(0) + (1-FTD)D(0)] 

(7) 

Figure 7 represents the best fit of Equation (7) to the 
empirical data recorded on the same date as in Figure 6, 
assuming the dirt on the surface was the same throughout 
the day. Parameter ar equaled 0.26. The corresponding 
normal incidence transmittance was 0.92. The optical 
energy losses on the horizontal surface were 12.1%. 

It is possible to refine the calculation considering the 
particular spectral responses of the pyranometers and solar 
cells. Some authors, such as Martín and Ruiz [13] or King 
[14] have suggested equations that allow that enhancement. 
The difference is noticeable mainly on the first and last 
moments of the day, when the air mass is the biggest. 
Figure 8 presents the result of correcting the measured 
irradiance of the calibrated cells by the equation proposed 
by D. L. King on the same date shown in Figures 6 and 7. 
The valúes of ar and the normal incidence transmittance 
remain the same, whereas the optical energy losses on the 
tilted surface become 4.5%. The optical energy losses on 
the horizontal surface become 11.4%. Thus, to use or not to 
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Figure 7. Horizontal ¡rradiance measured by the referencescells, 

Geff, meas(O), and the pyranometer,Gmeas(0), during the date 16 July 
2005. Calculated horizontal ¡rradiance ¡ncluding dirt and angle of 

¡ncidence effects (D|A), Geffj mOdei(0), ¡s also represented. 
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Figure 8. Measured (applying spectral correction) and calcu-

ated ¡rradiance at the tilted surface (a), Geff meas and Gcalc, 

and at the horizontal plañe (b), Geffj meas(0) and Gmeas(0), during 

the date 16 July 2005. Calculated ¡rradiance ¡ncluding dirt and 

angle of ¡ncidence effects, Geffj modei (tilted surface) and Geffi 

•nodei(O) (horizontal plañe), ¡s also represented. 

use a spectral correction involves, on a certain day, a 

difference of about 0.5% on the calculation of the optical 

energy losses. For other days analyzed, the difference was 

less. 

4. EXPERIMENTAL RESULTS 

Daily optical energy losses from February 2005 to 

May 2006 have been calculated using the method priory 

described. Figure 9 shows the energy losses corresponding 

to the clearest days. The bars represent daily rainfall during 

those months. 

Daily optical energy losses vary, along the year, from 

1 to 8% in the case of tracking surfaces, and from 8 to 22% 

in the case of horizontal surfaces. Clearly, rain contributes 

to clean the modules as long as the daily rainfall surpasses 

a certain valué (about 4 -5 mm). The highest optical energy 

losses are registered during the late winter months, when 

coincidentally the rainfall is the lowest and least intense. 

During the summer months the optical energy losses were 

lower, although it is observable how the losses augment as 

dry days go by. This energy loss increase is about 0.1-0.2% 

per day. During this time of the year, storms contribute 

to maintain the modules acceptably clean. Additionally, 

Figure 9 shows significant difference between the energy 

losses of tracking surfaces and horizontal ones. This diff-

erence is more clearly depicted in Figure 10 which shows 

both the monthly energy losses at normal incidence and the 

additional monthly energy losses due to the AOI. The 

annual optical energy losses are represented by a horizontal 

black line. 

The monthly soiling optical losses range from 2 to 6% 

on tracking surfaces, while in the case of horizontal 

surfaces the losses are higher but more uniform along the 

year (ranging from 7 to 9%). The effect of the AOI on the 

horizontal surface is clearly observed, especially during 

the winter months. As a matter of fact, the optical losses 

due to the AOI are almost constant during the year, about 

1% on tracking surfaces, whereas on horizontal surfaces 

they range from 2 to 3% during summer months to up to 8% 
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Figure 9. Optical losses in clear days from February 2005 to 

May 2006. Daily rainfalls during that period are included. 
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Figure 10. Monthly and annual optical losses (Soiling+A.O.I.) 

¡n 2005: (a) 45° tilted surface, with azimuth tracking and (b) 

horizontal surface. 

during certain winter months. In total, the annual optical 
energy losses on tracking surfaces and horizontal surfaces 
are 3.8 and 11.9%, respectively. 

5. CONCLUSIONS 

This paper compiles field measurements of soiling and 
AOI annual energy losses measured at a PV plant located in 
northern Spain. These energy losses have been measured in 
azimuth trackers with 45° tilted modules and also in fixed 
horizontal modules. 

Along the period under study, daily optical energy losses 
ranged from 1 to 8% in the case of tracking surfaces and 
from 8 to 22% in the case of fixed horizontal surfaces. 
During dry periods, the losses increased about 0.1-0.2% 
per day. It has been confirmed that daily rainfalls above 
4-5 mm noticeably clean the modules. 

The energy losses due to dirt are notably higher on 
horizontal surfaces and also more uniform along the year. 
These losses ranged from 2 to 6% on the tracking surfaces 
and from 7 to 9% on the horizontal surfaces; showing that 
the cleaning effect of rainfall on horizontal surfaces is not 
as effective as it is on inclined ones. Additionally, the effect 
of the AOI is also more noticeable on horizontal surfaces, 
especially during winter months. The AOI losses were 
about 1% on tracking surfaces, whereas for horizontal 

surfaces the losses ranged from 2 to 3% during summer 
months to up to 8% during certain winter months. 

It is worth mentioning that the cosine response of the 
pyranometer, for very high incidence angles (>70°), is not 
perfect. This could influence the AOI energy loss esti-
mations. However, during the period under analysis, the 
radiation received upon a horizontal surface with AOI over 
70° is less than 7%. If an error due to the pyranometer 
cosine response for these AOI of about 5% is considered, 
the energy loss total error would be less than 0.35%. The 
error would be even less for tracking surfaces. 

In summary, the annual optical losses of the plant were 
3.8% (approximately, 1% of which were due to the AOI 
and the rest were due to dirt) in the case of tracking sur-
faces; and 11.9% in the case of horizontal surfaces 
(approximately, 5% of which were AOI energy losses and 
the rest soiling energy losses). 

The optical energy losses presented correspond to a 
rural área surrounded mainly by dry crops and forestry 
áreas. The accumulated annual rainfall is about 370 mm 
and it is mainly concentrated in the spring and autumn 
months. There are scarce dust sources nearby the location 
(except for some plow cereal crops). Other dirtier locations 
(urban polluted áreas or áreas near quarries) might undergo 
higher losses. 

ACKNOWLEDGEMENTS 

The authors acknowledge and thank Dr José María Ruiz 
Pérez for his valuable comments. 

REFERENCES 

1. Duffie JA, Beckman WA. Solar Energy and Thermal 
Processes, 2nd edn. Wiley: New York, 1991. 

2. Sjerps-Koomen EA, Alsema EA, Turkenburg WC. 
A simple model for PV reflection losses under field 
conditions. Solar Energy 1996; 57(6): 421^132. 

3. Martin N, Ruiz JM. A new model for PV modules 
angular losses under field conditions. International 

Journal of Solar Energy 2002; 22(1): 19-31. 
4. Martin N, Ruiz JM. Annual angular reflection losses in 

PV modules. Progress in Photovoltaics: Research and 

Applications 2005; 13: 75-84. 
5. Hammond R, Srinivasan D, Harris A, Whitfield K, 

Wohlgemuth J. Effects of soiling on PV module and 
radiometer performance. Proceedings of the 26th 

PVSC, 1997; 1121-1124. 
6. Becker H, Vaaben W, Herrmann W. Reduced output 

of solar generators due to pollution. Proceedings ofthe 

14th European PV Solar Energy Conference and 

Exhibition, Barcelona, Spain, 1996. 
7. Haeberlin H, Graf JD. Gradual reduction of PV gen-

erator yield due to pollution. Proceedings of the 2nd 

World Conference on Photovoltaic Solar Energy Con

versión, Vienna, Austria, 1998. 



8. Kimber A, Mitchell L, Nogradi S, Wenger H. The 

effect of soiling on large grid-connected photovoltaic 

systems in California and the southwest región of the 

United States. Conference Record of the 2006 IEEE 

4th World Conference on Photovoltaic Energy Con

versión, Vol. 2; 2391-2395. 

9. Vivar M, Herrero R, Martínez-Moreno F, Antón I, 

Sala G. Effect of soiling in PV concentrators: mech-

anisms of light dispersión and real field performance 

of soiled flat modules and CPV's. 23rd European 

Photovoltaic Solar Energy Conference and Exhibi-

tion, Valencia, Spain, September 2008. 

10. Kimber A. The effect of soiling on photovoltaic 

systems located in arid climates. Proceedings of the 

22nd European Photovoltaic Solar Energy Confer

ence, Milán, Italy, 2007. 

11. Michalsky JJ, Harrison LC, Berkheiser WE. Cosine 

response characteristics of some radiometric and photo-

metric sensors. Solar Energy 54(6): 397^-02. 1995. 

12. Hay J, Mckay D. Estimating solar irradiance on 

inclined surfaces: a review and assessment of meth-

odologies. International Journal of Solar Energy 3: 

203 240. 1985. 

13. Martin N, Ruiz JM. A new method for the spectral 

characterisation of PV modules. Progress in photo-

voltaics: research and applications 1999; 7(4): 299-

310. 

14. King DL, Kratochvil J, Boison A, Bower W WE. Field 

experience with a new performance characterization 

procedure for photovoltaic arrays. 2nd World Con

ference and Exhibition on Photovoltaic Solar Energy 

Conversión, 1947-1952, Vienna, 1998. 


