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Limit theorems for the volumes of excursion sets of weakly and strongly dependent heavy-tailed random
fields are proved. Some generalizations to sojourn measures above moving levels and for cross-correlated
scenarios are presented. Special attention is paid to Student and Fisher–Snedecor random fields. Some
simulation results are also presented.
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1. Introduction

Geometric characteristics of random surfaces play a crucial role in areas such as geoscience, en-
vironmetrics, astrophysics, and medical imaging, just to mention a few examples. Numerous real
data have been modelled as Gaussian random processes or fields and studying of their excursion
sets is now a well developed subject. Sojourn measures provide a classical approach to address-
ing various applied problems within this framework. There is a very rich literature on the topic,
therefore below we cite only some key publications related to our approach. Good introductory
references to some applications can be found in [2,6,14,36,38].

Sojourn measures of stochastic processes were studied extensively in a number of contexts and
explicit formulae for their statistical characteristics were obtained for various scenarios, see, for
example, [12,25,26], results for Gaussian stochastic processes with long range dependence in [8,
9], and also numerous references therein. Unfortunately, one cannot expect that the same will
occur for the multidimensional situation. For random fields explicit formulae for the excursion
distributions are rarely known, see [2,11]. Most published papers concern only first two moments
of sojourn measures. However, it turned out that there are some interesting asymptotic results
in this area. Such results are usually the main tools for statistical applications. It is natural to
consider the volume of excursion sets in a bounded observation window and to study its limit
behaviour as the window size grows. Some progress in this direction has been made in [1,14,29,
30,32,33,37].

The approach taken in the paper continues this line of investigations. The paper [14] studied
central limit theorems for the volumes of excursion sets of stationary quasi-associated random
fields and suggested two open problems: the extension of the results to different classes of ran-
dom fields and the investigation of asymptotics for strongly dependent structures.
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Figure 1. Two-dimensional excursion sets and normal Q–Q plots of their areas. The columns correspond
to short-range and long-range dependent models (from left to right).

In example Figure 1 the first row shows two-dimensional excursion sets for realizations of two
types of random fields (from left to right): short-range dependent normal scale mixture model
and long-range dependent Cauchy model, consults Section 9. The excursion sets are shown in
black colour. The Q–Q plots in the second row, which correspond to the models shown above,
suggest that the limit law of the short-range dependent model is normal, while for the long-range
dependent model the data are not normally distributed. Additional details about Figure 1 are
provided in Section 9.

The paper has three aims. One is to provide explicit, albeit asymptotic, formulae for the distri-
bution of the volume of excursion sets of a class of strongly dependent random fields. The second
one is to derive asymptotic results for heavy-tailed random fields. Finally, the third aim is to gen-
eralize the previous findings to sojourn measures above moving levels and for cross-correlated
scenarios.

There is, therefore, a need for models that are able to display strongly dependent heavy-
tailed behaviour and yet are sufficiently simple to allow analysis. To obtain explicit results
we detail the underlying structure of random fields. Namely, a basic assumption of the analy-
sis is that we examine functionals of vector Gaussian random fields, in particular, Student and
Fisher–Snedecor random fields. Consult [3,15,16,47] on excursion sets of chi-square, Student
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and Fisher–Snedecor random fields and their importance for image analysis and studies of brain
function. Other results on sojourn measures of chi-square random fields can be found in [23,27,
29,30].

Minkowski functionals are widely used to characterise geometric properties of random fields,
in particular in the analysis of cosmic microwave background radiation, see [36,38]. In this paper
we investigate the first Minkowski functional of random fields and its expansions into multidi-
mensional Hermite polynomials, see some one-dimensional/discrete counterparts in [18,20]. To
have a complete account of results on asymptotic distributions of sojourn measures for functions
of vector random fields, we also prove corresponding theorems for weakly dependent scenarios.

The remainder of the paper is structured as follows. In Sections 2–4, we introduce the nec-
essary background from the theory of random fields and briefly review some definitions and
notation on the first Minkowski functional, multidimensional Hermite expansions, and Student
and Fisher–Snedecor random fields. We start Sections 5 and 7 with generalizations and correc-
tions of some classical asymptotic results to arbitrary sets and vector fields. With this in hand,
we continue Sections 5 and 7 by new results for the first Minkowski functional of Student and
Fisher–Snedecor random fields. In Section 7, we also show how to lift these results to sojourn
measures above moving levels and for cross-correlated underlying vector fields. Sections 6 and 8
provide the proofs of all theorems and lemmata in the article. Simulation results on the limit
distributions of areas of excursion sets for two types of images are given in Section 9. Short
conclusions are made in Section 10.

In this paper, we only consider real-valued random fields. | · | and ‖ · ‖ denote the Lebesgue
measure and the distance in R

d , respectively. In what follows, we use the symbol C to denote
constants which are not important for our discussion. Moreover, the same symbol C may be used
for different constants appearing in the same proof.

2. First Minkowski functional

In this section, we review the definition of the first Minkowski functional and its relevant proper-
ties. More information about stochastic Minkowski functionals and their links with the expected
Euler characteristics of excursion sets can be found in [2].

We consider a measurable mean square continuous homogeneous isotropic random field
S(x), x ∈ R

d , (see [23,27]) with ES(x) = m, and the covariance function

B(r) := Cov
(
S(x), S(y)

)=
∫ ∞

0
Yd(rz)d�(z), x, y ∈ R

d,

where r := ‖x − y‖, �(·) is the isotropic spectral measure, Yd(·) is the spherical Bessel function
given by

Y1(z) := cos z,

Yn(z) := 2(n−2)/2�

(
n

2

)
J(n−2)/2(z)z

(2−n)/2, z ≥ 0, n ≥ 2,

Jν(·) is the Bessel function of the first kind of order ν > −1/2.
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We define the marginal c.d.f. H(·) and p.d.f. h(·) of the field S(x) as follows:

H(u) = P
{
S(x) ≤ u

}
, H(u) =

∫ u

−∞
h(z)dz, u ∈ R.

Definition 1. S(x), x ∈ R
d , is a homogeneous isotropic random field possessing an absolutely

continuous spectrum, if there exists a function f (·) such that

�(z) = 2πd/2�−1(d/2)

∫ z

0
ud−1f (u)du, ud−1f (u) ∈ L1(R+).

The function f (·) is called the isotropic spectral density function of the field S(x).

Consider a Jordan-measurable convex bounded set � ⊂ R
d , such that |�| > 0 and � contains

the origin in its interior. Let �(r), r > 0, be the homothetic image of the set �, with the centre
of homothety in the origin and the coefficient r > 0, that is, |�(r)| = rd |�|.

Definition 2. The first Minkowski functional is defined as

Mr{S} := ∣∣{x ∈ �(r): S(x) > a(r)
}∣∣= ∫

�(r)

χ
(
S(x) > a(r)

)
dx,

where χ(·) is an indicator function and a(r) is a continuous non-decreasing function.

In the simplest case a(r) = a is a constant. The functional Mr{S} has an interpretation of the
sojourn measure of the random field S(x) above the constant level a, or the moving level a(r).

For the first Minkowski functional Mr{S} we obtain:

EMr{S} = |�|rdP
{
S(x) > a(r)

}= |�|rd
(
1 − H

(
a(r)

))
(1)

and

VarMr{S} =
∫

�(r)

∫
�(r)

P
{
S(x) > a(r), S(y) > a(r)

}
dx dy − [

EMr{S}]2,
or

VarMr{S} =
∫

�(r)

∫
�(r)

Cov
(
ζ(x), ζ(y)

)
dx dy,

where ζ(x) := χ(S(x) > a(r)), x ∈ R
d . Therefore, it is important to investigate the integrals∫

�(r)

∫
�(r)

G
(‖x − y‖)dx dy

of various integrable Borel functions G(·).
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Consider the uniform distribution on �(r) with the p.d.f. given by

q�(r)(x) =
⎧⎨
⎩

1

rd |�| , if x ∈ �(r);

0, if x /∈ �(r).

Let U and V be two independent and uniformly distributed inside the set �(r) random vectors.
We denote by ψ�(r)(ρ), ρ ≥ 0, the p.d.f. of the distance ‖U − V ‖ between U and V . Note that
ψ�(r)(ρ) = 0 if ρ > diam{�(r)}. Using the above notation, we obtain the representation∫

�(r)

∫
�(r)

G
(‖x − y‖)dx dy = |�|2r2dEG

(‖U − V ‖)
(2)

= |�|2r2d

∫ diam{�(r)}

0
G(ρ)ψ�(r)(ρ)dρ.

Example 1. If �(r) is the ball v(r) := {x ∈ R
d : ‖x‖ < r} then

ψv(r)(ρ) = dρd−1r−dI1−(ρ/2r)2

(
d + 1

2
,

1

2

)
, 0 ≤ ρ ≤ 2r,

where

Iμ(p, q) := �(p + q)

�(p)�(q)

∫ μ

0
tp−1(1 − t)q−1 dt, μ ∈ (0,1],p > 0, q > 0, (3)

is the incomplete beta function, see [23].
Several expressions for ψv(r)(ρ), 0 ≤ ρ ≤ 2r , are given below:

d = 1: ψv(r)(ρ) = 1
r
(1 − ρ

2r
),

d = 2: ψv(r)(ρ) = 4ρ

πr2 (arccos ρ
2r

− ρ
2r

√
1 − (

ρ
2r

)2),

d = 3: ψv(r)(ρ) = 3ρ2

r3 (1 − ρ
2r

)2(1 + ρ
4r

).

If one considers the functional

Fr(ζ ) =
∫

v(r)

ζ(x)dx,

then

VarFr(ζ ) =
∫

v(r)

∫
v(r)

B̃
(‖x − y‖)dx dy = ∣∣v(1)

∣∣2r2dEB̃
(‖U − V ‖)

= 4πd

d�2(d/2)
rd

∫ 2r

0
zd−1B̃(z)I1−(z/2r)2

(
d + 1

2
,

1

2

)
dz,

where B̃(·) is a covariance function of ζ(x).
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For some random fields these formulae can be specified, however the asymptotic analysis is
difficult. Therefore, we will use an approach based on multidimensional Hermite expansions.

3. Multidimensional Hermite expansions

Let Hk(u), k ≥ 0, u ∈ R, be the Hermite polynomials, see [41].

Lemma 1. [41] Let (ξ1, . . . , ξ2p) be 2p-dimensional zero mean Gaussian vector with

Eξj ξk =
⎧⎨
⎩

1, if k = j ;

rj , if k = j + p and 1 ≤ j ≤ p;
0, otherwise.

Then

E
p∏

j=1

Hkj
(ξj )Hmj

(ξj+p) =
p∏

j=1

δ
mj

kj
kj !rkj

j .

Let us denote

eν(w) :=
p∏

j=1

Hkj
(wj ),

where w = (w1, . . . ,wp)′ ∈ R
p , ν = (k1, . . . , kp) ∈ Z

p , and all kj ≥ 0 for j = 1, . . . , p.
The summation theorem for Hermite polynomials [21], formula (8.958.1) states that

Hk

(∑p

j=1 ajwj∑p

j=1 a2
j

)
= k!

(
∑p

j=1 a2
j )

k/2

∑
k1+···+kp=k

p∏
j=1

a
kj

j

kj ! Hkj
(wj ). (4)

The polynomials {eν(w)}ν form a complete orthogonal system in the Hilbert space

L2
(
R

p,φ
(‖w‖)dw

) =
{
G:

∫
Rp

G2(w)φ
(‖w‖)dw < ∞

}
,

φ
(‖w‖) =

p∏
j=1

φ(wj ), φ(wj ) = 1√
2π

e−w2
j /2

.

An arbitrary function G(w) ∈ L2(R
p,φ(‖w‖)dw) admits the mean-square convergent expan-

sion

G(w) =
∞∑

k=0

∑
ν∈Nk

Cνeν(w)

ν! , Cν :=
∫

Rp

G(w)eν(w)φ
(‖w‖)dw, (5)

where Nk := {(k1, . . . , kp) ∈ Z
p:
∑p

j=1 kj = k, all kj ≥ 0 for j = 1, . . . , p}, ν! := k1! · · · kp!
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By Parseval’s identity

∞∑
k=0

∑
ν∈Nk

C2
ν

ν! =
∫

Rp

G2(w)φ
(‖w‖)dw. (6)

Definition 3. Let G(w) ∈ L2(R
p,φ(‖w‖)dw) and there exist an integer κ ≥ 1 such that Cν = 0,

for all ν ∈ Nk , 0 ≤ k ≤ κ − 1, but Cν 
= 0 for at least one tuple ν = (k1, . . . , kp) ∈ Nκ . Then κ is
called the Hermite rank of G(·) and denoted by H rankG.

Let η(x) = [η1(x), . . . , ηp(x)]′, x ∈ R
d , be a measurable mean-square continuous homoge-

neous isotropic vector Gaussian random field, see Section 5 in [27], Section 1.2. Suppose that
the components η1(·), . . . , ηp(·) are independent, Eηj (0) = 0, Eη2

j (0) = 1, and Eηj (0)ηj (x) =
Bjj (‖x‖), 1 ≤ j ≤ p.

If G(w) ∈ L2(R
p,φ(‖w‖)dw) then the integral functional F(η) = ∫

�(r)
G(η(x))dx can be

represented as

F(η) =
∞∑

k=0

∑
ν∈Nk

Cν

ν!
∫

�(r)

eν

(
η(x)

)
dx.

Therefore the expectation of F(η) is

EF(η) = ∣∣�(r)
∣∣C(0,...,0), (7)

while by Lemma 1 the variance is equal

VarF(η) =
∞∑

k=0

∑
ν∈Nk

C2
ν

ν!
∫

�(r)

∫
�(r)

p∏
j=1

B
kj

jj

(‖x − y‖)dx dy. (8)

4. Student and Fisher–Snedecor random fields

In this section, we introduce two main models investigated in the paper, namely, Student and
Fisher–Snedecor random fields proposed for studies of brain function in [47].

Let us consider the vector random field

η(x) = [
η1(x), . . . , ηm(x), ηm+1(x), . . . , ηm+n(x)

]′
,

which consists of n + m independent copies of a measurable mean-square continuous homoge-
neous isotropic zero-mean and unit variance Gaussian random field η1(x), x ∈ R

d .

Definition 4. The Fisher–Snedecor random field Fm,n(x), x ∈ R
d , is defined by

Fm,n(x) := (1/m)(η2
1(x) + · · · + η2

m(x))

(1/n)(η2
m+1(x) + · · · + η2

m+n(x))
, x ∈ R

d .
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The random field Fm,n(x), x ∈ R
d, has the marginal Fisher–Snedecor distribution with the

p.d.f.

h(u) = mm/2nn/2�((m + n)/2)

�(m/2)�(n/2)
· um/2−1

(n + mu)(n+m)/2
, u ∈ [0,∞),

and the c.d.f.

H(u) = Imu/(n+mu)

(
m

2
,
n

2

)
. (9)

By properties of the Fisher–Snedecor distribution

E
[
Fm,n(x)

]r = �((m + 2k)/2)�((n − 2k)/2)

�(m/2)�(n/2)

(
n

m

)r

, n > 2r.

Definition 5. The Student random field Tn(x), x ∈ R
d , is defined by

Tn(x) := η1(x)√
(1/n)(η2

2(x) + · · · + η2
n+1(x))

, x ∈ R
d .

It has the marginal Student tn-distribution with the p.d.f.

h(u) = �((n + 1)/2)√
nπ�(n/2)

·
(

1 + u2

n

)−(n+1)/2

, u ∈ R,

and the c.d.f.

H(u) = 1

2
+ 1

2

(
1 − In/(n+u2)

(
n

2
,

1

2

))
· sgn(u), (10)

where sgn(·) is the signum function.
The r th moments of Tn(x) exist when n > r and for k ∈ N we have

E
{
Tn(x)

}r =
⎧⎨
⎩

0, if r = 2k − 1 < n;
�((r + 1)/2)�((n − r)/2)nr/2

√
π�(n/2)

, if r = 2k < n.

Note that [Tn(x)]2 = F1,n(x), x ∈ R
d .

Remark 1. The right-hand tail of the p.d.f. of the Fm,n-distribution decreases as x−(n+2)/2. The
left and the right-hand tails of the p.d.f. of the t-distribution decrease as |x|−n−1. Thus, both
Student and Fisher–Snedecor random fields have heavy-tailed marginal distributions.
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5. Central limit theorem for functionals of weakly dependent
vector random fields

In this section we present some analogues of results in [4,5,13,22] for the case of integrals of
weakly dependent vector random fields. Then, we apply these results to Fisher–Snedecor and
Student random fields.

Let η(x) = [η1(x), . . . , ηp(x)]′, x ∈ R
d , be a measurable mean-square continuous homoge-

neous isotropic vector Gaussian random field with Eη(x) = 0 and covariance matrix

B
(‖x‖)= Eη(0)η(x)′ = (

Bij

(‖x‖))1≤i,j≤p
.

First, we need an auxiliary statement which is similar to Theorem 1 in [13]. Let �u,v(r) :=
{x ∈ R

d : rui < xi ≤ rvi, i = 1, . . . , d}, where u,v ∈ R
d and ui < vi for all 1 ≤ i ≤ d . We will

use the notation

ψ(x) := max
1≤i≤p

p∑
j=1

∣∣Bij

(‖x‖)∣∣.
Lemma 2. Suppose that the function G(·) has Hermite rank κ ≥ 1, the covariance matrix of the
vector field η(x) satisfies the conditions ψ(·) ∈ Lκ(Rd) and ψ(x) ≤ 1 for all x ∈ R

d , and

σ 2 :=
∫

Rd

E
[
G
(
η(0)

)
G
(
η(x)

)]
dx 
= 0.

Then

r−d/2
∫

�u,v(r)

G
(
η(x)

)
dx

D→ Y�u,v
, r → ∞,

where |�u,v(1)|−1/2Y�u,v
∼ N(0, σ 2), |�u,v(1)| =∏d

i=1(vi − ui).
If �u(1),v(1) (1)∩�u(2),v(2) (1) = ∅, u(i), v(i) ∈ R

d , i = 1,2, then the random variables Y�
u(1),v(1)

and Y�
u(2),v(2)

are independent.

The proof of the lemma is based on Lemma 1, the diagram formula and ideas in [13], see
also [4,5] for vector processes, and the application of the diagram technique for random fields
in [23]. The assumption ψ(·) ∈ Lκ (Rd) can be weakened, consult, for example, the condi-
tions (1.4′) and (1.4′′) in Theorem 1′ [13]. The most recent results can be found in [7,24,39,
41].

The following result generalizes Theorem 4 in [4] to the case of integrals of weakly dependent
vector random fields.

Theorem 1. If the conditions of Lemma 2 are satisfied, then

r−d/2
∫

�(r)

G
(
η(x)

)
dx

D→ Y�, r → ∞,

where |�|−1/2Y� ∼ N(0, σ 2).
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Remark 2. The central limit theorems for the volumes of excursion sets of stationary quasi-
associated random fields were proved in [14,37]. The approach used in the papers did not require
the isotropy of Gaussian fields. However, it was assumed that the continuous covariance function
is O(‖x‖−α), α > d , when ‖x‖ → ∞. We obtain the central limit theorems for homogeneous
isotropic random fields but under different conditions. Namely, it follows from (11) that only the
integrability of the covariance functions is required.

In the next two theorems we consider sojourn measures of Fisher–Snedecor and Student ran-
dom fields above the constant level a(r) ≡ a. In the notation of Sections 2 and 4, for the Fisher–
Snedecor random field p = m + n and the first Minkowski functional takes the form

Mr{Fm,n} = ∣∣{x ∈ �(r): Fm,n(x) > a
}∣∣= ∫

�(r)

χ
(
Fm,n(x) > a

)
dx.

Theorem 2. If the covariance matrix of the Fisher–Snedecor random field Fm,n(x), x ∈ R
d ,

satisfies the two conditions: supx∈Rd ψ(x) ≤ 1 and ψ(·) ∈ L2(R
d), then

r−d/2Mr{Fm,n} − |�|rd/2
(

1 − Ima/(n+ma)

(
m

2
,
n

2

))
D→ Y�, r → ∞,

where |�|−1/2Y� ∼ N(0, σ 2
F (a)), Iμ(p, q) is defined by (3),

σ 2
F (a) :=

∫
Rd

E
[
χ
(
Fm,n(0) > a

)
χ
(
Fm,n(x) > a

)]
dx.

For the Student, random field p = n + 1 and the first Minkowski functional for the constant
level a is

Mr{Tn} = ∣∣{x ∈ �(r): Tn(x) > a
}∣∣= ∫

�(r)

χ
(
Tn(x) > a

)
dx.

Theorem 3. If the covariance matrix of the Student random field Tn(x), x ∈ R
d , satisfies the two

conditions: supx∈Rd ψ(x) ≤ 1 and ψ(·) ∈ L1(R
d), then

r−d/2Mr{Tn} − |�|rd/2
(

1

2
− 1

2

(
1 − In/(n+a2)

(
n

2
,

1

2

))
· sgn(a)

)
D→ Ỹ�, r → ∞,

where |�|−1/2Ỹ� ∼ N(0, σ 2
T ),

σ 2
T :=

∫
Rd

E
[
χ
(
Tn(0) > a

)
χ
(
Tn(x) > a

)]
dx.

6. Proofs of the results of Section 5

Proof of Lemma 2. The lemma can be proved by a modification of the proof of Theorem 1
[13] using vector results in [4,5]. To avoid lengthy repetitions, we only state required changes to
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Theorem 1 [13].
The first step is the replacement of the function of a single variable H(t) in Theorem 1 by

the function of multiple variables G(x) and use vector notation and conditions on the covari-
ance matrix presented in [5]. Then, it is straightforward to replace the summation over the sets
B(n,N) := {s = (s1, . . . , sd) ∈ Z

d : Nni < si ≤ N(ni + 1), i = 1, . . . , d}, by the integration over
the multidimensional parallelepipeds �u,v(r) := {x ∈ R

d : rui < xi ≤ rvi, i = 1, . . . , d}. Finally,
using integrals instead of sums in Theorem 4 [4] we obtain limr→∞ r−d Var(

∫
�u,v(r)

G(η(x))dx)

and the expression for σ 2.
The condition ψ(·) ∈ Lκ (Rd) guarantees that cross-correlation functions of all components of

η(x) are also in Lκ (Rd). �

Proof of Theorem 1. Let us consider a coverage of �(r) by the finite union �J (r) :=⋃
j∈J �u(j),v(j) (r) of the disjoint multidimensional parallelepipeds {�u(j),v(j) (r), j ∈ J }, with

the following properties:

1. �J (r) is a decreasing nested sequence of sets when r is fixed and |J | → ∞;
2. � ⊂ �J (1);
3. |�J (1) \ �| → 0, when |J | → ∞.

The existence of such �J (1) follows form the fact that � is a Jordan-measurable set.
By Lemma 2, we obtain

r−d/2
∫

�J (r)

G
(
η(x)

)
dx

D→ Y�J
, r → ∞,

where |�J (1)|−1/2Y�J
∼ N(0, σ 2).

By the properties of �J (r), we get Y�J

D→ Y�, |J | → ∞.
As ψ(x) ≤ 1, then by Lemma 1 [4]∣∣E[G(η(x)

)
G
(
η
(
x(1)

))]∣∣≤ ψκ
(∥∥x − x(1)

∥∥)EG2(η(0)
)
, x, x(1) ∈ R

d . (11)

It follows from inequality (11) that

r−d Var
(∫

�J (r)

G
(
η(x)

)
dx −

∫
�(r)

G
(
η(x)

)
dx

)

= r−d

∫
�J (r)\�(r)

∫
�J (r)\�(r)

EG
(
η(x)

)
G
(
η
(
x(1)

))
dx dx(1)

(12)

≤ EG2(η(0))

rd

∫
�J (r)\�(r)

∫
�J (r)\�(r)

ψκ
(∥∥x − x(1)

∥∥)dx dx(1)

≤ ∣∣�J (1) \ �
∣∣ · EG2(η(0)

)∫
Rd

ψκ
(‖x‖)dx.

Finally, by property 3 of �J (r) the upper bound in (12) approaches 0 when |J | → ∞, which
completes the proof. �
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Proof of Theorem 2. Note that by (9)

E
(
χ
(
Fm,n(x) > a

))= P
(
Fm,n(x) > a

)= 1 − Ima/(n+ma)

(
m

2
,
n

2

)
.

Then it follows from (1) that

E
(

r−d/2
∫

�(r)

χ
(
Fm,n(x) > a

)
dx

)
= |�|rd/2

(
1 − Ima/(n+ma)

(
m

2
,
n

2

))

and we obtain the following representation

r−d/2
∫

�(r)

(
χ
(
Fm,n(x) > a

)− E
(
χ
(
Fm,n(x) > a

)))
dx = r−d/2

∫
�(r)

G
(
η(x)

)
dx,

where

G(w) = χ

(
(1/m)(w2

1 + · · · + w2
m)

(1/n)(w2
m+1 + · · · + w2

m+n)
> a

)
+ Ima/(n+ma)

(
m

2
,
n

2

)
− 1. (13)

G(·) is a symmetric function with respect to the origin. Hence, Cν = 0 for all ν ∈ N1. How-
ever, Cν 
= 0 for such tuples ν = (k1, . . . , km+n) ∈ N2 that exactly one ki = 2 (expressions for
coefficients Cν , ν ∈ N2, will be given in Theorem 7).

Therefore, H rankG = 2 and we can apply Theorem 1 which completes the proof. �

Proof of Theorem 3. It is easy to obtain the statement of the theorem following steps analogous
to the proof of Theorem 2.

Using (10), we conclude that

E
(
χ
(
Tn(x) > a

))= 1

2
− 1

2

(
1 − In/(n+a2)

(
n

2
,

1

2

))
· sgn(a).

Therefore,

r−d/2
∫

�(r)

(
χ
(
Tn(x) > a

)− E
(
χ
(
Tn(x) > a

)))
dx = r−d/2

∫
�(r)

G̃
(
ξ(x)

)
dx,

where

G̃(w) = χ

(
w1√

(1/n)(w2
2 + · · · + w2

n+1)

> a

)
+ 1

2

(
1 − In/(n+a2)

(
n

2
,

1

2

))
· sgn(a) − 1

2
. (14)

For G̃(·) the coefficient C(1,0,...,0) 
= 0, (1,0, . . . ,0) ∈ N1, (expressions for coefficients Cν , ν ∈
N1, will be given in Theorem 6). Therefore, H rank G̃ = 1 and the application of Theorem 1
completes the proof. �
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7. Non-central limit theorem for functionals of strongly
dependent vector random fields

In this section, we first present corrections and generalizations to arbitrary sets of some results
for random fields in [23], Section 2.10, [27], Sections 2.4 and 3.4, and [31]. Consult also the
pioneering papers [19,44,45] and the book [9] on non-central limit theorems and the Hermite
polynomials approach. In the rest of this section, we apply the developed technique to Fisher–
Snedecor and Student random fields.

Assumption 1. Let η(x) = [η1(x), . . . , ηp(x)]′, x ∈ R
d , be a vector homogeneous isotropic

Gaussian random field with Eη(x) = 0 and covariance matrix

B̃(0) = I, B̃
(‖x‖)= Eη(0)η(x)′ = I · ‖x‖−αL

(‖x‖), α > 0,

where I is the unit matrix of size p, L(‖ · ‖) is a function slowly varying at infinity.

We investigate the random variables

Kr :=
∫

�(r)

Gr

(
η(x)

)
dx and Kr,κ :=

∑
ν∈Nκ

Cν(r)

ν!
∫

�(r)

eν

(
η(x)

)
dx,

where Cν(r) are coefficients of the Hermite series (5) of the function Gr(·) for fixed r .

Theorem 4. Suppose that η(x) satisfies Assumption 1 for α ∈ (0, d/κ), for each sufficiently
large r H rankGr(·) = κ ≥ 1, and(∑

ν∈Nκ

C2
ν (r)

ν!
)−1 ∑

l≥κ+1

∑
ν∈Nl

C2
ν (r)

ν! = o
(
rγ /2), r → ∞, (15)

where γ ∈ (0,min(α, d − ακ)).
If there exists the limit distribution for at least one of the random variables

Kr√
VarKr

and
Kr,κ√

VarKr,κ

,

then the limit distribution of the other random variable exists too and the limit distributions
coincide when r → ∞.

Remark 3. If Gr(w) ∈ L2(R
p,φ(‖w‖)dw) does not depend on r and has Hermitian rank κ ,

then (15) is satisfied.

Remark 4. In many cases it is much easier to compute VarKr,κ than VarKr . Using the property
limr→∞ VarKr/VarKr,κ = 1, we can change the statement of Theorem 4 as follows: under
the assumptions of Theorem 4 limit distributions of the random variables Kr/

√
VarKr,κ and

Kr,κ/
√

VarKr,κ coincide when r → ∞.
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Assumption 2. η1(x) has a spectral density f (‖λ‖), λ ∈ R
d , such that

f
(‖λ‖)∼ c2(d,α)‖λ‖α−dL

(
1

‖λ‖
)

, ‖λ‖ → 0, (16)

where 0 < α < d and

c2(d,α) := �((d − α)/2)

2απd/2�(α/2)
.

Remark 5. If f (·) is decreasing in a neighbourhood of zero and continuous for all λ 
= 0, then
by Tauberian Theorem 4 [28] the statement B(‖x‖) = Eη1(0)η1(x) = ‖x‖−αL(‖x‖) implies
Assumption 2. A much more detailed discussion of relations between Assumption 1 and 2 can
be found in [28,40].

Note that then the field possesses the spectral representation

η1(x) =
∫

Rd

ei〈λ,x〉
√

f
(‖λ‖)W(dλ),

where W(·) is the complex Gaussian white noise random measure on R
d .

Let

K(x) :=
∫

�

ei〈x,u〉 du, x ∈ R
d . (17)

Theorem 5. Let η1(x), x ∈ R
d , be a homogeneous isotropic Gaussian random field with

Eη1(x) = 0. If Assumptions 1 and 2 hold, α ∈ (0, d/κ), and κ ≥ 1, then for r → ∞ the finite-
dimensional distributions of

Xκ,r := r(κα)/2−dL−κ/2(r)

∫
�(r)

Hκ

(
η1(x)

)
dx

converge weakly to the finite-dimensional distributions of

Xκ := c
κ/2
2 (d,α)

∫ ′

Rdκ

K(λ1 + · · · + λκ)
W(dλ1) · · ·W(dλκ)

‖λ1‖(d−α)/2 · · · ‖λκ‖(d−α)/2
, (18)

where
∫ ′
Rdκ denotes the multiple Wiener–Itô integral.

The following result shows that Xκ is correctly defined and EX2
κ < ∞.

Lemma 3. If τ1, . . . , τκ , κ ≥ 1, are such positive constants, that
∑κ

i=1 τi < d , then

∫
Rdκ

∣∣K(λ1 + · · · + λκ)
∣∣2 dλ1 · · ·dλκ

‖λ1‖d−τ1 · · · ‖λκ‖d−τκ
< ∞. (19)
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If τ1 = · · · = τκ = α, α ∈ (0, d/κ), then we will use the following notation

c3(κ, d,α) :=
∫

Rdκ

∣∣K(λ1 + · · · + λκ)
∣∣2 dλ1 · · ·dλκ

‖λ1‖d−α · · · ‖λκ‖d−α
.

Remark 6. It is not difficult to adapt Theorem 5 for the case of stochastic processes and obtain
self-similar limit processes, consults [23,27,31,37]. For κ = 2, the limit random variable X2 in
Theorem 5 plays an analogous role to the Rosenblatt distribution, see [44].

Example 2. If � is the ball v(1), then

K(x) =
∫

v(1)

ei〈x,u〉 du = (2π)d/2 Jd/2(‖x‖)
‖x‖d/2

, x ∈ R
d,

and we obtain the result from [23], Section 2.10, with t = 1, that is,

Xκ = (2π)d/2c
κ/2
2 (d,α)

∫ ′

Rdκ

Jd/2(‖λ1 + · · · + λκ‖)
‖λ1 + · · · + λκ‖d/2

W(dλ1) · · ·W(dλκ)

‖λ1‖(d−α)/2 · · · ‖λκ‖(d−α)/2
.

Example 3. Let us consider η(x) with uncorrelated identically distributed components possess-
ing covariance functions of the form

Bjj

(‖x‖)= (
1 + ‖x‖σ

)−θ
, σ ∈ (0,2], θ > 0, j = 1, . . . , p.

The above is known as the generalized Linnik covariance function. Cauchy field in the simulation
results of Section 9 is an important particular case of this model.

If σθκ > d , κ ≥ 1, then η(x) is a weakly dependent random field which satisfies the assump-
tions of Section 5, that is, ψ(x) = B11(‖x‖) ∈ Lκ (Rd) and ψ(x) ≤ 1 for all x ∈ R

d . If σθ < d ,
then we have the strongly dependent case and Assumptions 1 and 2 hold, see [28] and references
therein.

In the next two theorems, we apply the general results to study the sojourn measure of strongly
dependent Fisher–Snedecor and Student random fields above a constant level, that is, a(r) ≡ a.
The following theorem demonstrates that for Student random fields, even in the case of strong
dependence, we have a normal limit law. However, for the strongly dependent case the normal-
ization is different from r−d/2 in Theorem 3.

Theorem 6. Let η(x) = [η1(x), . . . , ηn+1(x)]′, x ∈ R
d , satisfy Assumption 1 for α ∈ (0, d), and

Assumption 2 hold for the spectral density of each component ηj (·). Then the random variable

Ur(n,α) := √
2π
(
1 + a2/n

)n/2 Mr{Tn} − |�|rd(1/2 − 1/2(1 − In/(n+a2)(n/2,1/2)) · sgn(a))

rd−α/2L1/2(r)
√

c2(d,α)c3(1, d,α)

is asymptotically N (0,1), as r → ∞.
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Contrary to the Student case, for strongly dependent Fisher–Snedecor random fields we obtain
a non-normal limit law.

Theorem 7. Let η(x) = [η1(x), . . . , ηn+m(x)]′, x ∈ R
d , satisfy Assumption 1 for α ∈ (0, d/2),

and Assumption 2 hold for the spectral density of each component ηj (·). Then, for r → ∞, the
distribution of the random variable

Ur(m,n,α) := Mr{Fm,n} − |�|rd(1 − Ima/(n+ma)(m/2, n/2))

c4(a,n,m)rd−αL(r)

converges to the distribution of the random variable

R(m,n) := X2,1 + · · · + X2,m

m
− X2,m+1 + · · · + X2,m+n

n
,

where X2,j , j = 1, . . . ,m+n, are independent copies of the random variable X2 defined by (18),

c4(a,n,m) := (ma/n)m/2�((m + n)/2)

(1 + ma/n)(m+n)/2�(n/2)�(m/2)
.

Now we generalize the previous results to the increasing level a(r) → +∞, as r → +∞.

Theorem 8. Let η(x) = [η1(x), . . . , ηn+1(x)]′, x ∈ R
d , satisfy Assumption 1 for α ∈ (0, d), and

Assumption 2 hold for the spectral density of each component ηj (·). If a(r) = o(rγ /2n), γ ∈
(0,min(α, d − α)), r → ∞, then the random variable

√
2π
(
1 + a(r)2/n

)n/2 Mr{Tn} − |�|rdIn/(n+a2(r))(n/2,1/2)

rd−α/2L1/2(r)
√

c2(d,α)c3(1, d,α)

is asymptotically N (0,1).

Theorem 9. Let η(x) = [η1(x), . . . , ηn+m(x)]′, x ∈ R
d , satisfy Assumption 1 for α ∈ (0, d/2),

and Assumption 2 hold for the spectral density of each component ηj (·). If a(r) = o(rγ /n),
γ ∈ (0,min(α, d − α)), r → ∞, then the distribution of the random variable

Mr{Fm,n} − |�|rd(1 − Ima(r)/(n+ma(r))(m/2, n/2))

c4(a(r), n,m)rd−αL(r)

converges to the distribution of the random variable R(m,n) defined in Theorem 7.

The following theorems illustrate how to extend the obtained results to long range dependent
vector fields which components may be cross-correlated, consult the pioneering papers [34,35,
46] on similar vector Gaussian process results. Such cross-correlated random fields may be use-
ful in positron emission tomography studies to identify brain activated regions. In many cases,
the activation is so small that the experiment must be repeated several times and the scan re-
sults are averaged to improve the signal-to-noise ratio. The cross-correlated components ηj (x),
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j = 1, . . . , p, can be interpreted as repeated imaged slices in scans of the same subject. If the
stationarity assumption is in doubt, Student and Fisher–Snedecor random fields were proposed
to test regional changes, consult [15,47].

We use the previous notation Mr{Tn} and Mr{Fm,n}, but replace independent components
of η(·) in the definitions 4 and 5 by components of cross-correlated random fields. Note, that
the functional Mr{Tn} (Mr{Fm,n}) takes the same value on the class of fields {Cη(x),C > 0}.
Therefore, we study only the cases where det(Eη(0)η(0)′) = 1.

Assumption 3. Let η(x) = [η1(x), . . . , ηp(x)]′, x ∈ R
d , be a vector homogeneous isotropic zero

mean Gaussian random field such that

B
(‖x‖)= Eη(0)η(x)′ = A · ‖x‖−αL

(‖x‖), α ∈ (0, d/κ), κ ≥ 1,

where A is a p × p positive-semidefinite symmetric orthogonal matrix, and Assumption 2 hold
for the spectral density of each component of the field η̃ := A−1/2η.

Note that, by the definition of A, there exists the square root of A−1, that is, the positive-
semidefinite orthogonal matrix A−1/2, such that A−1/2 A−1/2 = A−1. In what follows, we denote
A−1/2 := (aij )1≤i,j≤p .

Theorem 10. If η(x) = [η1(x), . . . , ηn+1(x)]′, x ∈ R
d , satisfies Assumption 3 for κ = 1, then

Ur(n,α) defined in Theorem 6 is asymptotically N (0,1), as r → ∞.

For the Fisher–Snedecor random field, we only consider the case of a block diagonal matrix A.
It is also possible to derive similar results for arbitrary A, but for such cases we need a generaliza-
tion of Theorem 5 about the asymptotic behaviour of the bivariate functionals

∫
�(r)

ηj (x)ηl(x)dx

(consult [46] for d = 1), which is beyond the scope of this paper.

Theorem 11. Let η(x) = [η1(x), . . . , ηn+m(x)]′, x ∈ R
d , satisfy Assumption 3 for κ = 2 and

A = [A1
0

0
A2

]
, where A1 and A2 are m×m and n×n matrices, respectively. Then, for r → ∞,

the distribution of the random variable Ur(m,n,α) converges to the distribution of the random
variable R(m,n), where Ur(m,n,α) and R(m,n) are defined in Theorem 7.

8. Proofs of the results of Section 7

Proof of Theorem 4. Let

Vr :=
∑

l≥κ+1

∑
ν∈Nl

Cν(r)

ν!
∫

�(r)

eν

(
η(x)

)
dx,

then by Lemma 1

VarKr = VarKr,κ + VarVr .
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By (8) and (2)

VarKr,κ =
∑
ν∈Nκ

C2
ν (r)

ν!
∫

�(r)

∫
�(r)

‖x − y‖−ακLκ
(‖x − y‖)dx dy

= |�|2r2d−ακ
∑
ν∈Nκ

C2
ν (r)

ν!
∫ diam{�}

0
z−ακLκ(rz)ψ�(z)dz.

If α ∈ (0, d/κ), then by asymptotic properties of integrals of slowly varying functions (see
Theorem 2.7 [43]) we get

VarKr,κ = c1(κ,α,�)|�|2
∑
ν∈Nκ

C2
ν (r)

ν! r2d−καLκ(r)
(
1 + o(1)

)
, r → ∞,

where

c1(κ,α,�) :=
∫ diam{�}

0
z−ακψ�(z)dz.

Similar to VarKr,κ we obtain

VarVr = |�|2r2d
∑

l≥κ+1

∑
ν∈Nl

C2
ν (r)

ν!
∫ r·diam{�}

0
z−αlLl(z)ψ�(r)(z)dz.

It follows from z−αL(z) ∈ [0,1], z ≥ 0, that

VarVr ≤ |�|2r2d−(κ+1)α
∑

l≥κ+1

∑
ν∈Nl

C2
ν (r)

ν!
∫ diam{�}

0
z−α(κ+1)Lκ+1(rz)ψ�(z)dz

= |�|2r2d−καLκ(r)
∑

l≥κ+1

∑
ν∈Nl

C2
ν (r)

ν!
∫ diam{�}

0
z−ακ Lκ(rz)

Lκ(r)

L(rz)

(rz)α
ψ�(z)dz.

Let us split the above integral into two parts I1 and I2 with the ranges of integration [0, r−β ]
and (r−β,diam{�}], respectively, where β ∈ (0,1).

As z−αL(z) ∈ [0,1], z ≥ 0, we can estimate the first integral as follows

I1 ≤
∫ r−β

0
z−ακ Lκ(rz)

Lκ(r)
ψ�(z)dz ≤ sup0≤s≤r1−β sδLκ(s)

rδLκ(r)

∫ r−β

0
z−δz−ακψ�(z)dz

(20)

≤
(

sup0≤s≤r sδ/kL(s)

rδ/kL(r)

)κ ∫ r−β

0
z−δz−ακψ�(z)dz.

By Theorem 1.5.3 [10] and the definition of slowly varying functions

lim
r→∞

sup0≤s≤r sδ/kL(s)

rδ/kL(r)
= 1.
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By (2), we can estimate the integral in (20) as follows

∫ r−β

0
z−δz−ακψ�(z)dz = |�|−2

∫
�

∫
�

χ
(‖x − y‖ ≤ r−β

)‖x − y‖−(δ+ακ) dx dy

(21)

≤ |�|−1
∫ r−β

0
ρd−(1+δ+ακ) dρ = r−β(d−(δ+ακ))

(d − (δ + ακ))|�| .

For the second integral, we obtain

I2 ≤ supr1−β≤s≤r·diam{�} sδLκ(s)

rδLκ(r)
· sup
r1−β≤s≤r·diam{�}

L(s)

sα
·
∫ diam{�}

0
z−(δ+ακ)ψ�(z)dz.

Using Theorem 1.5.3 [10], we conclude that

lim
r→∞

supr1−β≤s≤r·diam{�} sδLκ(s)

rδLκ(r)
≤ lim

r→∞
sup0≤s≤r·diam{�} sδLκ(s)

(r · diam{�})δLκ(r · diam{�})

× lim
r→∞

diamδ{�}Lκ(r · diam{�})
Lκ(r)

= diamδ{�}.

By Proposition 1.3.6 and Theorem 1.5.3 [10], it follows that

sup
r1−β≤s≤r·diam{�}

L(s)

sα
≤ sups≥r1−β s−αL(s)

r−α(1−β)L(r1−β)
· L(r1−β)

rδ(1−β)
· r(δ−α)(1−β) = o

(
r(δ−α)(1−β)

)
. (22)

We can choose β = 1/2 and make δ arbitrary close to 0. Then by (21), (22), and condition (15)
we obtain

lim
r→∞

VarVr

VarKr

= 0 and lim
r→∞

VarKr

VarKr,κ

= 1.

Thus,

lim
r→∞ E

(
Kr√

VarKr

− Kr,κ√
VarKr,κ

)2

= lim
r→∞

E(Vr + (1 −√
VarKr/VarKr,κ)Kr,κ )2

VarKr

= 0,

which completes the proof. �

Proof of Lemma 3. Definition (17) yields K(·) ∈ L∞(Rd) and by the Plancherel theorem K(·) ∈
L2(R

d). Hence, the statement of the lemma is valid for κ = 1. For κ > 1, we can obtain (19) by
the recursive estimation routine and the change of variables λ̃κ−1 = λκ−1/‖u‖:∫

Rdκ

∣∣K(λ1 + · · · + λκ)
∣∣2 dλ1 · · ·dλκ

‖λ1‖d−τ1 · · · ‖λκ‖d−τκ

=
∫

Rd(κ−1)

∣∣K(λ1 + · · · + λκ−2 + u)
∣∣2
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×
∫

Rd

dλκ−1

‖λκ−1‖d−τκ−1‖u − λκ−1‖d−τκ
· dλ1 · · ·dλκ−2 du

‖λ1‖d−τ1 · · · ‖λκ−2‖d−τκ−2

=
∫

Rd(κ−1)

|K(λ1 + · · · + λκ−2 + u)|2 dλ1 · · ·dλκ−2

‖λ1‖d−τ1 · · · ‖λκ−2‖d−τκ−2‖u‖d−τκ−1−τκ

×
∫

Rd

dλ̃κ−1

‖λ̃κ−1‖d−τκ−1‖u/‖u‖ − λ̃κ−1‖d−τκ
du

≤ C

∫
Rd(κ−1)

∣∣K(λ1 + · · · + λκ−2 + u)
∣∣2 dλ1 · · ·dλκ−2 du

‖λ1‖d−τ1 · · · ‖λκ−2‖d−τκ−2‖u‖d−τκ−1−τκ

≤ · · ·
≤ C

∫
Rd

∣∣K(u)
∣∣2 du

‖u‖d−∑κ
i=1 τi

< ∞. �

Proof of Theorem 5. Using the self-similarity of Gaussian white noise, namely W(C dλ)
D=

Cd/2W(dλ), and the Itó formula [19]

Hκ

(
η1(x)

)=
∫ ′

Rdκ

ei〈λ1+···+λκ ,x〉
{

κ∏
j=1

√
f (λj )

}
W(dλ1) · · ·W(dλκ)

we obtain

Xκ,r
D= c

κ/2
2 (d,α)

∫ ′

Rdκ

K(λ1 + · · · + λκ)Qr(λ1, . . . , λκ)
W(dλ1) · · ·W(dλκ)

‖λ1‖(d−α)/2 · · · ‖λκ‖(d−α)/2
,

where

Qr(λ1, . . . , λκ) := rκ(α−d)/2L−κ/2(r)c
−κ/2
2 (d,α)

[
κ∏

j=1

‖λj‖d−αf

(‖λj‖
r

)]1/2

.

By the isometry property of multiple stochastic integrals

Rr := E|Xκ,r − Xκ |2
cκ

2 (d,α)
=
∫

Rdκ

|K(λ1 + · · · + λκ)|2(Qr(λ1, . . . , λκ) − 1)2

‖λ1‖d−α · · · ‖λκ‖d−α
dλ1 · · ·dλκ.

Using (16) and properties of slowly varying functions we conclude that Qr(λ1, . . . , λκ) con-
verges pointwise to 1, when r → ∞. Hence, by Lebesgue’s dominated convergence theorem the
integral converges to zero if there is some integrable function which dominates integrands for
all r .

Let us split R
dκ into the regions

Bμ := {
(λ1, . . . , λκ) ∈ R

dκ : ‖λj‖ ≤ 1, if μj = −1, and ‖λj‖ > 1, if μj = 1, j = 1, . . . , κ
}
,
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where μ = (μ1, . . . ,μκ) ∈ {−1,1}κ is a binary vector of length κ . Then we can represent the
integral Rr as

Rr :=
⋃

μ∈{−1,1}κ

∫
Bμ

∣∣K(λ1 + · · · + λκ)
∣∣2(Qr(λ1, . . . , λκ) − 1

)2 dλ1 · · ·dλκ

‖λ1‖d−α · · · ‖λκ‖d−α
.

If (λ1, . . . , λκ) ∈ Bμ we estimate the integrand as follows

|K(λ1 + · · · + λκ)|2(Qr(λ1, . . . , λκ) − 1)2

‖λ1‖d−α · · · ‖λκ‖d−α

≤ 2|K(λ1 + · · · + λκ)|2
‖λ1‖d−α · · · ‖λκ‖d−α

(
Q2

r (λ1, . . . , λκ) + 1
)

= 2|K(λ1 + · · · + λκ)|2
‖λ1‖d−α · · · ‖λκ‖d−α

(
κ∏

j=1

‖λj‖μj δ ·
κ∏

j=1

(r/‖λj‖)μj δL(r/‖λj‖)
rμj δL(r)

+ 1

)

≤ 2|K(λ1 + · · · + λκ)|2
‖λ1‖d−α · · · ‖λκ‖d−α

(
1 +

κ∏
j=1

‖λ1‖μj δ · sup
(λ1,...,λκ )∈Bμ

κ∏
j=1

(r/‖λj‖)μj δL(r/‖λj‖)
rμj δL(r)

)
,

where δ is an arbitrary positive number. By Theorem 1.5.3 [10]

lim
r→∞

sup‖λj ‖≤1(r/‖λj‖)−δL(r/‖λj‖)
r−δL(r)

= lim
r→∞

supz≥r z−δL(z)

r−δL(r)
= 1;

lim
r→∞

sup‖λj ‖>1(r/‖λj‖)δL(r/‖λj‖)
rδL(r)

= lim
r→∞

supz∈[0,r] zδL(z)

rδL(r)
= 1.

Therefore, there exists r0 > 0 such that for all r ≥ r0 and (λ1, . . . , λκ) ∈ Bμ

|K(λ1 + · · · + λκ)|2(Qr(λ1, . . . , λκ) − 1)2

‖λ1‖d−α · · · ‖λκ‖d−α

≤ 2|K(λ1 + · · · + λκ)|2
‖λ1‖d−α · · · ‖λκ‖d−α

(23)

+ 2C
|K(λ1 + · · · + λκ)|2

‖λ1‖d−α−μ1δ · · · ‖λκ‖d−α−μκδ
.

By Lemma 3, if we chose δ ∈ (0,min(α, d/κ − α)), the upper bound in (23) is an integrable
function on each Bμ and hence on R

dκ too. By Lebesgue’s dominated convergence theorem
limr→∞ E|Xκ,r − Xκ |2 = 0, which completes the proof. �
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Proof of Theorem 6. For the function G̃(·) given by (14) coefficients Cν = 0 for ν ∈ N1 \
{(1,0, . . . ,0)}. C(1,0,...,0) is given by the formula

C(1,0,...,0) =
∫

Rn+1
G̃r (w)e(1,0,...,0)(w)φ

(‖w‖)dw

=
∫

Rn+1
χ

(
w1√

1/n(w2
2 + · · · + w2

n+1)

> a

)
w1

n+1∏
j=1

e−w2
j /2

√
2π

dwj

(24)

= 2πn/2

(2π)(n+1)/2�(n/2)

∫ ∞

0
ρn−1e−ρ2/2

∫ ∞

|a|ρ/
√

n

w1e−w2
1/2 dw1 dρ

= 1√
2π(1 + a2/n)n/2

.

As H rank G̃ = 1 then by Theorem 4 for r → ∞ the limit distribution of the random variable

Mr{Tn} − EMr{Tn}√
VarMr{Tn}

is the same as that of

C(1,0,...,0)ς1(r) + · · · + C(0,...,0,1)ςn+1(r)√
Var(C(1,0,...,0)ς1(r) + · · · + C(0,...,0,1)ςn+1(r))

= ς1(r)√
Varς1(r)

,

where

ςj (r) =
∫

�(r)

H1
(
ηj (x)

)
dx =

∫
�(r)

ηj (x)dx.

By Theorem 5 the random variable ς1(r)/
√

Varς1(r) is asymptotically normal with zero
mean and unit variance. By Theorem 5 and Lemma 3 we get limr→∞ Varςj (r)/r

2d−αL(r) =
c2(d,α)c3(1, d,α). Finally, the application of Remark 4 concludes the proof of the theorem. �

Proof of Theorem 7. For the function G(·) given by (13) coefficients Cν = 0 when ν ∈ N1 or
ν ∈ N2 \ {ν: exactly one kj = 2}. For ν ∈ N2 with kj = 2 for some j ∈ {1, . . . ,m}, m ≥ 2, all Cν

are equal and given below

Cν =
∫

Rn+m

G(w)e(2,0,...,0)(w)φ
(‖w‖)dw

=
∫

Rn+m

χ

(
(1/m)(w2

1 + · · · + w2
m)

(1/n)(w2
m+1 + · · · + w2

m+n)
> a

)(
w2

1 − 1
) n+m∏

j=1

e−w2
j /2

√
2π

dwj

+
(

Ima/(n+ma)

(
m

2
,
n

2

)
− 1

)∫
R

(
w2

1 − 1
)e−w2

1/2

√
2π

dw1

(∫
R

e−w2
2/2

√
2π

dw2

)n+m−1
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= 2πn/2

(2π)(m+n)/2�(n/2)

2π(m−1)/2

�((m − 1)/2)

×
∫

R

(
w2

1 − 1
)
e−w2

1/2
∫ ∞

0
ρm−2e−ρ2/2

∫ √
n(w2

1+ρ2)/(ma)

0
ρn−1

1 e−ρ2
1/2 dρ1 dρ dw1

= 2c4(a,n,m)

m
.

It is easy to check that for m = 1 the above result is valid too, that is, Cν = 2c4(a,n,1).
For ν ∈ N2 with kj = 2 for some j ∈ {m + 1, . . . ,m + n} all Cν are equal to

Cν =
∫

Rn+m

G(w)e(0,...,0,2)(w)φ
(‖w‖)dw

=
∫

Rn+m

χ

(
(1/m)(w2

1 + · · · + w2
m)

(1/n)(w2
m+1 + · · · + w2

m+n)
> a

)(
w2

m+n − 1
) n+m∏

j=1

e−w2
j /2

√
2π

dwj

+
∫

R

(
w2

m+n − 1
)e−w2

m+n/2

√
2π

dwm+n

(∫
R

e−w2
1/2

√
2π

dw1

)n+m−1(
Ima/(n+ma)

(
m

2
,
n

2

)
− 1

)

=
∫

Rn+m

(
1 − χ

(
(1/n)(w2

m+1 + · · · + w2
m+n)

(1/m)(w2
1 + · · · + w2

m)
>

1

a

))(
w2

m+n − 1
) n+m∏

j=1

e−w2
j /2

√
2π

dwj

= −2c4(1/a,m,n)

n

= −2c4(a,n,m)

n
.

As H rankG = 2 then by Theorem 4 for r → ∞ the limit distribution of the random variable

Mr{Fm,n} − EMr{Fm,n}√
VarMr{Fm,n}

is the same as that of

C(2,0,...,0)ς̃1(r) + · · · + C(0,...,0,2)ς̃n+m(r)√
Var(C(2,0,...,0)ς̃1(r) + · · · + C(0,...,0,2)ς̃n+m(r))

= (1/m)((ς̃1(r) + · · · + ς̃m(r)) − (1/n)((ς̃m+1(r) + · · · + ς̃m+n(r))√
Var((1/m)((ς̃1(r) + · · · + ς̃m(r)) − (1/n)((ς̃m+1(r) + · · · + ς̃m+n(r)))

,

where

ς̃j (r) =
∫

�(r)

H2
(
ηj (x)

)
dx =

∫
�(r)

η2
j (x)dx − ∣∣�(r)

∣∣.
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By Theorem 5, we deduce that for r → ∞ the distributions of ς̃j (r)/rd−αL(r) converge to the
distributions of X2,j , where X2,j are independent copies of X2. The application of Remark 4
concludes the proof of the theorem. �

Proof of Theorem 8. It is sufficient to investigate the case a(r) > 0. First, we verify condi-
tion (15) for the function

G̃r (w) = χ

(
w1√

(1/n)(w2
2 + · · · + w2

n+1)

> a(r)

)
− 1

2
In/(n+a(r)2)

(
n

2
,

1

2

)
. (25)

By (6) and (24) it is enough to check that

(
n + a(r)2)n ∫

Rn+1
G̃2

r (w)φ
(‖w‖)dw = o

(
rγ /2), r → ∞. (26)

It follows from (25) that

∫
Rn+1

G̃2
r (w)φ

(‖w‖)dw =
∫

Rn+1
χ

(
w1√

(1/n)(w2
2 + · · · + w2

n+1)

> a(r)

) n+1∏
j=1

e−w2
j /2

√
2π

dwj

×
(

1 − In/(n+a(r)2)

(
n

2
,

1

2

))
+ 1

4
I 2
n/(n+a(r)2)

(
n

2
,

1

2

)
.

For the incomplete beta function, we get

In/(n+a(r)2)

(
n

2
,

1

2

)
= �((n + 1)/2)

�(n/2)�(1/2)

∫ n/(n+a(r)2)

0

tn/2−1

√
1 − t

dt = O
((

n + a(r)2)−n/2)
.

Using the upper bound (7) in [17] for the complementary cumulative distribution function of
the standard normal distribution, we conclude

∫
Rn+1

χ

(
w1√

(1/n)(w2
2 + · · · + w2

n+1)

> a(r)

) n+1∏
j=1

e−w2
j /2

√
2π

dwj

= 2πn/2

(2π)(n+1)/2�(n/2)
s

∫ ∞

0
ρn−1e−ρ2/2

∫ ∞

a(r)ρ/
√

n

e−w2
1/2 dw1 dρ

≤ 2
√

2

2n/2
√

π�(n/2)

∫ ∞

0
ρn−1e−ρ2/2 e−a2(r)ρ2/(2n)

a(r)ρ/
√

n +√
8/π + a2(r)ρ2/n

dρ

= O
(
a−n(r)

)
, r → ∞.

Therefore,

(
n + a(r)2)n ∫

Rn+1
G̃2

r (w)φ
(‖w‖)dw = O

(
an(r)

)
, r → ∞,
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and condition (26) holds if a(r) = o(rγ /2n), when r → ∞. The application of Theorems 4 and 5
yields the statement of the theorem. �

Proof of Theorem 9. By (13), we obtain

∫
Rn+m

G2
r (w)φ

(‖w‖)dw =
∫

Rn+m

χ

(
(1/m)(w2

1 + · · · + w2
m)

(1/n)(w2
m+1 + · · · + w2

m+n)
> a(r)

) n+m∏
j=1

e−w2
j /2

√
2π

dwj

×
(

2Ima(r)/(n+ma(r))

(
m

2
,
n

2

)
− 1

)

+
(

Ima(r)/(n+ma(r))

(
m

2
,
n

2

)
− 1

)2

.

The integral can be estimated as follows

∫
Rn+m

χ

(
1/m(w2

1 + · · · + w2
m)

1/n(w2
m+1 + · · · + w2

m+n)
> a(r)

) n+m∏
j=1

e−w2
j /2

√
2π

dwj

= 4π(n+m)/2

�(n/2)�(m/2)

1

(2π)(n+m)/2

∫ ∞

0
ρm−1e−ρ2/2

∫ √
n/(ma(r))ρ

0
ρn−1

1 e−ρ2
1/2 dρ1 dρ

≤
(

n

ma(r)

)n/2 22−(n+m)/2

n�(n/2)�(m/2)

∫ ∞

0
ρn+m−1e−ρ2/2 dρ

= O
(
a−n/2(r)

)
, r → ∞.

By properties of the incomplete beta function, we get

1 − Ima(r)/(n+ma(r))

(
m

2
,
n

2

)
= In/(n+ma(r))

(
n

2
,
m

2

)
= O

((
n + ma(r)

)−n/2)
, r → ∞.

Therefore by (6)

∑
l≥3

∑
ν∈Nl

C2
ν (r)

ν!
/∑

ν∈N2

C2
ν (r)

ν! ≤ C

c2
4(a(r), n,m)

∫
Rn+m

G2
r (w)φ

(‖w‖)dw = O
(
an/2(r)

)
,

and condition (15) holds if a(r) = o(rγ /n), when r → ∞. Steps similar to the proof of Theorem 7
yield the statement of the theorem. �

Proof of Theorem 10. Let G1(η(x)) := χ(Tn(x) > a). By Assumption 3 we obtain

Mr{Tn} =
∫

�(r)

χ
(
Tn(x) > a

)
dx =

∫
�(r)

G1
(
η(x)

)
dx =

∫
�(r)

Ĝ1
(
η̃(x)

)
dx,
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where Ĝ1(w) = G1(A1/2w). By (7) and the orthogonality of A1/2 , we get

EMr{Tn} = ∣∣�(r)
∣∣ ∫

Rn+1
G1
(

A1/2w
)
φ
(‖w‖)dw = ∣∣�(r)

∣∣ ∫
Rn+1

G1(w)φ
(‖w‖)dw

= |�|rd

(
1

2
− 1

2

(
1 − In/(n+a2)

(
n

2
,

1

2

))
· sgn(a)

)
.

A1/2w is a linear transformation of w. Hence, for the function G̃(·) given by (14)
H rank G̃(A1/2w) = H rank G̃(w) = 1 and to obtain the limit theorem we need only to find
the coefficients Cν , ν ∈ N1, of the function G̃(A1/2w).

Due to the orthogonality of A−1/2, it follows that
∑n+1

i=1 a2
ji = 1. Therefore, for ν ∈ N1 such

that kj = 1, by (4) we obtain that

Cν =
∫

Rn+1
G̃
(

A1/2w
)
eν(w)φ

(‖w‖)dw

=
∫

Rn+1
G̃(w)eν

(
A−1/2w

)
φ
(‖w‖)dw

=
∫

Rn+1
G̃(w)

n+1∑
i=1

ajiH1(wi)φ
(‖w‖)dw = aj1√

2π(1 + a2/n)n/2
.

Hence, for r → ∞ and ςj (r) defined in Theorem 6 the asymptotic distributions of the random
variables

Mr{Tn} − EMr{Tn}√
VarMr{Tn} and

∑n+1
j=1 aj1ςj (r)√

Var(
∑n+1

j=1 aj1ςj (r))

coincide. Note that
∑n+1

j=1 a2
j1 = 1. Then, similarly to the proof of Theorem 6, we get the state-

ment of the theorem. �

Proof of Theorem 11. Similar to Theorem 10 it is easy to show that

EMr{Fm,n} = |�|rd

(
1 − Ima/(n+ma)

(
m

2
,
n

2

))
.

For the function G(·) given by (13) H rankG(A1/2w) = H rankG(w) = 2 and to obtain the
limit theorem we need only to find the coefficients Cν , ν ∈ N2, of the function G(A1/2w).

By (4) and the orthogonality of both A1 and A2, for ν ∈ N2 such that kj = 2, we obtain

Cν =
∫

Rn+m

G(w)eν

(
A−1/2w

)
φ
(‖w‖)dw

=
∫

Rn+m

G(w)

n+m∑
i=1

a2
jiH2(wi)φ

(‖w‖)dw
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= 2c4(a,n,m)

(
1

m

m∑
i=1

a2
ji − 1

n

m+n∑
i=m+1

a2
ji

)

= 2c4(a,n,m) ·

⎧⎪⎨
⎪⎩

1

m
, if 1 ≤ j ≤ m,

−1

n
, if m + 1 ≤ j ≤ m + n,

while for ν ∈ N2 such that kj = kl = 1, 1 ≤ j < l ≤ m + n:

Cν =
∫

Rn+m

G(w)

n+m∑
i=1

ajialiH
2
1 (wi)φ

(‖w‖)dw

=
n+m∑
i=1

ajiali

∫
Rn+m

G(w)
(
H2(wi) + 1

)
φ
(‖w‖)dw

= 2c4(a,n,m)

(
1

m

m∑
i=1

ajiali − 1

n

m+n∑
i=m+1

ajiali

)
= 0.

The rest of the proof is omitted as it follows from virtually identical arguments as in Theo-
rem 7. �

9. Simulation results

To show different types of the limit behaviour for weakly and strongly dependent models we
present a simulation result based on the theoretical findings.

For d = 2, we chose two models of η(x): short-range dependent normal scale mixture field
with the covariance function B(‖x‖) = I · exp(−‖x‖2) and long-range dependent Cauchy field
which covariance function is B(‖x‖) = I · (1+‖x‖2)−1/4, consults [42]. We used three indepen-
dent copies of η1(x) to produce Fisher–Snedecor fields F1,2(x), x ∈ R

2, for each above model.
The first row of Figure 1 shows excursion sets above level 1 for realizations of these two Fisher–
Snedecor fields (from left to right). The excursion sets are shown in black colour. Images in each
column of Figure 1 correspond to the same model. The figure was generated by the R package
RANDOMFIELDS [42].

Further, we simulated 1000 realizations of each F1,2(x) field and computed areas of the ex-
cursion set for each realisation. Applying the transformations given in Theorems 2 and 7 we
compared empirical distributions of the areas to the normal law. The second row of Figure 1
demonstrates normal Q–Q plots of 1000 realisations of the area of the excursion set. The obser-
vation window was chosen to be large enough to obtain results close to the asymptotic ones. The
Q–Q plots clearly manifest differences in two types of limit behaviour and support our findings.
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10. Conclusions

We have obtained limit distributions of the first Minkowski functional of both weakly and
strongly dependent vector random fields. In particular, special attention was devoted to Stu-
dent and Fisher–Snedecor random fields. The techniques developed in Sections 5 and 7 may be
applied to other problems, which deal with limit distributions of various functionals of vector
random fields. The analysis and the approach to the first Minkowski functional based on func-
tions of vector random fields are new and contribute to the investigations of excursion sets in the
former literature.

The results presented in the paper pose new problems and provide the theoretical framework
for studying more complex models. It would be interesting:

• to obtain similar results for other Minkowski functionals;
• to derive analogous results under different long-range assumptions on covariance functions

of vector random fields, consult [4,5,22];
• to study the rate of convergence to the limit distributions, consult [27].
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