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Abstract. The tropical forests of the Amazon Basin occur

on a wide variety of different soil types reflecting a rich di-

versity of geologic origins and geomorphic processes. We

here review the existing literature about the main soil groups

of Amazonia, describing their genesis, geographical patterns

and principal chemical, physical and morphologic character-

istics. Original data is also presented, with profiles of ex-

changeable cations, carbon and particle size fraction illus-

trated for the principal soil types; also emphasizing the high

diversity existing within the main soil groups when possible.

Maps of geographic distribution of soils occurring under for-

est vegetation are also introduced, and to contextualize soils

into an evolutionary framework, a scheme of soil develop-

ment is presented having as its basis a chemical weathering

index. We identify a continuum of soil evolution in Amazo-

nia with soil properties varying predictably along this pedo-

genetic gradient.

1 Introduction

Tropical soils can arise from a wide variety of parent ma-

terials, climatic conditions, biotic interactions, landforms,

geomorphic elements and soil age. Many of these factors

vary more widely in the tropics than in the temperate zone

(Sanchez, 1976; Richter and Babbar, 1991). Amazonia com-

prises a vast and heterogeneous region, with many of these

factors, especially parent materials; landforms, geology and

geomorphologic history varying widely (Sombroek, 1966,
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2000; Irion, 1978). On the other hand, factors such as soil

temperature and soil moisture regimes are common to many

Amazonian soils (Sanchez, 1976; van Wambeke, 1978). In

the early days of soil science in this region, Marbut and Man-

ifold (1926) observed at least six different groups of soils oc-

curring commonly in the region, suggesting that many soils

occurring in the tropics had little or no morphological differ-

ence to those observed in the temperate zone. A subsequent

view did then, however, emerge that tropical soils are invari-

ably ancient, lateritic and intensively weathered. Although

this view persists to some extent even to the current day, both

Sanchez (1976) and Richter and Babbar (1991) demonstrated

that tropical soils are actually very diverse, encompassing all

different taxa, from the lowest to the highest pedogenic lev-

els. Indeed, by that time Sanchez and Buol (1975) had al-

ready found that soils previously mapped as Ferralsols in the

Peruvian Amazon actually were Ultisols, Alfisols and Incept-

sols (Acrisols, Luvisols/Lixisols and Cambisols in the World

Reference Base soil classification system: IUSS Working

Group WRB, 2006), suggesting that ancient Ferralsols may

actually be confined to areas of the Guyana and Brazilian

shields. Sombroek (1966) also reported a large diversity

of soils in his studies of the Brazilian Amazon, describing

a high diversity of “latosols”, “kaolinitic latossolic sands”,

“podzols”, “lithosols”, ground water laterites, hydromorphic

grey podzolics, “Regosols”, Gleysols, saline and alkali soils,

Indian black earths and terras roxas estruturadas (equivalent

to present day Nitisols) plus other minor and uncommon soil

groups not properly identified.
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Richter and Babbar (1991) gave an analysis of available

soil surveys up to that time, comparing results from the FAO

World Soil Map (1988) and the Brazilian Soil Survey for

Amazonia (EMBRAPA, 1981), also giving estimated cov-

erage areas for each different soil order. They estimated

that Ferralsols covered 0.391 of Brazilian Amazonia, with

Acrisols covering 0.323, Gleysols and Plinthosols 0.063 and

0.069 respectively, and with Arenosols covering 0.044, Lep-

tosols 0.045, Podzols 0.028, and Cambisols 0.013 of the area

with Fluvisols and Nitisols covering less than 0.010. They

also indicated that there was a considerable bias towards the

dominance of Ferralsols in the FAO map which was related to

the methodology used by the FAO system; Ferralsols being

mapped on the basis of estimates of climate and vegetation

data instead of empirical soil analysis.

Much of the soil diversity in Amazonia has originated

from the considerable differences in geology and geomor-

phology history that occur across the Basin. In particular,

the Andean orogeny generated tectonic load and sediment

flux into lowland Amazonia, deeply transforming a previ-

ously craton dominated land into the diverse edaphic mosaic

of present day (Hoorn et al., 2010). Interestingly, much early

work on this subject was not by soil scientists or geomor-

phologists, but rather by limnologists interested in the causes

of observed variations in the elemental composition of river

waters within the Basin. Based on such observations, Fit-

tkau (1971) divided the Amazon Basin into four regions, as

shown in Fig. 1a. He considered the characteristically low

levels of chemical elements (especially calcium) found in the

waters of the core area of Central Amazonia (Sub-region IV

in Fig. 1a) to reflect the already low soil fertility of this re-

gion (Aubert and Tavernier, 1972), this being associated with

the lack of geological activity in recent times. In addition, it

was argued that the sediments deposited in this area would

also have had a very low nutrient content, such as for the

sands derived from the ancient Guyana shield, which is at

least about 1700 million years old (Fittkau et al., 1975). High

topographic stability combined with continuous hot and wet

weather has also already resulted in a deep weathering and

leaching of parent material with lack of erosion over the gen-

erally flat topography eliminating bedrock as a source of nu-

trients for this part of Amazonia.

Figure 1b shows variation in maximum geological age for

the different provinces in the Amazon Basin. For the area

encompassing Fittkau’s region IV specifically, it is possi-

ble to differentiate large differences in substrate age with

the region involving the Madeira, Juruá, Purús and Tapa-

jos Basins being considerably younger than the remaining

of Fittkau’s region IV (east of Manaus) which represents

the much older Barreiras and Alter do Chão Formations.

There should be a difference in geological age of at least

100 million years between these areas, with the Madeira,

Juruá, Purús and Tapajos Basin formerly being under influ-

ence of the Pebas and Acre marine/fluvial systems between

23 and 7 million years ago (Hoorn et al., 2010). The soils

�

�

Fig. 1. (a) Division of the Amazon Basin fertility regions accord-

ing to Fittkau (1971). (I) Guyana shield; (II) Brazilian shield;

(III) Western peripheral area and (IV) Central Amazonia. Study

sites depicted in this map relate to soil profiles used as examples

in this paper. (b) Maximum geological age for Amazonia (from

Schobbenhaus and Bellizzia, 2001).

of Fittkau’s Central Amazonian sub-region IV (east of Man-

aus) are mainly derived from rocks and sediments from the

middle Tertiary with a high probability of belonging to the

end of the Cretaceous and thus likely to have experienced

more or less continuous weathering for more than 20 million

years (Irion, 1978). Included in this sub-region, the so-

called Barreiras formation was originated from Cretaceous-

Tertiary sediments, derived from the erosion of the Guyana

and Brazilian shields (Herrera et al., 1978). This formation

has been exposed for at least 100 million years (Fig. 1b) and

has been subjected to several cycles of erosion, deposition

and sedimentation. Such differences in geological history

have resulted in the well documented contrasting levels of

soil fertility and pedogenetic development between these re-

gions (RADAMBRASIL, 1978).

Biogeosciences, 8, 1415–1440, 2011 www.biogeosciences.net/8/1415/2011/
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Fittkau (1971) also found the natural waters of his periph-

eral sub-regions (Northern, Western and Peripheral Amazo-

nia in Fig. 1a) to be significantly richer in chemical elements

than the central Amazon Basin with the waters of Western

Peripheral Amazonia being considerably enriched. Not sur-

prisingly, these are also the areas in the Amazon Basin where

relatively fertile soils occur: This particularly being the case

close to the Andes where topography plays an important role

in the maintenance of soil fertility through erosion of the soil

surface and exposition of the underlying parent material (Jor-

dan and Herrera, 1981).

Encompassing Fittkau’s regions I and II respectively, the

ancient, pre-Cambrian Guyana and Brazilian shields, with

their series of igneous and metamorphic rocks, are placed

to the north and south of the lower Amazon River. These

are the oldest surfaces exposed in South America, with their

maximum geological age ranging from 1500 to 3600 million

years (Fig. 1b). Despite being very old, most soils have been

formed in situ by the weathering of underlying crystalline

rocks (i.e. not derived from reworked sediments), which ex-

plains the occasional occurrence of unexpectedly high fertil-

ity soils in these two regions.

Between these shields and the Amazon River (Fittkau’s

region IV) occur strips of Palaeozoic sediments in which De-

vonian shales are represented to an appreciable extent (Irion,

1978; Hoorn et al., 2010). By contrast, western Amazonian

soils (Fittkau’s region III) mostly consist of pre-Andine sed-

iments from the Cretaceous-Tertiary period uplifted in the

Pliocene. Despite some regional variation in maximum age

(Fig. 1b), most of this formation probably commenced be-

tween 1 and 2 million years ago. For instance, at the neigh-

bourhood of Acre state, Brazil, a number of fresh water and

marine sediments occur as a result of the Andean orogeny

and fluctuations of the sea level during warmer climates

(Irion, 1978; Kronberg et al., 1989, 1998; Hoorn et al., 2010).

Also, the western Amazon region includes large areas where

shallow soils on hillslopes dominate. Thus active contribu-

tions of weathering of parent material to soil fertility can be

expected (Irion, 1978).

Floodplain soils of western Amazonia are also much more

recent. Formed in the Pleistocene and Late Holocene, these

soils are not much older than 5000 years (Irion, 1978). Al-

though Fittkau’s region III has usually been considered fer-

tile (Sanchez and Buol, 1975), soils within this region often

contain extremely high exchangeable aluminium levels (Lips

and Duivenvoorden, 1996); a consequence of the ongoing

weathering of high activity aluminium bearing minerals such

as hydroxyl-interlayered vermiculite (Marques et al., 2002;

Lima et al., 2006).

As noted already, differences in geomorphology and soil

fertility across Amazonia are reflected in the dissolved ele-

mental compositions of the waters in the rivers draining each

region (see also Herrera et al., 1978; Irion, 1984; Medina

and Cuevas, 1989; Furch and Klinge, 1989; Gaillardet et al.,

1997). In that respect, Amazon tributaries which originate

in the Andean region are often termed “white-water rivers”.

These rivers are in fact brown in colour due to suspended

particles eroded from mountain slopes, but what is important

is that they have higher levels of all nutrients compared to

other Amazonian rivers, notably Ca, P and Mg (Furch and

Klinge, 1989) – although concentrations are still below the

average when compared to rivers draining the temperate and

boreal regions (Herrera et al., 1978). Nutrient rich floodplain

soils result from sediment deposition from such white-water

rivers (the Várzea); and such soils have been considered the

flooded counterpart of the fertile and well-drained terra firme

soils of western Amazonia (Furch and Klinge, 1989). Exam-

ples of white-water rivers include the Solimões, Juruá and

Madeira, all of whom have their headwaters draining the An-

dean Cordillera with complex and varied lithologies (Gail-

lardet et al., 1997). In the Solimões Basin the core of the

Cordillera consists of a pre-Cambrian basement formed ei-

ther by sediments, igneous or metamorphic rocks. Evapor-

ites, dark shales, fractured carbonates and Mesozoic red beds

are the main rocks overlying the basement. Further down-

stream, Tertiary fluvio-lacustrine sediments (Içá formation)

dominate the lowland portions of the Solimões River (Gail-

lardet et al., 1997; Hoorn et al., 2010). In the Andean part

of the Madeira River, the main rocks are Palaeozoic sedi-

ments associated with shales and rare Cambrian evaporites.

The Juruá and the lowland portions of Madeira and Solimões

Rivers drain Tertiary fluvio-lacustrine deposits (Gaillardet et

al., 1997).

By contrast, waters that drain the pre-Cambrian Guiana

and Brazilian shields are generally known as “black-water”

rivers, with the dark colour of their waters due to high con-

centrations of dissolved humic and fulvic acids in various

stages of polymerization (Herrera et al., 1978; Gaillardet et

al., 1997). But some tributaries that originate in the eastern

and central areas of Amazonia, usually draining Ferralsols,

are often “clear”, with transparent, crystalline waters (Her-

rera et al., 1978). Neither black nor clear water rivers carry

appreciable suspended soils particle loads. They are also

characterised by very low nutrient concentrations – a con-

sequence of the low nutrient content of the substrates from

which these rivers drain (Herrera et al., 1978).

The Rio Negro is probably the best example of an Amazo-

nian black water river. The very low nutrient concentrations

of the soils that drain into it have arisen as a result of several

cycles of weathering, erosion, and sedimentation. All nutri-

ents are found in very small amounts with [Ca] being notably

low (Furch and Klinge, 1989).

This paper provides an up to date review of the most

important soil types of the Amazon Basin, adopting the

World Reference Base (WRB) approach for soil classifica-

tion (IUSS Working Group WRB, 2006). Distribution maps

of the main soil types occurring under forest vegetation and

its respective cover area are also introduced using the World

Soil Information Database (ISRIC, 1995). We contextual-

ize the soils into an evolutionary framework, doing so by

www.biogeosciences.net/8/1415/2011/ Biogeosciences, 8, 1415–1440, 2011
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Table 1. Soil area beneath forest vegetation in Amazonia.

Reference Soil Group Area (×1012 m2) Cover fraction

Ferralsols 2.350 0.316

Acrisols 2.154 0.289

Plinthosols 0.648 0.087

Gleysols 0.615 0.083

Cambisols 0.418 0.056

Leptosols 0.405 0.054

Arenosols 0.200 0.027

Fluvisols 0.187 0.025

Regosols 0.144 0.019

Lixisols 0.142 0.019

Podzols 0.141 0.019

Alisols 0.020 0.003

Histosols 0.016 0.002

Nitisols 0.002 < 0.001

Total 7.444 1

proposing a scheme of soil development based on a chem-

ical weathering index. As well as drawing on previous work

of others, original data is also presented to help demonstrate

the diversity of Amazonian soils, both within and between

the various WRB soil groups.

2 Material and methods

2.1 Study sites

The soils of a total of 71 primary forest plots are used in this

study, including forests in Brazil, Bolivia, Colombia, Peru,

Ecuador and Venezuela. A subset of 18 soil profiles is used to

exemplify soil characteristics among and within each WRB

group. The geographic distribution of these sites is shown

in Fig. 1a. Details for each site are also given in Table 1

of Quesada et al. (2010) along with a map showing the ge-

ographic distribution of each site and their soil classification

up to RSG level (Fig. 1 of Quesada et al., 2010).

2.2 Soil sampling and laboratory methods

Detailed descriptions of soil sampling and laboratory meth-

ods are given in Quesada et al. (2010) but are also briefly

summarised here. Exchangeable cations were determined by

the silver thiourea method (Pleysier and Juo, 1980), soil car-

bon was determined in an automated elemental analyser as

described by Pella (1990) and Nelson and Sommers (1996).

Particle size analysis was undertaken using the Boyoucos

method (Gee and Bauder, 1986).

For the purposes of soil classification, cation exchange ca-

pacity (CEC) and exchangeable bases were also measured

by ammonium acetate pH 7 (NH4Ac pH 7, Van Reeuwijk,

2002) on all pit samples. According to the requirements of

the WRB soil classification system, CEC values were ad-

justed for organic matter content and expressed on clay basis.

Further, although exchangeable Al had been routinely anal-

ysed using the silver thiourea method (Quesada et al., 2010)

for selected Brazilian samples it was also determined by the

more common 1M KCl extraction method (Van Reeuwijk,

2002). Thus, all pit samples had been analysed using the Ag-

TU method, with a subset of these samples analysed by both

methods.

With the purpose of using exchangeable Al as an aid for

soil classification using the WRB, [Al] values obtained from

Ag-TU extracts were then adjusted to 1M KCl levels using

an equation derived by the means of a non parametric re-

gression. This showed the two methods to correlate well

(Fig. 2a), but with Al extracted by 1M KCl tending to be

slightly less at low concentrations and somewhat greater at

high concentrations.

Exchangeable bases extracted by NH4Ac pH 7 yielded

comparable results to extractions made by the Ag-TU

method (Fig. 2b) with the exception of some samples with

very low concentrations which were more strongly extracted

by Ag-TU. In agreement with the similarities in extraction

levels of exchangeable bases and aluminium by the two

methods (Fig. 2), soil ECEC extracted by NH4Ac pH 7 and

Ag-TU were very similar (Fig. 3a). Nevertheless, CEC val-

ues determined by ammonium acetate pH 7 almost inevitably

yielded substantially higher values than did ECEC calculated

from the Ag-TU extractions (Fig. 3a). Again differences in

extraction levels were higher at lower cation concentrations

and declined with increasing concentrations. Such differ-

ences in extraction power relate to the artificial charges cre-

ated on the surface of variable charge colloids at higher soil

pH (Uehara and Gilman, 1981) with the differences in ex-

traction power of CEC and ECEC resulting in very different

apparent base saturation levels (Fig. 3b). Indeed, the calcu-

lation of base saturation by NH4Ac pH 7 for the soils in this

study almost always resulted in values less than 0.5 and in the

placement of soils in the dystric category despite soils some-

times having high levels of exchangeable bases and base sat-

uration in Ag-TU.

To investigate the weathering levels of soils within the

dataset, the weathering index Total Reserve Bases (6RB) was

calculated. This index is based on total cation concentration

in the soil and is considered to give a chemical estimation

of weatherable minerals (Delvaux et al., 1989). Soil samples

(0.0–0.3 m) were extracted for total elemental concentrations

(Ca, Mg, K and Na) by strong acid digestion using concen-

trated sulphuric acid followed by H2O2, with 6RB equal to

[Ca]T + [Mg]T + [K]T + [Na]T, where [X]T represents the

total concentration of each element in mmolc kg−1 soil.

2.3 Representation of soil profiles

To illustrate representative vertical profiles of exchangeable

cation concentrations, [C] and soil particle size distribution,

Biogeosciences, 8, 1415–1440, 2011 www.biogeosciences.net/8/1415/2011/
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Fig. 2. Cation extraction methods compared: (a) relationship be-

tween KCl versus AgTU extractable aluminium. (b) Exchangeable

bases extracted by NH4Ac at pH 7 as a function of AgTU exchange-

able bases.

we used the equal area quadratic smoothing spline approach

of Bishop et al. (1999) using a value for the smoothing pa-

rameter, λ, of 0.01 with all profile depths, z, standardised

prior to the fitting of the spline according to z∗ = z/zmax

where z∗ is the standardised value and zmax is the maxi-

mum depth sampled. As detailed in Quesada et al. (2010)

soils were typically sampled over a series of depths viz

0.00–0.05 m, 0.05–0.10 m, 0.10–0.20 m, 0.20–0.30 m, 0.30–

0.50 m, 0.50–1.00 m, 1.00–1.50 m and 1.50–2.00 m. Where

physical constraints prevented sampling to 2 m depth, zmax

was taken as the depth at which sampling stopped and the
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Fig. 3. Cation extraction methods compared. (a) Cation exchange

capacity (CEC) as determined by NH4Ac (pH 7) and effective CEC

(ECEC) as estimated by summing extractable bases (NH4Ac) and

extractable aluminium (KCl) together, both plotted as a function

AgTU extracted ECEC (sum of bases plus aluminium) (b) Base

saturation calculated using NH4Ac (pH 7) as a function of base sat-

uration estimated with AgTU.

number of horizons in the fitting program adjusted accord-

ingly. Note that in all graphs presented here, cation values

presented are for the Ag-TU extractions only.

2.4 Preparation of soil distribution maps

The Soil and Terrain database for Latin America and

the Caribbean (SOTERLAC), version 2.0, at a scale of

1:5 000 000 (Dijkshoorn et al., 2005) was used as the ba-

sis for defining soils classes and their spatial distribution.

Non-forested areas were excluded from the analysis using a

www.biogeosciences.net/8/1415/2011/ Biogeosciences, 8, 1415–1440, 2011
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Fig. 4. Basin wide distributions of soils under forest vegeta-

tion. Map based on the SOTERLAC–ISRIC soil database (ver-

sion 2.0, 1:5 million scale) and the vegetation database of Saatchi

et al. (2008) for South America.

vegetation map derived from optical and microwave remote

sensing data over the Amazon basin, at 1 km spatial resolu-

tion, capable of discriminating 16 land cover types and with

an overall accuracy of above 0.85 (Saatchi et al., 2008). The

following land cover classes were aggregated and considered

as “forest”: closed terra firme forest, open/degraded terra

firme forest, bamboo/mixed semi-deciduous forest, liana

dominated/open forest, transitional/deciduous forest, sub-

montane forest, montane forest, closed woodland, closed

swamp forest, open swamp forest and mixed vegetation

swamp.

The sub-division of the soil classes provided in the dataset

from SOTERLAC were aggregated into the following main

categories to encompass all the variability per WRB Soil

Reference Group (RSG): Acrisols, Alisols, Arenosols, Cam-

bisols, Fluvisols, Ferralsols, Gleysols, Histosols, Leptosols,

Lixisols, Nitisols, Plinthosols, Podzols and Regosols. Other

soils were not mapped due to their limited coverage in

Amazonia; these being Andosols, Solonchak, Solonetz,

Phaeozems and Luvisols. A Geographic Information Sys-

tem (GIS) was used to compile and carry out map algebra

with the reclassified soil and vegetation maps combined us-

ing Boolean operators in order to generate a final result of

soil types on forested vegetation formations.

3 Results and discussion

3.1 Describing Amazonian forest soils: distribution and

diversity

The distribution and coverage across each Reference Soil

Group (RSG) are shown in Fig. 4. Individual maps for the

principal RSG are also shown in the Supplementary Informa-

tion. These show that the geographic distributions of forest

soils vary widely across the Amazon Basin and are usually

associated with large scale geomorphologic features. For ex-

ample, Acrisols and Ferralsols occur mainly on the Brazilian

and Guyana shields and in the sedimentary zone along the

central and eastern portions of the Amazon River. Although

Ferralsols are absent in western and south-western areas of

the Basin, Acrisols do occur in this region, but are appar-

ently limited to Tertiary fluvio-lacustrine deposits and other

sedimentary formations near the Andes. Other soils occur al-

most exclusively in the vicinity of the Brazilian and Guyana

shields such as Arenosols, Lixisols, Nitisols, Histosols and

Podzols, with the latter occurring in areas of the Rio Negro

basin as well. Plinthosols also occur in small patches along

the Brazilian and Guyana shields but are most common in

sedimentary areas near the Juruá, Purus and Madeira rivers

(i.e. Içá formation).

Regosols and Leptosols occur along both Shields but

are most common in the proximity to the Andean foothills

mostly outside of the Amazonian border. Floodplains and

areas along the major rivers account for most of the Fluvi-

sols and Gleysols, such as the catchments of the upper Ama-

zon tributaries and along the Amazon itself. Large Gleysol

patches also occur in the Araguaia catchments in Brazil and

in north Colombia, also spreading along the Andean bor-

der in sedimentary zones in the Peruvian Amazon. Some

other soils are mapped as occurring almost exclusively in

the Andean foothills and adjacent sedimentary zone such

as Cambisols and Alisols. Indeed, the proportions of soils

occupying the eutric lower classification levels (Quesada et

al., 2010) are much greater in this zone. The coverage

of each soil group is summarized in Table 1. Ferralsols

and Acrisols alone account for 0.61 of Amazonian forest

soils, with Plinthosols, Gleysols, Cambisols and Leptosols

accounting for most of the remaining portion (0.09, 0.08,

0.06 and 0.05 respectively). All the remaining soils alto-

gether cover less than 0.12 of the area. We note that the

estimation of soil coverage shown is based only on soils un-

derneath forest, and that the area mapped is defined for a new

definition of the Amazon border (Soares-Filho et al., 2006).

Accounting for the diversity of Amazonian soils, Table 1

in Quesada et al. (2010) lists geographic coordinates, coun-

try of location and the identified soil type for the 71 sites

sampled as part of that study. This shows that of the 32

RSG in the WRB classification scheme, 14 Reference Soil

Groups were identified, viz. one Leptosol, five Gleysols,

one Fluvisol, 13 Cambisols, one Andosol, one Nitisol, 10

Plinthosols, two Umbrisols, 10 Alisols, one Lixisol, seven

Acrisols, 13 Ferralsols, two Arenosols and four Podzols. A

large variation within RSG was also found, with three lower

level differentiations for Alisols, two for Acrisols, seven for

Cambisols, five for Ferralsols, two for Plinthosols, two for

Podzols and two for Gleysols. Geographical locations of the

soils (Fig. 1 of Quesada et al., 2010) suggest our sampling
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�

Fig. 5. Forest vegetation above a Leptosol in Venezuela (ELD-34).

to have given a reasonable representation of the soils of the

Amazon basin in six different countries.

With a view to demonstrating the diversity of soils in Ama-

zonia, each of the 14 different major Reference Soil Groups

found in our study are now considered. Representative soil

profile data is given for each soil group, with additional pro-

files given for soils showing significant variation within their

RSG. As in Driessen et al. (2001), soils are organized ac-

cording to the major factors conditioning their morphologi-

cal, chemical and physical properties.

3.2 Soils conditioned by limited age

3.2.1 Leptosols

Leptosols (some Entisols, Orthents and other lithic sub-

groups in US Soil Taxonomy) are shallow soils over continu-

ous rock or soils that are extremely gravelly and/or stony. Al-

though being azonal, Leptosols tend to be found on rock out-

crops and mountainous regions (Driessen et al., 2001). Here

they usually occur on rocks that are resistant to weathering,

where erosion has kept pace with soil formation, or where the

soil surface has been removed (Buol et al., 2003). They are

characterized by various kinds of continuous rocks or uncon-

solidated material with less than 0.2 of fine earth by volume.

Within the Amazon Basin they often support short forest or

savannas as in the Inselberg complexes in the frontier zone

of Guyana, Brazil, Venezuela and Colombia, as well as in

the Andean fringe (Reatto et al., 1998; Cotler and Maass,

1999; Sombroek, 2000).

Nevertheless, Leptosols do occur under forest and one ex-

ample can be seen in Fig. 5, here illustrating one of the high-

est forest biomass in our dataset with many large trees over

almost bare rock. Figure 6 show the profiles of Ca, Mg,

K, Na, Al and soil carbon for this Hyperskeletic Leptosol

(Orthodystric) in Venezuela (ELD-34). Consistent with the
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Fig. 6. Profiles of exchangeable cations and soil carbon for a Hy-

perskeletic Leptosol (Orthodystric) in Venezuela (ELD-34).

suffix “Orthodystric”, exchangeable cations concentrations

were moderately low, reflecting both parent material fertility

and the small degree of development of this soil. Nutrients

were found only in the top soil, where organic materials ac-

cumulate. The fine earth fraction was very coarse (< 0.20 as

fine earth fraction), mostly due to mineral fragments which

had not been broken down to a fine degree, thus granting this

soil with the qualifier “Hyperskeletic”. The soil depth was

very variable, but usually not exceeding 0.25 m. In terms of

vertical structure, the soil had a well developed litter layer

above a thin soil horizon over rock. The diabase rock from

which this soil originates is resistant to weathering and bare

rock outcrops accounted for most of the ground surface, with

the soil mostly appearing in concave portions of the terrain or

in cracks among the rocks. The relatively high carbon con-

tent of this soil seems to reflect the accumulation of litter in

the surface, as there is little opportunity for carbon to move

down in the soil, being thus ultimately conditioned by the

soil depth.

With the purpose of facilitating an understanding of WRB

qualifiers for readers not familiar with this soil classification,

Table 2 lists a glossary with the meaning for the most com-

mon suffix and prefix used through the text. Complete de-

scriptions of each qualifier can be found at IUSS working

group WRB (2006).

3.2.2 Cambisols

The Cambisol group (Inceptsols in US Soil Taxonomy) con-

sists of soils with incipient formation. The initial stages of

transformation in the soil material are evident, with devel-

oping soil structure below the surface horizon and discol-

orations (Driessen et al., 2001). Cambisols tend to evolve

from a variety of medium and fine textured parent materi-

als. They are also characterized by profiles of only slight

www.biogeosciences.net/8/1415/2011/ Biogeosciences, 8, 1415–1440, 2011



1422 C. A. Quesada et al.: Soils of Amazonia with particular reference to the RAINFOR sites

Table 2. Glossary of WRB qualifiers used through the text. For complete description of soil classification terms see IUSS Working Group

WRB (2006), report 103.

Qualifier Description

Acric Soils having argic horizon, low activity clay and low base saturation. Occurs as prefix qualifier in soils where other diagnostic

properties have prevalence (i.e. Acric Ferralsol)

Albic Light-coloured subsurface horizon in which free iron oxides and clay have being removed or segregated, revealing the true

colour of remaining sand and silt particles

Alumic Having Al saturation ≥ 0.5 in some layer between 0.5–1 m from surface

Andic Properties resulting from the moderate weathering of pyroclastic material

Arenic Having a texture of loamy fine sand or coarser in a layer ≥ 0.3 m within 1 m from surface

Argic Subsurface horizon with distinct higher clay content than the overlying horizon

Cambic Subsurface horizon showing evidence of alteration in relation to least weathered underlying horizons.

Clayic Having a texture of clay in a layer ≥ 0.3 m within 1 m from surface

Cutanic Having clay coatings in some part of an argic horizon

Endogleyic Having reducing conditions between 0.5 and 1 m from surface AND gley colour patterns in 0.25 or more of the soil volume

Endostagnic Having stagnic colour patterns and reducing conditions

Ferric Having an horizon with segregation of Fe or Fe and Mn

Ferralic Subsurface horizon resulting from long and intense weathering in which the clay fraction is dominated by low-activity clays

and the silt and sand fractions by highly resistant minerals, such as oxides of Fe, Al, Mn

Geric Soils with very low ECEC

Gibbsic Having 0.25 or more gibbsite in the fine earth fraction

Haplic Indicates soils not associated to any specific or intergrade qualifier. Used only when no other prefix applies

Hyperalic In Alisols only: soils having silt/clay ratio < 0.06 and Al saturation ≥ 0.5

Hyperskeletic Having less than 0.2 fine earth fraction by volume

Hyperdystric Base saturation ≤ 0.5 throughout between 0.2 and 1 m from surface AND < 0.2 base saturation in some layer within 1 m from

surface

Hypereutric Base saturation ≥ 0.5 throughout between 0.2 and 1 m from surface AND ≥ 0.8 base saturation in some layer within 1 m from

surface

Melanic Thick, black surface horizon, which is associated with short-range-order minerals (commonly allophone) or with organo-

aluminium complexes, typically originated from pyroclastic material.

Mollic Well structured, dark coloured surface horizon, with high base saturation and moderate to high organic matter content

Nitic Distinct clay-rich subsurface horizon with well developed polyhedric or nutty structure with many shiny ped faces

Orthodystric Base saturation ≤ 0.5 throughout between 0.2 and 1 m from surface

Orthoeutric Base saturation ≥ 0.5 throughout between 0.2 and 1 m from surface

Ortsteinc Having a cemented spodic horizon

Oxyaquic Saturated with O2 rich water for more than 20 days AND no gleyic or stagnic colour pattern

Plinthic Subsurface horizon that consists of an Fe-rich humus-poor mixture of kaolinitic clay with quartz and other constituents, and

which changes irreversibly to a layer with hard nodules, a hardpan or irregular aggregates on exposure to repeated wetting and

drying with free access of oxygen

Rhodic Very red soils

Silandic In Andosols only: having one or more layer with andic properties AND Siox ≥ 0.06 OR an Alpy to Alox ratio of less than 0.5

Siltic Having texture of silt, silt loam, silt clay loam or silt clay in a layer ≥ 0.3 m within 0.5 and 1 m from surface

Spodic Subsurface horizon that contains illuvial amorphous substances composed by organic matter and Al or Fe

Umbric Thick, dark-coloured, base-depleted surface horizon rich in organic matter

Vetic Having ECEC of less than 60 mmolc kg−1 clay in some layer within 1 m from surface

Vitric Properties related to soil layers rich in volcanic glass and other primary minerals derived from volcanic ejecta, which contain a

limited amount of short-range-order minerals

Xanthic Very yellow soils
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or moderate weathering, and by the absence of appreciable

quantities of clay illuviation, organic matter accumulation

or readily extractable aluminium and iron compounds (IUSS

Working Group WRB, 2006). Most Cambisols are soils with

some horizon differentiation and are in a transitional stage

of development; actively developing from a young soil to a

more mature form which will have an argic, spodic or fer-

ralic B horizon (Buol et al., 2003). The Cambisol group

keys out late in the WRB taxonomy hierarchy which implies

that this group may include some soils that just missed out

one or more requirements for other reference groups (IUSS

Working Group WRB, 2006). High quantities of weatherable

minerals and the absence of any signs of advanced pedogen-

esis is further evidence of the early stages of the soil forma-

tion characteristic of cambisols (Sanchez, 1976; Buol et al.,

2003). There is however, often evidence of initial weather-

ing and transformation of primary minerals (Sanchez, 1976;

Buol et al., 2003). The cambisols of tropical regions gen-

erally occur in recent geomorphic surfaces that may be ero-

sional or aggradational (Driessen et al., 2001). Given the

high weathering intensity of the tropics, young alluvial de-

posits and fresh rocks exposed at shallow depths may evolve

to cambisols in a relatively short time (Buol et al., 2003).

Most cambisols in this study were found close to the An-

des on erosional surfaces in western Amazonia, but this soil

type has also been reported to occur along the Solimões river

floodplain (Moreira et al., 2009).

Figure 7 shows two Cambisol profiles of contrasting fer-

tility: A Haplic Cambisol (Alumic, Hyperdystric, Clayic)

located at Tambopata, south Peru (TAM-05, Fig. 7a) and a

Haplic Cambisol (Orthoeutric) located in Ecuador (BOG-02,

Fig. 7b). For the Peruvian soil, exchangeable bases were

very low, declining strongly with depth, but with exchange-

able aluminium concentrations high, and increasing slightly

with depth. Soil carbon was higher in the soil surface due to

organic matter inputs from the forest litterfall, whilst as for

most profiles examined as part of this study subsurface car-

bon declines slowly with depth. Clay content was high, also

increasing slightly with depth, but in this case such an in-

crease in the control section does not fulfill the requirements

for argic horizon such as is the case for Alisols, Acrisols and

Lixisols (Sect. 3.3.3 to 3.3.5). The elevated aluminium pro-

portion of this soil and its high clay content confers the suffix

descriptors “Alumic” and “Clayic”. This soil had a maximum

depth of 1.7 m below which saprolite was present. The verti-

cal distributions of clay and [Al] suggest that transformations

towards another soil type are currently taking place, with this

soil most likely evolving to an Alisol. Suggestive routes for

soil development are discussed further in Sect. 3.7.

By contrast the exchangeable bases for BOG-02 were

among the highest found in Amazonia (Fig. 7b) with very

low extractable aluminium content, and cation concentra-

tions varying little with depth, this granting this soil the de-

nomination “Orthoeutric”. Carbon profiles showed a sharp

decline in depth. Soil texture was sandy clay loam to clay
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Fig. 7. Profiles of exchangeable cations, soil carbon and texture

for (a) a Haplic Cambisol (Alumic, Hyperdystric, Clayic) in south

Peru (TAM-05) and (b) a Haplic Cambisol (Orthoeutric) in Ecuador

(BOG-02).

loam, this being considered typical for this type of soil. Soil

depth was shallow, reaching saprolite at 0.8 m and rock at

1.1 m. This soil was strongly conditioned by its steep topog-

raphy being constantly renovated by erosion.

As also noted by Sombroek (1984), the above compari-

son illustrates the importance of appreciating that Cambisols

are highly variable in terms of their fertility. This varia-

tion occurs because their close proximity to parent material

makes them strongly dependent on quality of the weathering

substrate. Also, varying degrees of weathering and mineral

transformation are observed, adding to the variability found

(Buol et al., 2003). Another source of variability in soil fer-

tility may rise from the inclusion in this classification group

of soils that just failed criteria for other groups (Wilding et

al., 1983; IUSS Working Group WRB, 2006). Although this

did not seem to be a significant factor for this study.

3.3 Soils conditioned by a wet tropical climate

3.3.1 Plinthosols

Plinthosols (Plinthic Great Groups in US Soil Taxonomy)

are soils which have as their principal characteristic the el-

evated concentration of plinthite, an iron rich, humus poor

mixture of kaolinite clay and quartz which changes irre-

versibly to hardpans on exposure to repeated wet and drying
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cycles (Sombroek, 1984; IUSS Working Group WRB, 2006).

Plinthite most commonly evolves from the weathering mate-

rial of basic rocks as opposed to acidic ones. As formation

of plinthite is associated with fluctuations in ground water

levels, these soils are thus often associated with lower land-

scape positions (Sombroek, 1966; Lima et al., 2006). The

development of the plinthic layer depends on the accumula-

tion of sesquioxides through removal of silica and bases un-

der hydrolysis, following the discharge of weathering prod-

ucts. This results in a relative accumulation of weathering

resistant materials such as sesquioxides, quartz and kaolin-

ite (Driessen et al., 2001). Absolute accumulation of these

materials is also possible through alluvial or colluvial depo-

sition. Another mechanism for plinthite formation is the seg-

regation of iron which occurs under alternating reduction and

oxidation conditions (Sombroek, 1984). Under water satura-

tion much of the iron is in the ferrous form and therefore

mobile. But this iron precipitates as ferric oxide when condi-

tions become drier and does not re-dissolve, or only partially

re-dissolves, when conditions become wetter again. In its

unaltered form, plinthite is firm but can be cut with a spade.

If the land is later uplifted or suffers changes in its moisture

regime, however, plinthite can become irreversibly hardened

to form petroplinthite.

Soils with plinthite layers are common under tropical for-

est vegetation, and soils with petroplinthite are most com-

mon in transitional zones between rain forests and savannas

But petroplinthite can also occur in wetter areas where most

of it has presumably been dislocated, hardened, transported

and finally deposited as alluvial or colluvial parent mate-

rial. Despite Plinthosols being found, at least to some ex-

tent across all of the Amazon Basin (Sombroek, 1966, 1984;

Sombroek and Camargo, 1983) most of the Plinthosols iden-

tified in this study were in western Amazonia, where they

commonly occur associated with well defined geomorpho-

logical and/or landscape characteristics (Fritsch et al., 2006).

Physical characteristics of Plinthosols are usually restrictive;

the soil is very compact with high bulk density and the soil

structure generally weak for all horizons (Sombroek, 1984).

Two soil profiles have been chosen to illustrate lower level

variations within this group. The first soil profile is a Hap-

lic Plinthosol (Alumic, Orthodystric, Siltic) located in Acre

state, Brazil (DOI-02, Fig. 8a). For this soil, exchangeable

Ca and Mg are relatively high at the surface in relation to

other Amazonian soils, but with Ca declining sharply to a

depth of 0.4 m, below which it remains relatively constant

at about 10 mmolc kg−1 until 1.2 m, then declining to prac-

tically zero values. Magnesium follows a different pattern,

being mostly constant until 0.4 m deep and then sharply in-

creasing until 1.2 m, after which it starts to decline to prac-

tically zero values at 1.7 m. Aluminium on the other hand,

is practically absent until a depth of 0.3 m, sharply increases

until 0.7 m after which it increases again below 1.2 m. This

vertical distribution of cations in Plinthosols profiles mostly

reflects the ongoing removal process of silica and bases
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Fig. 8. Profiles of exchangeable cations, soil carbon and tex-

ture: (a) for a Haplic Plinthosol (Alumic, Orthodystric, Siltic), at

Acre state, Brazil (DOI–02) and (b) for an Endostagnic Plinthosol

(Alumic, Hyperdystric) in Colombia (AGP-02).

(Lima et al., 2006). Carbon does not present any special pat-

tern apart from being relatively high in the surface layer.

The second profile is for an Endostagnic Plinthosol (Alu-

mic, Hyperdystric) located in south-eastern Colombia, west-

ern Amazonia (AGP-02, Fig. 8b). This soil had a slightly

stronger influence of slow draining water than for DOI-02,

with the presence of stagnic colour patterns in the profile,

similar to that described by Fritsch et al. (2006). Even

though exchangeable base concentrations were much lower

than DOI-02, the overall distribution pattern was virtually

identical, but with higher aluminium concentrations through-

out. Carbon content showed a similar pattern as for DOI-02

this also being the case for depth dependent variations in soil

particle distribution.

3.3.2 Ferralsols

Ferralsols (Oxisols in US Soil Taxonomy) are soils that carry

marks of strong weathering and desilication and typically oc-

cur in tropical, humid, free draining environments. They

generally cover old geomorphic surfaces or develop over

sediments that were pre-weathered from ancient regoliths

(Buol, 2002; Buol et al., 2003). Ferralsols may also de-

velop in younger materials which weather rapidly, such as

basic and ultrabasic rocks and geologically old volcanic ma-

terial, but these occurrences are generally of limited spatial
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importance (Buurman and Soepraptohardjo, 1980; Beinroth,

1982). Ferralsols are commonly found on stable topography

of tropical regions where wet and hot climate favour inten-

sive weathering (Sanchez, 1976). As reported by Driessen et

al. (2001), and because of their extremely advanced state of

pedogenic development, the weathering of the mineral frac-

tion of Ferralsols releases only negligible amounts of nutri-

ents or aluminium. Moreover, P adsorption capacity is high

(de Mesquita Filho and Torrent, 1993) and the total P pool

is usually small (Smeck, 1985). Also, no neo-formation of

clay minerals is expected to occur. This mineral fraction is

usually dominated by kaolinite and iron/aluminium oxides

as goethite, hematite and gibbsite (Sombroek, 1984; Buol,

2002), a mineral assemblage that makes Ferralsols variable

charge soils (Herbillon, 1980; Qafoku et al., 2004). Despite

Ferralsols being chemically poor and with an acidic reaction,

most have well developed physical conditions. In general

they are deep, well drained soils which have low silt content,

low bulk density, strong fine and very fine granular structure,

and a high hydraulic conductivity (Sanchez, 1976; Richter

and Babbar, 1991; Buol and Eswaran, 2000; Buol, 2002).

Clays do not disperse in water and there is little osmotic

swelling because the cation concentration at the surface of

the kaolinitic clay is low. Ferralsols also have a considerable

capacity to accumulate soil organic matter through prevalent

organo-mineral interactions and their extensive depth (Dick

et al., 2005; Zinn et al., 2007). Although often with a low

volumetric water holding capacity (due to their low silt con-

tent), as a consequence of their favourable physical structure

and considerable depth Ferralsols may be capable of storing

much more water than the other more common tropical soil

types, this allowing forests on such soils in eastern Amazo-

nia to maintain physiological activity throughout extended

dry seasons (Lloyd et al., 2009; Sect. 3.7)

In this study, Ferralsols were found in central and eastern

areas of Amazonia as well as towards its southern border.

No Ferralsols were found in the geologically younger areas

close to the Andes, in agreement with the previous analy-

sis of Sanchez and Buol (1975). As mentioned already, Fer-

ralsols were once thought to dominate the Amazonian land-

scape, but this was later shown to be an erroneous perception

arising from a low reliability of soil mapping in the area (van

Wambeke et al., 1983; Richter and Babbar, 1991). For exam-

ple, Sombroek (1966) suggested that the area covered by Fer-

ralsols (especially the “Belterra clay” soils), was much larger

than we now know to be the case. Indeed, later in his career

he reported that initial assessments were overestimated, and

that the areas covered by Belterra clay in western areas of

Amazonia were much more limited than he first thought.

Two Ferralsol profiles are shown in Fig. 9. The first is

a Geric Acric Ferralsol (Alumic, Hyperdystric, Arenic) lo-

cated in Mato Grosso state, Brazil, at the southern fringe

of the Amazon forest (SIN-01, Fig. 9a). Consistent with

its description as “Geric”, the concentration of exchangeable

bases and aluminium in this Ferralsol are very low through-
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Fig. 9. Profiles of exchangeable cations, soil carbon and tex-

ture: (a) for a Geric Acric Ferralsol (Alumic, Hyperdystric, Arenic)

at Mato Grosso state, Brazil (SIN-01) and (b) for a Gibbsic Geric

Ferralsol (Alumic, Hyperdystric, Clayic, Xanthic) at Amapá state,

Brazil (JRI-01).

out the entire profile, the only exception being the surface

layer where concentrations are twice as high, most likely due

to organic matter content and nutrient recycling. Neverthe-

less, aluminium increases towards the bottom of the profile as

a result of saprolite weathering. The prefix “Acric” refers to

the slight increment of clay with increasing depth, which is in

turn clearly dominated by sand. Carbon content is relatively

low and mirrors base cation distributions. This suggests that

organic matter may be a major source for nutrients and CEC

in this soil.

The other profile shown is a Gibbsic Geric Ferralsol (Alu-

mic, Hyperdystric, Clayic, Xanthic), located in north-eastern

Amazonia, Brazil (JRI-01, Fig. 9b), and an example of what

is often called “Belterra clay” in the soils literature (Som-

broek, 1966). As opposed to the Sinop Ferralsol, this soil

has a very high clay proportion (> 0.75), which may be par-

tially responsible for its relatively high carbon content (Dick

et al., 2005). Although being still at the lower fertility end of

the spectrum, exchangeable bases and aluminium are almost

five times higher than for SIN-01. The qualifiers “Gibbsic”

and “Xanthic” refer to presence of significant amounts of the

mineral gibbsite and to the inherent yellow colour common

to this soil, respectively. This diversity in chemical and mor-

phological characteristics demonstrates the high variability

and diversity even within the most highly weathered RSG

groups.
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Fig. 10. Profiles of exchangeable cations, soil carbon and tex-

ture: (a) for a Haplic Alisol (Hyperdystric, Siltic) in south Peru

(TAM -06) and (a) for a Hyperalic Alisol (Hyperdystric, Clayic)

in Ecuador (TIP-05).

3.3.3 Alisols

Alisols (Ultisols in US Soil Taxonomy) are strong acid soils

with high activity clays accumulating in the subsoil. They

occur on parent materials which contain a substantial amount

of unstable aluminium-bearing materials such as hydroxy-

interlayered smectite or vermiculite. Ongoing hydrolysis of

these minerals releases Al which then occupies more than

half of the exchangeable sites. Alisol formation is confined

to environments where most of the primary minerals have

disappeared, and with secondary clay minerals of high ac-

tivity dominating the clay complex. They have a CEC in

ammonium acetate pH 7 above 240 mmolc kg−1 clay and a

base saturation of less than 0.5 in a major part of the profile.

Within the tropics they usually occur on old land surfaces

with hilly or undulating topography and in this study were

found in Ecuador, Peru and Colombia.

Two lower level variations of Alisols have their profiles

shown here. The first is a Haplic Alisol (Hyperdystric, Siltic)

in south Peru (TAM-06, Fig. 10a), and the second is a Hy-

peralic Alisol (Hyperdystric, Clayic) in Ecuador (TIP-05,

Fig. 10b).

Exchangeable [Ca] and [Mg] were relatively high in the

Peruvian Alisol, along with a high exchangeable [Al]. Al-

though Ca was mostly found near the soil surface, [Mg] were

relatively constant until 1.2 m, increasing steadily with depth.

Most of the Al seems to be being released in the active clay

illuviation zone, but with Mg weathering reaching its max-

imum in the zone of increased silt content. Such vertical

gradients in the nature of active weathering reflect the inter-

mediate pedogenetic status of Amazonian Alisols.

The Ecuadorian soil has a slightly different cation and par-

ticle size profile. Calcium dominates the top 0.05 m of the

profile, but below that both [Mg] and [Al] increase with depth

to the point where Mg (and some Ca) dominate the ECEC.

Aluminium concentrations reach a maximum in the clay il-

luviation zone, while [Mg] and [Ca] have their increases

lower down in the profile in association with an increase

in coarse fraction increments. This again suggests a non-

uniform weathering profile, probably in accordance with dif-

ferent weathering stages for the different soil minerals with

depth.

Such patterns of [Al] and [Mg] reflect the pedogenetic

stage of Alisols as well as the properties of 2:1 clay minerals

(Driessen et al., 2001). During the early formation of Al-

isols, hydrolysis and transformation of primary weatherable

minerals occur in the parent material with some leaching of

silica. This produces a saprolite with little weatherable pri-

mary minerals and a dominance of high activity clays, most

likely formed by the transformation of micas. This is fol-

lowed by a redistribution of clay in the soil and the forma-

tion of an argic horizon. It is when secondary high activity

clays start to weather that Alisol formation occurs and the ob-

served cation patterns become distinguishable. High active

clays are unstable in environments that are depleted of silica

and alkaline and alkaline earth cations. With their weathering

they release soluble aluminium and for some parent materi-

als, iron and magnesium from the octahedral internal layers

of the 2:1 clay minerals. The process of high activity clay

weathering usually overlaps with clay redistribution. Clay il-

luviation only occurs at pH varying from 5 to 6.5. At lower

acidic pH, Al+3 becomes dominant and saturate the complex.

Such Al saturation flocculates the clay and impedes further

dispersion, leading to its accumulation in the profile.

Exchangeable bases in the Alisol profiles were among the

highest levels found in Amazonian soils. Alisols are gen-

erally considered soils of limited fertility as they have their

ECEC dominated by aluminium. But the very low fertility

levels common to many Amazonian soils make them com-

paratively rich, occupying the more fertile end of the spec-

trum. Also, as is shown in Quesada et al. (2010), phospho-

rus supply is also generally favourable in these soils and rea-

sonably high base cations often co-exist with the high alu-

minium levels. Indeed, despite their very high [Al], there

is little evidence of aluminium toxicity for plants growing

on such soils. For example, Gama and Kiehl (1999) found

that crops growing in western areas of Amazonia did not

shown serious Al toxicity symptoms; even though the soils

they were growing on had exchangeable Al levels of approx-

imately 145 mmolc kg−1. Marques et al. (2002) consider the

high Al extracted from such soils as most likely originating

from Al adsorbed within the structure of the 2:1 minerals

such as hydroxyl-interlayered smectites. They suggest that in
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situ this “exchangeable” Al may not necessarily be in equi-

librium with solution [Al], and perhaps not readily “seen” by

plant roots.

The mapped distribution of Alisols (Fig. 4; see also Fig. S5

in the Supplementary Information) suggests only a lim-

ited coverage of these soils in Amazonia. But this is al-

most certainly an underestimate. For instance, all Alisols

found in this study were found in areas outside of those

identified as such in the SOTERLAC Database. In addi-

tion, soil profiles found in the RADAMBRASIL soil sur-

vey (RADAMBRASIL, 1978), in particular in the Brazilian

states of Acre and Amazonas (west and southwest part of

the Brazilian Amazonia), show several soil profiles which

would almost certainly be classified as Alisols in the WRB

system. These soils named as podzólicos vermelho amarelo

álico, have high activity clays, with [Al] ranging from 50 to

as much as 268 mmolc kg−1 and with other characteristics

fulfilling all requirements for Alisols. Furthermore, there are

many other soils in that region having characteristics very

similar to that of Alisols, but which most likely have been

converted to WRB in the SOTERLAC database as Acrisols.

This is because in the translation process, such soils were

generally taken to contain only low activity clays, overlook-

ing the fact that the definition of clay activity is very different

between the WRB and the Brazilian Soil Classification Sys-

tem as was used at the time of RADAMBRASIL. Although

the WRB classifies on a per unit clay basis, the Brazilian Sys-

tem uses bulk soil CEC values (de Oliveira and van der Berg,

1996). Therefore many soils regarded as low activity clay

in the RADAMBRASIL would probably have been consid-

ered as high activity clays soils if CEC had been corrected

for clay content. Another problem regarding the conversion

of clay activity from the Brazilian System is the lack of con-

firmation by standard chemical analysis (CEC above or be-

low 240 mmolc kg−1 of clay, extracted by ammonium acetate

pH 7 and corrected for carbon content) because such analy-

sis were generally lacking in the RADAMBRASIL program.

As an additional concern the correlation between the Brazil-

ian and WRB systems is generally weak with this prohibiting

the accurate translation of soil map legends as needed for sci-

entific purposes (de Oliveira and van der Berg, 1996). Taken

together these observations suggest that many soils described

as Acrisols in SOTERLAC for the Brazilian Amazon are, in

fact, Alisols as defined by the WRB.

3.3.4 Acrisols

Acrisols (Ultisols in US Soil Taxonomy) are considered the

second most common soils in Amazonia, covering an area of

approximately 2.15 × 106 km2 (Table 1), although as men-

tioned in Sect. 3.3.3, this is almost certainly an overestimate.

As for Alisols, these soils are characterized by accumula-

tion of clays in a subsurface horizon, which can be a result

of several different processes, including sedimentation, litho-

logical discontinuities, and clay migration (West et al., 1998).

They are strongly weathered acid soils with low base satura-

tion and acid reaction (Lathwell and Grove, 1986; Richter

and Babbar, 1991; West et al., 1998; Driessen et al., 2001;

IUSS Working Group WRB, 2006). However, unlike Al-

isols, Acrisols are dominated by low activity clays with a

lower CEC range (< 240 mmolc kg−1 clay, extracted by am-

monium acetate pH 7). They usually evolve on acid rock

of Pleistocene age or older, being notably high in strongly

weathered clays which are still undergoing further degrada-

tion. The sediments that form the parent material for Acrisols

often have been pre-weathered for more than one weathering

cycle (West et al., 1998). Nevertheless, geomorphic studies

in tropical areas have invariably shown that although Acrisols

occupy younger geomorphic positions than Ferralsols, they

also occur in older and more stable areas than those occu-

pied by other soils with which they are often geographically

associated (Beinroth et al., 1974; Lepsch and Buol, 1974;

Beinroth, 1981; West et al., 1998). Contents of Al, Fe and

Ti oxides are comparable to Ferralsols with their clay frac-

tion consisting almost entirely of well crystallized kaolinite

and some gibbsite (Buol et al., 2003). Nevertheless, small

quantities of mica, vermiculite and smectite occur in many

of these soils (Sanchez and Buol, 1974; West et al., 1998).

Also, as for Ferralsols, Acrisols are often reported as having

variable charge clays (Uehara and Gilman, 1981; Qafoku et

al., 2004)

As reviewed by West et al. (1998) the physical properties

of Acrisols (and the related Luvisols, Lixisols and Alisols)

often present major constraints for plant growth. Textural

variation within the profile is a common problem because of

water perching, limited infiltration and thus increased runoff.

Moreover, the sandy/loamy surface horizons often have weak

structure which favours compaction and high bulk density.

These conditions in turn result in low infiltration rates, lim-

ited rooting and seedling emergence. In many of these soils,

the bulk density is greater than that considered to be limiting

for root proliferation due to high mechanical impedance. The

presence of patches of macro-porosity and localized lower

bulk density may allow root penetration into horizons of

overall high bulk density, but if roots are restricted to these

zones the volume of soil exploited for water and nutrients

must be limited.

In this study Acrisols were found in north Peru, Venezuela

and Brazil and Fig. 11 shows soil profiles for a Vetic Acrisol

(Hyperdystric) located at Mato Grosso state, Brazil (ALF-

01). Exchangeable cation concentrations in the subsoil of

this Acrisol are much lower than the surface horizon, and

show little vertical variability in sub-soil nutrient concentra-

tions other than a constant decline. Although soil carbon and

exchangeable cations may show a slight increase (or lower

level of decline) in the clay increment zone, sub-soil concen-

trations can be generalized to be uniformly low throughout

the profile. This contrasts with other soils within the same

morphological group such as Alisols and Lixisols, where

cation concentrations may increase with depth (Figs. 10 and

www.biogeosciences.net/8/1415/2011/ Biogeosciences, 8, 1415–1440, 2011
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Fig. 11. Profiles of exchangeable cations, soil carbon and texture for

a Vetic Acrisol (Hyperdystric) at Mato Grosso state, Brazil (ALF-

01).
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Fig. 12. Profiles of exchangeable cations, soil carbon and texture

for a Cutanic Lixisol (Ferric, Hypereutric) in Venezuela (RIO-12).

12, respectively). This suggests that any contribution from

active weathering of soil minerals may be small for Acrisols,

which also implies that such soils are more strongly weath-

ered than Alisols and Lixisols. At the soil surface, which is

predominantly sand, the higher concentration of base cations

presumably arises from the recycling of organic matter. Con-

sistent with the “Vetic” qualifier which predicts a cation ex-

change capacity below the level of 60 mmolc kg−1 in some

layer within the top 1 m of soil, this Acrisol CEC resulted

below that level in all parts of the profile. However, despite

lower cation concentrations than other soils with similar tex-

tural gradients, the ALF-01 Acrisol was twice as fertile as the

Amazonian Ferralsol examples.

3.3.5 Lixisols

Lixisols (Alfisols in US Soil Taxonomy) are soils morpho-

logically related to Acrisols, Alisols and Luvisols through the

presence of argic horizons; being separated from Alisols and

Luvisols by having low activity clays and low CEC. They are

separated from Acrisols on the basis of their higher base satu-

ration. For Lixisols, clay is transported from an illuvial hori-

zon to an argic subsurface horizon that has low activity clays

and moderate to high base saturation. Similar to Acrisols,

Lixisols have a low CEC range (< 240 mmolc kg−1 clay ex-

tracted by ammonium acetate pH 7) but unlike Acrisols, they

have base saturation of 0.5 or more. They are considered

soils with advanced weathering stage but due to their parent

material (often limestone or mafic rocks) base saturation is

still high, with soil reaction eliminating excessive amounts

of Al in the soil solution (Driessen et al., 2001).

Only one Lixisol was identified in this study, a Cutanic

Lixisol (Ferric, Hypereutric) in Venezuela (RIO-12) and

Fig. 12 shows profiles for this soil. Exchangeable bases

clearly dominate the exchange complex, with Mg and Ca

occupying most of the ECEC and K, Na and Al present

in smaller quantities. Magnesium is in clear excess to Ca

which may be a result of parent material chemistry or im-

mobilization of Mg during neoformation of secondary min-

erals (Thomas, 1974). The concentration of Mg increases in

the clay illuviation zone, reaching its highest concentrations

at the maximum clay content. Below [Al] and [K] increase

slightly with a small reduction in [Mg]. The vertical distribu-

tion of elements in this soil suggests that active weathering

of soil minerals may be still taking place. Although base sat-

uration is high in Lixisols, the ECEC itself is relatively low.

For the profile examples here, this results in our Hypereutric

Lixisol actually having a base cation pool which is actually

less than the hyperdystric Alisols shown above.

This Lixisol was also very compact, had unweathered

rocks scattered throughout, and was with a heavy structure in

the B horizon. Although physical constraints are a common

feature in all soils with increments in clay content, problems

such as compaction, low porosity, high bulk density and top

soil hardening when dry are particularly common in Lixisols

(Nicou, 1974, 1975; Nicou and Charreau, 1980; IUSS Work-

ing Group WRB, 2006).

3.3.6 Nitisols

Nitisols (Ultisols and Oxisols in US Soil Taxonomy) are

deep, red (Rhodic), well-drained tropical soils with a clayey

nitic subsurface horizon that has typical polyhedric, blocky

structure elements with shiny ped faces. Usually they

evolve from the weathering of intermediate to basic parent

rock, possibly rejuvenated by recent additions of volcanic

ash. Their mineralogy is dominated by kaolinite and meta-

halloysite, but minor amounts of illite, vermiculite and ran-

domly interstratified clay minerals may be present along with

hematite, goethite and gibbsite. These soils are iron rich soils

usually found on level to hilly landscapes (Driessen et al.,

2001). In Brazil, these soils are know as terras roxas es-

truturadas and are often highly sought for their agricultural

capabilities. Nitisols in Amazonia occupy areas where basic

effusions occur (i.e. diabase and dolerite) such as in outcrops

of the Guyana and Brazilian shields and some carboniferous

deposits (Sombroek, 1966). For example Nitisols were re-

ported to occur along the Trans-Amazon highway, in the up-

per Xingu area and in the state of Rondônia (south western

Amazonia), as well as at the Raposa Serra do Sol indigenous
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Fig. 13. Profiles of exchangeable cations, soil carbon and texture

for a Vetic Nitisol (Hypereutric, Rhodic) in Bolivia (HCC-22).

reserve in northeast Roraima (Melo et al., 2010), but with a

typically limited and patchy coverage (Sombroek, 1984).

The formation of Nitisols involves an initial process of fer-

ralisation, similar to that for Ferralsols but with this still be-

ing at an early stage. The formation of Nitic properties fol-

lows with strong angular, shiny peds being developed in the

subsurface horizon. This nitidisation is thought to be a re-

sult of alternating micro swelling and shrinking and produces

well-defined structural elements with strong, shiny pressure

faces. These soils also involve a strong biological influence,

termite, ants and worm activity is thought to homogenize and

create further structure and gradual diffuse horizon bound-

aries (Driessen et al., 2001). The cation exchange capacity

of Nitisols is high compared to that of similar tropical soils

such as Ferralsols, Lixisols and Acrisols. The reasons for

this higher fertility lies in their characteristically high clay

content and relatively high levels of organic matter. Base

saturation varies from 0.1 to 0.9 in such soils (Richter and

Babbar, 1991). Despite that, Nitisols also show clay incre-

ments with depth, although usually they have slightly better

structure than those other soils with similar properties. This

can be taken as a demonstration of the beneficial effect of

organic matter and soil organisms on soil structure.

Figure 13 shows soil profiles for a Vetic Nitisol (Hypereu-

tric, Rhodic) in Bolivia (HCC-22), the only Nitisol identified

in this study. Cation profiles show that the exchange capacity

of this soil is high, with [Ca] and [Mg] accounting for most

of it. The vertical distribution of cations shows a gradual de-

crease with depth, with [Mg] remaining constant throughout

the soil profile. At depths greater than 1.4 m [Mg] becomes

the dominant cation in the profile, with other cations appear-

ing just in trace amounts. Clay increases considerably in the

subsurface but then experiences a gradual decline with silt

contents increasing substantially with depth. Soil carbon is

generally high but remarkably so in the soil surface, show-

ing only a small decline with depth. Vertical distribution of

carbon, cations and particle size fraction are characteristic of

Nitisols, where high cation exchange capacity and high base

saturation is often associated with high organic matter con-

tent in these soils (Richter and Babbar, 1991). At 1.7 m a

compact clay layer with scattered rocks having vitric proper-

ties constrained sampling to that layer.

3.3.7 Podzols

Podzols (Spodosols in US Soil Taxonomy) are soils with

whitish grey subsurface horizon, bleached by organic acids,

this overlying a dark accumulation horizon with brown or

black illuviated humus. Podzols occur in humid areas, in par-

ticular in the boreal and temperate zones but locally also in

the tropics. In Amazonia they develop over unconsolidated

weathering materials of siliceous rock which are prominent

on alluvial, colluvial and aeolian deposits of quartzitic sands.

They occur mostly along the Rio Negro and in the northern

upper Amazon Basin (Do Nascimento et al., 2004).

During the formation of Podzols, complexes of Al, Fe and

organic compounds migrate from the surface soil to the B

horizon with percolating rainwater. Podzolisation is a com-

bination of processes, including the movement of soluble

metal-humus complexes (chelates) out of the surface soil to

greater depth (cheluviation), and the subsequent accumula-

tion of Al and Fe chelates in a spodic horizon (“chilluvia-

tion”; Driessen et al., 2001). There are contrasting views

regarding the formation of Podzols in the tropics, most likely

with one or another occurring in different environmental con-

ditions. Some authors advocate that Ferralsols and Acrisols

(or eroded material from them) can undergo transformations

and form Podzols under water saturation, via selective clay

removal and lateral movement processes (Lucas et al., 1984;

Chauvel et al., 1987; Bravard and Rihgi, 1989; Lucas, 1997;

Dubroeucq and Volkoff, 1998; Do Nascimento et al., 2004).

But Podzols can also evolve locally as a consequence of ver-

tical pedogenic processes as described by Horbe et al. (2004).

Despite their relatively small area (Table 1) Podzols are one

of the most studied soil types in Amazonia (Vitousek and

Sanford, 1986), with a great variety of studies investigating

their characteristic infertility and associated tight nutrient cy-

cling (Went and Stark, 1968; Jordan and Herrera, 1981; Jor-

dan, 1989). A comprehensive review of formation and char-

acteristic of Amazonian Podzols is given by Do Nascimento

et al. (2004).

Generally these soils have severe acidity, high [Al], low

chemical fertility and unfavourable physical properties. The

organic matter profile of Podzols usually shows two areas

of concentration, one at the surface and one in the spodic

horizon, but often erosion of surface horizons can expose the

albic horizon (a low organic matter, bleached layer) result-

ing in only one zone of increased organic matter. Usually,

high concentrations of Al or Fe occur in conjunction with the

spodic horizon, this reflecting the concentrations of metal-

humus chelates in this zone. The C:N-ratio is typically as

high as 50 in the surface horizon, and nutrient levels in Pod-

zols are low as a consequence of a high degree of leaching

(Buol et al., 2003; Quesada et al., 2010). Plant nutrients are

www.biogeosciences.net/8/1415/2011/ Biogeosciences, 8, 1415–1440, 2011
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Fig. 14. Profiles of exchangeable cations, soil carbon and texture

for a Ortsteinc Podzol (oxyaquic) in Colombia (ZAR-01).

concentrated in the surface horizon where impressive root

mats often occur (Jordan and Herrera, 1981). Nutrient econ-

omy in these soils is highly dependent on the recycling of

elements which are released by decomposing organic debris.

In hydromorphic Podzols, dissolved organic matter bound

with Al is often transported laterally as shallow groundwaters

restrict vertical transport within the soil. These hydromor-

phic Podzols with lateral water flow are inevitably associ-

ated with “black water” rivers and lakes in boreal, temperate

and tropical areas (Driessen et al., 2001). The formation of

a hardpan by illuviated sesquioxides and organic matter (ort-

steinic) is common in podzols where there is periodic water

stagnation in the soil, either in the B horizon or below it.

Water movement through the soil may be restricted, even in

upland areas, if such a dense illuviated horizon or an indurate

layer is present (Buol et al., 2003).

In this study, Podzols were found in Brazil, Colombia

and Venezuela, usually supporting forests, with a low above

ground biomass. Together with the Arenosols (Sect. 3.5.1)

they are the most infertile soils in Amazonia and Fig. 14

shows profiles for one Ortsteinc Podzol (oxyaquic) in

Colombia (ZAR-01). The vegetation over this soil is locally

called Varrillal which translates to “land of twigs”; it is a

stunted forest in which thin and very short trees are abun-

dant. An impressive root mat covers the soil, almost no roots

were observed inside the mineral soil itself. The exchange-

able bases are very low with most found in the very topsoil.

Aluminium constitutes most of the ECEC and an association

between base cation concentrations and soil organic matter is

obvious; most if not all nutrient exchange must occur in the

root mat which keeps the remaining nutrients held within the

system. At the start of the ortsteinic layer at approximately

1 m deep, aluminium concentration increased abruptly as did

the carbon content. This is taken to reflect the composition of

the ortsteinic layer where Al-humus chelates act as cement-

ing substances.
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Fig. 15. Profiles of exchangeable cations, soil carbon and texture

for a Haplic Fluvisol (Orthodystric) in Ecuador (JAS-05).

3.4 Soils conditioned by topography and drainage

3.4.1 Fluvisols

Fluvisols (Entisols–Fluvents in US Soil Taxonomy) are ge-

netically young soils formed on sediments of alluvial ori-

gin (Buol et al., 2003). Their principal morphologic char-

acteristic is the presence of stratification and weak horizon

differentiation (Driessen et al., 2001; IUSS Working Group

WRB, 2006). They are usually shallow with their fertility

strongly dependent on the nature of the material deposited

(Irion, 1984; Sanchez, 1976). The only Fluvisol identified in

this study (JAS-05) had been derived from lateral movements

of the Napo River in Ecuador. Fluvisols are a common soil

group in Amazonia, especially in its western parts where they

occur over large floodplains of recent alluvial origin (Som-

broek, 1984; Fig. 4).

Soil profile data for our Haplic Fluvisol (Orthodystric), is

shown in Fig. 15. Exchangeable bases were relatively high

but with low [Al]. Despite such high nutrient concentrations,

this soil was still classified as Orthodystric as its base satu-

ration extracted by ammonium acetate pH 7 was only 0.21,

a problem already discussed in Sect.2.2. The carbon profile

showed a relatively high [C] near the surface, followed by

a decline until 0.4 m, rising again at depth, this also being

associated with irregular variations with depth for the parti-

cle size distributions. These stratification patterns probably

reflect the discrete sediment deposition events which are typ-

ical for this soil type. The lower portion of the soil profile

consisted of rounded rocks similar to that found at the mar-

gins of the Napo River itself, suggesting that the area occu-

pied by today’s soil was once under or at the river margin.

Above that, two different depositional layers were clearly

identifiable, with the lower buried soil layer having a rela-

tively higher [C] than the layer immediately above.
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Fig. 16. Profiles of exchangeable cations, soil carbon and texture

for (a) a Haplic Gleysol (Orthoeutric, Siltic) in Ecuador (TIP-03)

and (b) for a Haplic Gleysol (Alumic, Hyperdystric) in Colombia

(ZAR-02).

3.4.2 Gleysols

Gleysols (Entisols–Aquents in US Soil Taxonomy) are soils

from wetlands which remain saturated for long enough peri-

ods to allow formation of gleyic colour patterns; these con-

sidered to be evidence of reduction processes with or with-

out segregation of iron (Driessen et al., 2001; IUSS Working

Group WRB, 2006). They usually occupy lower positions

in the terrain and are linked to shallow groundwater. Such

soils are formed under excessive wetness at shallow depths

for some period of the year or throughout the year. Low re-

dox conditions brought about by prolonged soil saturation in

the presence of dissolved organic matter induce the reduction

of ferric iron to mobile ferrous compounds (Osher and Buol,

1998). When iron compounds are mobilized and removed,

the soil material shows its own true colours, which normally

have a low hue. This is the reason why permanently saturated

gleyic subsoil layers have neutral, whitish/greyish or bluish

colours (Driessen et al., 2001; Buol et al., 2003). Gleysols

occurring in land depressions or at the bottom of slopes are

usually comparatively fertile compared to adjacent soils as

they tend to have a finer texture, slower organic matter de-

composition rates and an alluvial or colluvial influx of nutri-

ents.

Gleysols are common soils in Amazonia (Sombroek,

1966, 1984; Sanchez, 1976; Fig. 4) and in this study they

were found in Peru, Ecuador and Colombia. Two soil profiles

are shown here, these representing the two ends of the fertil-

ity spectrum. Figure 16a is for Haplic Gleysol (Orthoeutric,

Siltic), located in Ecuador (TIP-03). For this soil, exchange-

able bases were very high throughout the profile, at least by

Amazonian standards, with [Ca] being particularly high, and

Al saturation low. Carbon content was, however, only promi-

nent at the very surface of the soil in the layer with some soil

structure apparent. Below that depth, C contents are low and

constant throughout the profile. Particle size fractions sug-

gested a silty clay, changing to clay in some soil layers.

The second profile is for a Haplic Gleysol (Alumic, Hy-

perdystric) in Colombia (ZAR-02, Fig. 16b). Unlike TIP-03,

exchangeable bases were low but with the CEC quite high

and dominated by [Al]. Despite surface soil C being not as

high as in the first Gleysol example, the overall distribution

pattern of C is similar in both soils. Nevertheless, in contrast

to TIP-03, the clay fraction was very small with silt and sand

predominating. Soil particle size was constant throughout

the profile, having a sandy loam texture.

From the above it is evident that, as for Cambisols

(Sect. 3.1.2), Gleysols can encompass soils of a wide range

of fertilities and textures and with incipient weathering due

to perching water often resulting in little differentiation

throughout the profile. For most Gleysols physical proper-

ties are restrictive; both by water saturation and incipient de-

velopment of subsurface horizons. Although such soils are

usually deep, effective rooting depths are often limited, this

being due to constraints imposed by a high bulk density, lim-

ited oxygen supplies, soil compactness and water saturation.

3.4.3 Umbrisols

Umbrisols (Umbric Great Groups in US Soil Taxonomy) are

a reference group of young soils thought to be restricted to

high altitudes, and accordingly are not even mapped in the

SOTERLAC database as occurring in Amazonia. The main

characteristic of these soils is the development of an umbric

surface horizon, without any other mature diagnostic sub-

surface horizon. Organic matter is thought to accumulate in

such soils as a result of low temperatures. They may share

some characteristics with Cambisols but a higher position in

the classification key gives them prevalence. An umbric hori-

zon is a thick, dark coloured surface horizon with low base

saturation and rich in organic matter. No other diagnostic

horizon may be present apart of an anthropedogenic, an albic

or a cambic horizon (Driessen et al., 2001).

Although at odds with the idea of having an umbric layer

arising only as a result of lower temperatures in mountainous

regions (IUSS Working Group WRB, 2006), two adjacent

profiles in the lowland forests of Bolivia were classified in

this work as Umbrisols and Fig. 17 shows profiles for LSL-

01, an Endogleyic Umbrisol (Alumic, Hyperdystric). Fol-

lowing Umbrisol classification requirements, dark organic

matter dominates the surface soil. Exchangeable bases are

low, with the CEC dominated by Al with the particle size
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Fig. 17. Profiles of exchangeable cations, soil carbon and texture

for a Endogleyic Umbrisol (Alumic, Hyperdystric) in Bolivia (LSL-

01).

profile showing a dominance of clay loam. Both clay and

sand showed some increment starting at 0.5 m but it is im-

possible to tell where they extended as our sampling stops at

0.7 m due to groundwater being reached.

Although misclassification cannot be ruled out because

our sampling profile was limited in depth by groundwater,

the WRB soil classification system led unequivocally to us

keying these soils out as such. If not Umbrisols, these soils

in Bolivia would probably be classified as Cambisols or per-

haps Gleysols. A similar situation is reported by Schad et

al. (2001), who classified several soils as Phaeozems in low-

land Bolivia. Phaeozems are fertile soils with mollic or um-

bric surface horizons, which had been thought to be exclu-

sively associated to the steppes of temperate regions. As a

new group in the WRB system, it seems likely that some

Umbrisols apparently outside the central concept and char-

acteristics will appear. It is thus likely that some additional

characteristics will be required to fully separate these soils

into meaningful sub-categories.

3.5 Soils conditioned by parent material

3.5.1 Arenosols

Arenosols (Entisols-Psamments in US Soil Taxonomy) are

poorly studied soils, most likely a consequence of their lim-

ited agricultural importance. This is despite their consid-

erable worldwide extent, covering 900 million ha globally

compared with 700 million ha of Ferralsols (Hartermink and

Huting, 2008). In Amazonia, their coverage area is much

lower (0.03 of the area, approximately 20 million ha, Ta-

ble 1). Arenosols are characterized by coarse textures which

must be derived from sand rich parent materials transported

by wind, water or in some cases, locally weathered and de-

posited in colluvial zones through selective erosion (Driessen

et al., 2001; Buol et al., 2003; IUSS Working Group WRB,

2006). Arenosols are generally weakly developed, with lit-

tle horizon differentiation. Characteristic properties of such

soils are high water permeability, low water holding capac-
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Fig. 18. Profiles of exchangeable cations, soil carbon and texture

for a Haplic Arenosol (Hyperdystric) in north Peru (ALP-21).

ity, low specific heat, and often minimum nutrient contents

(van Wambeke, 1992). They also have a limited potential to

supply nutrients through weathering and thus almost all nu-

trient supply must come from mineralization of organic mat-

ter and/or atmospheric deposition. In a recent study, Harter-

mink and Huting (2008) showed that cation exchange capac-

ity in 150 Arenosols of Southern Africa varied markedly with

small increments in clay content, CEC ranged from about

10.0 to 90.0 mmolc kg−1, varying linearly along a change in

clay content of only 0.12. A similar relationship was also

found in soil carbon content which varied from about 0.5

to 12 g kg−1 for a similar change in clay. Carbon concen-

trations and CEC were also linearly related suggesting that

organic matter is the major source of nutrients. However, the

African Arenosols studied seem to be much more fertile than

those we have observed in the Amazon Basin. For exam-

ple, the CECs for both Arenosols found in this study were

less than 4.0 mmolc kg−1. Although these soils often support

savannas or grasslands in the tropics, they are also found un-

der short forests and even under lowland tropical forests in

Amazonia, (Sanchez, 1976; Sombroek, 1966, 2000). Some-

times, Arenosols are in fact giant Podzols which key out as

Arenosols because the diagnostic spodic horizon is too deep

to allow their classification as Podzols. In places where evap-

orative demand exceeds water supply, water deficit is con-

sidered a major problem for vegetation (Sanchez, 1976), al-

though roots are often found in these soils extending to con-

siderable depths.

Figure 18 show soil profiles for a Haplic Arenosol (Hyper-

dystric), a typical “white sand” of northern Peru. Exchange-

able bases and aluminium are extremely low with most of the

cations pool present at the very upper soil layers, most likely

reflecting nutrients held on soil organic matter. Fertility of

such soils is extremely dependant on biological cycles which

maintain nutrients held in the biomass (Sombroek, 1966)

with soil carbon concentration also very low and declining

dramatically with depth. The low carbon and cations con-

centrations both reflect the characteristic coarse soil texture

of Arenosols.
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3.5.2 Andosols

Andosols (Andisols in US Soil Taxonomy) are dark soils de-

veloped on volcanic materials. They mostly occur in undu-

lating to mountainous zones in humid, arctic to tropical re-

gions and under a wide range of vegetation types. They are

formed through rapid weathering of porous volcanic mate-

rial which results in accumulation of stable organo-mineral

complexes and short range order minerals such as allophane,

imogolite and ferrihydrite (Richter and Babbar, 1991; Shoji

et al., 1993; Driessen et al. 2001). Their coverage in Ama-

zonia is small and mostly restricted to mountain regions in

the Andes, usually occurring under cloud forests. Therefore,

Andosols should not be thought of as common soils for low-

land tropical vegetation.

Following the description in Driessen et al. (2001), these

soils are characterised by the presence of either an andic hori-

zon or a vitric horizon. An andic horizon is rich in allo-

phanes and similar minerals, or aluminium humus complexes

whereas a vitric horizon contains volcanic glass. Andosol

formation depends essentially on rapid chemical weathering

of porous, permeable, fine-grained mineral material in the

presence of organic matter. The high [Al] protects the or-

ganic component of the Al humus complex against biological

decay. The mobility of these complexes is limited because

rapid weathering yields sufficient Al and Fe to produce com-

plexes with a high metal/organic ratio which have moderate

solubility. Together, the low mobility and high resistance to

biological degradation promotes an accumulation of organic

matter in the topsoil which culminates in the formation of

a melanic surface horizon with high organic matter content.

The average organic matter content of the surface horizon

is about 80 mg g−1 but the darkest profiles may contain as

much as 300 mg g−1 organic matter. Soil bulk density is usu-

ally low in such soil, a consequence of increments in the pore

fraction as weathering advances. The dominant type of clay

changes over time, particularly in the subsoil, as allophane

and imogolite are transformed to other clay minerals such as

halloysite, kaolinite or gibbsite. Aluminium from the humus

complexes also gradually becomes available, with ferrihy-

drite eventually turning into goethite. Eventually, Andosols

may evolve into a more mature soil, such as a podzol, or a

soil with ferric properties or clay illuviation (Driessen et al.,

2001).

Only one Andosol was identified in this study, a Silandic

Andosol (Hyperdystric, Siltic), under a sub-montane for-

est near the Sumaco volcano, Ecuador (SUM-06). For this

soil, exchangeable cations were relatively high at the sur-

face (Fig. 19) declining dramatically with depth. Soil car-

bon reached nearly 200 mg g−1 at the very topsoil in associ-

ation with exchangeable Al, possibly indicating dominance

of Al humus complexes at that depth. Nevertheless, the or-

ganic matter concentration was reasonably high throughout

the profile. The finer fractions of the soil decreased almost

steadily with depth, most likely reflecting the influence of
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Fig. 19. Profiles of exchangeable cations, soil carbon and texture for

a Silandic Andosol (Hyperdystric, Siltic) near the Sumaco volcano,

Ecuador (SUM-06).

low weathering levels and with the subsurface horizons still

lacking development.

3.6 Other soils

A few soil groups known to occur in the humid tropics were

not represented in this study, and because of their limited

coverage are not discussed here. These include the Solon-

chaks, Solonetzs, Phaeozems, Regosols, Histosols and Luvi-

sols. The first two soil groups are unlikely to be found un-

der forest vegetation in Amazonia as Solonchaks are imper-

fectly drained, salt rich soils typical of coastal regions with

the Solonetzs being another Na-rich soil group. Phaeozems

are fertile, wet soils characterised by an extensive accumu-

lation of organic matter and again with only a very limited

cover in Amazonia.

On the other hand, Regosols, Histosols and Luvisols prob-

ably have a wider distribution beneath Amazonian vege-

tation. Regosols are classified as suborders Orthents and

Psamments in the Soil Taxonomy and are thin soils derived

from unconsolidated material and lacking diagnostic hori-

zons. They are thus soils with incipient development. His-

tosols are soils with > 0.30 organic matter at the surface,

usually occurring in Amazonia only in landscape depres-

sions and wetlands, mostly appearing in small patches as-

sociated with other soils. Luvisols are similar to Alfisols in

the Soil Taxonomy system; their principal characteristics are

clay illuviation and both a high ECEC and a high base sat-

uration. Despite their limited range in the moist tropics of

South America this makes them very valuable for agriculture

and also for ecological studies (Richter and Babbar, 1991;

Sanchez and Buol, 1975).

Man made soils have not been included here as this work

intended to review only undisturbed forest soils in Amazo-

nia. There is however evidence that such soils often occur

under forest vegetation in localities where ancient human

communities have existed (Posey and Balick, 2006). Of the

man made soils, the Amazonian black earths (Anthrosols or

Terra Preta do Indio) have received the most attention due

www.biogeosciences.net/8/1415/2011/ Biogeosciences, 8, 1415–1440, 2011
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Fig. 20. Simplified scheme for soil development in Amazonia.

to their high non-labile soil carbon contents. A comprehen-

sive description of Amazonian black earths can be obtained

in Lehmann et al. (2003) and Glaser and Woods (2004).

3.7 Linking WRB reference soils groups to a general

scheme of soil genesis

From the above analysis, it is clear that the soils of Amazo-

nia encompass a considerable diversity with observed vari-

ations in physical and chemical properties strongly associ-

ated with state of pedogenic development (Quesada et al.,

2010). To contextualize this diversity in a soil evolutionary

frame, a scheme of pedogenic development is thus proposed

(Fig. 20). This ordination of the soils was made on the basis

of their genetic, chemical and morphological characteristics,

typical mineralogy and interpretation of the effects of local

soil forming factors.

In the very early stages of soil formation, different parent

materials give rise to what should be the first source of vari-

ability in soils. The first soils to evolve from rocks are thus

considered to be the Leptosols which are very shallow soils,

with incipient weathering of parent material. If the weather-

ing of the subsurface soil occurs at higher rates than surface

erosion, then such soils will most certainly reach a Cambisol

stage (Buol et al., 2003). Nevertheless, many soils in Ama-

zonia develop over deposited sediments and if drainage con-

ditions are good, such sediments would most likely evolve to

a Regosol stage, equivalent to Leptosols but of a sedimentary

origin. After that, different paths of soil formation are pos-

tulated to occur depending on drainage extent. If sediments

are water saturated for a long time Gleysols may be formed.

These can thus be considered to be genetically young soils,

with very little profile development and with this condition

being maintained by continuous or periodic water satura-

tion. But for sediments deposited sequentially and where

this has been in the not too distant past, then Fluvisols oc-

cur. Although Fluvisol drainage conditions are usually better

than Gleysols, seasonal saturation of the subsoil still main-

tain such soils at low level of pedogenic development.

Moisture regime and landscape position are possibly the

most important factors determining soil formation at these

early stages, and development towards other soil types may

demand some drastic changes in the landscape and water

regime (Fritsch et al., 2006). Nevertheless, provided that suf-

ficient changes in drainage occur, Gleysols probably should

evolve into more mature soils, most likely involving a Cam-

bisol stage, followed by the development of argic or plinthic

horizons. Fluvisols may also develop to Cambisols once they

are no longer exposed to new depositional events. However,

changes in drainage may also occur increasing water satu-

ration in the profile which could result in transformation of

iron to ferrous compounds and formation of Gleysols. Also,

some types of parent material can lead to specific soil forms.

For instance volcanic material almost invariably leads to the

formation of Andosols. The only Andosol found in this study

had the characteristics of a poorly developed soil, thus it was

assumed to have a transient condition equivalent to an inter-

mediary position close to Cambisols.

Cambisols are soils showing early signs of horizon differ-

entiation usually occurring on steep hill slopes in Amazonia,

but unless erosion keeps pace with subsoil weathering, they

will evolve and give rise to more mature soil groups (Buol et

al., 2003). The most important factors influencing Cambisol

transformations are topography position and parent material;

this then leading to a large variation in the relative magni-

tudes of the many processes and mineralogical reactions giv-

ing rise to distinct routes of soil formation. Cambisols are

thus soils in a transitional state, occurring prior to the devel-

opment of any spodic, ferralitic or argic horizons (Buol et al.,

2003).

Umbrisols are typical of cool mountain landscapes where

temperature controls over decomposition allow the formation

of thick humus layer on the topsoil (umbric horizon). Usu-

ally there is no other diagnostic horizon present but cambic

horizons may be present (Driessen et al., 2001). In this study,

some lowland soils in Amazonia did key out as Umbrisols, as

this group has priority over Cambisols which would probably

be their classification if the latter were higher up the classifi-

cation tree. In the pedogenic scheme here Umbrisols are ten-

tatively placed after Cambisols, this placement considering

their incipient subsurface development and the development

of umbric horizon.

The intermediate – mature phase of soil development in-

cludes some soils with similar weathering levels which make

separation more difficult than for the earlier stages. Some

of these soils share great morphological similarities and thus

their differentiation was based on mineralogy and clay activ-

ity, cation exchange capacity and characteristics of nutrient

release in vertical soil profiles, this being considered together

with soil morphology. Alisols are high CEC soils in which

high activity clays accumulate in a subsurface horizon. Their

mineralogy is dominated by Al bearing secondary clay min-

erals such as smectite and vermiculite. Such minerals are

formed from the alteration of micas, most commonly found

in Cambisols, suggesting Alisols have some developmental

proximity to this soil type. Also active weathering of 2:1

high activity clay minerals most likely releases aluminium

and some base cations to the soil solution, this varying with
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soil depth. Although the presence of clay illuviation places

Alisols at a higher evolutionary stage than the previously dis-

cussed soils, their higher CEC, high activity clay mineralogy

and vertical patterns of weathering/nutrient release suggests

that Alisols have a lower level of pedogenic development

than the other intermediate soil groups.

Plinthosols follow a somewhat different route of forma-

tion, being strongly influenced by fluctuation of groundwa-

ter, most likely evolving from Gleysols, Fluvisols and some

Cambisols with aquic properties. They are placed after Al-

isols due to their lower CEC but still have similar chemical

characteristics, a placement which is also supported by their

mineralogy which tends towards the formation of kaolinite

and sesquioxides. Plinthosols are tentatively separated here

from Nitisols, Lixisols and Acrisols, by the ongoing removal

of silica and bases and subsequent segregation of iron.

Nitisols can be placed between Plinthosols and the remain-

ing soils with argic horizon due to their mineralogy and inter-

mediate age morphologic characteristics and, compared with

Lixisols and Acrisols, differentiated on the basis of weather-

ing of parent material. This still seems to be supplying ade-

quate amounts of exchangeable bases for Lixisols, but with

Acrisols not showing any sign of active mineral weathering

in their subsoil.

Acrisols are, however, easily separated from Ferralsols on

the basis of their contrasting morphologies, mineralogy and

chemistry. For example, unlike Acrisols, Ferralsols do not

have significant signs of clay illuviation, and have reached

complete desilication and transformation of clay minerals to-

ward kaolinite and Fe and Al oxides. Ferralsols might be

the final stage of weathering in many conditions, but further

transformation to Podzols via selective clay removal under

water saturation and lateral movement processes has been

suggested (Lucas et al., 1984; Chauvel et al., 1987; Bravard

and Rihgi, 1989; Lucas, 1997; Dubroeucq and Volkoff,

1998). Usually, Ferralsols show no tendency to develop an

elluvial horizon but they may potentially transform to Pod-

zols if iron compounds are removed, and the clay is decom-

posed by ferrolysis under conditions of periodic water stag-

nation. This might occur on colluvial deposits transported

from Ferralsols down slope. Nevertheless, as already dis-

cussed, Podzols can also develop as a consequence of ver-

tical pedogenic processes, following the formation of white

sands (Horbe et al., 2004).

Arenosols usually have depositional origin but can also

be formed under weathering of quartz rich rocks. As con-

ditioned by their parent material, they show very little hori-

zon differentiation and for that reason are often considered

young soils (IUSS Working Group WRB, 2006). Neverthe-

less, many Arenosols in the Amazon Basin seem to derive

from old reworked sediments originating from the Guyana

shield (Fittkau, et al., 1975). Their soil chemistry is also

characteristic of the “terminal stages” of pedogenesis (Que-

sada et al., 2010) and for those reasons are assumed to belong

to older development surfaces.
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Fig. 21. Relationship between the axis of soil development and

the chemically based weathering index Total Reserve Bases (6RB).

Details for World Reference Base lower level classification are also

given.

Figure 21 shows the relationship between the suggested

axis of pedogenic development and a chemically based

weathering index (Total Reserve Bases, 6RB), which is taken

to be a good proxy for the amount of weatherable mineral re-

maining (Delvaux et al., 1989). To account for variations

within the soil groups, each Reference Soil Group was fur-

ther divided into subgroup types representing the principal

distinctions in the lower taxonomic levels (the table with

Fig. 21 gives taxonomic details for RSG lower classification

levels). Noting the logarithmic y–axis, this chemical weath-

ering index showed good agreement with the proposed na-

ture of the soil age gradient. Soils with lower pedogenic de-

velopment all had high levels of 6RB, with the highest val-

ues occurring in Cambisols, Fluvisols and Gleysols. Beyond

these classes 6RB declines gradually as pedogenic develop-

ment increases, reaching its lowest values in the Podzols.

Such changes along the pedogenic gradient are likely to be

associated with relative concentration of weatherable miner-

als, changes in mineral assemblage through processes such

as desilication, neoformation and kaolinization and changes

in surface area and charge characteristics associated with
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changes in the mineral matrix (Uehara and Gilman, 1981).

Variations within soil lower levels were also found, and in

general, the nomenclature of the lower taxonomic levels was

successful in grouping similar soils. Within each soil group,

not only do the prefixes for the lower levels characterize in-

dividual morphological features but on some occasions they

were found to also help to differentiate soils in terms of fertil-

ity and weathering level. For instance, Ferralsols named with

suffix “Geric Acric” had higher 6RB than the (just) “Geric”

ones, as did “Endostagnic” Plinthosols in relation to “Hap-

lic Plinthosols”. This was independent of sharing the same

fertility suffixes and indicates that the chemical and morpho-

logical characteristics described by the WRB suffixes and

prefixes may reflect meaningful and functional intergrades of

weathering and possibly differences in parent material. How-

ever, other subgroups in Alisols and Acrisols appeared to be

less divergent in relation to weathering with no clear differ-

entiation in 6RB.

In the World Reference Base a more precise level of fer-

tility is usually described by qualifier suffixes which, in the

case of this study, included “Orthoeutric”, “Hyperdystric”

and “Alumic Hyperdystric”. This was particularly informa-

tive for Cambisol group, where a distinct gradient was ob-

served among the three lower level soils. Levels of fertility

and weathering in these soils were clearly separated by the

different suffixes, irrespective of the prefix variations associ-

ated with morphological characteristics.

Also, during the process of soil classification, it was found

that soils with relatively high levels of fertility were still

classified as “Hyperdystric” and with the informative differ-

entiation indicating exceptionally infertile soils only made

through the suffix “Alumic Hyperdystric”, indicating a clear

dominance of aluminium over exchangeable bases. There-

fore, soils with the qualifier suffix “Hyperdystric” (when

not associated with suffix Alumic) can actually be taken as

constituting relatively fertile soils in the Amazonian context

(Quesada et al., 2010).

The diagram in Fig. 20 shows a simplified route for soil

pedogenic development. But actual soil formation and evo-

lution is, of course, far more complex. Short cuts in the soil

formation process are known to occur. Moreover, rejuve-

nating processes can potentially change the direction of soil

development. On other occasions, the saprolite from which

soils evolve might already have been well weathered during

ancient times, thus leading to the direct formation of highly

weathered soils such as Ferralsols (Buol et al., 2003). Soils

can also themselves become the parent material for other

soils if dramatic changes in weather or topography occur. As

well, they can be buried, transported and re-deposited, and

even disappear if totally eroded. Nevertheless, irrespective

of development pathway, soils tend to change their character-

istics through time, and so will ultimately develop to geneti-

cally mature forms. Clear changes in morphology, chemistry

and mineralogy will occur during this process and such vari-

ation ultimately exerts a profound effect over the vegetation
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Fig. 22. Changes in soil and root depth in Amazonia following the
soil development gradient. (a) maximum soil depth and (b) maxi-
mum root depth.
∗ Ferralsols were often deeper than 4 m, they are often reported to reach depths greater

than 10 m.
∗∗ Does not reflect actual soil depth as sampling usually stoped at saturated layers.
∗∗∗ Maximum depth measured was 2.0 m, some roots may be deeper than that.

structure, dynamics and composition (Quesada et al., 2009).

Soil depth (defined here as depth to rock or saprolite con-

tact) is another characteristic associated with pedogenetic

stage. In general terms, soils tend to increase in depth fol-

lowing weathering, with Leptosols varying from as little as

0.2 m deep to more than 4 m in the Ferralsols (Fig. 22a). Nev-

ertheless, some variation in this trend is expected to occur

for soils of sedimentary versus rock origin. This is because

soils forming from sediments tend to form deeper soil lay-

ers, even when occupying lower taxonomy levels. For exam-

ple, in young and intermediate age soils derived from crys-

talline rocks, such as those found at the Guyana and Brazil-

ian shields (Leptosols, Andosols, Nitisols, Lixisols and some

Cambisols), were not observed to have depths greater than

1.5 m, but soils which had evolved on sediments (Gleysols,

Alisols, Plinthosols and some Cambisols) had maximum

depths ranging from 1.5 to 3.5 m (Fig. 22a). In addition, all

Biogeosciences, 8, 1415–1440, 2011 www.biogeosciences.net/8/1415/2011/



C. A. Quesada et al.: Soils of Amazonia with particular reference to the RAINFOR sites 1437

soils with low to intermediate taxonomic levels (i.e. lower

than Acrisols), had a soil depth less than 3 m, independent

of rock or sedimentary origin. More weathered soils such as

Acrisols and Arenosols have maximum soil depths (MSD)

of about 3.5 m while Ferralsols ranged from about 3.5 m to

more than 4 m (that being the maximum depth investigated).

Maximum soil depth in Podzols was only 1 m in this study,

but this value should be taken with caution once the sampling

of these soils was compromised by water saturation and deep

soil often collapsed during sampling.

Similarly to maximum soil depth, the maximum depth to

which roots can be observed also increases with pedoge-

netic development (Fig. 22b). However, for most Amazo-

nian soils in this study (particularly the low and intermediate

age soils) root maximum depth was shallower than the max-

imum observed soil depth. For instance, MSD in Gleysols

was about 1.5 m but their associated maximum root depth

(MRD) was only 0.6 m. Likewise, MSD for the Acrisols

was about 3 m but their MRD seems limited to around 1.5 m.

Roots deeper than 2 m were only observed in Ferralsols and

some Arenosols, with Ferralsols being well known for their

very deep root systems (Jipp et al. 1998; Nepstad et al.,

1994). Also, we observed that determinants on root depth

are most commonly factors other than rock or saprolite con-

tact. We suggest that root depth in Amazon forests is mostly

controlled by soil structure (i.e. bulk density and aeration)

but with other soil – climate – vegetation interactions such

as tree anchorage and water and nutrient availability also im-

portant.

Such observations have important implications for ecosys-

tem models since incorrect specifications of rooting depth

may give rise to incorrect simulations of the hydrological cy-

cle and general fluxes of heat, CO2 and moisture in Ama-

zonia (Harper et al., 2010). Indeed, although Harper et

al. (2010) showed that model parameterization with greater

soil depths (10 m) improved model ability to predict ecosys-

tem function in Amazonia, our results suggests that this may

not be a reasonable approach for much of the Amazon Basin.

Although the assumption of deep soil layers seems correct

for eastern and central portions of Amazonia, particularly un-

der Ferralsols which are notoriously deep rooted soils (Nep-

stad et al. 1994; Jipp et al. 1998), Table 1 suggests that

such soils cover only about 30 % of Amazonia, with the ma-

jority of soils, especially in Western Amazonia not capable

of supporting root development to and/or function at such

depths. In that respect, were not the precipitation in the west-

ern part of the Basin substantially greater in amount and with

much shorter dry seasons than in the east (Malhi and Wright,

2004), then quite likely evergreen forest could not be sus-

tained there to any great extent. But rather with some form

of drought–deciduous forest dominating on the shallow but

generally fertile soils occurring closer to the Andes; and as

also would be anticipated for any future drier Amazon cli-

mate (Lloyd et al. 2009).

Supplementary material related to this

article is available online at:

http://www.biogeosciences.net/8/1415/2011/

bg-8-1415-2011-supplement.pdf.
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istério de Minas e Energia, Departamento Nacional de Produção

Mineral, Rio de Janeiro, 1978.

Reatto, A., Correia, J. R., and Spera, S. T.: Solos do Bioma Cerrado:

Aspectos pedologicos, in: Cerrado ambiente e Flora. Planaltina,

edited by: Sano, S. M. and Almeida, S. P., EMBRAPA CPAC,

47–86, 1998.

Richter, D. D. and Babbar, L. I.: Soil diversity in the tropics, Adv.

www.biogeosciences.net/8/1415/2011/ Biogeosciences, 8, 1415–1440, 2011

http://dx.doi.org/10.1038/372666a0
http://dx.doi.org/10.5194/bgd-6-3993-2009
http://dx.doi.org/10.5194/bg-7-1515-2010
http://dx.doi.org/10.5194/bg-7-1515-2010


1440 C. A. Quesada et al.: Soils of Amazonia with particular reference to the RAINFOR sites

Ecol. Res., 21, 315–389, 1991.

Saatchi S. S., Steinenger, M., Tucker, C. J., Nelson, B., and Simard,

M.: 1km Land Cover and Wetlands Maps of the Amazon Basin.

Data set available from Oak Ridge National Laboratory Dis-

tributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.,,

2008.

Sanchez, P. A.: Properties and Management of Soils in the Tropics,

John Wiley & Sons, New York, 618 pp., 1976.

Sanchez, P. A. and Buol, S. W.: Properties of some soils of the upper

Amazon Basin of Peru, Soil Sci. Soc. Am. J., 38, 117–121, 1974.

Sanchez, P. A. and Buol, S. W.: Soils of the tropics and the world

food crisis, Science, 188, 598–603, 1975.

Schad, P., Haussermann, U., Ferber, P., and Rinneberg, K.:

Phaeozems or Ferralsols? Low-activity clay soils with mollic

horizons in Bolivian tropical lowlands, European Soil Bureau

Research Report #7, Publications of the European Communities,

Luxembourg, 2001.

Shoji, S., Nanzyo, M., and Dahlgren, R.: Volcanic Ash Soils: Gen-

esis, Properties and Utlization, Developments in Soil Science 21,

Elsevier, 288, New York, USA. 1993.

Schobbenhaus, C. and Bellizzia, A. (coord.): Geological Map of

South America, 1:5,000,000, CGMW-CPRM-DNPM-UNESCO,

Paris, 2001.

Smeck, N. E.: Phosphorus dynamics in soils and landscapes, Geo-

derma, 36, 185–199, 1985.

Soares-Filho, B. S., Nepstad, D. C., Curran, L. M., Cerqueira, G. C.,

Garcia, R. A., Ramos, C. A., Voll, E., McDonald, E., Lefebvre,

P., and Schlesinger, P.: Modelling conservation in the Amazon

basin, Nature, 440, 520–523, 2006.

Sombroek, W. G.: A reconnaissance of the soils of the Brazilian

Amazon region, Centre for Agricultural Publications and Docu-

mentation, Wageningen, 1966.

Sombroek, W. G.: Soils of the Amazon Region,in: The Amazon:

Limnology and Landscape Ecology of a Mighty Tropical River

and its Basin, edited by: Sioli, H. and Junk, W., Dordrecht, 521–

535, 1984.

Sombroek, W. G.: Amazon landforms and soils in relation to bio-

logical diversity, Acta Amazonica, 30, 81–100, 2000.

Sombroek, W. G. and Camargo, M. N.: Groundwater laterites and

ironstone soils in Brazil, with examples from the Amazon region,

in: Proceedings of the Second International Seminar on Lateri-

sation Processes, edited by: Melfi, A. J. and Carvalho, A., IAG,

Sao Paulo, Brazil, 541–552, 1983.

Thomas, M. F.: Tropical Geomorphology, The McMillan Press,

London, 331 pp, 1974.

Uehara, G. and Gilman, G.: The Mineralogy, Chemistry, and

Physics of Tropical Soils with Variable Charge Clays, Westview

Press, Boulder, Colorado, 1981.

Van Reeuwijk, L. P.: Procedures for soil analysis. International Soil

Reference Information Centre, ISRIC, sixth edition, Wagenin-

gen, Netherlands, 120 pp., 2002.

van Wambeke, A.: Properties and potential of soils in the Amazon

Basin, Interciencia, 43, 233–241, 1978.

van Wambeke, A.: Soils of the Tropics – Properties and Appraisal,

McGraw-Hill, New York, 1992.

van Wambeke, A., Eswaran, H., Herbillon, A. J., and Comera, J.:

Oxisols, edited by: Wilding, L. P., Smeck, N. E. and Hall, G. F.,

in: Pedogenesis and Soil Taxonomy: The Soil Orders, Elsevier,

Amsterdam, 325–354, 1983.

Vitousek, P. M. and Sanford, R. L.: Nutrient cycling in moist tropi-

cal forest, Annu. Rev. Ecol. Syst., 17, 137–167, 1986.

Went, F. W. and Stark, N.: Mycorrhiza, Bioscience, 18, 1035–1039,

1968.

West, L. T., Beinroth, F. H., Summer, M. F., and Kang, B. T.: Ul-

tisols: characteristics and impacts on society, Adv. Agron., 63,

179–236, 1998.

Wilding, L. P., Drees, L. R., and Nordt, L. C.: Spatial variability:

Enhancing the mean estimate of organic and inorganic carbon in

a sampling unit, in: Assessment Methods for Soil Carbon, edited

by: Lal, R., Kimble, J. M. Follett, R. F., and Stewart, B. A., CRC

Press, 69–86, Florida, USA, 1983.

Zinn, Y. L., Lal, R., Bigham, J. M., and Resck, D. V. S.: Edaphic

controls on soil organic carbon retention in the Brazilian Cer-

rado: Texture and mineralogy, Soil Sci. Soc. Am. J., 71, 1204–

1214, 2007.

Biogeosciences, 8, 1415–1440, 2011 www.biogeosciences.net/8/1415/2011/

http://www.daac.ornl.gov

